
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2024 1

PRIME: Scaffolding Manipulation Tasks with Behavior
Primitives for Data-Efficient Imitation Learning

Tian Gao1→, Soroush Nasiriany2, Huihan Liu2, Quantao Yang3→, Yuke Zhu2

Abstract—Imitation learning has shown great potential for
enabling robots to acquire complex manipulation behaviors.
However, these algorithms suffer from high sample complexity in
long-horizon tasks, where compounding errors accumulate over
the task horizons. We present PRIME (PRimitive-based IMitation
with data Efficiency), a behavior primitive-based framework
designed for improving the data efficiency of imitation learning.
PRIME scaffolds robot tasks by decomposing task demonstra-
tions into primitive sequences, followed by learning a high-level
control policy to sequence primitives through imitation learning.
Our experiments demonstrate that PRIME achieves a significant
performance improvement in multi-stage manipulation tasks,
with 10-34% higher success rates in simulation over state-of-
the-art baselines and 20-48% on physical hardware.1

Index Terms—Imitation Learning, Deep Learning in Grasping
and Manipulation, Deep Learning Methods.

I. INTRODUCTION

IMITATION learning (IL) has become a powerful paradigm
for programming robots to perform manipulation tasks.

Policies trained through imitation have exhibited diverse and
complex behaviors, such as assembling parts [55], preparing
coffee [57], making pizza [7], and folding cloth [52]. Deep IL
methods aim at training policies that map sensory observations
directly to low-level motor commands [4, 7, 27]. While con-
ceptually simple, these methods usually require a large volume
of human demonstrations, making them costly for tackling
long-horizon tasks. Furthermore, the direct imitation of low-
level motor actions leads to limited generalization abilities of
the learned policy.

One solution to improve data efficiency and model gen-
eralization is incorporating temporal abstraction into policy
learning [40]. Conventional methods afforded with temporal
abstraction decouple learning new tasks into learning what

subtasks to perform and how to achieve them. Among these

Manuscript received: March 1, 2024; Revised May 29, 2024; Accepted July
1, 2024.

This paper was recommended for publication by Editor Aleksandra Faust
upon evaluation of the Associate Editor and Reviewers’ comments.

1 Tian Gao is with the Department of Computer Science, Stanford Univer-
sity, tiangao@stanford.edu

2Soroush Nasiriany, Huihan Liu, and Yuke Zhu are with the Department
of Computer Science, the University of Texas at Austin.

3 Quantao Yang is with the Department of Computer Science, KTH Royal
Institute of Technology.

→ This work was done when Tian Gao and Quantao Yang were visiting
researchers at UT Austin.

Digital Object Identifier (DOI): see top of this page.
1Additional materials are available at https://ut-austin-rpl.github.io/

PRIME/.

PolicyTrajectory parser

Task demonstration

Place , 𝑥3

Pre-built Primitives Interpreting Task Demonstrations Imitation Learning

Reach

Grasp , 𝑥2 Push, 𝑥1

Observation

Primitive
Grasp , 𝑥

...

Grasp

Place Push

Primitive sequence

Fig. 1: Overview of PRIME. (Left) Our learning framework leverages a set
of pre-built behavior primitives to scaffold manipulation tasks. (Middle) Given
task demonstrations, we use a trajectory parser to parse each demonstration
into a sequence of primitive types (such as “push”, “grasp” and “place”) and
their corresponding parameters xi. (Right) With these parsed sequences of
primitives, we use imitation learning to acquire a policy capable of predicting
primitive types (such as “grasp”) and corresponding parameters x based on
observations.

methods, skills represent a popular form of temporal abstrac-
tion, offering a systematic approach to decomposing complex
tasks for robots. Skills serve as fundamental building blocks,
capturing necessary robot behaviors for specific tasks, such as
grasping an object. The first step of incorporating skills as tem-
poral abstraction is to obtain a repertoire of motor skills that
capture how to perform behaviors, serving as reusable building
blocks for various tasks. This reduces the problem of learning
new tasks to learning what behaviors to perform rather than
how to perform them, simplifying the learning process and
enhancing generalization. The second step involves learning
a policy for skill sequencing. To acquire skills, one popular
approach is skill learning, which learns low-level skills that
capture short-horizon sequences of robot actions by learning
either continuous latent skill representations [1, 30, 37] or a
discrete set of skills with continuous parameters [45, 58]. Prior
work in skill learning extracts skills from a large amount of
prior human data. While promising, a core limitation of these
methods is the need for substantial human data to ensure the
learned skills possess a high generalization capability.

Recent work has explored using robotic behavior primi-

tives [5, 9, 21, 31] to decompose manipulation tasks, such
as movement primitives [15, 32], motion planning [11, 20,
50], and grasping systems [2, 23]. A behavior primitive is a
parameterized module designed to capture a certain movement
pattern, usually with explicit semantic meaning (e.g., grasp-
ing). The input parameters instantiate the behavior primitive
into a specific movement, with the output being a sequence
of motor actions to control the robot. These primitives enjoy
the advantages of re-usability, modularity, and robustness
toward variations. To utilize these primitives, recent work has

ar
X

iv
:2

40
3.

00
92

9v
3

 [c
s.R

O
]

17
 A

ug
 2

02
4

https://ut-austin-rpl.github.io/PRIME/
https://ut-austin-rpl.github.io/PRIME/

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2024

Learned
IDM

Task
demonstrations

Trajectory
parser

Imitation Learning

𝑠 𝑝, 𝑥Policy

agent

Data Collection

...

...

...

Policy pre-training

Training Inverse Dynamics Model

𝑠

𝑝, 𝑥IDM

𝑠′
Primitive

sequences

Fig. 2: Method Overview. We develop a self-supervised data collection procedure that randomly executes sequences of behavior primitives in the environment.
With the generated dataset, we train an IDM that maps an initial state s and a final state s↑ from segments in task demonstrations to a primitive type p and
corresponding parameters x. To derive the optimal primitive sequences, we build a trajectory parser capable of parsing task demonstrations into primitive
sequences using the learned IDM. Finally, we train the policy using parsed primitive sequences.

proposed learning high-level policies that discover the optimal
sequence of primitives using reinforcement learning (RL) [8,
9, 31]. However, RL requires expensive exploration even in the
action space afforded by the primitives and is unsafe to train
on real robots. Another notable line of work learns the policy
with primitives from segmented demonstrations using imita-
tion learning [13, 24, 47]. Segmented demonstrations require
costly human efforts to manually segment demonstrations into
primitive sequences.

In response to the above challenges, we introduce PRIME
(PRimitive-based IMitation with data Efficiency), a data-
efficient imitation learning framework based on behavior prim-
itives (see Fig. 1). We provide a small set of task demonstra-
tions with raw sensory observations and a discrete collection
of behavior primitives. Our framework consists of a two-step
learning process: first, parsing task demonstrations as primitive
sequences via a trajectory parser without the need for any
human annotations, and subsequently, training a policy through
imitation learning to predict the sequence of primitives (such
as “push” and “grasp”) and their corresponding parameters
given observations. By incorporating primitives, we break
down long-horizon tasks into shorter sequences of primitives,
significantly reducing the complexity and temporal horizon for
imitation learning.

In this work, PRIME does not require access to segmenta-
tion labels, rendering the parsing of demonstrations a challeng-
ing task. To segment demonstrations into primitive sequences,
it is essential to establish a mapping from raw observation-
action sequences to primitives. To generate the data necessary
for learning the mapping, we introduce a self-supervised data
collection procedure [5, 39] that randomly samples sequences
of primitives to execute within the environment, effectively
reducing the need for human efforts in collecting prior data.
Subsequently, we train an Inverse Dynamics Model (IDM) [3,
10, 34, 35, 56] on the collected data, which maps pairs of states
to primitives. We use this IDM with a dynamic programming
algorithm to identify the optimal primitive sequences derived
from task demonstrations.

We evaluate our method’s effectiveness in tabletop ma-
nipulation tasks, both in simulation and on real hardware.
Our results highlight PRIME’s substantial performance gains
over state-of-the-art imitation learning baselines in a low-
data regime. In simulations, success rates increase by 10.0%

to 33.6%, and on real robots, by 20.0% to 48.3%. We
further verify that our trajectory parser can effectively parse
task demonstrations into primitive sequences that can be
replayed to accomplish the task with success rates exceeding
90%. Moreover, our IDM generalizes to unseen environments,
achieving performance levels comparable to those in training
environments.

We highlight three contributions of this work: 1) We in-
troduce PRIME, a data-efficient imitation learning framework
that scaffolds robot tasks with behavior primitives; 2) We
develop a trajectory parser that transforms task demonstra-
tions into primitive sequences using dynamic programming
without segmentation labels; 3) We validate the effectiveness
of PRIME in simulation and on real hardware.

II. RELATED WORK

A. Learning from Demonstration

Learning from Demonstration (LfD) has shown promise
in robot manipulation tasks [6, 33, 36, 42]. LfD aims to
enable an agent to observe and replicate expert behavior to
effectively achieve a designated task. Within the domain of
LfD, a diverse and extensive range of approaches has emerged,
encompassing imitation learning [14, 25, 27], demonstration-
guided RL [37, 38, 48], and offline RL [1, 18, 26, 53].
These approaches that rely on demonstration guidance often
necessitate a substantial number of expert demonstrations,
thereby limiting their data efficiency. To reduce the burdens
of collecting expert demonstrations, a common line of work
learns from task-agnostic play data [22, 29, 30], which is more
cost-effective to acquire but still demands a certain level of
human supervision. Instead of relying on additional human
data, we propose utilizing pre-defined primitives and data
acquired from random primitive rollouts.

B. Skill-based Imitation Learning

Skill-based imitation learning extracts low-level temporally-
extended sensorimotor behaviors as skills from expert demon-
strations [41, 54] or task-agnostic play data [22, 29, 30]
and emulates the high-level behavior observed in the expert
demonstrations to guide the execution of these low-level

GAO et al.: PRIME: SCAFFOLDING MANIPULATION TASKS WITH BEHAVIOR PRIMITIVES FOR DATA-EFFICIENT IMITATION LEARNING 3

skills. A common approach involves joint learning of low-
level skills and a high-level policy, with skills acquired in an
unsupervised manner [16, 17, 43, 44]. These skills can be
either discrete [58] or continuous in a latent space [30, 37].
Unsupervised learning obviates the need for additional human
annotation but often results in skills with limited reusability
and low generalization capability. Alternatively, some research
focuses on learning a high-level policy and low-level skills
from structured demonstrations with additional segmentation
labels using supervised learning, relying on either weak [47] or
strong human supervision [13]. In our work, we use pre-built
parameterized behavior primitives as low-level skills, which
are highly robust, reusable, and generalizable. Furthermore,
our method requires only raw sensory demonstrations without
the need for additional human annotations.

C. Learning with Behavior Primitives

One line of research focuses on policy learning with prim-
itives, which involves augmenting the motor action space
through the integration of parameterized primitives [8, 9, 12,
19, 31, 49]. Dalal et al. [9] propose to manually specify
a comprehensive library of robot action primitives. These
primitives are carefully parameterized with arguments that are
subsequently fine-tuned and learned by an RL policy. Simi-
larly, Nasiriany et al. [31] augments standard RL algorithms
by incorporating a pre-defined library of behavior primitives.
Chitnis et al. [8] decomposes the learning process into learning
a state-independent task schema. The discrete-continuous aug-
mented action space imposes a significant exploration burden
in RL. Recently, Chen et al. [5] proposed an imitation learning
framework that integrates primitives for solving stowing tasks,
which involves a complex graph construction for Graph Neural
Networks to predict forward dynamics. Another tangential
work by Shi et al. [46] decomposes demonstrations into
sequences of waypoints, which are interpolated through linear
motion. The interpolated linear motion between waypoints can
be regarded as a type of primitive. In contrast, our primitive-
based framework can be viewed as a more versatile form
of waypoint extraction, capable of encompassing a broader
spectrum of skills.

III. METHOD

We introduce PRIME, our primitive-based imitation learn-
ing framework, which decomposes complex, long-horizon
tasks into concise, simple sequences of primitives. We begin
by formulating the problem and providing an overview of
our framework. We then describe two components of our
framework: the trajectory parser and the policy.

A. Problem Formulation

We formulate a robot manipulation task as a Parameterized
Action Markov Decision Process (PAMDP) [28], defined by
the tuple M = (S,A,P, p0,R, ω) representing the continuous
state space S , the discrete-continuous parameterized action

space A, the transition probability P , the initial state dis-
tribution p0, the reward function R, and the discount factor
ω. In our setting, the motor action space is afforded by
the primitives into discrete-continuous primitive action space,
a = (p, x), a → A, p → L, x → Xp, where L is a discrete set
of primitive types and Xp is the parameter space of primitive
p. We aim to learn a policy, ε(a|s) = ε(p, x|s), s → S , to
maximize the expected sum of discounted rewards. We assume
access to a small set of task demonstrations for imitation
learning.

In our framework, we first parse task demonstrations into
concise primitive sequences to reduce the complexity and
temporal horizon of imitation learning. The challenge in
parsing is to map unsegmented demonstrations into sequences
of parameterized primitive actions. To establish this mapping,
we build an IDM capable of identifying segments of task
demonstrations into primitives. Utilizing the learned IDM, we
develop a trajectory parser that uses dynamic programming
to determine the optimal primitive sequences derived from
task demonstrations. Subsequently, we train a policy from
parsed primitive sequences to compose primitives via imitation
learning. By leveraging primitives, the policy only needs to
focus on primitive selection and their parameters rather than
low-level motor actions. See Fig. 2 for an overview of our
framework.

B. Trajectory Parser

We develop a trajectory parser to parse task demonstrations
into primitive sequences. This parser comprises an IDM and
a dynamic programming algorithm. The IDM learns the prob-
ability of mapping from segments of task demonstrations to
primitives. The dynamic programming algorithm determines
the optimal primitive sequence by maximizing the product of
probabilities in the parsed primitive sequences.

1) Inverse Dynamics Model: To parse a demonstration with
primitives, it is important to identify behaviors shown in
the demonstration that can be reproduced using a primitive.
Toward this objective, we seek the initial and final states
of behaviors and develop an IDM to infer primitives that
can transition from a specified initial state to a targeted final
state. We construct the IDM, IDM(p, x|s, s→), which predicts
a primitive type p and its parameters x based on a pair of
initial and final states (s, s→). The predicted primitive type
falls within a categorical distribution that encompasses the
types of primitives contained in the pre-built primitive set, in
addition to an “other” category. Given that not all segments of
a demonstration can be reproduced by a primitive within our
pre-built primitive set, we introduce a new category named
“other”. This category is designated for classifying pairs of
initial and final states that do not correspond to any of
the predefined types of primitives. The predicted parameters
belong to a continuous distribution, representing the parameter
space associated with the primitive.

To collect the training dataset for the IDM, we intro-
duce a self-supervised data collection procedure by randomly

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2024

executing primitives and atomic motor actions within the
environment. Specifically, our random policy either uniformly
samples a primitive type p from a pre-built set or selects a
random atomic motor action, each with a 50% probability. If a
primitive is sampled, its parameters x are randomly chosen and
the primitive is executed. Otherwise, the sampled motor action
is executed directly. This process yields a set of trajectories
comprising the rollouts of these primitives. These primitive
rollouts are subsequently utilized to train the IDM in a
supervised manner. To gather data for the “other” category, we
randomly sample a selection of state pairs from the generated
trajectories. Specifically, we uniformly sample K state pairs in
each episode and label them as “other” category, enabling us to
balance the dataset by selecting an appropriate K (see Alg. 1).
To further address data imbalance during training, we reweight
the data for each primitive type p in the IDM training dataset
by a factor of 1/(number of rollouts for primitive type p).

The collected dataset is an offline dataset and differs from
online RL samples. The data collection policy we used is
not task-specific, generating a domain-specific dataset. Con-
sequently, all tasks within the same domain share a single
IDM, requiring only one dataset collection procedure.

To enhance training data quality, we filter out unsuccessful
rollouts using the success criteria for each primitive. For
example, a successful grasping primitive is defined by the
gripper securely holding an object. Without this filtering,
many rollouts would include ineffective actions, degrading the
accuracy and quality of the learned IDM and demonstration
segmentation.

Gathering successful primitive rollouts through uniform
parameter sampling is inefficient. To reduce the sampling
burden and speed up data collection, we use a prior distribution
of Gaussian mixtures centered on task objects. This directs
the agent to interact more effectively with objects, improving
rollout success rates. The pseudo-code for the data generation
process is summarized in Alg. 1.

2) Dynamic Programming Algorithm: The learned IDM
predicts a hybrid discrete-continuous distribution when pro-
vided with a pair of input initial and final states. In this context,
the probability IDM(p, x|s, s→) represents the likelihood of
interpreting a segment between states s and s→ as belonging to
the primitive type p and its parameter x. Once this mapping
is established, the remaining task is to identify an optimal
sequence of primitives that maximizes the probability of
being parsed from the task demonstrations. To optimize the
likelihood of primitive sequences interpreted from given task
demonstrations, we leverage dynamic programming to find the
optimal segmentation with a maximal product of probabilities
in the parsed primitive sequences.

Specifically, considering a task demonstration denoted as
ϑ = (s0, a0, ..., sT) where at represents low-level motor
actions. We define the objective function in our dynamic
programming process as f(i), which represents the probabil-
ity of decomposing (s0, a0, ..., si) into an optimal sequence
of primitives (s0, (p0, x0), sj1 , (p1, x1), ..., si). We iteratively

Algorithm 1: Self-Supervised Data Collection Proce-
dure

1: Notations
2: D: training dataset of IDM
3: Cp: number of episodes during data generation
4: M: horizon of episodes
5: K: number of negative samples for each episode
6:
7: for e ↑ 1, 2, · · · Cp do
8: for i ↑ 1, 2, · · ·M do
9: Sample a primitive and its parameters (pi, xi

p) or
an atomic motor action ati and set pi = atomic

10: Execute it and get ϑ i = (sti , ati , sti+1, ..., sti+1)
11: if pi ↓= atomic and is_success(ϑ i, pi) then
12: D ↑ D ↔ {(sti , sti+1 , p

i, xi
p)}

13: end if
14: end for
15: Sequence {ϑ i}Mi=1 into an episode trajectory:
16: Get ϑ = (s0 = st0 , a0, ..., st1 , at1 , ..., st2 , ..., stM)
17: for k ↑ 1, 2, · · ·K do
18: Sample a segment ϑ → = (sj , aj , ..., sl) from ϑ
19: D ↑ D ↔ {(sj , sl,other,none)}
20: end for
21: end for

update the objective function

f(i) = max
p,x,t<i

f(t) · (ϖ · IDM(p, x|st, si)) (1)

by maximizing the product of probabilities of primitive se-
quences. We multiply a factor ϖ to IDM(p, x|st, si), where ϖ
is a small constant (ϖ = 0.0001 in our implementation) if p is
in “other” category; otherwise, ϖ = 1. We use the factor ϖ to
penalize mappings to the category “other”. Upon completing
the dynamic programming, we can extract the optimal prim-
itive sequences denoted as (s0, p0, x0, st1 , p1, x1, . . . , stM =
sT) from the final value f(T), where M represents the length
of the segmented sequence.

C. Policy Learning

In this section, we describe the process of learning the
policy from parsed primitive sequences. We train the policy
ε(p, x|s) with behavioral cloning using the segmented primi-
tive sequences.

Given that the segmented primitive sequences are notably
shorter than the task demonstrations, leading to significantly
smaller segmented data than the size of the demonstrations,
we introduce a stepwise augmentation technique to enrich
the segmented data and increase the scope of supervision
for imitation learning. We assume that beginning from any
point within the demonstration, the decomposition will remain
consistent in subsequent segments. In other words, we presume
that start and end points of each segment in parsed sequences
are the same across all “suffixes” of demonstrations, where a
suffix is defined as a portion of the demonstration beginning
from any intermediate state and continuing to the final state.

GAO et al.: PRIME: SCAFFOLDING MANIPULATION TASKS WITH BEHAVIOR PRIMITIVES FOR DATA-EFFICIENT IMITATION LEARNING 5

With this assumption, for each segmented primitive sequences
ϑ → = (s0, (p0, x0), st1 , (p1, x1), ..., sT) parsed from a task
demonstration ϑ = (s0, a0, ..., sT), we can get an augmented
tuple (sl, p→d, x

→
d, std+1) at each timestep l, where std < l <

std+1 , (p→d, x
→
d) = argmax IDM(.|sl, std+1). We incorporate

these augmented tuples {(sl, p→d, x→
d)} into the training dataset

of policy.

To leverage additional prior knowledge, we pretrain the
policy using the training dataset of IDM and fine-tune the
policy using parsed primitive sequences.

D. Implementation Details

We use the primitives from Nasiriany et al. [31] to imple-
ment our library of primitives with minor modifications. These
task-independent, hard-coded APIs can be directly adapted
to new situations within the same domain, as these APIs
only require robot proprioceptive information as input. We
implement the following four primitives:

• Reaching: The robot moves its end-effector to a target
location (x, y, z) and yaw angle ϱ in a collision-free path.

• Grasping: Same behavior and parameters as the reaching
primitive, followed by the robot closing its gripper.

• Placing: Same behavior and parameters as the reaching
primitive, followed by the robot opening its gripper.

• Pushing: The robot reaches a starting location (x, y, z)
at a yaw angle ϱ in a collision-free path and then moves
its end-effector by a displacement (ςx, ςy, ςz).

To reduce the complexity of the mapping, we factorize the
IDM into a primitive IDM, i.e. IDMprim(p|s, s→), capable
of identifying primitive types and a parameter IDM, i.e.
IDMparam(x|s, s→, p), capable of predicting parameters of the
primitive, where

IDM(p, x|s, s→) = IDMprim(p|s, s→) · IDMparam(x|s, s→, p). (2)

Our primitive IDM and parameter IDM are two separate
networks. Both networks take a pair of observations, s and
s→, and encode these observations with a pair of ResNet-
18 encoders. A 2-layer MLP follows the image encoder
in both networks. The primitive IDM outputs a Softmax
distribution over primitives, while the parameter IDM out-
puts a Gaussian mixture model over parameter values. Our
model architecture is similar to the default architecture in
the RoboMimic framework [27], as the paper reported that
ResNet encoder and GMM policy uniformly perform better
than other design choices. Similarly to the IDM, we factorize
the policy ε(p, x|s) into a primitive policy, i.e. εprim(p|s),
and a parameter policy, i.e. εparam(x|s, p). During deployment,
the primitive policy first predicts the next primitive type p
given the current state s. Following this, the parameter policy
predicts the corresponding parameters x given inputs s and p.
We train these two policy networks separately with behavioral
cloning. These networks take a single observation as input
(the current observation s) and have architectures and output
spaces similar to their counterparts in the IDM. We use
RoboMimic [27] to implement and train these networks.

PickPlace NutAssembly TidyUp

A

B

C D

Fig. 3: Simulated Tasks. We perform evaluations on three tasks from the
RoboSuite simulator [59]. The first two, PickPlace and NutAssembly,
are from the RoboSuite benchmark, with NutAssembly featuring less initial
randomization than the original task. We introduce a third task, TidyUp, to
study long-horizon tasks and test the inverse dynamics model’s generalization
to unseen environments. We create four environment variants in this domain,
denoted as (A, B, C, D). TidyUp task is designed in environment (D), and
we collect human demonstrations for TidyUp in the same environment (D).
To gauge the inverse dynamics model’s generalization capability, we train two
IDMs: IDM-D, based solely on data from environment (D), and IDM-ABC,
trained on data from environments (A, B, C). While IDM-D is our default
model for experiments, we use IDM-ABC to evaluate generalization in unseen
environments.

��������� � �
������! ���!���

	�

�

��

��

���

�
��
��
��
��
��
���

�

BC-RNN

BC-RNN (FT)

SAILOR

PRIME-Learned-Skill

PRIME-Primitive (Ours)

Fig. 4: Quantitative evaluation in three simulated tasks. Our method
significantly outperforms state-of-the-art imitation learning approaches, with
success rates surpassing 95% in all three tasks.

IV. EXPERIMENTS

Our experiments are designed to answer the following
questions: 1) How does PRIME perform for imitation learning
in low-data regimes? 2) Which design choices are critical to
PRIME? 3) How effective is the trajectory parser in PRIME?
4) Is PRIME feasible for practical deployment to real-world
robot tasks? 5) Are learned skills compatible with PRIME?

A. Experimental Setup

1) Manipulation Tasks: We validate our approach and ex-
amine the above questions in simulated and real-world tasks.
We perform evaluations in three simulated tasks from the
RoboSuite simulator [59] (see Fig. 3) and two real-world tasks
(see Fig. 6):

• PickPlace. The robot picks up a milk carton from the left
and places it in the corresponding bin.

• NutAssembly. The robot picks up the nut and inserts
it over the peg. The high precision of nut insertion is
challenging when learning under a low-data regime.

• TidyUp. A new domain to study long-horizon tasks and
generalization of IDM in unseen environments. The setup

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2024

Primitives
Grasp
Place
Reach
Push

PickPlace NutAssembly TidyUp CleanUp-Bin CleanUp-Stack

Push Reach Grasp Place

Fig. 5: Visualization of output primitive sequences from trajectory parser. For each task, we select five human demonstrations and visualize the segmented
primitive sequences as interpreted by the trajectory parser.

includes a large box, 2 smaller boxes, 2 bins, and a table
mat. Across four environment variants, objects differ in
placement and texture. The robot’s task is to move the
large box onto the table mat and place the smaller boxes
into the bins. See Fig. 3 for the detailed design.

• CleanUp. This domain replicates the real-world experi-
mental setup introduced by Nasiriany et al. [31], involv-
ing two tasks: CleanUp-Bin and CleanUp-Stack.
The tasks require the robot to push a popcorn box to a
serving area and move butter to a target location. See
Fig. 6 for the tasks.

We employ a Franka Emika Panda robot with operational
space control for all tasks. In simulation and the real world,
we opt for 5-DoF control at 20 Hz: 3 for end-effector position
(ςx, ςy, ςz), 1 for yaw orientation, and 1 for the gripper.
The agent observes wrist-camera and third-person images and
receives proprioceptive data. Vision-based policies are trained
for all tasks, with only 30 human demonstrations per task.
For the training data of IDM, we collect 1M transitions for
PickPlace, 3M transitions for NutAssembly, and 5M
transitions for TidyUp. Notably, all tasks are completed based
on the same set of primitives.

2) Evaluation Protocol: In the simulation, we run 50 trials
for each checkpoint, averaging success rates from the top 5
checkpoints per seed. The policy is executed for 20 trials per
checkpoint on the real robot. We choose the best checkpoint
from each seed. We compute the mean and standard deviation
of success rates over the three seeds.

3) Baselines: We contrast our method with three imitation
learning baselines: BC-RNN [27], its fine-tuning variant BC-
RNN (FT), and SAILOR [30]. BC-RNN uses LSTM as the
backbone network architecture and learns through behavioral
cloning. BC-RNN (FT) pre-trains on prior data and fine-
tunes with target task demonstrations. SAILOR pre-trains
a skill encoder to extract skill latents from prior data and
learns the policy using task demonstrations and pre-trained
skill representations through imitation learning. The prior
data for pre-training BC-RNN (FT) and SAILOR consists of
all low-level transitions in the training dataset of IDM in
PRIME. PRIME-Learned-Skill runs our framework PRIME
with pretrained primitives which learn from human motions by
first manually segmenting the demonstrations into sequences

TABLE I: Success rates in simulation tasks for ablation studies.

Task Ours No Pretraining Greedy Algo

PickPlace 0.967± 0.004 0.463± 0.004 0.881± 0.064
NutAssembly 0.956± 0.016 0.705± 0.005 0.554± 0.080
TidyUp 0.989± 0.005 0.944± 0.003 0.859± 0.004

TABLE II: Effectiveness of trajectory parser.

Task Success Rate Primitive Seq Len / Demo Len

PickPlace 0.967± 0.027 3.5 / 314
NutAssembly 0.956± 0.031 2.1 / 232
TidyUp 0.911± 0.016 6.6 / 403

of primitives, then training each primitive using the data from
its corresponding segments. The set of primitive types remains
the same as the hard-coded primitives: {reach, grasp, place,
push}. To make a fair comparison, we use the default network
architecture in RoboMimic [27] to implement BC-RNN, using
ResNet-18 as the image encoder and a GMM policy, similar
to our method. SAILOR utilizes a VAE architecture for skill
encoding and decoding and also uses ResNet-18 and a GMM.

B. Experimental Results

1) Quantitative Results: Fig. 4 demonstrates our method’s
substantial superiority over all baselines, achieving success
rates exceeding 95% across all tasks with remarkable robust-
ness. This showcases the effectiveness of our approach in
achieving data-efficient imitation learning through the decom-
position of raw sensory demonstrations into concise primitive
sequences. Furthermore, our policy often attempts the same
primitive type and slightly adjusts primitive parameters after a
failure. The results indicate that our primitive policy is more
capable of learning this recovery attempt following a failure
than baseline policies which require predicting a sequence
of actions for recovery. Failures in our method are typically
caused by prediction errors in the parameter policy.

TABLE III: Generalization capability of IDM.

IDM Ours BC-RNN BC-RNN (FT)

IDM-D 0.989± 0.005 0.825± 0.056 0.861± 0.043
IDM-ABC 0.975± 0.030 0.825± 0.056 0.860± 0.042

GAO et al.: PRIME: SCAFFOLDING MANIPULATION TASKS WITH BEHAVIOR PRIMITIVES FOR DATA-EFFICIENT IMITATION LEARNING 7

CleanUp-Bin

CleanUp-Stack

Fig. 6: Real-world Tasks. In CleanUp-Bin, the robot must push the
popcorn box to the serving area and place the butter inside the bin. In
CleanUp-Stack, the robot must push the popcorn box to the serving area
and stack the butter on top of the popcorn.

PRIME-Learned-Skill outperforms all other baselines, con-
firming that learned skills are compatible with our PRIME
framework. However, the fact that PRIME-Learned-Skill per-
forms worse than PRIME with hard-coded primitives suggests
that primitives pretrained from a small set of annotated human
demonstrations are suboptimal, leading to a suboptimal low-
level controller.

2) Ablation Studies: We perform ablation studies in all
three simulation tasks to study the importance of design
choices in our framework. We compare our methods with
ablations: 1) without policy pretraining (No Pretraining),
2) utilizing a greedy algorithm to interpret demonstrations
into primitive sequences instead of dynamic programming
(Greedy Algorithm), where the greedy algorithm selects next
primitive by examining all states in the demonstration that
come after the current state and choosing the one with the
highest probability. As shown in Table I, omitting policy pre-
training or substituting dynamic programming with the greedy
algorithm leads to decreased performance, highlighting their
essential roles.

3) Model Analysis: Effectiveness of the Trajectory
Parser. To evaluate our trajectory parser’s performance, we
execute the parsed primitive sequences in the simulated task
environment. As shown in Table II, our trajectory parser
consistently achieves over 90% success rates. Moreover, the
ratio of average primitive sequence length (primitive seq len)
to average demonstration length (demo len) illustrates that the
trajectory parser is capable of reducing the task horizon from
hundreds of steps to just a few steps. In Fig. 5, we present a
visualization of the output primitive sequences generated by
the trajectory parser.

Generalization Capability of the IDM. We assess the
generalization capability of IDM in TidyUp task. As depicted
in the caption of Fig. 3, we train an IDM-ABC on data
collected from the environment (A, B, C) and an IDM-D on
data collected merely from the environment (D). As shown in
Table III, the policy performance achieved using IDM-ABC
is comparable to that achieved using IDM-D, highlighting the
IDM’s generalization capability in an unseen environment.

C. Real-World Evaluation

We evaluate the performance of PRIME against an imitation
learning baseline (BC-RNN) on two real-world CleanUp task

TABLE IV: Results on the real robot.

Task Ours BC-RNN

CleanUp-Bin 0.900± 0.041 0.417± 0.246
CleanUp-Stack 0.683± 0.062 0.483± 0.131

variants: CleanUp-Bin and CleanUp-Stack. To ensure
safe data collection, we perform self-supervised data collection
in simulation to train an IDM and apply it to real-world
demonstrations. The real-world observations include camera
images, object poses, and robot proprioceptive states. Our
state-based IDM uses object poses and proprioceptive states,
transferring directly to real-world demonstrations. A single
IDM segments demonstrations for two tasks within the same
domain. Additionally, we develop a visual-based policy to
predict motor actions from camera images and robot states. For
object poses on the real robot, we use a pose estimator [51].

The results in Table IV show our method’s notable advan-
tage over BC-RNN, primarily due to its effective task scaffold-
ing. Similar to the results in the simulation, our method also
exhibits robust recovery behavior on real robots. Our method
has a success rate below 70% in CleanUp-Stack, mainly
because stacking demands greater precision and sim2real
training for IDM leads to errors.

V. CONCLUSION

We present PRIME, a data-efficient imitation learning ap-
proach that decomposes task demonstrations into sequences of
primitives and leverages imitation learning to acquire the high-
level control policy for sequencing parameterized primitives.
While we have already evaluated PRIME with pretrained
primitives from annotated demonstrations, a promising direc-
tion for future research is to learn a scalable library of low-
level skills and compose these diverse skills. These skills can
include hard-coded primitives, learned primitives, and skills
pretrained from large datasets. This approach holds the poten-
tial to facilitate curriculum learning, enabling the progressive
acquisition of increasingly complex tasks. A limitation of this
study is the use of sim2real experiments for IDM training,
which may not be fully applicable to challenging real-world
tasks. Extending IDM training to real-world settings is left
for future research. Another limitation is that all tasks in
this work can be fully decomposed into primitives from the
primitive library. Extending our work to include tasks that are
not fully decomposable would enhance the generalizability of
our framework.

ACKNOWLEDGMENT

The authors would like to thank Yifeng Zhu, Jake Grigsby,
Mingyo Seo, Rutav Shah, and Zhenyu Jiang for their valuable
feedback. Tian Gao’s visit to UT Austin was supported by IIIS,
Tsinghua University. Quantao Yang’s visit to UT Austin was
supported by his advisor, Todor Stoyanov, and the Wallenberg
AI, Autonomous Systems, and Software Program (WASP).

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2024

This work has been partially supported by the National Sci-
ence Foundation (EFRI-2318065, FRR-2145283), the Office
of Naval Research (N00014-22-1-2204), UT Good Systems,
and the Machine Learning Laboratory.

REFERENCES

[1] A. Ajay, A. Kumar, P. Agrawal, S. Levine, and O. Nachum, “Opal: Offline
primitive discovery for accelerating offline reinforcement learning,” in ICLR,
2021.

[2] J. Bohg, A. Morales, T. Asfour, and D. Kragic, “Data-driven grasp synthesis—a
survey,” IEEE Transactions on robotics, vol. 30, no. 2, pp. 289–309, 2013.

[3] D. Brandfonbrener, O. Nachum, and J. Bruna, “Inverse dynamics pre-
training learns good representations for multitask imitation,” arXiv preprint

arXiv:2305.16985, 2023.
[4] A. Brohan et al., “Rt-1: Robotics transformer for real-world control at scale,” in

Robotics: Science and Systems (RSS), 2022.
[5] H. Chen et al., “Predicting object interactions with behavior primitives: An

application in stowing tasks,” in Conference on Robot Learning, PMLR, 2023,
pp. 358–373.

[6] S. Chernova and M. Veloso, “Confidence-based policy learning from demonstra-
tion using gaussian mixture models,” in Proceedings of the 6th International Joint

Conference on Autonomous Agents and Multiagent Systems, ser. AAMAS ’07,
Honolulu, Hawaii: Association for Computing Machinery, 2007.

[7] C. Chi et al., “Diffusion policy: Visuomotor policy learning via action diffusion,”
in Robotics: Science and Systems (RSS), 2023.

[8] R. Chitnis, S. Tulsiani, S. Gupta, and A. Gupta, “Efficient bimanual manipulation
using learned task schemas,” in 2020 IEEE International Conference on Robotics

and Automation (ICRA), IEEE, 2020, pp. 1149–1155.
[9] M. Dalal, D. Pathak, and R. R. Salakhutdinov, “Accelerating robotic rein-

forcement learning via parameterized action primitives,” Advances in Neural

Information Processing Systems, vol. 34, pp. 21 847–21 859, 2021.
[10] Y. Du et al., “Learning universal policies via text-guided video generation,”

Advances in Neural Information Processing Systems, vol. 36, 2024.
[11] C. R. Garrett et al., “Integrated task and motion planning,” Annual review of

control, robotics, and autonomous systems, vol. 4, pp. 265–293, 2021.
[12] M. Hausknecht and P. Stone, “Deep reinforcement learning in parameterized

action space,” arXiv preprint arXiv:1511.04143, 2015.
[13] D.-A. Huang et al., “Neural task graphs: Generalizing to unseen tasks from a

single video demonstration,” in Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, 2019, pp. 8565–8574.
[14] A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne, “Imitation learning: A survey

of learning methods,” ACM Computing Surveys (CSUR), vol. 50, no. 2, pp. 1–35,
2017.

[15] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal, “Dynamical
movement primitives: Learning attractor models for motor behaviors,” Neural

Computation, 2013.
[16] G. Konidaris, S. Kuindersma, R. Grupen, and A. Barto, “Robot learning from

demonstration by constructing skill trees,” The International Journal of Robotics

Research, vol. 31, no. 3, pp. 360–375, 2012.
[17] S. Krishnan, R. Fox, I. Stoica, and K. Goldberg, “Ddco: Discovery of deep

continuous options for robot learning from demonstrations,” in Conference on

robot learning, PMLR, 2017, pp. 418–437.
[18] A. Kumar, A. Singh, F. Ebert, Y. Yang, C. Finn, and S. Levine, “Pre-training

for robots: Offline rl enables learning new tasks from a handful of trials,” arXiv

preprint arXiv:2210.05178, 2022.
[19] Y. Lee, J. Yang, and J. J. Lim, “Learning to coordinate manipulation skills via skill

behavior diversification,” in International conference on learning representations,
2019.

[20] T. Lozano-Pérez and L. P. Kaelbling, “A constraint-based method for solving
sequential manipulation planning problems,” in 2014 IEEE/RSJ International

Conference on Intelligent Robots and Systems, IEEE, 2014, pp. 3684–3691.
[21] J. Luo et al., “Multi-stage cable routing through hierarchical imitation learning,”

arXiv preprint arXiv:2307.08927, 2023.
[22] C. Lynch et al., “Learning latent plans from play,” in Conference on robot

learning, PMLR, 2020, pp. 1113–1132.
[23] J. Mahler et al., “Dex-net 2.0: Deep learning to plan robust grasps with synthetic

point clouds and analytic grasp metrics,” in RSS, 2017.
[24] P. Mahmoudieh, T. Darrell, and D. Pathak, “Weakly-supervised trajectory seg-

mentation for learning reusable skills,” ICLR 2020 Workshop on Bridging AI and

Cognitive Science, 2020.
[25] A. Mandlekar, D. Xu, R. Martín-Martín, S. Savarese, and L. Fei-Fei, “Learning to

generalize across long-horizon tasks from human demonstrations,” arXiv preprint

arXiv:2003.06085, 2020.
[26] A. Mandlekar et al., “Iris: Implicit reinforcement without interaction at scale for

learning control from offline robot manipulation data,” in 2020 IEEE International

Conference on Robotics and Automation (ICRA), IEEE, 2020, pp. 4414–4420.
[27] A. Mandlekar et al., “What matters in learning from offline human demonstrations

for robot manipulation,” arXiv preprint arXiv:2108.03298, 2021.
[28] W. Masson, P. Ranchod, and G. Konidaris, “Reinforcement learning with parame-

terized actions,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 30, 2016.

[29] O. Mees, L. Hermann, E. Rosete-Beas, and W. Burgard, “Calvin: A benchmark for
language-conditioned policy learning for long-horizon robot manipulation tasks,”
IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 7327–7334, 2022.

[30] S. Nasiriany, T. Gao, A. Mandlekar, and Y. Zhu, “Learning and retrieval from
prior data for skill-based imitation learning,” arXiv preprint arXiv:2210.11435,
2022.

[31] S. Nasiriany, H. Liu, and Y. Zhu, “Augmenting reinforcement learning with behav-
ior primitives for diverse manipulation tasks,” in 2022 International Conference

on Robotics and Automation (ICRA), IEEE, 2022, pp. 7477–7484.
[32] G. Neumann, C. Daniel, A. Paraschos, A. Kupcsik, and J. Peters, “Learning

modular policies for robotics,” Frontiers in computational neuroscience, vol. 8,
p. 62, 2014.

[33] A. Paraschos, C. Daniel, J. R. Peters, and G. Neumann, “Probabilistic movement
primitives,” Advances in neural information processing systems, vol. 26, 2013.

[34] K. Paster, S. A. McIlraith, and J. Ba, “Planning from pixels using inverse
dynamics models,” arXiv preprint arXiv:2012.02419, 2020.

[35] B. S. Pavse, F. Torabi, J. Hanna, G. Warnell, and P. Stone, “Ridm: Reinforced
inverse dynamics modeling for learning from a single observed demonstration,”
IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 6262–6269, 2020.

[36] C. V. Perico, J. de Schutter, and E. Aertbeliën, “Learning robust manipulation
tasks involving contact using trajectory parameterized probabilistic principal
component analysis,” in 2020 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), 2020, pp. 8336–8343.
[37] K. Pertsch, Y. Lee, and J. Lim, “Accelerating reinforcement learning with learned

skill priors,” in Conference on robot learning, PMLR, 2021, pp. 188–204.
[38] K. Pertsch, Y. Lee, Y. Wu, and J. J. Lim, “Guided reinforcement learning with

learned skills,” arXiv preprint arXiv:2107.10253, 2021.
[39] L. Pinto and A. Gupta, “Supersizing self-supervision: Learning to grasp from 50k

tries and 700 robot hours,” in 2016 IEEE international conference on robotics

and automation (ICRA), IEEE, 2016, pp. 3406–3413.
[40] D. Precup, Temporal abstraction in reinforcement learning. University of Mas-

sachusetts Amherst, 2000.
[41] A. Rajeswaran et al., “Learning Complex Dexterous Manipulation with Deep Re-

inforcement Learning and Demonstrations,” in Proceedings of Robotics: Science

and Systems (RSS), 2018.
[42] H. Ravichandar, A. S. Polydoros, S. Chernova, and A. Billard, “Recent advances

in robot learning from demonstration,” Annual review of control, robotics, and

autonomous systems, vol. 3, pp. 297–330, 2020.
[43] T. Shankar and A. Gupta, “Learning robot skills with temporal variational

inference,” in International Conference on Machine Learning, PMLR, 2020,
pp. 8624–8633.

[44] T. Shankar, S. Tulsiani, L. Pinto, and A. Gupta, “Discovering motor programs
by recomposing demonstrations,” in International Conference on Learning Rep-

resentations, 2019.
[45] T. Shankar, S. Tulsiani, L. Pinto, and A. Gupta, “Discovering motor programs

by recomposing demonstrations,” in International Conference on Learning Rep-

resentations, 2020.
[46] L. X. Shi, A. Sharma, T. Z. Zhao, and C. Finn, “Waypoint-based imitation learning

for robotic manipulation,” arXiv preprint arXiv:2307.14326, 2023.
[47] K. Shiarlis, M. Wulfmeier, S. Salter, S. Whiteson, and I. Posner, “Taco: Learning

task decomposition via temporal alignment for control,” in International Confer-

ence on Machine Learning, PMLR, 2018, pp. 4654–4663.
[48] A. Singh, H. Liu, G. Zhou, A. Yu, N. Rhinehart, and S. Levine, “Par-

rot: Data-driven behavioral priors for reinforcement learning,” arXiv preprint

arXiv:2011.10024, 2020.
[49] R. Strudel, A. Pashevich, I. Kalevatykh, I. Laptev, J. Sivic, and C. Schmid,

“Learning to combine primitive skills: A step towards versatile robotic manip-
ulation,” in 2020 IEEE International Conference on Robotics and Automation

(ICRA), IEEE, 2020, pp. 4637–4643.
[50] M. Toussaint, “Logic-geometric programming: An optimization-based approach

to combined task and motion planning.,” in IJCAI, 2015, pp. 1930–1936.
[51] J. Tremblay, T. To, B. Sundaralingam, Y. Xiang, D. Fox, and S. Birchfield, “Deep

object pose estimation for semantic robotic grasping of household objects,” in
CoRL, 2018.

[52] C. Wang et al., “Mimicplay: Long-horizon imitation learning by watching human
play,” arXiv preprint arXiv:2302.12422, 2023.

[53] T. Yu, A. Kumar, Y. Chebotar, K. Hausman, C. Finn, and S. Levine, “How
to leverage unlabeled data in offline reinforcement learning,” in International

Conference on Machine Learning, 2022.
[54] T. Zhang et al., “Deep imitation learning for complex manipulation tasks from

virtual reality teleoperation,” in 2018 IEEE International Conference on Robotics

and Automation (ICRA), IEEE, 2018, pp. 5628–5635.
[55] T. Zhao, V. Kumar, S. Levine, and C. Finn, “Learning fine-grained bimanual

manipulation with low-cost hardware,” in Robotics: Science and Systems (RSS),
2023.

[56] Q. Zheng, M. Henaff, B. Amos, and A. Grover, “Semi-supervised offline
reinforcement learning with action-free trajectories,” in International conference

on machine learning, PMLR, 2023, pp. 42 339–42 362.
[57] Y. Zhu, A. Joshi, P. Stone, and Y. Zhu, “Viola: Imitation learning for vision-based

manipulation with object proposal priors,” arXiv preprint arXiv:2210.11339,
2022.

[58] Y. Zhu, P. Stone, and Y. Zhu, “Bottom-up skill discovery from unsegmented
demonstrations for long-horizon robot manipulation,” IEEE Robotics and Au-

tomation Letters, vol. 7, no. 2, pp. 4126–4133, 2022.
[59] Y. Zhu et al., “Robosuite: A modular simulation framework and benchmark for

robot learning,” arXiv preprint arXiv:2009.12293, 2020.

	Introduction
	Related Work
	Learning from Demonstration
	Skill-based Imitation Learning
	Learning with Behavior Primitives

	Method
	Problem Formulation
	Trajectory Parser
	Inverse Dynamics Model
	Dynamic Programming Algorithm

	Policy Learning
	Implementation Details

	Experiments
	Experimental Setup
	Manipulation Tasks
	Evaluation Protocol
	Baselines

	Experimental Results
	Quantitative Results
	Ablation Studies
	Model Analysis

	Real-World Evaluation

	Conclusion

