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Abstract—Tactical edge network environments are critical
to deploy applications in e.g., military, disaster response, and
industrial manufacturing environments. Given the Denied,
Disrupted, Intermittent, and Limited Impact (DDIL) nature
of these environments, a resource-aware security approach is
essential to address edge resource constraints and enable real-
time decision-making. The Zero Trust (ZT) security paradigm
can be used to enable strict access controls, continuous
entity verification, and mitigation of unauthorized access,
tampering, and data integrity issues. However, there is a need
to transform ZT security principles that are typically developed
for unconstrained data center environments with reliable
networking and abundant computing power and are not suitable
in a tactical edge network setting. In this paper, we propose
a risk-based ZT scale approach that tailors security measures
to scenario-associated risk levels, while having low resource
overheads. Specifically, we devise a Bayesian Network (BN)
model to evaluate communication request risk based on metrics
indicating possible attacks. In addition, we formulate a ZT metric
based on the evaluated risk, environmental constraints, and
entity attributes resulting in an assigned grade reflecting these
factors. Our performance evaluation methodology encompasses
an object-oriented drone simulation involving the ZT metric
used across diverse scenarios in a collaborative drone system.
Our results demonstrate the effectiveness and adaptability
of our risk-based ZT scale approach in ensuring secure and
efficient operations within dynamic and resource-constrained
tactical edge network environments.

Index Terms—Zero Trust, Collaborative Drone Systems,
Bayesian Networks, DDIL, Criticality

I. INTRODUCTION

Tactical Edge Networks (TENs) [1], [2] hold immense
significance across various critical applications, thanks to the
advancement of 5G technology and innovations like Low Earth
Orbit (LEO) satellite connectivity. These networks serve as the
backbone for real-time decision-making and communication in
complex and rapidly changing environments. In Collaborative
Drone Systems (CDS), they facilitate remote control and data
transfer, while in special operations, they enable effective
coordination and situational awareness.

However, these networks operate within the constraints of
Denied, Disrupted, Intermittent, and Limited Impact (DDIL)
environments. These constraints encompass challenges such as
low bandwidth, intermittent connectivity, and restricted power
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Figure 1: Tactical edge networks face several challenges,
including low bandwidth, intermittent connectivity, and power
constraints. However, they are essential for airbone/UAV, spe-
cial operation soldiers, and mobile tanks to interact with each
other to accomplish specific mission tasks.

resources. These limitations underscore the pressing need for
innovative solutions that can ensure consistent communication
and streamlined operations, effectively addressing the unique
resource challenges within TEN environments.

Traditional practices of perimeter-based security [3] have
assumptions that make enterprises vulnerable when put in
the context of e.g., cloud adoption, remote work. Hence,
there is a growing adoption of the Zero Trust (ZT) security
paradigm [4], [S], [6] that shuns inherent trust assumptions in
perimeter-based security. ZT security is particularly relevant in
tactical edge networks with its rigorous access scrutiny, entity
authentication, and risk evaluation. The ZT paradigm operates
on the principle of “never trust, always verify” [4]. It offers
an essential framework for improving the security of CDSs by
challenging implicit trust in communication channels. In this
approach, no entity within the system is inherently trusted, and
every communication request undergoes rigorous verification
and validation based on verified credentials, access controls,
and other security measures. This reduces the attack surface,
enhances threat detection and mitigation by network segmen-
tation, enforces least privilege, and ensures continuous moni-
toring and validation of communication channels, maintaining
trust throughout the operation.

However, while existing ZT security approaches suit en-
terprise networks in data centers assuming stable hardware
and predictable network conditions, they encounter limitations
in TENs due to their DDIL nature. The challenges posed
by low bandwidth, intermittent connectivity, and resource
constraints make complete ZT implementation impractical for



tasks such as those depicted in Figure 1. For example, tasks
with computational nature could involve running a computer
vision pipeline within a Docker container located at an edge
node [7]. These require high availability of CPU, memory, and
battery, and a good network throughput, which are otherwise
used up by security processes in a full ZT implementation
scenario. This leads to the need for tailored solutions that can
navigate these unique conditions.

In this paper, we address the above issues and propose
a novel risk-based ZT scale approach that tailors security
measures to the inherent risk of each scenario in a TEN.
This strategy aims to strike a balance between maintaining
robust security and ensuring operational efficiency within the
dynamic confines of TENs. This tailored approach involves
employing a BN model to evaluate communication risks,
forming the foundation for a refined ZT metric. This integrated
metric takes into account factors such as risk assessment,
resource availability, network strength, and entity attributes,
including the severity and potential consequences of a breach.
The resulting metric assigns a dynamic security grade that
reflects the intricate interplay of these factors. To assess the
effectiveness of our approach, we develop a drone simulation
and implement the BN model. We also implement the ZT
system to generate simulation data to input into the BN model.
Further, we perfom tests of the ZT system using the generated
data, and evaluate the resulting outcomes.

The remainder of this paper is organized as follows:
Section II presents related work. Section III puts forth the
overview of the ZT metric solution. Section IV explicates the
calculation of risk in a communication request using a BN
model. In Section V, we detail the parameters and formulation
of the Risk-based ZT Scale. The setup of simulation data
and a comprehensive analysis of its results are presented in
Section VI. Finally, we conclude in Section VII.

II. RELATED WORK

While the growth and significance of edge computing sys-
tems are undeniable, their increasing integration with physical
infrastructure has exposed them to a host of security risks [8].
To ensure the continued success and safe deployment of edge
computing systems, it is essential to develop a comprehensive
security framework that addresses their unique challenges [9].
For instance, traditional security standards designed for en-
terprise networks are not equipped to handle the dynamic
and resource-constrained nature of tactical edge networks,
which can be vulnerable to cyber threats, unauthorized access,
tampering, and data integrity and privacy concerns.

When implementing security measures for TEN environ-
ments, it is vital to consider practicality and efficiency, taking
into account their resource limitations, intermittent connec-
tivity, bandwidth constraints, and real-time decision-making
demands [10]. Implementing an extensive ZT based security
protocol for all communication requests can introduce substan-
tial system overhead, potentially hindering the availability of
resources required for core tasks such as drone video analytics.
These tasks heavily rely on consistent access to network and
computing resources [11], [12]. A one-size-fits-all security
approach might prove impractical and resource-intensive, po-
tentially impeding the seamless operation of these dynamic

systems. Therefore, our novel approach introduces a risk-based
ZT scale solution [9], which tailors security measures based
on the risk levels obtained using BNs for a given scenario.
The solution’s implementation is intentionally centered around
CDS, which is a prominent use-case within the realm of
tactical edge network systems [13], [11]. These situational
risk levels can be associated with various dynamic metrics
that may indicate a potential breach of network security.
By considering the communication and compute bandwidths,
and the significance of the asset/drone being requested, we
formulated a ZT grading system, which executes the right
amount of security protocols [9] on the communication request
before granting or denying it.

III. ZERO TRUST SCALE DESIGN
A. Solution Overview

Our proposed framework of the ZT Metric Solution is
illustrated in Figure 2 given a context where a source drone
initiates communication with a service or hardware on another
drone. This communication is channeled through the ZT
system, which evaluates the request’s state and forwards the
relevant metrics to a Bayesian model. Leveraging historical
attack data, the Bayesian model calculates a risk score, and
transmits back to the ZT system. Considering factors such
as network speed, resource availability, and request criticality,
the ZT system assigns a context-aware ZT grade to the request
and enforces tailored security measures on the source drone
for verification.

B. Risk Estimation using Bayesian Network Model

To study past intrusions and leverage such information,
we use a Bayesian Network model [14] to probabilistically
understand how likely it is for a communication request to
be malicious. By customizing security protocols to match
the inherent risks of different environments, our risk-based
approach optimizes resource allocation, minimizing overhead
while precisely aligning security measures with the unique
characteristics of each edge system. This allows TENS to strike
an optimal balance between their security requirements and
operational efficiency, ensuring continued functionality and
reliability in diverse and challenging contexts.

In the context of implementing the BN model, several key
steps are involved. Initially, the mean values of each of the
metrics for all the drones are computed, namely the distance
from the control station, packet rate, and energy consumption.
Subsequently, the deviations of these metrics pertaining to the
requesting drone are calculated in relation to their respective
means. These metric deviations then serve as essential input
for the BN model. Within the BN framework, a sliding window
subset consisting of the n closest rows is generated for each
metric, facilitating a focused analysis. For each conceivable
attack scenario, the model assesses the probability of an
attack attempt by dividing the count of records where attack
attempts occurred by the total number of records in the given
subset. This probability computation process is repeated across
all potential attack combinations, encompassing the various
attack vectors. Then the probability of overall attack being
successful is calculated, considering different combinations of
attack successes. It uses conditional probabilities to model
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Figure 2: Pipeline architecture of the proposed solution.

how “Attack Success” depends on these conditions, and by
summing up these probabilities over all possible scenarios, it
gives us the overall risk score of the scenario.

C. Risk-Based Zero Trust Scale

To address the above challenges, we propose a risk-based
ZT scale. The scale aims to quantify the level of ZT required
for different communication requests based on their associated
risks. By assessing the risk profile of each communication
request and assigning a ZT metric, the scale classifies them
into different ZT grades, allowing for proportionate enforce-
ment of ZT. Hence, we obtain more efficient allocation of
resources and targeted enforcement of security measures.
Figure 2 illustrates the architecture of the ZT system and the
flow of control for a communication request.

IV. RISK QUANTIFICATION METHODOLOGY

In this study, we considered three major attack vectors:
Flooder Attack [14], Faker Attack [14], and our novel idea
of a third attack vector, the Physical Capture Attack.

1) Flooder Attack: A Flooder Attack involves a Denial-of-
Service (DoS) attack that can be identified by an unusually
high amount of traffic originating from a specific drone or
service. Any abnormality in packet transfer rates symptomizes
a Flooder attack.

2) Faker Attack: A Faker Attack occurs when a malicious
drone pretends to have high levels of available energy to de-
ceive the system into prioritizing itself for packet-forwarding
over the intended drones. Abnormal energy consumption can
serve as an indicator for detecting a Faker attack.

3) Physical Capture Attack: In CDSs, a physical capture
attack refers to a situation where a drone deviates from its
designated home territory and is seized or controlled by an
unintended party during its flight operation. To ascertain the
occurrence of a physical capture attack, we rely on the drone’s
location as a key indicator at the moment. If a drone is
detected within enemy territory, it inevitably indicates a high
probability that the enemy has taken possession of it. Although
not absolute, the presence of a drone in an unusually distant
location significantly suggests the likelihood of a capture sit-
vation. Other parameters can however be discovered and used
as indicators while further theorizing the attack’s mechanism.
Figure 3 illustrates this attack scenario.

To evaluate the risk associated with potential attacks, we
employ a BN Model [14]. The model encompasses four nodes,
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Figure 3: Physical Attack likelihoods based on proximity to
control station on a co-ordinate plane.

three of which represent the probabilities of different attack
vectors, while the fourth node indicates the likelihood of attack
success. Each of these nodes have two states: True (T) and
False (F), which are indicative of whether a specific type
of attack was attempted or not. The attack vector nodes are
parents to the attack success node, whose “true” probability
gives the chances of the attack being a success.

Historical data concerning attempted attacks, their corre-
sponding behaviors, and the resulting outcomes are utilized
as inputs to the model, facilitating an assessment of the
attack’s likelihood. The “Attack Success” node in the BN
model is influenced by the attack vector nodes, resulting in a
probabilistic inference referred to as the risk score. This score
is derived from the analysis of detected attack activities within
the network. By incorporating the probabilities of observing
distinct attack patterns and their interrelationships, the model
calculates the risk value.

Through the consideration of conditional probabilities
linked to each attack type and their joint probabilities in
positive scenarios of attack success, the model can estimate
the likelihood of various attack scenarios. Additionally, it
evaluates the overall risk if approval is granted under those
specific behavioral circumstances of the requesting drone.

To calculate the risk based on the overall probability of
the attack’s success, denoted by Att, we perform summation
by taking the product of conditional probabilities and joint
probabilities for all scenarios when the attack success node



holds a “True” value.

P(Att = True) =

i,j.k€{True,False}

[P(Att = True|FL =i, FR = j, PC = k)

P(FL =4)P(FR = j)P(PC = k)]
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where FL, FR, PC indicate whether the node is a flooder,

faker, or physical capture node, respectively. For a more com-

prehensive understanding of the aforementioned formalization,
further details are available in the reference [14].

V. RISK-BASED ZERO TRUST SCALE
A. Zero Trust Metric Calculation

To evaluate the Zero Trust metric, we propose to exploit
three main factors: Risk score, Compute Easer parameter and
Criticality of the assets/drones. Our proposed ZT metric is
not a binomial value, rather it is a quantitative scale which is
divided into multiple grades based on the value range. Thus,
we define ZT Metric as:

ZT Metric = Risk Score x Compute Easer x Criticality x 100

2)
To put the ZT quantity on a comprehensive scale rather than
a decimal point value which is difficult to scale, we multiply
the result by 100. While the highest ZT grade is preferable,
due to the limitations in the network and processing power,
it is not always achievable. The different grades of the model
can be assigned to different assets and tasks [15] of a network
depending on their risk [9]. The risk estimated from the BN
is the preliminary input for our ZT metric. Moreover, by
allowing for smoother flow of traffic for tasks that are not high
risk, we create faster programs with less overhead. We also
consider other criteria defined below, such as the criticality
of the requested resource and the availability of resources to
fine-tune the ZT metric.

a) Criticality: There arises a need to have proportionate
allocation of resources to tasks based on how important the
resource is. For instance, surveillance drones or communica-
tion relay drones are crucial drones that have dependency and
control over a number of other drones, however we do not
want intruders to gain access to these at any cost. On the
other hand, there are trivial assets such as weather monitoring
nodes that are not of much danger in the wrong hands because
there is not a lot of control over the system that intruders can
gain. Hence, based on the criticality of assets, we categorize
them into tiers and postulate a criticality multiplier which
raises or cuts down the risk. We have initially allocated these
tiers to drones along with their corresponding criticalities,
which can be adjusted to align with the specific preferences
of our application cautiously. We do so because, a minute
misconfiguration of these multipliers can drastically influence
the overall ZT metric leading to inappropriate mapping of
security measures. For our implementation, we defined four
tiers - 1, 2, 3, 4 with criticalities 1.5, 1.25, 1, and 0.8,
respectively.

b) Compute Easer: The other critical criteria to be ad-
dressed are the available compute and network bandwidths. It
is important to conserve compute power of the PDP because it
is detrimental for the system to be overloaded affecting avail-
ability. Hence, we introduce a conditional multiplier called

Compute Easer, that is dynamically figured out based on CPU
usage.

Underestimation of risk can result in severe conse-
quences [16]. These consequences are even more drastic for
highly critical assets (Tiers 1 and 2). To avoid under-estimating
risk for highly critical assets, we set this factor to one for assets
in Tiers 1 and 2. For less critical tasks (Tier 3 and 4), based on
the usage and availability of CPU resources, a factor between
0.5 and 1 is assigned to reduce the ZT metric to a portion of
the actual value. We increase this factor to one in a nonlinear
fashion as the available CPU cycles are increased by using a
sigmoid [17] function:

1 if Criticality > 1.25
Compute Easer = { ’ 1 Ateatly =

) 3
1—5-% , otherwise ®)

where, A is the available CPU cycles in billions.

Considering the aforementioned factors such as risk and
various criteria, we devise a ZT metric to assess the level
of ZT. The ZT metric ranges from O to 150 and can be
visualized on a sliding scale with a descending value of ZT.
This scale assigns tasks or requests into five grades, namely
A-E, with grade A indicating the highest need for stringent
ZT enforcement, while grade E corresponds to low-risk tasks
that do not necessitate extensive ZT measures.

Specific ZT mechanisms are enforced based on the ZT
grade of a connection request. For instance, a request falling
under grade E undergoes no advanced ZT mechanisms, but
some Open Authentication, Role-based Access Control, while
all the communication is done cryptographically using digital
signatures and public key encryption [18] for confidentiality.
For grade D, we can assume the presence of an Intrusion
Detection System for continuous monitoring, but with a low
granularity. For grade C, we can assume a Multi-Factor
Authentication using encrypted one-time pins for verification.
Attribute-based Access Control and an increased granularity of
continuous authentication can be added in grade B for context-
aware authorization and proactive security. Further, we can
assume Behavioral Analysis exploiting ML/AI, and Challenge-
Response Protocols, which are compute and network-intensive
for grade A, the highest. Based on the ZT grade a task falls
into, we enforce these various security schemes to “never trust
and always verify”. However, the number of these grades and
the security mechanisms that can be associated with each of
them are completely configurable according to the nature and
scale of the application.

B. ZT Enforcement Policy based on Network Resource Avail-
ability

We need to ensure that the communication among nodes in
ZT enforcement remains efficient and does not excessively
consume network bandwidth. To do so, we introduce the
concept of a Minimum Speed Policy (MSP). This policy
is designed to optimize ZT enforcement while considering
factors such as network conditions, drone mobility, and band-
width usage, allowing a balance between security and resource
utilization. MSP is the minimum network speed required
for effective ZT enforcement within a specified time frame.
This speed threshold ensures that the ZT mechanisms can
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be applied without compromising their effectiveness, even in
situations where network connectivity might be weak due to
drone movement or high communication traffic.

When a drone requests a connection, its current network
speed is assessed. If the network speed exceeds the MSP,
we proceed to enforce ZT mechanisms based on the assigned
security grade. This makes sure that the appropriate level of
security measures can be applied without overhead. In case
the drone’s network speed is at least 80% of the MSP, we
choose to apply a slightly reduced grade of ZT enforcement,
adaptively helping manage network bandwidth without com-
promising security significantly. If the drone’s network speed
falls below the 80% threshold of the MSP, it indicates poor
network conditions. In this scenario, we generate a Deny
Policy, preventing the drone from accessing the network. This
proactive step ensures that only devices with a reasonable
level of network connectivity can access the resources. To
prevent a flood of access requests overwhelming the system,
we introduce a Cool-down period. This is a standard waiting
time imposed on denied nodes before they can make a new
access request.

Execute ZT with assigned grade,
if Network Speed > MSP

Execute ZT with reduced grade, (4)
if Network Speed > MSP x 0.8

ZT Enforcement By MSP =

Generate Deny Policy, otherwise

VI. PERFORMANCE EVALUATION

In this section, we present the evaluation of the BN’s
performance based on metrics such as packet transmission rate,
distance from the control station, and energy levels of drones.
We also analyze the influence of key ZT parameters, namely
Criticality, Compute Easer, and MSP, on security execution.

A. Simulation Setup

1) Drone Data Generation: We created drones as objects
with properties including tier level, energy level (Joule), packet
transmission rate (Mbps), and location co-ordinates (a co-
ordinate pair on a square grid 4000 feet long and wide).
This object-oriented approach allowed us to efficiently handle
multiple drone instances and their respective characteristics
throughout the simulation. The control station was configured
with ZT scores of respective grades, tiers and their correspond-
ing criticalities, forbidden (out-of-mission-scope) territory co-
ordinates, network MSP standard requirements, and a snapshot

of CPU availability which is adjusted for every communication
request simulation.

2) Simulated Historical Attack Attempt Data: The historical
attack attempt data of the CDS has the record of attack
attempts, their corresponding deltas, i.e., how much the packet
transmission rate, energy levels, and Euclidean distance of the
drone from the control station deviated from the mean of those
of the remaining drones in the system, the outcome of each
of those attempted attacks, and whether the overall infiltration
was successful or not.

To model these instances, we generated simulation data
with 3 numerical columns: distance_delta, packet_rate_delta,
and energy_delta and corresponding attack attempted boolean
columns namely is_capture, is_flooder_attack, is_faker_attack,
holding either a True or a False value. The values in the nu-
merical columns represent the deviations of a drone’s metrics
from the mean of those of the remaining drones in the system.
To assign truth values of the boolean columns to the data, we
would need a proportionality function that would be inclined
to having low attack probability when close to the mean of
the metrics. As we move beyond the mean, it should indicate
that attack attempts are more probable.
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Figure 5: Simulation Results of Variance in Risk score from
Bayesian Network based on risk metrics

3) Model Execution: The boolean columns, is_capture,
is_flooder_attack, and is_faker attack of the simulated data
determine the probability of each type of attack based on the
corresponding delta values. Based on the Equation (1), the
probability of attack_success node being true was calculated
and termed as risk. This risk value was then used as input for
the ZT metric calculation. Based on the parameters Criticality,
Compute Easer and MSP, risk metrics and corresponding risk
grades were computed, allowing for proportionate execution
of ZT mechanisms depending on the scenario.

By following this simulation setup, we aim to evaluate
the effectiveness and scalability of our risk-based ZT metric
for CDSs. In each successive simulation, the effects of the
deviation (delta) values on the risk score and impact of our
ZT parameters on the ZT metric and grade are analyzed.
Several simple scenarios with tuned values of deltas and
ZT parameters are used as settings to our simulation and
the behavior of the ZT grade according to the scenarios is
recorded.



100

60

Grade A B Grade A
|

Grade B 120 Grade B
50 Grade C Grade C

Grade D Grade D
777 Denied * Denied

o
o

IS
S

-3

o

30.89 30.89 30.89 69.41

Zero Trust Metric
2]
o

Zero Trust Metric
W
8

10

85.8 64.2
Network speed (mbps)

(a) (b)

o0
o 700,3 1500,3 2200,3 2200,2 2200, 1
Avail. CPU cycles (mil), and Dest. Drone Tier

Grade A
Grade B
Grade C
Grade D
77/, Denied

@
S

@
S

Zero Trust Metric
N
o

20

9,4 15,3 30,2 21,1
Dest. Drone, Drone tier number

(c)

Figure 6: Experiment scenarios showing: (a) Effects when ZT security policies are enforced fully or partially, or denied. (b)
Effects of the Available CPU Resources on the ZT Metric and corresponding ZT grades. (c) Effects of the Criticality parameter

on the ZT Score and corresponding ZT grades.
B. Experiment Results

In this section, we present our experiment results from our
simulation analysis that are obtained by observing how the
BN model risk quantification results vary based on different
network activities and scenarios, followed by how the ZT scale
is impacted with respect to the ZT parameters and the BN risk
scores. In addition, we present the impact of the risk grades
on the network performance observing throughput and latency
variations over the simulation of a data transfer. Finally, we
discuss the complexity analysis of the proposed approach.

1) Risk Quantification Results with Bayesian Network:
We conducted tests on the BN using various sizes of drone
simulation data and attack attempt data. In Figure 5, we
present the results for one specific snapshot of drone data.
For this snapshot, various simulations were run with a wide
window of deviations of distance from GCS, packet rate, and
energy were used as judging metrics of attack probability. The
sensitivity of the probabilistic outcome from the BN was found
to be very volatile, adjusting itself to minute changes in the
criterion metrics. These means were consistent across all the
simulations, allowing us to analyze the impact of different
metrics and their respective deviations (deltas) from the mean
on the risk score. This trend of the model can be observed in
the 3D Scatter plot shown in Figure 5.

2) Impacts of Zero Trust Parameters on the Grades: To
study the influence of network speed and Minimum Speed
Policy (MSP) constraint on the overall ZT grade, simulations
were done on a drone with varying network speeds while
keeping all other parameters such as the requested target done,
available CPU cycles, and the drone’s metrics constant. The
obtained results of these simulations can be seen in Figure
6(a). It can be observed from the results of the first drone
in Figure 6 how under the same ZT metric, network speed
enforced the original ZT grade, denied the request, or enforced
a lowered grade of ZT. For the original ZT grade ‘C’, when
there was sufficient network speed (i.e., 85.8 Mbps) the ZT
system enforced grade ‘C’ security policies. When the speed
was slightly reduced to 64.2 Mbps, the ZT system enforced a
lowered grade ‘D’ of security policies because of only 80%
of MSP requirements were being satisfied. Further lowered to
56.2 Mbps, a deny policy was issued because - at least the

minimum MSP standards of network speed were not being
met. These results show how the MSP parameter helps reduce
the load of ZT enforcement in poor network connectivity
scenarios, without compromising security of the CDS.

To analyze how the availability of CPU resources affect the
compute easer, and in turn the overall ZT metric and grade,
simulations under the same risk metrics and network speed
were done while changing the target drone being requested and
the available CPU cycles as illustrated in Figure 6(b). The first
two simulations show that the compute easer does not really
have an effect when the criticality of the requested drone is
1.25 or above. This ensures that the CPU shortage does not
become an excuse to gain access to critical resources. The ZT
metric only decreased slightly because of criticality’s effect. In
the other three simulations, it can be seen how compute easer
can lower the overall ZT metric and grade to prevent CPU
overload by high enforcement of ZT. For the same risk, the
ZT grade reduced from grade ‘A’ to grade ‘C’ with available
CPU cycles falling from 2.2 billion to 700 million.

Further, as depicted in Figure 6(c), with the same risk
metrics and all other conditions, we perform simulations of
requests to drones belonging to various tiers. The simula-
tion results from Figure 6 show how the strength of ZT
enforcement with the same risk parameters can vary based
on the seriousness of the drone. The final ZT grade was
proportionately lowered from grade ‘A’ to grade ‘C’ with
varying criticalities of the target drones.

VII. CONCLUSION

In this paper, we have addressed the problem of apply-
ing data center-oriented ZT solutions that typically demand
large overheads in computation (e.g., traffic flows encryption,
anomaly detection using deep learning), storage (e.g., to store
activity logs at per-device/per-user granularity) and network
resources (e.g., threat intelligence sharing) that are not gener-
ally available in tactical edge networks. Specifically, we have
developed and evaluated a novel TEN resource-aware, risk-
based ZT grading system for an exemplar collaborative drone
system setting using a BN model for risk calculation.

Future work can incorporate more attack vectors with their
corresponding metrics, defining ZT security mechanisms based
on the respective ZT grades.
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