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Abstract—Tactical edge network environments are critical
to deploy applications in e.g., military, disaster response, and
industrial manufacturing environments. Given the Denied,
Disrupted, Intermittent, and Limited Impact (DDIL) nature
of these environments, a resource-aware security approach is
essential to address edge resource constraints and enable real-
time decision-making. The Zero Trust (ZT) security paradigm
can be used to enable strict access controls, continuous
entity verification, and mitigation of unauthorized access,
tampering, and data integrity issues. However, there is a need
to transform ZT security principles that are typically developed
for unconstrained data center environments with reliable
networking and abundant computing power and are not suitable
in a tactical edge network setting. In this paper, we propose
a risk-based ZT scale approach that tailors security measures
to scenario-associated risk levels, while having low resource
overheads. Specifically, we devise a Bayesian Network (BN)
model to evaluate communication request risk based on metrics
indicating possible attacks. In addition, we formulate a ZT metric
based on the evaluated risk, environmental constraints, and
entity attributes resulting in an assigned grade reflecting these
factors. Our performance evaluation methodology encompasses
an object-oriented drone simulation involving the ZT metric
used across diverse scenarios in a collaborative drone system.
Our results demonstrate the effectiveness and adaptability
of our risk-based ZT scale approach in ensuring secure and
efficient operations within dynamic and resource-constrained
tactical edge network environments.

Index Terms—Zero Trust, Collaborative Drone Systems,
Bayesian Networks, DDIL, Criticality

I. INTRODUCTION

Tactical Edge Networks (TENs) [1], [2] hold immense

significance across various critical applications, thanks to the

advancement of 5G technology and innovations like Low Earth

Orbit (LEO) satellite connectivity. These networks serve as the

backbone for real-time decision-making and communication in

complex and rapidly changing environments. In Collaborative

Drone Systems (CDS), they facilitate remote control and data

transfer, while in special operations, they enable effective

coordination and situational awareness.

However, these networks operate within the constraints of

Denied, Disrupted, Intermittent, and Limited Impact (DDIL)

environments. These constraints encompass challenges such as

low bandwidth, intermittent connectivity, and restricted power
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Figure 1: Tactical edge networks face several challenges,

including low bandwidth, intermittent connectivity, and power

constraints. However, they are essential for airbone/UAV, spe-

cial operation soldiers, and mobile tanks to interact with each

other to accomplish specific mission tasks.

resources. These limitations underscore the pressing need for

innovative solutions that can ensure consistent communication

and streamlined operations, effectively addressing the unique

resource challenges within TEN environments.

Traditional practices of perimeter-based security [3] have

assumptions that make enterprises vulnerable when put in

the context of e.g., cloud adoption, remote work. Hence,

there is a growing adoption of the Zero Trust (ZT) security

paradigm [4], [5], [6] that shuns inherent trust assumptions in

perimeter-based security. ZT security is particularly relevant in

tactical edge networks with its rigorous access scrutiny, entity

authentication, and risk evaluation. The ZT paradigm operates

on the principle of “never trust, always verify” [4]. It offers

an essential framework for improving the security of CDSs by

challenging implicit trust in communication channels. In this

approach, no entity within the system is inherently trusted, and

every communication request undergoes rigorous verification

and validation based on verified credentials, access controls,

and other security measures. This reduces the attack surface,

enhances threat detection and mitigation by network segmen-

tation, enforces least privilege, and ensures continuous moni-

toring and validation of communication channels, maintaining

trust throughout the operation.

However, while existing ZT security approaches suit en-

terprise networks in data centers assuming stable hardware

and predictable network conditions, they encounter limitations

in TENs due to their DDIL nature. The challenges posed

by low bandwidth, intermittent connectivity, and resource

constraints make complete ZT implementation impractical for



tasks such as those depicted in Figure 1. For example, tasks

with computational nature could involve running a computer

vision pipeline within a Docker container located at an edge

node [7]. These require high availability of CPU, memory, and

battery, and a good network throughput, which are otherwise

used up by security processes in a full ZT implementation

scenario. This leads to the need for tailored solutions that can

navigate these unique conditions.

In this paper, we address the above issues and propose

a novel risk-based ZT scale approach that tailors security

measures to the inherent risk of each scenario in a TEN.

This strategy aims to strike a balance between maintaining

robust security and ensuring operational efficiency within the

dynamic confines of TENs. This tailored approach involves

employing a BN model to evaluate communication risks,

forming the foundation for a refined ZT metric. This integrated

metric takes into account factors such as risk assessment,

resource availability, network strength, and entity attributes,

including the severity and potential consequences of a breach.

The resulting metric assigns a dynamic security grade that

reflects the intricate interplay of these factors. To assess the

effectiveness of our approach, we develop a drone simulation

and implement the BN model. We also implement the ZT

system to generate simulation data to input into the BN model.

Further, we perfom tests of the ZT system using the generated

data, and evaluate the resulting outcomes.

The remainder of this paper is organized as follows:

Section II presents related work. Section III puts forth the

overview of the ZT metric solution. Section IV explicates the

calculation of risk in a communication request using a BN

model. In Section V, we detail the parameters and formulation

of the Risk-based ZT Scale. The setup of simulation data

and a comprehensive analysis of its results are presented in

Section VI. Finally, we conclude in Section VII.

II. RELATED WORK

While the growth and significance of edge computing sys-

tems are undeniable, their increasing integration with physical

infrastructure has exposed them to a host of security risks [8].

To ensure the continued success and safe deployment of edge

computing systems, it is essential to develop a comprehensive

security framework that addresses their unique challenges [9].

For instance, traditional security standards designed for en-

terprise networks are not equipped to handle the dynamic

and resource-constrained nature of tactical edge networks,

which can be vulnerable to cyber threats, unauthorized access,

tampering, and data integrity and privacy concerns.

When implementing security measures for TEN environ-

ments, it is vital to consider practicality and efficiency, taking

into account their resource limitations, intermittent connec-

tivity, bandwidth constraints, and real-time decision-making

demands [10]. Implementing an extensive ZT based security

protocol for all communication requests can introduce substan-

tial system overhead, potentially hindering the availability of

resources required for core tasks such as drone video analytics.

These tasks heavily rely on consistent access to network and

computing resources [11], [12]. A one-size-fits-all security

approach might prove impractical and resource-intensive, po-

tentially impeding the seamless operation of these dynamic

systems. Therefore, our novel approach introduces a risk-based

ZT scale solution [9], which tailors security measures based

on the risk levels obtained using BNs for a given scenario.

The solution’s implementation is intentionally centered around

CDS, which is a prominent use-case within the realm of

tactical edge network systems [13], [11]. These situational

risk levels can be associated with various dynamic metrics

that may indicate a potential breach of network security.

By considering the communication and compute bandwidths,

and the significance of the asset/drone being requested, we

formulated a ZT grading system, which executes the right

amount of security protocols [9] on the communication request

before granting or denying it.

III. ZERO TRUST SCALE DESIGN

A. Solution Overview

Our proposed framework of the ZT Metric Solution is

illustrated in Figure 2 given a context where a source drone

initiates communication with a service or hardware on another

drone. This communication is channeled through the ZT

system, which evaluates the request’s state and forwards the

relevant metrics to a Bayesian model. Leveraging historical

attack data, the Bayesian model calculates a risk score, and

transmits back to the ZT system. Considering factors such

as network speed, resource availability, and request criticality,

the ZT system assigns a context-aware ZT grade to the request

and enforces tailored security measures on the source drone

for verification.

B. Risk Estimation using Bayesian Network Model

To study past intrusions and leverage such information,

we use a Bayesian Network model [14] to probabilistically

understand how likely it is for a communication request to

be malicious. By customizing security protocols to match

the inherent risks of different environments, our risk-based

approach optimizes resource allocation, minimizing overhead

while precisely aligning security measures with the unique

characteristics of each edge system. This allows TENs to strike

an optimal balance between their security requirements and

operational efficiency, ensuring continued functionality and

reliability in diverse and challenging contexts.
In the context of implementing the BN model, several key

steps are involved. Initially, the mean values of each of the

metrics for all the drones are computed, namely the distance

from the control station, packet rate, and energy consumption.

Subsequently, the deviations of these metrics pertaining to the

requesting drone are calculated in relation to their respective

means. These metric deviations then serve as essential input

for the BN model. Within the BN framework, a sliding window

subset consisting of the n closest rows is generated for each

metric, facilitating a focused analysis. For each conceivable

attack scenario, the model assesses the probability of an

attack attempt by dividing the count of records where attack

attempts occurred by the total number of records in the given

subset. This probability computation process is repeated across

all potential attack combinations, encompassing the various

attack vectors. Then the probability of overall attack being

successful is calculated, considering different combinations of

attack successes. It uses conditional probabilities to model
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Figure 2: Pipeline architecture of the proposed solution.

how “Attack Success” depends on these conditions, and by

summing up these probabilities over all possible scenarios, it

gives us the overall risk score of the scenario.

C. Risk-Based Zero Trust Scale

To address the above challenges, we propose a risk-based

ZT scale. The scale aims to quantify the level of ZT required

for different communication requests based on their associated

risks. By assessing the risk profile of each communication

request and assigning a ZT metric, the scale classifies them

into different ZT grades, allowing for proportionate enforce-

ment of ZT. Hence, we obtain more efficient allocation of

resources and targeted enforcement of security measures.

Figure 2 illustrates the architecture of the ZT system and the

flow of control for a communication request.

IV. RISK QUANTIFICATION METHODOLOGY

In this study, we considered three major attack vectors:

Flooder Attack [14], Faker Attack [14], and our novel idea

of a third attack vector, the Physical Capture Attack.

1) Flooder Attack: A Flooder Attack involves a Denial-of-

Service (DoS) attack that can be identified by an unusually

high amount of traffic originating from a specific drone or

service. Any abnormality in packet transfer rates symptomizes

a Flooder attack.

2) Faker Attack: A Faker Attack occurs when a malicious

drone pretends to have high levels of available energy to de-

ceive the system into prioritizing itself for packet-forwarding

over the intended drones. Abnormal energy consumption can

serve as an indicator for detecting a Faker attack.

3) Physical Capture Attack: In CDSs, a physical capture

attack refers to a situation where a drone deviates from its

designated home territory and is seized or controlled by an

unintended party during its flight operation. To ascertain the

occurrence of a physical capture attack, we rely on the drone’s

location as a key indicator at the moment. If a drone is

detected within enemy territory, it inevitably indicates a high

probability that the enemy has taken possession of it. Although

not absolute, the presence of a drone in an unusually distant

location significantly suggests the likelihood of a capture sit-

uation. Other parameters can however be discovered and used

as indicators while further theorizing the attack’s mechanism.

Figure 3 illustrates this attack scenario.

To evaluate the risk associated with potential attacks, we

employ a BN Model [14]. The model encompasses four nodes,
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Figure 3: Physical Attack likelihoods based on proximity to

control station on a co-ordinate plane.

three of which represent the probabilities of different attack

vectors, while the fourth node indicates the likelihood of attack

success. Each of these nodes have two states: True (T) and

False (F), which are indicative of whether a specific type

of attack was attempted or not. The attack vector nodes are

parents to the attack success node, whose “true” probability

gives the chances of the attack being a success.

Historical data concerning attempted attacks, their corre-

sponding behaviors, and the resulting outcomes are utilized

as inputs to the model, facilitating an assessment of the

attack’s likelihood. The “Attack Success” node in the BN

model is influenced by the attack vector nodes, resulting in a

probabilistic inference referred to as the risk score. This score

is derived from the analysis of detected attack activities within

the network. By incorporating the probabilities of observing

distinct attack patterns and their interrelationships, the model

calculates the risk value.

Through the consideration of conditional probabilities

linked to each attack type and their joint probabilities in

positive scenarios of attack success, the model can estimate

the likelihood of various attack scenarios. Additionally, it

evaluates the overall risk if approval is granted under those

specific behavioral circumstances of the requesting drone.

To calculate the risk based on the overall probability of

the attack’s success, denoted by Att, we perform summation

by taking the product of conditional probabilities and joint

probabilities for all scenarios when the attack success node
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holds a “True” value.

P (Att = True) =
∑

i,j,k∈{True,False}

[P (Att = True|FL = i, FR = j, PC = k)

P (FL = i)P (FR = j)P (PC = k)]

(1)

where FL, FR, PC indicate whether the node is a flooder,

faker, or physical capture node, respectively. For a more com-

prehensive understanding of the aforementioned formalization,

further details are available in the reference [14].

V. RISK-BASED ZERO TRUST SCALE

A. Zero Trust Metric Calculation

To evaluate the Zero Trust metric, we propose to exploit

three main factors: Risk score, Compute Easer parameter and

Criticality of the assets/drones. Our proposed ZT metric is

not a binomial value, rather it is a quantitative scale which is

divided into multiple grades based on the value range. Thus,

we define ZT Metric as:

ZT Metric = Risk Score × Compute Easer × Criticality × 100
(2)

To put the ZT quantity on a comprehensive scale rather than

a decimal point value which is difficult to scale, we multiply

the result by 100. While the highest ZT grade is preferable,

due to the limitations in the network and processing power,

it is not always achievable. The different grades of the model

can be assigned to different assets and tasks [15] of a network

depending on their risk [9]. The risk estimated from the BN

is the preliminary input for our ZT metric. Moreover, by

allowing for smoother flow of traffic for tasks that are not high

risk, we create faster programs with less overhead. We also

consider other criteria defined below, such as the criticality

of the requested resource and the availability of resources to

fine-tune the ZT metric.

a) Criticality: There arises a need to have proportionate

allocation of resources to tasks based on how important the

resource is. For instance, surveillance drones or communica-

tion relay drones are crucial drones that have dependency and

control over a number of other drones, however we do not

want intruders to gain access to these at any cost. On the

other hand, there are trivial assets such as weather monitoring

nodes that are not of much danger in the wrong hands because

there is not a lot of control over the system that intruders can

gain. Hence, based on the criticality of assets, we categorize

them into tiers and postulate a criticality multiplier which

raises or cuts down the risk. We have initially allocated these

tiers to drones along with their corresponding criticalities,

which can be adjusted to align with the specific preferences

of our application cautiously. We do so because, a minute

misconfiguration of these multipliers can drastically influence

the overall ZT metric leading to inappropriate mapping of

security measures. For our implementation, we defined four

tiers - 1, 2, 3, 4 with criticalities 1.5, 1.25, 1, and 0.8,

respectively.

b) Compute Easer: The other critical criteria to be ad-

dressed are the available compute and network bandwidths. It

is important to conserve compute power of the PDP because it

is detrimental for the system to be overloaded affecting avail-

ability. Hence, we introduce a conditional multiplier called

Compute Easer, that is dynamically figured out based on CPU

usage.

Underestimation of risk can result in severe conse-

quences [16]. These consequences are even more drastic for

highly critical assets (Tiers 1 and 2). To avoid under-estimating

risk for highly critical assets, we set this factor to one for assets

in Tiers 1 and 2. For less critical tasks (Tier 3 and 4), based on

the usage and availability of CPU resources, a factor between

0.5 and 1 is assigned to reduce the ZT metric to a portion of

the actual value. We increase this factor to one in a nonlinear

fashion as the available CPU cycles are increased by using a

sigmoid [17] function:

Compute Easer =

{

1, if Criticality ≥ 1.25
1

1+e−∆ , otherwise
(3)

where, ∆ is the available CPU cycles in billions.

Considering the aforementioned factors such as risk and

various criteria, we devise a ZT metric to assess the level

of ZT. The ZT metric ranges from 0 to 150 and can be

visualized on a sliding scale with a descending value of ZT.

This scale assigns tasks or requests into five grades, namely

A-E, with grade A indicating the highest need for stringent

ZT enforcement, while grade E corresponds to low-risk tasks

that do not necessitate extensive ZT measures.

Specific ZT mechanisms are enforced based on the ZT

grade of a connection request. For instance, a request falling

under grade E undergoes no advanced ZT mechanisms, but

some Open Authentication, Role-based Access Control, while

all the communication is done cryptographically using digital

signatures and public key encryption [18] for confidentiality.

For grade D, we can assume the presence of an Intrusion

Detection System for continuous monitoring, but with a low

granularity. For grade C, we can assume a Multi-Factor

Authentication using encrypted one-time pins for verification.

Attribute-based Access Control and an increased granularity of

continuous authentication can be added in grade B for context-

aware authorization and proactive security. Further, we can

assume Behavioral Analysis exploiting ML/AI, and Challenge-

Response Protocols, which are compute and network-intensive

for grade A, the highest. Based on the ZT grade a task falls

into, we enforce these various security schemes to “never trust

and always verify”. However, the number of these grades and

the security mechanisms that can be associated with each of

them are completely configurable according to the nature and

scale of the application.

B. ZT Enforcement Policy based on Network Resource Avail-

ability

We need to ensure that the communication among nodes in

ZT enforcement remains efficient and does not excessively

consume network bandwidth. To do so, we introduce the

concept of a Minimum Speed Policy (MSP). This policy

is designed to optimize ZT enforcement while considering

factors such as network conditions, drone mobility, and band-

width usage, allowing a balance between security and resource

utilization. MSP is the minimum network speed required

for effective ZT enforcement within a specified time frame.

This speed threshold ensures that the ZT mechanisms can
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be applied without compromising their effectiveness, even in

situations where network connectivity might be weak due to

drone movement or high communication traffic.
When a drone requests a connection, its current network

speed is assessed. If the network speed exceeds the MSP,

we proceed to enforce ZT mechanisms based on the assigned

security grade. This makes sure that the appropriate level of

security measures can be applied without overhead. In case

the drone’s network speed is at least 80% of the MSP, we

choose to apply a slightly reduced grade of ZT enforcement,

adaptively helping manage network bandwidth without com-

promising security significantly. If the drone’s network speed

falls below the 80% threshold of the MSP, it indicates poor

network conditions. In this scenario, we generate a Deny

Policy, preventing the drone from accessing the network. This

proactive step ensures that only devices with a reasonable

level of network connectivity can access the resources. To

prevent a flood of access requests overwhelming the system,

we introduce a Cool-down period. This is a standard waiting

time imposed on denied nodes before they can make a new

access request.

ZT Enforcement By MSP =



































Execute ZT with assigned grade,

if Network Speed ≥ MSP

Execute ZT with reduced grade,

if Network Speed ≥ MSP × 0.8

Generate Deny Policy, otherwise

(4)

VI. PERFORMANCE EVALUATION

In this section, we present the evaluation of the BN’s

performance based on metrics such as packet transmission rate,

distance from the control station, and energy levels of drones.

We also analyze the influence of key ZT parameters, namely

Criticality, Compute Easer, and MSP, on security execution.

A. Simulation Setup

1) Drone Data Generation: We created drones as objects

with properties including tier level, energy level (Joule), packet

transmission rate (Mbps), and location co-ordinates (a co-

ordinate pair on a square grid 4000 feet long and wide).

This object-oriented approach allowed us to efficiently handle

multiple drone instances and their respective characteristics

throughout the simulation. The control station was configured

with ZT scores of respective grades, tiers and their correspond-

ing criticalities, forbidden (out-of-mission-scope) territory co-

ordinates, network MSP standard requirements, and a snapshot

of CPU availability which is adjusted for every communication

request simulation.

2) Simulated Historical Attack Attempt Data: The historical

attack attempt data of the CDS has the record of attack

attempts, their corresponding deltas, i.e., how much the packet

transmission rate, energy levels, and Euclidean distance of the

drone from the control station deviated from the mean of those

of the remaining drones in the system, the outcome of each

of those attempted attacks, and whether the overall infiltration

was successful or not.

To model these instances, we generated simulation data

with 3 numerical columns: distance delta, packet rate delta,

and energy delta and corresponding attack attempted boolean

columns namely is capture, is flooder attack, is faker attack,

holding either a True or a False value. The values in the nu-

merical columns represent the deviations of a drone’s metrics

from the mean of those of the remaining drones in the system.

To assign truth values of the boolean columns to the data, we

would need a proportionality function that would be inclined

to having low attack probability when close to the mean of

the metrics. As we move beyond the mean, it should indicate

that attack attempts are more probable.
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Figure 5: Simulation Results of Variance in Risk score from

Bayesian Network based on risk metrics

3) Model Execution: The boolean columns, is capture,

is flooder attack, and is faker attack of the simulated data

determine the probability of each type of attack based on the

corresponding delta values. Based on the Equation (1), the

probability of attack success node being true was calculated

and termed as risk. This risk value was then used as input for

the ZT metric calculation. Based on the parameters Criticality,

Compute Easer and MSP, risk metrics and corresponding risk

grades were computed, allowing for proportionate execution

of ZT mechanisms depending on the scenario.

By following this simulation setup, we aim to evaluate

the effectiveness and scalability of our risk-based ZT metric

for CDSs. In each successive simulation, the effects of the

deviation (delta) values on the risk score and impact of our

ZT parameters on the ZT metric and grade are analyzed.

Several simple scenarios with tuned values of deltas and

ZT parameters are used as settings to our simulation and

the behavior of the ZT grade according to the scenarios is

recorded.
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Figure 6: Experiment scenarios showing: (a) Effects when ZT security policies are enforced fully or partially, or denied. (b)

Effects of the Available CPU Resources on the ZT Metric and corresponding ZT grades. (c) Effects of the Criticality parameter

on the ZT Score and corresponding ZT grades.

B. Experiment Results

In this section, we present our experiment results from our

simulation analysis that are obtained by observing how the

BN model risk quantification results vary based on different

network activities and scenarios, followed by how the ZT scale

is impacted with respect to the ZT parameters and the BN risk

scores. In addition, we present the impact of the risk grades

on the network performance observing throughput and latency

variations over the simulation of a data transfer. Finally, we

discuss the complexity analysis of the proposed approach.

1) Risk Quantification Results with Bayesian Network:

We conducted tests on the BN using various sizes of drone

simulation data and attack attempt data. In Figure 5, we

present the results for one specific snapshot of drone data.

For this snapshot, various simulations were run with a wide

window of deviations of distance from GCS, packet rate, and

energy were used as judging metrics of attack probability. The

sensitivity of the probabilistic outcome from the BN was found

to be very volatile, adjusting itself to minute changes in the

criterion metrics. These means were consistent across all the

simulations, allowing us to analyze the impact of different

metrics and their respective deviations (deltas) from the mean

on the risk score. This trend of the model can be observed in

the 3D Scatter plot shown in Figure 5.

2) Impacts of Zero Trust Parameters on the Grades: To

study the influence of network speed and Minimum Speed

Policy (MSP) constraint on the overall ZT grade, simulations

were done on a drone with varying network speeds while

keeping all other parameters such as the requested target done,

available CPU cycles, and the drone’s metrics constant. The

obtained results of these simulations can be seen in Figure

6(a). It can be observed from the results of the first drone

in Figure 6 how under the same ZT metric, network speed

enforced the original ZT grade, denied the request, or enforced

a lowered grade of ZT. For the original ZT grade ‘C’, when

there was sufficient network speed (i.e., 85.8 Mbps) the ZT

system enforced grade ‘C’ security policies. When the speed

was slightly reduced to 64.2 Mbps, the ZT system enforced a

lowered grade ‘D’ of security policies because of only 80%

of MSP requirements were being satisfied. Further lowered to

56.2 Mbps, a deny policy was issued because - at least the

minimum MSP standards of network speed were not being

met. These results show how the MSP parameter helps reduce

the load of ZT enforcement in poor network connectivity

scenarios, without compromising security of the CDS.

To analyze how the availability of CPU resources affect the

compute easer, and in turn the overall ZT metric and grade,

simulations under the same risk metrics and network speed

were done while changing the target drone being requested and

the available CPU cycles as illustrated in Figure 6(b). The first

two simulations show that the compute easer does not really

have an effect when the criticality of the requested drone is

1.25 or above. This ensures that the CPU shortage does not

become an excuse to gain access to critical resources. The ZT

metric only decreased slightly because of criticality’s effect. In

the other three simulations, it can be seen how compute easer

can lower the overall ZT metric and grade to prevent CPU

overload by high enforcement of ZT. For the same risk, the

ZT grade reduced from grade ‘A’ to grade ‘C’ with available

CPU cycles falling from 2.2 billion to 700 million.

Further, as depicted in Figure 6(c), with the same risk

metrics and all other conditions, we perform simulations of

requests to drones belonging to various tiers. The simula-

tion results from Figure 6 show how the strength of ZT

enforcement with the same risk parameters can vary based

on the seriousness of the drone. The final ZT grade was

proportionately lowered from grade ‘A’ to grade ‘C’ with

varying criticalities of the target drones.

VII. CONCLUSION

In this paper, we have addressed the problem of apply-

ing data center-oriented ZT solutions that typically demand

large overheads in computation (e.g., traffic flows encryption,

anomaly detection using deep learning), storage (e.g., to store

activity logs at per-device/per-user granularity) and network

resources (e.g., threat intelligence sharing) that are not gener-

ally available in tactical edge networks. Specifically, we have

developed and evaluated a novel TEN resource-aware, risk-

based ZT grading system for an exemplar collaborative drone

system setting using a BN model for risk calculation.

Future work can incorporate more attack vectors with their

corresponding metrics, defining ZT security mechanisms based

on the respective ZT grades.
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