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Abstract

Wall slip is conventionally obtained through riblets or grooves. As riblets are macroscopic objects, it is usually not practical to
discuss slip patterns at the hydraulically smooth limit. Per Nikuradse, the smooth limit is when the characteristic length of the
surface pattern is comparable to the viscous length scale. Recent studies show the possibility of slip at the microscopic scale,
making slip patterns at the hydraulically smooth limit relevant. In this study, we leverage a high-fidelity pseudo-spectral code and
study flow over surfaces featuring alternating strips of slip and no-slip wall conditions. The wavelength of the surface pattern,
denoted as l, varies from 1.5 times the half channel height to 2 viscous units (plus units), eventually approaching the anticipated
hydraulically smooth limit. The presence of surface slip gives rise to a slip velocity at the wall, denoted as Us, which contributes to
drag reduction. The surface spanwise heterogeneity leads to secondary flows and intensifies turbulent mixing, consequently leading
to drag increase. This drag increase effect can be parameterized using the “roughness function” ∆U+. The sum of U+s and −∆U+

determines whether the surface increases or reduces drag. Here, the superscript + denotes normalization by the wall units. In most
cases, the slip velocity at the wall U+s predominates over −∆U+, resulting in drag reduction. However, when l is a few viscous units,
the roughness function ∆U+ does not vanish and overwhelms the slip velocity, giving rise to a net drag increase. Considering that
the wall is a mixture of slip and no-slip conditions, this drag increase at the anticipated hydraulically smooth limit is unexpected.
To gain an insight into the mechanism responsible for this drag increase, we derive a Navier-Stokes-based decomposition of the
roughness function. Here, we generalize the definition of the roughness function such that it is a function of the wall-normal
coordinate, thereby overcoming the difficulty of measuring the roughness function when the log region is narrow and hard to
define. Analysis shows that when l is a few plus units, secondary flows contribute to a slightly positive ∆U+, while turbulent and
viscous contributions, by and large, cancel out, ultimately leading to an overall drag increase at the anticipated hydraulically smooth
limit. The evidence in the paper suggests that the hydraulically smooth limit does not exist for certain surfaces.

Keywords: Turbulent boundary layers, Hydraulically smooth limit

1. Introduction1

Surfaces exhibiting spanwise heterogeneity are common in2

both natural environments and fluid engineering applications.3

In geophysics, such heterogeneity arises from variations in4

terrain, such as transitions between different canopy types5

(Belcher et al., 2003; Finnigan et al., 2020). In fluid engineer-6

ing, spanwise heterogeneity may result from specific manufac-7

turing processes. For instance, additive manufacturing often8

leads to directional roughness (Altland et al., 2022; Snyder and9

Thole, 2020). Spanwise heterogeneity in surface patterns as10

described above gives rise to inhomogeneity in the Reynolds11

stress, which, in turn, induces secondary flows above them.12

These secondary flows manifest as alternating high and low13

momentum pathways in the streamwise-transverse plane and14

as counter-rotating vortices in the transverse-wall-normal plane15

(Mejia-Alvarez et al., 2013; Barros and Christensen, 2014;16

Wangsawijaya et al., 2020). Unlike flow structures identified17
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in the instantaneous flow field (e.g., Adrian, 2007; Yoon et al.,18

2016; Hong et al., 2011, 2012) that are transient and vanish af-19

ter taking time average, secondary flows persist in the mean.20

Furthermore, as the sizes of the secondary flows are often com-21

parable to the boundary-layer height, they can disrupt the log22

law and the outer layer similarity. Consequently, conventional23

engineering tools like the Moody diagram, which assumes outer24

layer similarity and the log law, incur significant uncertainties25

when applied to surfaces with spanwise heterogeneity (Yang26

and Anderson, 2018; Medjnoun et al., 2018; Wangsawijaya27

et al., 2020; Chung et al., 2018). The limitations of exist-28

ing engineering tools have served as a driving force for re-29

search on surfaces with spanwise heterogeneity, and many have30

contributed to the topic (Vanderwel and Ganapathisubramani,31

2015; Modesti et al., 2021; Yang et al., 2019; Forooghi et al.,32

2020; Yang et al., 2023, to name a few).33

An extensively studied configuration involves surfaces with34

spanwise alternating strips of disparate properties, as sketched35

in Figure 1. The property may be equivalent roughness height36

(Willingham et al., 2014; Anderson et al., 2015a), surface topol-37
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Symbols ∆U+b,d Dispersive contribution to ∆U+b
B Canonical log-law intercept ∆x Grid spacing in the streamwise direction
C Log-law intercept ∆y Grid spacing in the wall-normal direction
C f Skin friction ∆z Grid spacing in the spanwise direction
Fb Body force κ Von Kármán Constant
H Size of the secondary flow structure ρ Density
l Wavelength of the spanwise heterogeneity τ Shear stress
lslp Size of the slip strip τR Reynolds stress
lnslp Size of the no-slip strip τD Dispsersive stress
L Streamwise domain size τv Viscous stress
N Grid number ν Kinematic viscosity
n Wall-normal direction
k Roughness height Abbreviations
Reτ Friction Reynolds number WMLES Wall-modeled large eddy simulation
u Streamwise velocity DNS Direct numerical simulation
uτ Friction velocity
u Velocity vector Superscripts, Subscripts, & Operators
uh Horizontal velocity vector (·)+ Normalization by wall units
un Normal velocity component (·)+b Normalization by bottom wall units
U Double-averaged streamwise velocity (·)′ Temporal fluctuation of (·)
Ubulk Bulk velocity (·)′′ Spatial variation of (·)
Us Slip velocity (·)b (·) at the bottom wall
v Wall-normal velocity (·)c (·) at the top wall
w Spanwise velocity (·)i (·) in the ith direction
x Streamwise coordinate (·)pc (·) in a plane channel
y Wall-normal coordinate (·)nslp (·) at the no-slip region
z Spanwise coordinate (·)slp (·) at the slip region

(·)t (·) at the top wall
Greek Symbols (·)w (·) at the wall
δ Boundary layer height (·)x (·) in the streamwise direction
δi j Kronecker delta (·)y (·) in the wall-normal direction
∆U Roughness function (·)z (·) in the spanwise direction
∆U+b,v Viscous contribution to ∆U+b ¯(·) Temporal average
∆U+b,r Turbulence contribution to ∆U+b ⟨(·)⟩ Spatial average

Table 1: Nomenclature Table

ogy (Garcı́a-Mayoral and Jimenez, 2011; Vanderwel and Gana-38

pathisubramani, 2015; Modesti et al., 2021), wall-shear stress39

(Chung et al., 2018), heat flux (Salesky et al., 2022), and slip40

length (Neuhauser et al., 2022). Among the numerous parame-41

ters influencing surface properties, the wavelength of the span-42

wise heterogeneity, denoted as l, has garnered considerable at-43

tention. Yang and Anderson (2018) varied the wavelength of44

the spanwise heterogeneity from l/δ = 0.1 to 2π, where δ is45

the outer length scale, corresponding to boundary-layer height,46

half channel height, or pipe radius depending on the flow. Three47

regimes were identified: the roughness regime for small l/δ, the48

topography regime for large l/δ, and the intermediate regime49

that lies between the roughness regime and the topography50

regime. In the roughness regime, the sizes of the secondary51

flows are small compared to the boundary-layer height, and the52

outer-layer similarity survives. Conversely, in the topography53

regime, the sizes of the secondary flows are comparable to the54

boundary-layer height, precluding outer-layer similarity. The55

impact of the secondary flows on the surface drag depends on56

their sizes and locations. Large-scale secondary flows enhance57
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Figure 1: Schematic of flow over surfaces with spanwise alternating strips of
disparate properties.
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mixing and therefore increase drag (Choi et al., 1993; Suzuki58

and Kasagi, 1994). Small-scale secondary flows, e.g., those59

above riblets, push coherent streamwise vortices away from the60

wall, thereby reducing the drag force (Choi et al., 1993; Martin61

and Bhushan, 2016; Wong et al., 2024).62

An anticipated limit is when l is very small. As l approaches a63

few viscous units, the relevant length scale becomes the viscous64

length scale ν/uτ. Here, ν is the kinematic viscosity, and uτ is65

the friction velocity. For rough-wall boundary-layer flows, this66

defines the hydraulically smooth limit (Schlichting et al., 1980):67

when the characteristic length scale of the surface roughness is68

comparable to the viscous length scale, the surface roughness is69

fully submerged within the viscous sublayer. It is worth noting70

that the hydraulically smooth limit does not concern the surface71

coverage density. In Nikuradse’s experiment, the hydraulically72

smooth limit is obtained when the entire surface is still cov-73

ered by sandgrain roughness. For flow over regular roughness,74

e.g., cubes and spheres, the hydraulically smooth limit can be75

obtained for arbitrary surface coverage densities. At this hy-76

draulically smooth limit, the flow behaves like a smooth-wall77

boundary layer: the mean flow adheres to the well-established78

law of the wall while maintaining the outer-layer similarity. The79

concept of the hydraulically smooth limit was first established80

in the seminal works of Nikuradse (1933) and Schlichting and81

Gersten (1979). More recently, Flack et al. (2012) revisited this82

concept. In these studies, the roughness is homogeneous, for83

which the roughness height k serves as a good characteristic84

length scale. Schlichting and Gersten (1979) found that the hy-85

draulically smooth limit is when k+ < 4. Flack et al. (2012),86

on the other hand, found that roughness geometry can influence87

the critical k+ value for the hydraulically smooth behavior, with88

certain surfaces remaining hydraulically smooth up to k+ = 10.89

In the context of surfaces with spanwise heterogeneity, the90

roughness height is not always defined, and l becomes the char-91

acteristic length scale of the surface structure. This is a com-92

mon practice in wall-modeled large-eddy simulations (WM-93

LES) where roughness is often parametrized using an equiv-94

alent roughness height y0 without introducing k/δ as a param-95

eter (Bose and Park, 2018; Yang et al., 2017). The practice96

is sometimes adopted in DNS, where roughness is not explic-97

itly resolved, and a shear stress boundary condition is instead98

imposed (Chung et al., 2018; Neuhauser et al., 2022). Thus,99

the presumed hydraulically smooth limit is when l+ is O(1).100

The primary objective of this work is to study the flow as101

the surface roughness approaches this anticipated hydraulically102

smooth regime. In particular, we will focus specifically on the103

flow above surfaces featuring alternating strips of slip and no-104

slip regions. We note that a slip wall is commonly used to model105

the interaction between a superhydrophobic surface and a fluid106

flow (Martell et al., 2009, 2010; Park et al., 2013; Türk et al.,107

2014). The boundary condition could correspond to a surface108

with streamwise aligned micro wedges (Park et al., 2013; Türk109

et al., 2014; Jelly et al., 2014), where air is trapped between110

two neighboring wedges, leading to a slip condition there. This111

is well established and recent papers that adopt a slip condi-112

tion rarely compare against experiments (Türk et al., 2014; Jelly113

et al., 2014).114

From a practical standpoint, slip patterns at such a scale115

are unimaginable as conventional methods generate slip via ri-116

blets or grooves, whose sizes are usually significantly larger117

than the viscous scale (Bechert et al., 1997; Garcı́a-Mayoral118

and Jimenez, 2011; Endrikat et al., 2021). Recent research has119

shown a wall-shear-stress-dependent slip at the molecular scale,120

making slip patterns at viscous length scales relevant (Thomp-121

son and Troian, 1997; Yong and Zhang, 2013; Ramos-Alvarado122

et al., 2016). As this paper focuses on fluid dynamics, a more123

in-depth discussion of molecular dynamics is outside the scope124

of this paper, and the reader is directed to the references cited125

above for further details.126

In a numerical simulation, the no-slip region is a region with127

a Dirichlet boundary condition u = 0 (assuming a stationary128

wall), while the slip region is a region with a Neumann and no-129

penetration boundary conditions, i.e., ∂uh/∂n = 0,un = 0. The130

relevant length scales in this case are the viscous length scale or131

the plus unit ν/uτ, the outer length scale δ, and the wavelength132

of the surface pattern l. In this study, we will vary the wave-133

length of the pattern from 1.5 δ to 2 plus units. While we vary134

the wavelength, the overall configuration remains unchanged,135

and 50% of the surface is always free-slip. Again, the hydrauli-136

cally smooth limit concerns the characteristic length scale of137

the surface pattern and does not concern the surface coverage138

density.139

While not the focus of this study, the flow over superhy-140

drophobic surfaces bears direct relevance. Superhydrophobic141

surfaces are surfaces with microstructures that trap air (Carré142

and Mittal, 2009). One such microstructure is microgrooves143

that trap air between two ridges. Unlike drag reduction by mi-144

crogrooves(Lee and Lee, 2001) and spanwise jet forcing (Yao145

et al., 2018; Nozarian et al., 2024), which lifts turbulent vortices146

from the wall, the trapped air prevents water from direct contact147

with the solid surface, leading to a slip at the air-water interface.148

When the microgrooves are aligned in the direction of the flow,149

the surface can be modeled as alternating free-slip and no-slip150

strips, which is the configuration considered in this work. Many151

prior computational studies have also focused on this configu-152

ration (Martell et al., 2009, 2010; Park et al., 2013; Türk et al.,153

2014; Jelly et al., 2014; Tomlinson et al., 2023). Given the rel-154

evance of these studies to our work, we provide a brief review155

of that literature here. Martell et al. (2009, 2010) demonstrated156

that U − Us (difference between the mean velocity and the slip157

velocity) exhibits similar behavior as U above a no-slip wall as158

they both have a viscous sublayer (U+ − U+s = y+) and a loga-159

rithmic layer (U+ − U+s = ln(y+)/κ + C). Here, U+s represents160

the slip velocity at the wall, and the value of C depends on the161

specific surface. Türk et al. (2014) varied the wavelength from162

l = πδ to l+ = 8.8, a length scale close to the focus of this study,163

and reported drag reduction in all their DNS results. They found164

that the slip length defined as Us/(dU/dn)w increases with l,165

where (·)w denotes the flow variable (·) at the wall. They also166

noted that the laminar solution provides a reasonable approx-167

imation for the slip length when l+ ≲ 20. Jelly et al. (2014)168

conducted a budget and integral analysis for a specific wave-169

length of l+ = 67.5. Their findings suggested that while the170

surface reduces drag, the no-slip region experiences higher skin171
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friction. This increased skin friction is a consequence of dif-172

fusion, which transports high-momentum fluid from above the173

slip region to above the no-slip region. Tomlinson et al. (2023)174

took a further step and studied the effects of surfactants in drag175

reduction of superhydrophobic surfaces. Due to the existence176

of surfactants, they modeled the superhydrophobic surfaces as177

long but finite-length alternating streamwise strips of constant178

Maragoni shear rate and no-slip boundary conditions.179

Although the limit of l → 0 had not been the focus of any180

prior study on superhydrophobic surfaces due to a lack of prac-181

ticality, there is an expectation for the mean flow when l → 0.182

Below, we review these expectations. Firstly, it is anticipated183

that the log layer will survive (Martell et al., 2010; Jelly et al.,184

2014). The mean flow is expected to follow185

U+ − U+s =
1
κ

ln(y+) + B − ∆U+ (1)

in the log layer, where U+s is the slip velocity at the wall, B ≈ 5,186

and ∆U+ is analogous to the “roughness function”. Note that187

the roughness function is obtained by comparing against a flat188

plate boundary layer at the same Reynolds number, whereas189

∆U+ defined here is obtained by comparing against the log law190

ln(y+)/κ + B. Secondly, from Martell et al. (2009) and Martell191

et al. (2010), it is expected that U+s is an increasing function of192

l+, with U+s − ∆U+ being positive for all values of l+. Thirdly,193

from Türk et al. (2014), it is anticipated that the roughness func-194

tion ∆U+ is an increasing function of l+, and ∆U+ = 0 when195

l+ = 0. Lastly, it is expected that turbulent mixing/diffusion196

will contribute positively to ∆U+, while secondary flows should197

contribute negatively to ∆U+ — at least for some l+ values198

(Jelly et al., 2014). In the following section, we will study the199

behaviors of the flow as l+ approaches O(1) and put the above200

expectations to the test.201

In anticipation of the discussion in the following sections,202

we make mention of the two analysis tools. The first tool is203

the triple decomposition of the velocity, which separates the204

instantaneous velocity into the double-averaged component, the205

variations of the time average in space, and the fluctuation in206

time:207

u = U + u′ + u′′, (2)

where U is the double-averaged velocity, i.e., ⟨ū⟩. ¯(·) denotes208

time averaging and ⟨·⟩ denotes wall-parallel averaging. (·)′ and209

(·)′′ denote the fluctuation in time and the variation in space.210

The second tool is the integral method (Fukagata et al., 2002;211

Renard and Deck, 2016; Volino and Schultz, 2018; Elnahhas212

and Johnson, 2022). The integral methods in these references213

provide a decomposition of the skin friction coefficient. Türk214

et al. (2014) adapted the method and analyzed the flow rate. In215

our study, we will adapt the integral method to investigate the216

roughness function ∆U+.217

The rest of the paper is organized as follows. We elaborate on218

the expected mean flow behavior in §2. The details of our DNSs219

are presented in §3 with the results in §4. In §5, we discuss the220

effect of spanwise slip. Finally, we conclude in §6.221

2. The anticipated mean flow behavior222

In this section, we elaborate on the expected behaviors of the223

mean flow above a surface with spanwise heterogeneity fea-224

turing alternating strips of slip and no-slip regions as sketched225

in Figure 1 as l varies. When l is much larger than δ, span-226

wise heterogeneity affects the flow near the interfaces of two227

neighbouring patches only, and the mean flow is approximately228

spanwise homogeneous above each individual patch. The flow229

above the no-slip-wall patch is given by the law of the wall and230

is approximately231

Unslp√
τw,nslp/ρ

=
1
κ

ln

y
√
τw,nslp/ρ

ν

 + B. (3)

The slip wall applies no force on the flow, and therefore the232

mean flow above the slip-wall patch is approximately233

Uslp = Const. (4)

Here, the subscripts “nslp” and “slp” stand for “no-slip” and234

“slip”, τw is the wall-shear stress, and ρ is the fluid density. The235

double-averaged velocity is given by236

U =
lnslpUnslp + lslpUslp

lnslp + lslp
, (5)

in the log layer, which leads to237

U = (Unslp + Uslp)/2, (6)

since lnslp = lslp. The wall-shear stress is given by238

τw =
lnslpτw,nslp + lslpτw,slp

lnslp + lslp
= 0.5τw,nslp. (7)

It follows from (3), (4), (6), and (7) that the mean flow in the239

log layer is240

U+ =
U√
τw/ρ

≈ U+s +
0.71
κ

ln(y+) + 4.2. (8)

Alternatively,241

U+ − U+s =
0.71
κ

ln(y+) + B − ∆U+, with ∆U+ ≈ 0.8. (9)

Here, typical values for κ = 0.4 and B = 5 are invoked. ∆U+ as242

defined here is analogous to the roughness function. Equation243

(9) suggests a logarithmic scaling with a smaller log-law slope244

and a smaller additive constant than the law of the wall.245

When l is comparable to the half channel height, secondary246

motions would occupy the entire outer layer, and it is hard to247

estimate the mean flow, at least theoretically (Anderson et al.,248

2018; Hansen et al., 2023). Nonetheless, empirical evidence249

seems to support the following mean flow scaling250

U+ − U+s =
1
κ

ln(y+) + B − ∆U+, (10)

for ν/uτ ≪ y ≪ δ. In most studies, the slip velocity Us = 0.251

It is worth noting that due to spanwise heterogeneity, log layer252
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Figure 2: A sketch of the flow as the spanwise length scale of the surface varies.

in its conventional sense does not exist, and (10) can only be253

regarded as a fortuitous working approximation.254

Further decreasing l to O(0.1δ), the height of the resulting255

secondary motions becomes sufficiently small and a logarith-256

mic layer in its conventional sense can exist. As a result, the257

mean flow follows (10). In this regime, the spanwise hetero-258

geneity in the surface’s property can already be regarded as259

roughness.260

Last, when l is comparable to the viscous scale, spanwise261

heterogeneity in the mean flow would be confined within the262

viscous sublayer, and the surface is expected to be hydraulically263

smooth. Consequently, a log layer in its conventional sense264

exists, and the mean flow there is265

U+ =
1
κ

ln(y+) + B. (11)

The slip velocity Us = 0, and the roughness function ∆U+ = 0.266

Figure 2 is a sketch of the flow as the spanwise length scale267

of the surface varies. Spanwise heterogeneity with l ≳ O(0.1δ)268

has received considerable attention. We will focus on the269

regime where l ∼ O(ν/uτ).270

3. Computational Details271

We solve the following incompressible Navier-Stokes equa-272

tions in a periodic channel273

∂u j

∂x j
= 0, (12)

274

∂ui

∂t
+ u j
∂ui

∂x j
= −
∂p
∂xi
+ ν
∂2ui

∂x j∂x j
+ Fbδi1, (13)

where ui is the velocity in the ith Cartesian direction. The fluid275

density ρ ≡ 1 and is dropped. Figure 3 is a sketch of the flow276

configuration. The configuration is a channel, and the half-277

channel height is δ. A constant body force Fb drives the flow278

in the streamwise direction. Define the bulk friction velocity279

Figure 3: A sketch of the flow configuration. The top wall is smooth. The
bottom wall features spanwise alternating strips of slip and no-slip conditions.
l is the size of the repeating unit in the spanwise direction.

as uτ =
√

Fbδ. The bulk friction Reynolds number defined as280

Reτ = uτδ/ν is 180 for all cases. Note that since the focus of this281

study is the hydraulically smooth regime, flows at low Reynolds282

numbers are more relevant than flows at high Reynolds num-283

bers. The top wall is a no-slip, no-penetration one. The bottom284

wall features alternating strips with slip and no-slip conditions.285

Two types of slip conditions are investigated:286

∂u
∂n
= 0,

∂w
∂n
= 0, (14)

which imposes slip for both the streamwise and the spanwise287

velocity, and288

∂u
∂n
= 0, w = 0, (15)

which imposes slip for the streamwise velocity and no-slip for289

the spanwise velocity. Here, n is the wall-normal (y) direction,290

u and w are the velocity in the streamwise (x) and the spanwise291

(z) directions. We vary the spanwise length scale l from 1.5δ to292

2.1ν/uτ, whilst keeping lslp = lnslp. Although symmetric wall293
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Case Reτ l+slp l+nslp Lx × Ly × Lz(δ) Nx × Ny × Nz ∆x+ ∆y+w ∆y+c ∆z+

R2 180 135.00 135.00 6 × 2 × 3 128 × 128 × 576 8.44 0.35 5.00 0.94
LL2 180 135.00 135.00 9 × 2 × 4.5 192 × 128 × 864 8.44 0.35 5.00 0.94
L2 180 135.00 135.00 12 × 2 × 6 256 × 128 × 1152 8.44 0.35 5.00 0.94
R4 180 67.50 67.50 6 × 2 × 3 128 × 128 × 576 8.44 0.35 5.00 0.94
X4 180 67.50 67.50 6 × 2 × 3 128 × 128 × 576 8.44 0.35 5.00 0.94
R8 180 33.75 33.75 6 × 2 × 3 128 × 128 × 576 8.44 0.35, 5.00 0.94
L8 180 33.75 33.75 12 × 2 × 3 256 × 128 × 576 8.44 0.35 5.00 0.94
M8 180 33.75 33.75 6 × 2 × 3 128 × 128 × 128 8.46 0.35 5.00 4.22
R16 180 16.88 16.88 6 × 2 × 3 128 × 128 × 576 8.44 0.35 5.00 0.94
X16 180 16.88 16.88 6 × 2 × 3 128 × 128 × 576 8.44 0.35 5.00 0.94
R32 180 8.44 8.44 6 × 2 × 3 128 × 128 × 640 8.44 0.35 5.00 0.84
R64 180 4.22 4.22 6 × 2 × 3 128 × 128 × 768 8.44 0.35 5.00 0.70

R128 180 2.11 2.11 6 × 2 × 3 128 × 128 × 1024 8.44 0.35 5.00 0.53
X128 180 2.11 2.11 6 × 2 × 3 128 × 128 × 1024 8.44 0.35 5.00 0.53
R256 180 1.05 1.05 6 × 2 × 3 128 × 128 × 1024 8.44 0.35 5.00 0.53

Table 2: DNS details. lslp and lnslp are the spanwise sizes of the slip and no-slip strips. ∆y+w and ∆y+c are the grid resolution at the wall and the channel centerline,
respectively.

boundary conditions were used (Park et al., 2013; Türk et al.,294

2014; Jelly et al., 2014), the use of asymmetric wall bound-295

ary conditions is also common (Martell et al., 2009, 2010). In296

the present study, the asymmetric wall boundary condition is297

adopted. Hence, the flow is asymmetric with respect to the298

channel centerline due to the disparate wall conditions on the299

top and bottom walls. For the DNSs in this study, τw,b ranges300

from 0.74 to 1.02 Fbδ, and τw,t ranges from 1.26 to 0.98 Fbδ.301

Here, the τw,b and τw,t are the mean bottom and top wall shear302

stresses, and τw,b+τw,t = 2Fbδ due to force balance. The asym-303

metric wall boundary condition makes it easier to quantify the304

drag increase/reduction of the bottom wall with respect to the305

top wall. This will be discussed further in §4.306

The size of the computational domain is Lx × Ly × Lz =307

6δ × 2δ × 3δ. When scaled in mean wall units, i.e., ν/uτ,308

the present computational domain is comparable to the ones309

in Martell et al. (2009), Martell et al. (2010), and Park et al.310

(2013), and is larger than the ones in Rastegari and Akhavan311

(2015), and the minimal span channel in MacDonald et al.312

(2017). To further validate the adequacy of the present domain313

size, we include a domain convergence study in §Appendix A.314

We shall see that the present domain is sufficient. The grid315

is uniform in the streamwise and the spanwise directions, re-316

spectively, and is stretched according to a hyperbolic tangent317

function in the wall-normal direction. The resolution is such318

that ∆x+ ≈ 8.5 in the streamwise direction, ∆z+ < 1 in the319

spanwise direction except M8, ∆y+w ≈ 0.35 at the wall, and320

∆y+c ≈ 5.0 at the channel centerline. A grid convergence study321

for the aforementioned mesh settings could be found in Türk322

et al. (2014). There, it was reported that coarse spanwise grid323

resolution causes overestimates of drag reduction or underes-324

timates of the wall-shear stress. Hence, when a drag increase325

is predicted, the prediction is going to be conservative. Turbu-326

lence gives rise to flow intermittency, and higher-order statistics327

will require finer grid resolutions (Chen et al., 2023; Yang et al.,328

2021). This study focuses on first- and second-order statistics.329

For these statistics, the present grid resolution should be suf-330

ficient (Moser et al., 1999; Min and Kim, 2004; Jelly et al.,331

2014).332

Further details of the DNSs are summarized in Table 2. The333

nomenclature of the baseline DNSs is R[Lz/l]. In R[Lz/l], we334

impose the slip condition for both the streamwise and the span-335

wise velocities, i.e., the condition in (14). In X[Lz/l], we im-336

pose the slip condition for the streamwise velocity and the no-337

slip condition for the spanwise velocity, i.e., the condition in338

(15). To verify the adequacy of the domain size, cases LL2339

and L2 are the same as R2 but with their domain sizes 1.5340

times and 2 times of that in R2 in both the streamwise and the341

spanwise direction. In addition, case L8 is the same as R8 but342

with its streamwise domain size 2 times that of R8. For fur-343

ther validation of the DNS code, case M8 is a replication of the344

”30µm − 30µm” case in Martell et al. (2009). The averaging345

time is such that t ≥ 2000Lx/Ubulk after the flow reaches a sta-346

tistically stationary state, with Ubulk being the bulk streamwise347

velocity. This averaging time is longer than most DNS studies348

in the literature (Coceal et al., 2006; Yuan and Piomelli, 2014;349

Chung et al., 2018; Ma et al., 2021; Zhang et al., 2023). The350

adequacy of the averaging time is further verified in §Appendix351

A, where we compared the computed momentum budget to the352

known analytical solution.353

We employ the open-source pseudo-spectral code JHU-354

LESGO (2019) for our DNSs. The code solves the incom-355

pressible Navier-Stokes equations in a periodic channel. It uses356

a pseudo-spectral method in the wall-parallel directions and a357

second-order finite difference method in the wall-normal direc-358

tion, respectively. Time marching uses a second-order Adam-359

Bashforth method. The code has been extensively validated360

and has previously been used for boundary-layer flow calcu-361

lations (Bou-Zeid et al., 2005; Chester et al., 2007; Anderson362

et al., 2015b; Yang et al., 2015; Zhang et al., 2022). In ad-363

dition, the pseudo-spectral method has also been extensively364

validated for simulating turbulent flows over surfaces with365

abrupt changes in properties (Garcı́a-Mayoral and Jimenez,366

2011; Garcı́a-Mayoral and Jiménez, 2012; Fairhall and Garcı́a-367

Mayoral, 2018; Fairhall et al., 2019), which are similar to the368

flow configuration in the present study. Further details of the369
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code can be found in Altland et al. (2022) and are not re-370

captured here for brevity.371

4. Results372

We present the DNS results of the baseline R cases. We will373

establish a drag increase at the anticipated hydraulically smooth374

limit in §4.1. Recognizing the limited size of the logarithmic re-375

gion and the associated difficulty and uncertainty in defining the376

“roughness function”, a Navier-Stokes-based decomposition is377

derived in §4.2, focusing on the difference between the present378

flow and the flow above a smooth wall. The analysis will show379

that the secondary flows are responsible for the observed drag380

increase. Further analysis of the secondary flows is presented381

in §4.3, where we will show the flow above slip-wall regions is382

the culprit of the drag increase.383

4.1. Mean flow384

Figure 4 (a) shows the mean velocity profiles U+b as a func-385

tion of y+b for the R cases. Here, the subscript b signifies nor-386

malization by the friction velocity at the bottom wall. Profiles387

are truncated at the top where the Reynolds shear stress
〈
u′v′

〉
388

equals 0, beyond which the flow is more influenced by the top389

wall than the bottom wall. A noticeable non-zero slip velocity390

at the wall is observed. Figure 4 (c) shows the slip velocity as a391

function of the spanwise length scale l+b . Again, the subscript b392

denotes normalization by the wall units measured at the bottom393

wall. We see that the slip velocity is an increasing function of394

l+b , which is consistent with §2. The slip velocity approaches 0395

as l+b approaches 0. Figure 4 (b) displays U+b −U+s,b as a function396

of y+b . The plane channel result is included for comparison pur-397

poses. A universal viscous sublayer is found, and all profiles398

collapse for y+ < 2. This is again consistent with §2. A log re-399

gion can be identified in profiles although the log law intercepts400

vary. Hereby we obtain the log-law slope and the corresponding401

intercepts by fitting U+b as a function of ln(y+b ) between y+b = 50402

and 80. In Figure 4 (d), ∆U+b , the deviation from the smooth-403

wall log law intercept, is shown as a function of l+b . The value of404

∆U+b increases from -1.43 in R2 to 1.73 in R8, and subsequently405

decreases from 1.73 in R8 to 0.75 in R256 as l+b decreases from406

63.9 to 2.13. Notably, ∆U+b remains non-zero in R256 when407

l+b ∼ O(1), in the anticipated hydraulically smooth limit.408

Upon closely examining the results in Figure 4 (b), we ob-409

serve that the R2 profile exhibits a different log-law slope. The410

results for the log-law slope are presented in Figure 5. The411

log law slope in R2 is notably different from the other cases at412

similar Reynolds numbers. Hence, the deviation of the log law413

slope in R2 from the canonical value cannot be attributed to the414

low Reynolds number. Our argument in §2 might explain the415

deviation of the log law slope in R2 from the canonical value.416

In fact, the measured log-law slope in R2 is 2.04, which is417

reasonably close to 0.71/κ, the log-law slope in (9).418

The slip velocity arises from the presence of the slip wall,419

and it contributes to drag reduction. The modified roughness420

function ∆U+b , on the other hand, is a result of spanwise het-421

erogeneity in the surface roughness, and it contributes to drag422
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Figure 4: (a) Mean velocity profiles as a function of the wall-normal coordinate.
The plane channel result is included for reference and is denoted as PC. The
dashed line corresponds to the log law with κ = 0.41 and B = 5.2. (b) Same
as (a) but with the slip velocities subtracted from the mean velocity profile. (c)
Slip velocities as a function of the spanwise length scale l+b . (d) Roughness
function as a function of the spanwise length scale l+b . Here, the subscript b
denotes normalization based on the friction velocity at the bottom wall.

increase. The two mechanisms compete and determine if the423

surface reduces or increases drag. Figure 6 (a) shows U+s,b−∆U+b424

as a function of l+b . Again, the subscript b denotes normaliza-425

tion by the wall units measured at the bottom wall. The value426

of U+s,b − ∆U+b is positive in cases R2 to R64, leading to drag427
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Figure 5: The measured log-law slopes, i.e., 1/κ as a function of the spanwise
length scale. The value 1/κ for the canonical plane channel is marked by the
dashed line.

reduction in these cases. Similar drag reduction was observed428

in previous studies such as Martell et al. (2009) and Türk et al.429

(2014). The value of U+s,b − ∆U+b decreases as l+b decreases,430

which is consistent with the discussion in §2. However, what431

defies expectations is the slightly negative values of U+s,b −∆U+b432

in cases R128 and R256. As l+b approaches 0, U+s,b−∆U+b should433

approach 0 as well, if not slightly positive. This drag increase is434

more clear in Figure 6 (b), where we show τw,b/u2
τ as a function435

of l+b . According to force balance, τw,b/u2
τ + τw,t/u2

τ = 2. In the436

cases of a smooth top wall, τw,b/u2
τ > 1 indicates drag increase437

on the bottom wall, whereas τw,b/u2
τ < 1 suggests drag reduc-438

tion. Here, we observe that τw,b/u2
τ surpasses 1 in cases R128439

and R256, signifying drag increase in these instances. In addi-440

tion, Figure 6 (c) shows that the bulk velocity in drag increase441

instances decreases below the plane channel result even though442

the slip velocity is non-zero. Consequently, the skin friction443

coefficient, defined as C f = τw/
(
ρU2

bulk/2
)

increases above the444

plane channel result in those instances, as shown in Figure 6445

(d).446

4.2. A decomposition of the generalized roughness function447

In this section, we study what might be responsible for the448

drag increase in R128 and R256. We begin by defining the449

generalized roughness function ∆U+b as follows:450

∆U+b = −(U+b − U+s,b) + U+pc, (16)

where U+pc is the velocity from the plane channel, and the sub-451

script “pc” stands for “plane channel”. Again, the subscript452

b denotes normalization by the friction velocity at the bottom453

wall. Equation (16) is a straightforward extension of (10): the454

generalized roughness function ∆U+b in (16) exists in the sub-455

layer, the log layer, and the wake layer, whereas ∆U+b in (10)456

exists only in the log layer. Thus defined ∆U+b overcomes the457

difficulty in measuring the roughness function when the log re-458

gion is narrow and not well defined.459

We proceed with deriving a decomposition for the gener-460

alized roughness function ∆U+b . Beginning with the double-461

averaged Navier-Stokes equation in a channel, we have:462

d
〈
u′v′

〉
dy

+
d
〈
u′′v′′

〉
∂y

= Fb + ν
d2 ⟨u⟩
d2y
, (17)

10
0

10
1

10
2

10
3

0

2

4

6

8

10

(a)

10
0

10
1

10
2

10
3

0.7

0.8

0.9

1

1.1(b)

10
0

10
1

10
2

10
3

15

16

17

18

19
(c)

10
0

10
1

10
2

10
3

5.5

6

6.5

7

7.5

8

8.5(d)

Figure 6: (a) ∆U+b − U+s,b as a function of l+b . (b) Bottom wall-shear stress nor-
malized by bulk friction velocity. (c) Bulk velocity. (d) Skin friction coefficient.
The plane channel results are marked by the dashed lines.

with the mean convective term being zero. For a plane chan-463

nel, Reτ = Reτ,b, and integrating (17) twice in the wall-normal464

direction leads to465

ū+pc =

(
−

1
2Reτ

y+2
b + y+b

)
+

∫ y+b

0
u′v′

+

pcdỹ+b . (18)
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Figure 7: (a) Generalized roughness functions ∆U+b for 0 < y+b < 80. (b) The viscous contributions. (c) The turbulent contributions. (d) The dispersive contributions.
(e) The summation of viscous and turbulent contributions.

For the flows considered in this study, integrating twice leads to466

(U+b − U+s,b) =

y+b −
Re2
τ

2Re3
τ,b

y+2
b


+

∫ y+b

0

〈
u′v′

〉+
b

dỹ+b

+

∫ y+b

0

〈
ū′′v̄′′

〉+
b dỹ+b .

(19)

where Fb = u2
τ/h due to the force balance. Next, subtracting467

(18) from (19), we have468

∆U+b =

 Re2
τ

2Re3
τ,b

−
1

2Reτ

 y+2
b︸                    ︷︷                    ︸

∆U+b,v

+

∫ y+b

0

(
u′v′

+

pc −
〈
u′v′

〉+
b

)
dỹ+b︸                            ︷︷                            ︸

∆U+b,r

−

∫ y+b

0

〈
ū′′v̄′′

〉+
b dỹ+b︸                  ︷︷                  ︸

∆U+b,d

.

(20)

Equation (20) serves as a decomposition of the generalized469

roughness function. The terms on the right-hand side are due to470

viscous stress, Reynolds stress, and dispersive stress and are de-471

noted as ∆U+b,v, ∆U+b,r, ∆U+b,d, i.e., ∆U+b = ∆U+b,v+∆U+b,r+∆U+b,d.472

It should be noted that the contribution from the viscous stress473

arises due to the asymmetric wall boundary conditions and the474
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term will vanish when Reτ,b = Reτ.475
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Figure 8: (a) Reynolds stress
〈
u′v′

〉
profiles for selected cases. (b) Same as (a)

but for the dispersive stress ⟨ū′′v̄′′⟩. The normalization is based on the local
wall units.

Figure 7 (a) shows the generalized roughness functions as a476

function of y+b . It remains nearly constant for y+b > 30, reduc-477

ing to its conventional definition. However, in case R2, the log478

law slope of the mean flow differs from that of a plane channel,479

resulting in a continued increase of the generalized roughness480

function with y+b beyond the buffer layer. Figures 7 (b, c, d)481

isolate the contributions of viscous, turbulent, and dispersive482

stresses to the generalized roughness function. Here, we con-483

centrate on the wall layer, excluding data beyond y+b = 60. Sev-484

eral observations emerge. The viscous term ∆U+b,v is positive485

in R2-64 and contributes to drag increase. In these cases, the486

term is an increasing function of y+b and a decreasing function487

of l+b . In R128 and R256, ∆U+b,v is negative and therefore con-488

tributes to drag reduction. The behavior of the turbulent term489

∆U+b,r is more intricate. In R2-32, the term increases as a func-490

tion of y+b in the sublayer and then decreases as a function of491

y+b . In R64-256, the term gradually increases as a function of492

y+b and is slightly positive at y+b = 60. The dispersive stress493

term is even more intricate. It is negative in R2, contributing to494

drag reduction. In R4 and R8, the term is negative near the wall495

but quickly becomes positive in the log layer, contributing to496

drag reduction near the wall and drag increase further away. In497

R16-256, the term stays positive, and its magnitude decreases498

as l+b decreases. Comparing ∆U+b,v and ∆U+b,r, we see that they499

have opposite signs outside the wall layer. Also, comparing500

the two terms to ∆U+b,d, we see that the two terms significantly501

exceed ∆U+b,d outside the wall layer. This leads us to define502

∆U+b,v+r = ∆U+b,v + ∆U+b,r. Figure 7 (e) illustrates ∆U+b,v+r. The503

term is comparable to ∆U+b,d. In R2-16, ∆U+b,v+r and ∆U+b,d gen-504

erally exhibit opposite signs, resulting in a
∣∣∣∆U+b

∣∣∣ smaller than505 ∣∣∣∆U+b,v+r

∣∣∣ and
∣∣∣∆U+b,d

∣∣∣. Conversely, in R32-256, ∆U+b,v+r closely506

approaches zero, and ∆U+b ≈ ∆U+b,d. Thus, we conclude that507

the drag increase in R128 and R256 arises from the subdued508

∆U+b,v+r alongside a non-zero ∆U+b,d.509

To gain an understanding of the turbulent and dispersive510

stress contributions, we plot
〈
u′v′

〉
and ⟨ū′′v̄′′⟩ as a functions511

of y+b in Figures 8 (a, b). Comparing R2 and the plane channel512

flow,
〈
u′v′

〉
in R2 is slightly smaller than that in a plane channel513

in the wall layer for y+ ≲ 20 and larger for y+ ≳ 20. This ex-514

plains the initial increase of ∆U+b,r in the wall layer and its sub-515

sequent decrease further away. As l+b decreases, the Reynolds516

shear stress converges to the plane channel value, leading to a517

vanishing ∆U+b,r. The dispersive stress in R2 is positive near the518

wall for y+ ≲ 20 and negative above, contributing to a decreas-519

ing ∆Ub,d in the wall layer and an increasing ∆Ub,d outside. As520

l+b decreases, the region within which ⟨ū′′v̄′′⟩ stays positive nar-521

rows, leading to a positive ∆U+b,d in R32 and R256.522

4.3. Secondary flows523

Having identified that the non-zero dispersive stress or the524

secondary flows are responsible for drag increase at the antic-525

ipated hydraulically smooth limit, we now study the behaviors526

of the secondary flows as we vary the wavelength of the surface527

pattern.528

Figure 9 shows the contours of ū+b in the spanwise/wall-529

normal plane. We see secondary flows that manifest as counter-530

rotating vortices. In R2 and R4, the secondary vortices bring531

fluid from the slip-wall regions to the no-slip-wall regions. This532

gives rise to a positive and negative wall-normal velocity above533

the slip and the no-slip walls, which in turn gives rise to a pos-534

itive ⟨ū′′v̄′′⟩. In R8 and R16, the secondary vortices bring fluid535

from the no-slip-wall regions to the slip-wall regions, giving536

rise to negative and positive wall-normal velocities above the537

slip- and no-slip wall regions and a negative ⟨ū′′v̄′′⟩. In R32538

and R128, the secondary flows are confined in the viscous layer539

and are hard to recognize in the figure.540

The wall-normal location where ⟨v̄′′v̄′′⟩ attains its maximum541

measures the sizes of the secondary flows (Forooghi et al.,542

2020). Figure 10 shows the secondary flow size as a function543

of l+b . We see that the size of the secondary flows H+b does not544

change monotonically as a function of l+b : H+b decreases from545

about 19 in R2 to about 5.6 in R4. It then increases to about 13546

in R8 and decreases to about 1.1 in R32. Further decreasing l+b547

has no effect on H+s and its value remains about 1.1 in R32-256.548

Lastly, we examine the flow above the no-slip-wall regions549

and the slip-wall regions respectively to identify which region550

is responsible for the observed drag increase in the anticipated551

hydraulically smooth regime. Figure 11 shows the mean flow552

as a function of the wall-normal coordinate at a few z locations.553

We have subtracted the velocity at the wall so that the discus-554

sion focuses on the roughness function ∆U+b . The plane channel555

result is included here for comparison purposes. We see that the556

profiles above the no-slip wall regions are above the plane chan-557

nel profile whereas the profiles above the slip-wall regions are558

below the plane channel profile. As l+b decreases, profiles above559
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Figure 9: Contours of the temporally averaged streamwise velocity ū in the
transverse-wall-normal plane. The normalization is based on the wall units at
the bottom wall. The vectors indicate the in-plane motions (v̄, w̄). We show only
part of the domain. The mean flow repeats itself in the transverse direction. The
origin of the spanwise coordinate is placed at the center of the no-slip patch.
The cases are (a) R2, (b) R4, (c) R8, (d) R16, (e) R32, (f) R128.
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Figure 10: The size of the secondary flow structures as a function of pattern
wavelength in bottom wall units. Here, the size of the secondary flows is mea-
sured by the wall-normal location where ⟨v̄′′v̄′′⟩ peaks.

both the no-slip wall regions and the slip-wall regions converge560

to the plane channel profile. However, the profiles above the561

slip wall regions converge to the plane channel profile more562

slowly than the profiles above the no-slip wall regions. Hence,563

we conclude that the negative ∆U+b in R128 and R256 is due to564

the flow above the slip wall.565

5. The effect of spanwise slip566

In §4, we poist that the secondary flows in the viscous layer567

are responsible for the drag increase at the hydraulically smooth568

limit. If that were right, reducing/preventing secondary flows569

in the viscous layer would reduce/prevent the drag increase at570

the hydraulically smooth limit. To that end, we impose no-slip571

in the spanwise direction in cases X4, X16, and X128. This572

will effectively suppress motions in the spanwise direction very573

close to the wall, leading to a reduction of secondary motions574

in the viscous layer. In this section, we compare these modified575

X cases to their counterpart R cases, examining the resulting576

behaviors of the mean flow. We note that the method of sepa-577

rating spanwise and streamwise slip has a long history and dates578

back to Min and Kim (2004). In this context here, since the in-579

tended application is the wall-shear-stress-dependent slip at the580

molecular scale, it is particularly relevant to separate the slip in581

the streamwise and the spanwise directions, as the wall-shear582

stresses in these two directions are distinctly different.583

Figure 12 shows the mean flow results. We see from Figure584

12 (a) that preventing spanwise slip results in higher veloci-585

ties in the log layer for the X cases compared to the R cases.586

Figure 12 (c) shows the slip velocity at the wall. Due to the587

reduced skin friction in the X cases, the spanwise length scale588

l+b = luτ,b/ν in these cases is slightly smaller than that in the R589

cases. Consequently, the symbols representing the X cases are590

positioned slightly to the left of those representing the R cases591

in Figure 12 (c). We see that imposing a no-slip condition in592

the spanwise direction gives rise to a slightly higher slip veloc-593

ity in X4 than in R4 but has essentially no effect on the slip594

velocity in X/R16 and X/R128. Figure 12 (b) shows U+b − U+s,b595

and (d) illustrates the roughness function ∆U+b . The roughness596

functions in the X cases are noticeably smaller than those in597

the counterpart R cases. In particular, U+b − U+s,b in X128 al-598

ready follows closely the profile in a plane channel. Figure 13599

shows U+s,b − ∆U+b , τw,b/u2
τ, Ubulk and C f . The four provide a600

measure of the overall drag reduction/increase on the bottom601

wall. We see reduced drag in the X cases compared to their R602

counterparts. Of particular significance, the roughness function603

is close to 0 in X128, i.e., U+s,b − ∆U+b ≈ U+s,b. Hence, X128604

achieves a state akin to the hypothesized hydraulically smooth605

limit.606

Next, we repeat the exercise in §4 and analyze the budget of607

the generalized roughness function. The objective is to identify608

the processes responsible for the differences between the X and609

the R cases. Figure 14 shows the viscous, turbulent, and disper-610

sive stress contributions to the generalized roughness function.611

From Figure 14 (a), we see that imposing no-slip in the span-612

wise direction leads to increased ∆U+b,v in the X cases than in613
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Section 2 Reynolds and dispersive stress 

• Figure 7 a : Δ"#$ vs %#$
• Figure 7 b:~d Δ"#,'$ Δ"#,($ Δ"#,)$ as a function of  %#$ (cut off at %#$ = 60)

• Figure 7 e shows Δ"# '$($ vs %#$, figure 7 f: Δ"#,)$ as a function of  %#$ for R8~R256
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Figure 11: Mean velocity at constant z locations as indicated in the sketch. A and D are at the centers of the slip-wall and no-slip-wall regions. B and C are l/8 from
A and D, respectively. The cases are (a)R2, (b)R4, (c)R8, (d)R16, (e)R32, (f)R128.

the R cases. In particular, ∆U+b,v is negative in R128, contribut-614

ing to drag reduction, but positive in X128, contributing to drag615

increase. Examining the turbulent contribution ∆U+b,r in Fig-616

ure 14 (b), we observe minimal impact on this term when l+b is617

large. Specifically, ∆U+b,r in R4 and X4 are similar, as do R16618

and X16. However, a distinct difference emerges between X128619

and R128. In X128, ∆U+b,r is negative, whereas in R128, it is620

positive. Finally, Figure 14 (c) presents ∆U+b,d. Our expecta-621

tion that a no-slip condition would impede secondary flows in622

the viscous layer, thereby reducing ∆U+b,d, is confirmed. The623

X cases exhibit a notable reduction in the magnitude of ∆U+b,d624

compared to the R cases.625

The results in Figure 14 indicate that the subdued secondary626

flows are responsible for the reduced skin friction coefficient627

in the X cases when compared to the counterpart R cases. To628

gain further insights into the response of the secondary flows629

to the spanwise wall boundary condition, we revisit the anal-630

ysis from §4.3. Specifically, we examine the velocity profiles631

above the (streamwise) slip wall regions and the (streamwise)632

no-slip wall regions. Figure 15 shows the results. At smaller l+b ,633

the imposition of a no-slip condition in the spanwise direction634

leads to higher velocities above both the no-slip regions and the635

slip regions. This results in a slower convergence of the pro-636

files above the no-slip regions to the plane channel profile and a637

faster convergence of the profiles above the slip regions. These638

effects together contribute to the reduced drag forces in the X639

cases than in the R cases.640
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Figure 12: (a) Mean velocity profiles in X4, X16, and X128. The results of R4,
R16, and R128 are included here for comparison purposes. (b) U+b − U+s,b as a
function of the wall-normal coordinate. The legend is the same as in (a). (c)
Slip velocities as a function of the spanwise length scale l+b for R/X4, R/X16,
and R/X128. We use squares for the R cases and triangles for the X cases. (d)
Roughness function as a function of l+b . The legend is the same as in (c).

6. Conclusions641

We conduct DNSs of flow over surfaces with spanwise al-642

ternating strips of slip and no-slip walls. The size of the re-643

peating surface pattern is varied from 1.5 times the half channel644

height to 2 viscous units, reaching the anticipated hydraulically645
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Figure 13: (a) U+s,b−∆U+b as a function of l+b for R/X4, R/X16, and R/X128. (b)
Bottom wall shear stress. (c) Bulk velocity. (d) Skin friction coefficient. Again,
the square symbols are for R cases, and the triangle symbols are for X cases.
The plane channel results are marked by the dashed lines.
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Figure 14: (a) Contributions to the generalized roughness function in X/R4,
X/R16, and X/R128. (a) The viscous contributions (b) The turbulent contribu-
tions. (c) The dispersive contributions.

smooth limit. While this limit has little practical relevance to ri-646

blets and grooves, it is relevant to the recently found slip at the647

molecular level. The slip wall induces a slip velocity Us at the648

wall, which contributes to drag reduction. The spanwise het-649

erogeneity in the surface gives rise to secondary flows. These650

secondary flows lead to a downward shift in the log region ∆U,651

which contributes to drag increase. The sum of the two, i.e.,652

−Us + ∆U measures whether the surface increases or reduces653

drag, with a positive value indicating drag increase and a nega-654

tive value indicating drag reduction. The common expectation655

is that a mixture of slip and no-slip walls should lead to drag re-656

duction. At worst, the flow reduces to that in a plane channel at657

the hydraulically smooth limit when l approaches 0. However,658

we see a drag increase at the anticipated hydraulically smooth659

limit. At that limit, the slip velocity is essentially 0 but the660

roughness function is slightly positive. According to the grid661

convergence study in Türk et al. (2014), the present estimate is662

an underestimate of the drag force and therefore the true drag663

increase can only be more significant. In order to identify the664
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Figure 15: Mean streamwise velocity at some z locations. The symbols indicate
the spanwise location, see Figure 11. The normalization is by the local wall
units. The cases are (a) R/X4, (b) R/X16, (c) R/X128.

mechanisms that are responsible for this drag increase and to665

overcome the difficulty of measuring the roughness function666

when the log region is narrow and hard to define, we derive a667

Navier-Stokes-based decomposition of the generalized rough-668

ness function. This decomposition contains a viscous contri-669

bution, a turbulent contribution, and a dispersive contribution.670

The analysis shows that a non-zero dispersive contribution in671

the viscous layer is responsible for the drag increase at the antic-672

ipated hydraulically smooth limit. Further analysis of the mean673

flow data indicates that the flow above the slip-wall regions is674

the culprit of the drag increase at the anticipated hydraulically675

smooth limit. To further verify this conclusion, we follow Min676

and Kim (2004); Fukagata et al. (2006) and impose the no-slip677

boundary condition in the spanwise direction. Imposing no-678

slip in the spanwise direction reduces the strength of secondary679

flows in the viscous layer. If the drag increase at the anticipated680

hydraulically smooth limit is truly a result of secondary flows,681

imposing no-slip in the spanwise direction should effectively682

reduce/remove that drag increase. This expectation bears out in683
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Figure A.16: A comparison between the present DNS (lines) and the “30µm −

30µm” case (symbols) in Martell et al. (2009). (a) Mean streamwise velocity,
(b) Reynolds stresses.

our DNSs. In all, the results of this study, which are conser-684

vative, suggest that the anticipated hydraulically smooth limit685

might not exist for some surfaces.686
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Appendix A. Further details690

To further validate the DNS code, we replicate the results in691

Martell et al. (2009). Figures A.16 (a,b) show the comparison.692

We see a good agreement between the present DNS and the re-693

sults in Martell et al. (2009). This serves as a further validation.694

We conducted a domain convergence study for R2, i.e.,695

where we see the largest difference between the bottom and top696

wall shear stresses. The mean streamwise velocity and domi-697

nated Reynolds stresses are shown in Figures A.17 (a,b). We698

see good agreements from R2, LL2, and L2, with less than 1%699

difference. Hence, the present domain size is adequate. The700

same is true for other cases. Figures A.18 (a,b) compare R8701

and L8, and we see a good agreement between the two DNSs.702

We show the mean momentum budget for all the R cases in703

Figure A.19. We see that the total stresses follow the expected704

linear function, and therefore the flow is statistically converged.705
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Garcı́a-Mayoral, R., Jiménez, J., 2012. Scaling of turbulent structures in riblet776

channels up to reτ ≈ 550. Phys. Fluids 24.777

Hansen, C., Yang, X.I., Abkar, M., 2023. Data-driven dynamical system mod-778

els of roughness-induced secondary flows in thermally stratified turbulent779

boundary layers. J. Fluids Eng. 145, 061102.780

Hong, J., Katz, J., Meneveau, C., Schultz, M.P., 2012. Coherent structures and781

associated subgrid-scale energy transfer in a rough-wall turbulent channel782

flow. J. Fluid Mech. 712, 92–128.783

Hong, J., Katz, J., Schultz, M.P., 2011. Near-wall turbulence statistics and flow784

structures over three-dimensional roughness in a turbulent channel flow. J.785

Fluid Mech. 667, 1–37.786

Jelly, T., Jung, S., Zaki, T., 2014. Turbulence and skin friction modification787

in channel flow with streamwise-aligned superhydrophobic surface texture.788

Phys. Fluids 26, 095102.789

JHU-LESGO, 2019. A parallel pseudo-spectral large-eddy simulation code.790

https://lesgo.me.jhu.edu.791

Lee, S.J., Lee, S.H., 2001. Flow field analysis of a turbulent boundary layer792

over a riblet surface. Exp. Fluids. 30, 153–166.793
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