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Abstract

Wall slip is conventionally obtained through riblets or grooves. As riblets are macroscopic objects, it is usually not practical to
discuss slip patterns at the hydraulically smooth limit. Per Nikuradse, the smooth limit is when the characteristic length of the
surface pattern is comparable to the viscous length scale. Recent studies show the possibility of slip at the microscopic scale,
making slip patterns at the hydraulically smooth limit relevant. In this study, we leverage a high-fidelity pseudo-spectral code and
study flow over surfaces featuring alternating strips of slip and no-slip wall conditions. The wavelength of the surface pattern,
denoted as [, varies from 1.5 times the half channel height to 2 viscous units (plus units), eventually approaching the anticipated
hydraulically smooth limit. The presence of surface slip gives rise to a slip velocity at the wall, denoted as U, which contributes to
drag reduction. The surface spanwise heterogeneity leads to secondary flows and intensifies turbulent mixing, consequently leading
to drag increase. This drag increase effect can be parameterized using the “roughness function” AU*. The sum of U] and —~AU*
determines whether the surface increases or reduces drag. Here, the superscript + denotes normalization by the wall units. In most
cases, the slip velocity at the wall U predominates over —AU™, resulting in drag reduction. However, when [ is a few viscous units,
the roughness function AU* does not vanish and overwhelms the slip velocity, giving rise to a net drag increase. Considering that
the wall is a mixture of slip and no-slip conditions, this drag increase at the anticipated hydraulically smooth limit is unexpected.
To gain an insight into the mechanism responsible for this drag increase, we derive a Navier-Stokes-based decomposition of the
roughness function. Here, we generalize the definition of the roughness function such that it is a function of the wall-normal
coordinate, thereby overcoming the difficulty of measuring the roughness function when the log region is narrow and hard to
define. Analysis shows that when [ is a few plus units, secondary flows contribute to a slightly positive AU*, while turbulent and
viscous contributions, by and large, cancel out, ultimately leading to an overall drag increase at the anticipated hydraulically smooth
limit. The evidence in the paper suggests that the hydraulically smooth limit does not exist for certain surfaces.

Keywords: Turbulent boundary layers, Hydraulically smooth limit

1. Introduction ¢ in the instantaneous flow field (e.g., Adrian, 2007; Yoon et al.,

o ] ] ~ 19 2016; Hong et al., 2011, 2012) that are transient and vanish af-
Surfaces exhibiting spanwise heterogeneity are common i, ter (aking time average, secondary flows persist in the mean.

both natural environments and fluid engineering applications. ,  Eyrhermore, as the sizes of the secondary flows are often com-
In g?OPhYSiCS’ such he.terogeneity ariSfas from variations in , ,arable to the boundary-layer height, they can disrupt the log
terrain, such as transitions between different canopy types ,, Jaw and the outer layer similarity. Consequently, conventional
.(Belcher et al., 2003; Finnigan et al., 2020). In ﬂ‘.lld CNgIMCEr- ,,  engineering tools like the Moody diagram, which assumes outer
ing, spanwise heterogeneity may result from specific manufac- . jayer similarity and the log law, incur significant uncertainties
turing processes. For instance, additive manufacturing often 2 when applied to surfaces with spanwise heterogeneity (Yang
leads to directional roughness (Altland et al., 2022; Snyder and 2z and Anderson, 2018; Medjnoun et al., 2018; Wangsawijaya
Thole, 2020). Spanwise heterogeneity in surface patterns as ;o a1 2020; Chung et al., 2018). The limitations of exist-
described above gives rise to inhomogeneity in the Reynolds ing engineering tools have served as a driving force for re-
stress, which, in turn, induces secondary flows above them. . goqrch on surfaces with spanwise heterogeneity, and many have
These secondary flows manifest as alternating high and low . .onyibuted to the topic (Vanderwel and Ganapathisubramani,

momentum pathways in the streamwise-transverse plane and % 2015; Modesti et al., 2021; Yang et al., 2019; Forooghi et al.,
as counter-rotating vortices in the transverse-wall-normal plane _ 5(). Yang et al., 2023, to name a few).

(Mejia-Alvarez et al., 2013; Barros and Christensen, 2014;

Wangsawijaya et al., 2020). Unlike flow structures identified ,,  ap extensively studied configuration involves surfaces with

s spanwise alternating strips of disparate properties, as sketched
*Corresponding author. s in Figure 1. The property may be equivalent roughness height
E-mail address:xuhaosen@ouc.edu.cn a7 (Willingham et al., 2014; Anderson et al., 2015a), surface topol-
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AU;, Dispersive contribution to AU}

Symbols

B Canonical log-law intercept

C Log-law intercept

Cy Skin friction

F, Body force

H Size of the secondary flow structure
l Wavelength of the spanwise heterogeneity
Lyp Size of the slip strip

Lugip Size of the no-slip strip

L Streamwise domain size

N Grid number

n Wall-normal direction

k Roughness height

Re, Friction Reynolds number

u Streamwise velocity

Ur Friction velocity

u Velocity vector

up Horizontal velocity vector

u, Normal velocity component

U Double-averaged streamwise velocity
Upuir Bulk velocity

U, Slip velocity

v Wall-normal velocity

w Spanwise velocity

X Streamwise coordinate

y Wall-normal coordinate

z Spanwise coordinate

Greek Symbols

0 Boundary layer height

0ij Kronecker delta

AU Roughness function

AU, Viscous contribution to AU
AUf, Turbulence contribution to AU;;

Ax Grid spacing in the streamwise direction
Ay Grid spacing in the wall-normal direction
Az Grid spacing in the spanwise direction

K Von Karman Constant

P Density

T Shear stress

T®R Reynolds stress

D Dispsersive stress

T, Viscous stress

v Kinematic viscosity

Abbreviations
WMLES
DNS

Wall-modeled large eddy simulation
Direct numerical simulation

Superscripts, Subscripts, & Operators

ON
Oy
¢y
¢y
O
(')L‘
OF
(')pc
(')nslp
(')A'Ip
(')r
(')w

Normalization by wall units
Normalization by bottom wall units
Temporal fluctuation of (-)
Spatial variation of (-)

() at the bottom wall

(+) at the top wall

(+) in the ith direction

(+) in a plane channel

(+) at the no-slip region

(+) at the slip region

(+) at the top wall

() at the wall

() in the streamwise direction
() in the wall-normal direction
(+) in the spanwise direction
Temporal average

Spatial average

Table 1: Nomenclature Table

ogy (Garcia-Mayoral and Jimenez, 2011; Vanderwel and Gana-
pathisubramani, 2015; Modesti et al., 2021), wall-shear stress
(Chung et al., 2018), heat flux (Salesky et al., 2022), and slip
length (Neuhauser et al., 2022). Among the numerous parame-
ters influencing surface properties, the wavelength of the span-
wise heterogeneity, denoted as /, has garnered considerable at-
tention. Yang and Anderson (2018) varied the wavelength of
the spanwise heterogeneity from //6 = 0.1 to 2m, where 9§ is
the outer length scale, corresponding to boundary-layer height,
half channel height, or pipe radius depending on the flow. Three
regimes were identified: the roughness regime for small //9, the
topography regime for large //9, and the intermediate regime
that lies between the roughness regime and the topography
regime. In the roughness regime, the sizes of the secondary
flows are small compared to the boundary-layer height, and the
outer-layer similarity survives. Conversely, in the topography
regime, the sizes of the secondary flows are comparable to the
boundary-layer height, precluding outer-layer similarity. The
impact of the secondary flows on the surface drag depends on
their sizes and locations. Large-scale secondary flows enhance

Figure 1: Schematic of flow over surfaces with spanwise alternating strips of

disparate properties.
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mixing and therefore increase drag (Choi et al., 1993; Suzukirs
and Kasagi, 1994). Small-scale secondary flows, e.g., thoses
above riblets, push coherent streamwise vortices away from ther
wall, thereby reducing the drag force (Choi et al., 1993; Martinis
and Bhushan, 2016; Wong et al., 2024). 119

An anticipated limit is when [ is very small. As [ approaches a1z
few viscous units, the relevant length scale becomes the viscous:z:
length scale v/u,. Here, v is the kinematic viscosity, and u; sz
the friction velocity. For rough-wall boundary-layer flows, thisizs
defines the hydraulically smooth limit (Schlichting et al., 1980):124
when the characteristic length scale of the surface roughness isizs
comparable to the viscous length scale, the surface roughness isizs
fully submerged within the viscous sublayer. It is worth notingizz
that the hydraulically smooth limit does not concern the surfaceszs
coverage density. In Nikuradse’s experiment, the hydraulicallyizs
smooth limit is obtained when the entire surface is still cov-iz
ered by sandgrain roughness. For flow over regular roughness, a1
e.g., cubes and spheres, the hydraulically smooth limit can beis
obtained for arbitrary surface coverage densities. At this hy-s
draulically smooth limit, the flow behaves like a smooth-walliss
boundary layer: the mean flow adheres to the well-established:ss
law of the wall while maintaining the outer-layer similarity. Theiss
concept of the hydraulically smooth limit was first establishedis
in the seminal works of Nikuradse (1933) and Schlichting andiss
Gersten (1979). More recently, Flack et al. (2012) revisited thisiss
concept. In these studies, the roughness is homogeneous, fori«
which the roughness height k serves as a good characteristicias
length scale. Schlichting and Gersten (1979) found that the hy-1s2
draulically smooth limit is when k* < 4. Flack et al. (2012),1s
on the other hand, found that roughness geometry can influenceis
the critical k* value for the hydraulically smooth behavior, withiss
certain surfaces remaining hydraulically smooth up to k* = 10.14

In the context of surfaces with spanwise heterogeneity, theis
roughness height is not always defined, and / becomes the char-1ss
acteristic length scale of the surface structure. This is a com-1s
mon practice in wall-modeled large-eddy simulations (WM-1s
LES) where roughness is often parametrized using an equiv-isi
alent roughness height y, without introducing k/6 as a param-is2
eter (Bose and Park, 2018; Yang et al., 2017). The practicesss
is sometimes adopted in DNS, where roughness is not explic-1ss
itly resolved, and a shear stress boundary condition is insteadiss
imposed (Chung et al., 2018; Neuhauser et al., 2022). Thus,ss
the presumed hydraulically smooth limit is when [* is O(1).1s7
The primary objective of this work is to study the flow asiss
the surface roughness approaches this anticipated hydraulicallyiss
smooth regime. In particular, we will focus specifically on theieo
flow above surfaces featuring alternating strips of slip and no-1s
slip regions. We note that a slip wall is commonly used to modeliez
the interaction between a superhydrophobic surface and a fluidiss
flow (Martell et al., 2009, 2010; Park et al., 2013; Tiirk et al., e
2014). The boundary condition could correspond to a surfacerss
with streamwise aligned micro wedges (Park et al., 2013; Tiirkuss
et al., 2014; Jelly et al., 2014), where air is trapped betweene
two neighboring wedges, leading to a slip condition there. This1es
is well established and recent papers that adopt a slip condi-1es
tion rarely compare against experiments (Tiirk et al., 2014; Jellyizo
etal., 2014). 171

3

From a practical standpoint, slip patterns at such a scale
are unimaginable as conventional methods generate slip via ri-
blets or grooves, whose sizes are usually significantly larger
than the viscous scale (Bechert et al., 1997; Garcia-Mayoral
and Jimenez, 2011; Endrikat et al., 2021). Recent research has
shown a wall-shear-stress-dependent slip at the molecular scale,
making slip patterns at viscous length scales relevant (Thomp-
son and Troian, 1997; Yong and Zhang, 2013; Ramos-Alvarado
et al., 2016). As this paper focuses on fluid dynamics, a more
in-depth discussion of molecular dynamics is outside the scope
of this paper, and the reader is directed to the references cited
above for further details.

In a numerical simulation, the no-slip region is a region with
a Dirichlet boundary condition u = 0 (assuming a stationary
wall), while the slip region is a region with a Neumann and no-
penetration boundary conditions, i.e., dup/0n = 0,u, = 0. The
relevant length scales in this case are the viscous length scale or
the plus unit v/u,, the outer length scale 9, and the wavelength
of the surface pattern /. In this study, we will vary the wave-
length of the pattern from 1.5 ¢ to 2 plus units. While we vary
the wavelength, the overall configuration remains unchanged,
and 50% of the surface is always free-slip. Again, the hydrauli-
cally smooth limit concerns the characteristic length scale of
the surface pattern and does not concern the surface coverage
density.

While not the focus of this study, the flow over superhy-
drophobic surfaces bears direct relevance. Superhydrophobic
surfaces are surfaces with microstructures that trap air (Carré
and Mittal, 2009). One such microstructure is microgrooves
that trap air between two ridges. Unlike drag reduction by mi-
crogrooves(Lee and Lee, 2001) and spanwise jet forcing (Yao
etal., 2018; Nozarian et al., 2024), which lifts turbulent vortices
from the wall, the trapped air prevents water from direct contact
with the solid surface, leading to a slip at the air-water interface.
When the microgrooves are aligned in the direction of the flow,
the surface can be modeled as alternating free-slip and no-slip
strips, which is the configuration considered in this work. Many
prior computational studies have also focused on this configu-
ration (Martell et al., 2009, 2010; Park et al., 2013; Tiirk et al.,
2014; Jelly et al., 2014; Tomlinson et al., 2023). Given the rel-
evance of these studies to our work, we provide a brief review
of that literature here. Martell et al. (2009, 2010) demonstrated
that U — U, (difference between the mean velocity and the slip
velocity) exhibits similar behavior as U above a no-slip wall as
they both have a viscous sublayer (U* — U] = y*) and a loga-
rithmic layer (U* — U} = In(y*")/«k + C). Here, U} represents
the slip velocity at the wall, and the value of C depends on the
specific surface. Tiirk et al. (2014) varied the wavelength from
[ =nrétol* = 8.8, alength scale close to the focus of this study,
and reported drag reduction in all their DNS results. They found
that the slip length defined as U,/(dU/dn),, increases with I,
where (-),, denotes the flow variable (-) at the wall. They also
noted that the laminar solution provides a reasonable approx-
imation for the slip length when I* < 20. Jelly et al. (2014)
conducted a budget and integral analysis for a specific wave-
length of I* = 67.5. Their findings suggested that while the
surface reduces drag, the no-slip region experiences higher skin
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friction. This increased skin friction is a consequence of dif-zz
fusion, which transports high-momentum fluid from above the

slip region to above the no-slip region. Tomlinson et al. (2023)**
took a further step and studied the effects of surfactants in drag®
reduction of superhydrophobic surfaces. Due to the existence
of surfactants, they modeled the superhydrophobic surfaces as
long but finite-length alternating streamwise strips of constant®’
Maragoni shear rate and no-slip boundary conditions.

Although the limit of / — 0 had not been the focus of any””
prior study on superhydrophobic surfaces due to a lack of prac-"*
ticality, there is an expectation for the mean flow when [ — 0.*'
Below, we review these expectations. Firstly, it is anticipated
that the log layer will survive (Martell et al., 2010; Jelly et al.,
2014). The mean flow is expected to follow

225

226

228

232

1
U'-U!=-In(y")+B-AU" (1)=s
K

in the log layer, where U7 is the slip velocity at the wall, B ~ 5,
and AU is analogous to the “roughness function”. Note that?
the roughness function is obtained by comparing against a flat
plate boundary layer at the same Reynolds number, whereas?®
AU defined here is obtained by comparing against the log law
In(y*)/x + B. Secondly, from Martell et al. (2009) and Martell
et al. (2010), it is expected that U is an increasing function of
I*, with U} — AU™ being positive for all values of /*. Thirdly,,,
from Tiirk et al. (2014), it is anticipated that the roughness func-
tion AU" is an increasing function of /*, and AU" = 0 when
I* = 0. Lastly, it is expected that turbulent mixing/diffusion
will contribute positively to AU*, while secondary flows should*®
contribute negatively to AUT — at least for some [* values
(Jelly et al., 2014). In the following section, we will study the
behaviors of the flow as [* approaches O(1) and put the above
expectations to the test. 239

In anticipation of the discussion in the following sections,zs0
we make mention of the two analysis tools. The first tool is
the triple decomposition of the velocity, which separates the
instantaneous velocity into the double-averaged component, the
variations of the time average in space, and the fluctuation in2

. 41
time:

u=U~+u +u", 2)
where U is the double-averaged velocity, i.e., (it). () denotess
time averaging and (-) denotes wall-parallel averaging. (-)" anda.s
(+)” denote the fluctuation in time and the variation in space.o.
The second tool is the integral method (Fukagata et al., 2002;4s
Renard and Deck, 2016; Volino and Schultz, 2018; Elnahhasa
and Johnson, 2022). The integral methods in these references,,
provide a decomposition of the skin friction coefficient. Tiirkas
et al. (2014) adapted the method and analyzed the flow rate. Inas
our study, we will adapt the integral method to investigate the,s,
roughness function AU™*.

The rest of the paper is organized as follows. We elaborate on
the expected mean flow behavior in §2. The details of our DNSs
are presented in §3 with the results in §4. In §5, we discuss thezs:
effect of spanwise slip. Finally, we conclude in §6. 252

4

2. The anticipated mean flow behavior

In this section, we elaborate on the expected behaviors of the
mean flow above a surface with spanwise heterogeneity fea-
turing alternating strips of slip and no-slip regions as sketched
in Figure 1 as [ varies. When [ is much larger than 6, span-
wise heterogeneity affects the flow near the interfaces of two
neighbouring patches only, and the mean flow is approximately
spanwise homogeneous above each individual patch. The flow
above the no-slip-wall patch is given by the law of the wall and
is approximately

Unslp _ 1 In (y Tw,nslp/p] +B

v Tw,nslp p K v

The slip wall applies no force on the flow, and therefore the
mean flow above the slip-wall patch is approximately

3

Ugp = Const. “)

Here, the subscripts “nslp” and “slp” stand for “no-slip” and
“slip”, T, is the wall-shear stress, and p is the fluid density. The
double-averaged velocity is given by

lnslp Unslp + lslp Uslp

U= 5)
lnslp + lslp
in the log layer, which leads to
U= (Unslp + Uslp)/27 (6)
since lnglp = lsp. The wall-shear stress is given by
lnsl Ty,nsl + lsl Ty,sl
= R = 0.5, nglp- @)

lnslp + lslp

It follows from (3), (4), (6), and (7) that the mean flow in the
log layer is

0.71
U= v ~ Ul + —In(y") +4.2. )
\VTwlp K
Alternatively,
. . 071 N N . +
U'-U; =—In(y")+B-AU", withAU" =0.8. (9)
K

Here, typical values for xk = 0.4 and B = 5 are invoked. AU" as
defined here is analogous to the roughness function. Equation
(9) suggests a logarithmic scaling with a smaller log-law slope
and a smaller additive constant than the law of the wall.

When [ is comparable to the half channel height, secondary
motions would occupy the entire outer layer, and it is hard to
estimate the mean flow, at least theoretically (Anderson et al.,
2018; Hansen et al., 2023). Nonetheless, empirical evidence
seems to support the following mean flow scaling

Ut -Ut = %ln(y+)+B—AU+, (10)
for v/u, < y <« 6. In most studies, the slip velocity U, = 0.
It is worth noting that due to spanwise heterogeneity, log layer
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Figure 2: A sketch of the flow as the spanwise length scale of the surface varies.

in its conventional sense does not exist, and (10) can only be
regarded as a fortuitous working approximation.

Further decreasing / to O(0.16), the height of the resulting
secondary motions becomes sufficiently small and a logarith-
mic layer in its conventional sense can exist. As a result, the
mean flow follows (10). In this regime, the spanwise hetero-
geneity in the surface’s property can already be regarded as
roughness.

Last, when [ is comparable to the viscous scale, spanwise
heterogeneity in the mean flow would be confined within the
viscous sublayer, and the surface is expected to be hydraulically
smooth. Consequently, a log layer in its conventional sense
exists, and the mean flow there is

1 +
= zln(y )+ B. a1
The slip velocity U = 0, and the roughness function AU = 0.

Figure 2 is a sketch of the flow as the spanwise length scale
of the surface varies. Spanwise heterogeneity with [ 2 O(0.16)zs
has received considerable attention. We will focus on thezs
regime where [ ~ O(v/u,). 282
283
284

3. Computational Details
285

We solve the following incompressible Navier-Stokes equa-**
tions in a periodic channel

ui _ g (12)

axj ' 287

d P 8 8
Ui R VAL N (13)

o Yax, T aw | ox0x;

where y; is the velocity in the ith Cartesian direction. The fluidass
density p = 1 and is dropped. Figure 3 is a sketch of the flowzso
configuration. The configuration is a channel, and the half-z
channel height is 6. A constant body force F), drives the flowzs2
in the streamwise direction. Define the bulk friction velocityzss

5

L, —
Ly
|
|
26 A/
1L
— ] — Z

Figure 3: A sketch of the flow configuration. The top wall is smooth. The
bottom wall features spanwise alternating strips of slip and no-slip conditions.
[ is the size of the repeating unit in the spanwise direction.

as u; = VF,0. The bulk friction Reynolds number defined as
Re; = u.6/vis 180 for all cases. Note that since the focus of this
study is the hydraulically smooth regime, flows at low Reynolds
numbers are more relevant than flows at high Reynolds num-
bers. The top wall is a no-slip, no-penetration one. The bottom
wall features alternating strips with slip and no-slip conditions.
Two types of slip conditions are investigated:

ou

— = 14
o (14)
which imposes slip for both the streamwise and the spanwise

velocity, and

ou
— = ()’ = (),
on W

which imposes slip for the streamwise velocity and no-slip for
the spanwise velocity. Here, n is the wall-normal (y) direction,
u and w are the velocity in the streamwise (x) and the spanwise
(z) directions. We vary the spanwise length scale / from 1.59 to
2.1v/u., whilst keeping Ly, = lygp. Although symmetric wall

5)
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Case Re. 3 b l;slp L, x Ly, X L) Ny X Ny X N, Ax* Ayt Ayr A
R2 180 135.00 135.00 6x2x3 128 x 128 x 576 844 035 500 094
LL2 180 135.00 135.00 Ix2x45 192 x 128 x 864 844 035 500 094
L2 180 135.00 135.00 12x2%x6 256 x 128 x 1152 844 035 500 094
R4 180 67.50 67.50 6x2x3 128 x 128 x 576 844 035 500 094
X4 180  67.50 67.50 6x2x%x3 128 x 128 x576 844 035 500 0.94
R8 180  33.75 33.75 6x2x%x3 128 x 128 x576  8.44 0.35, 5.00 0.94
L8 180 33.75 33.75 12x2%3 256 x 128 x 576 844 035 500 094
M8 180  33.75 33.75 6x2x%x3 128 x 128 x 128 846 035 500 4.22
R16 180  16.88 16.88 6x2x3 128 x 128 x576 844 035 5.00 094
X16 180 16.88 16.88 6x2x3 128 x 128 x 576 844 035 500 094
R32 180 8.44 8.44 6x2x%x3 128 x 128 x640 844 035 500 0.84
R64 180 4.22 4.22 6x2x3 128 x 128 x768  8.44 035 5.00 0.70
R128 180 2.11 2.11 6x2x3 128 x 128 x 1024 844 035 5.00 0.53
X128 180 2.11 2.11 6x2x%x3 128 x 128 x 1024 844 0.35 5.00 0.3
R256 180 1.05 1.05 6x2x%x3 128 x 128 x 1024 844 035 5.00 0.3

Table 2: DNS details. [, and [y are the spanwise sizes of the slip and no-slip strips. Ay, and Ay are the grid resolution at the wall and the channel centerline,

respectively.

boundary conditions were used (Park et al., 2013; Tiirk et al.,s
2014; Jelly et al., 2014), the use of asymmetric wall bound-s;
ary conditions is also common (Martell et al., 2009, 2010). Inss.
the present study, the asymmetric wall boundary condition iSsss
adopted. Hence, the flow is asymmetric with respect to thesss
channel centerline due to the disparate wall conditions on thess;
top and bottom walls. For the DNSs in this study, 7,,, rangessss
from 0.74 to 1.02 F}¢, and 7,,, ranges from 1.26 to 0.98 F6.5
Here, the 7,,;, and 7,,, are the mean bottom and top wall shearss,
stresses, and Ty, , + T,,, = 2F},0 due to force balance. The asym-s
metric wall boundary condition makes it easier to quantify thess.
drag increase/reduction of the bottom wall with respect to thess
top wall. This will be discussed further in §4. 344

The size of the computational domain is L, X L, X L, =as
60 X 20 X 36. When scaled in mean wall units, i.e., v/ug,s
the present computational domain is comparable to the onesss
in Martell et al. (2009), Martell et al. (2010), and Park et al.ss
(2013), and is larger than the ones in Rastegari and Akhavanss
(2015), and the minimal span channel in MacDonald et al.sso
(2017). To further validate the adequacy of the present domainsst
size, we include a domain convergence study in §Appendix A.ss2
We shall see that the present domain is sufficient. The gridss
is uniform in the streamwise and the spanwise directions, re-ss
spectively, and is stretched according to a hyperbolic tangentsss
function in the wall-normal direction. The resolution is suchasss
that Ax® =~ 8.5 in the streamwise direction, Azt < 1 in thess
spanwise direction except M8, Ay} =~ 0.35 at the wall, andss
Ay} =~ 5.0 at the channel centerline. A grid convergence studyasss
for the aforementioned mesh settings could be found in Tiirksso
et al. (2014). There, it was reported that coarse spanwise gridss:
resolution causes overestimates of drag reduction or underes-s
timates of the wall-shear stress. Hence, when a drag increasesss
is predicted, the prediction is going to be conservative. Turbu-sss
lence gives rise to flow intermittency, and higher-order statisticsass
will require finer grid resolutions (Chen et al., 2023; Yang et al.,sss
2021). This study focuses on first- and second-order statistics.ss
For these statistics, the present grid resolution should be suf-as
ficient (Moser et al., 1999; Min and Kim, 2004; Jelly et al.,so

6

2014).

Further details of the DNSs are summarized in Table 2. The
nomenclature of the baseline DNSs is R[L,/I]. In R[L,/I], we
impose the slip condition for both the streamwise and the span-
wise velocities, i.e., the condition in (14). In X[L./!], we im-
pose the slip condition for the streamwise velocity and the no-
slip condition for the spanwise velocity, i.e., the condition in
(15). To verify the adequacy of the domain size, cases LL2
and L2 are the same as R2 but with their domain sizes 1.5
times and 2 times of that in R2 in both the streamwise and the
spanwise direction. In addition, case L8 is the same as R8 but
with its streamwise domain size 2 times that of R8. For fur-
ther validation of the DNS code, case M8 is a replication of the
?30um — 30um” case in Martell et al. (2009). The averaging
time is such that ¢ > 2000L, /Uy, after the flow reaches a sta-
tistically stationary state, with Up,; being the bulk streamwise
velocity. This averaging time is longer than most DNS studies
in the literature (Coceal et al., 2006; Yuan and Piomelli, 2014;
Chung et al., 2018; Ma et al., 2021; Zhang et al., 2023). The
adequacy of the averaging time is further verified in § Appendix
A, where we compared the computed momentum budget to the
known analytical solution.

We employ the open-source pseudo-spectral code JHU-
LESGO (2019) for our DNSs. The code solves the incom-
pressible Navier-Stokes equations in a periodic channel. It uses
a pseudo-spectral method in the wall-parallel directions and a
second-order finite difference method in the wall-normal direc-
tion, respectively. Time marching uses a second-order Adam-
Bashforth method. The code has been extensively validated
and has previously been used for boundary-layer flow calcu-
lations (Bou-Zeid et al., 2005; Chester et al., 2007; Anderson
et al., 2015b; Yang et al., 2015; Zhang et al., 2022). In ad-
dition, the pseudo-spectral method has also been extensively
validated for simulating turbulent flows over surfaces with
abrupt changes in properties (Garcia-Mayoral and Jimenez,
2011; Garcia-Mayoral and Jiménez, 2012; Fairhall and Garcia-
Mayoral, 2018; Fairhall et al., 2019), which are similar to the
flow configuration in the present study. Further details of the
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code can be found in Altland et al. (2022) and are not re-
captured here for brevity.

4. Results

We present the DNS results of the baseline R cases. We will
establish a drag increase at the anticipated hydraulically smooth
limit in §4.1. Recognizing the limited size of the logarithmic re-
gion and the associated difficulty and uncertainty in defining the
“roughness function”, a Navier-Stokes-based decomposition is
derived in §4.2, focusing on the difference between the present
flow and the flow above a smooth wall. The analysis will show
that the secondary flows are responsible for the observed drag
increase. Further analysis of the secondary flows is presented
in §4.3, where we will show the flow above slip-wall regions is
the culprit of the drag increase.

4.1. Mean flow

Figure 4 (a) shows the mean velocity profiles U, as a func-
tion of y; for the R cases. Here, the subscript b signifies nor-
malization by the friction velocity at the bottom wall. Profiles
are truncated at the top where the Reynolds shear stress <W>
equals 0, beyond which the flow is more influenced by the top
wall than the bottom wall. A noticeable non-zero slip velocity
at the wall is observed. Figure 4 (c) shows the slip velocity as a
function of the spanwise length scale /;. Again, the subscript b
denotes normalization by the wall units measured at the bottom
wall. We see that the slip velocity is an increasing function of
I}, which is consistent with §2. The slip velocity approaches 0
as [; approaches 0. Figure 4 (b) displays U; — U, as a function
of y;. The plane channel result is included for comparison pur-
poses. A universal viscous sublayer is found, and all profiles
collapse for y* < 2. This is again consistent with §2. A log re-
gion can be identified in profiles although the log law intercepts
vary. Hereby we obtain the log-law slope and the corresponding
intercepts by fitting U, as a function of In(y;) between y; = 50
and 80. In Figure 4 (d), AU;, the deviation from the smooth-
wall log law intercept, is shown as a function of /;. The value of
AU} increases from -1.43 in R2 to 1.73 in R8, and subsequently
decreases from 1.73 in R8 to 0.75 in R256 as [ decreases from
63.9 to 2.13. Notably, AU; remains non-zero in R256 when
Iy ~ O(1), in the anticipated hydraulically smooth limit.

Upon closely examining the results in Figure 4 (b), we ob-
serve that the R2 profile exhibits a different log-law slope. The
results for the log-law slope are presented in Figure 5. The
log law slope in R2 is notably different from the other cases at
similar Reynolds numbers. Hence, the deviation of the log law
slope in R2 from the canonical value cannot be attributed to the
low Reynolds number. Our argument in §2 might explain the
deviation of the log law slope in R2 from the canonical value.

In fact, the measured log-law slope in R2 is 2.04, which is
reasonably close to 0.71/«, the log-law slope in (9). 423

The slip velocity arises from the presence of the slip wall,ss
and it contributes to drag reduction. The modified roughnessazs
function AU ; , on the other hand, is a result of spanwise het-s
erogeneity in the surface roughness, and it contributes to dragser
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Figure 4: (a) Mean velocity profiles as a function of the wall-normal coordinate.
The plane channel result is included for reference and is denoted as PC. The
dashed line corresponds to the log law with k = 0.41 and B = 5.2. (b) Same
as (a) but with the slip velocities subtracted from the mean velocity profile. (c)
Slip velocities as a function of the spanwise length scale . (d) Roughness
function as a function of the spanwise length scale ;. Here, the subscript b
denotes normalization based on the friction velocity at the bottom wall.

increase. The two mechanisms compete and determine if the
surface reduces or increases drag. Figure 6 (a) shows U : ,— AUy
as a function of /. Again, the subscript b denotes normaliza-
tion by the wall units measured at the bottom wall. The value
of U7, — AU; is positive in cases R2 to R64, leading to drag
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dashed line.

reduction in these cases. Similar drag reduction was observed
in previous studies such as Martell et al. (2009) and Tiirk et al.
(2014). The value of U;b — AU, decreases as [ decreases,
which is consistent with the discussion in §2. However, what
defies expectations is the slightly negative values of U_, — AUy
in cases R128 and R256. As [; approaches 0, U7, —AU; should
approach 0 as well, if not slightly positive. This drag increase is
more clear in Figure 6 (b), where we show 7,/ u% as a function
of l;. According to force balance, 7,5/ uz + T/ uf = 2. In the
cases of a smooth top wall, 7,/ u% > 1 indicates drag increase
on the bottom wall, whereas 7,,,/u? < 1 suggests drag reduc-
tion. Here, we observe that 7, /uf surpasses 1 in cases R128
and R256, signifying drag increase in these instances. In addi-
tion, Figure 6 (c) shows that the bulk velocity in drag increase
instances decreases below the plane channel result even though
the slip velocity is non-zero. Consequently, the skin friction
coeflicient, defined as Cy = 7,/ (pU,fulk / 2) increases above the
plane channel result in those instances, as shown in Figure 6

(D).

4.2. A decomposition of the generalized roughness function

In this section, we study what might be responsible for the
drag increase in R128 and R256. We begin by defining the
generalized roughness function AU} as follows:

AUy = =(Uy = Ugy) + Uy, (16)
where U;C is the velocity from the plane channel, and the sub-
script “pc” stands for “plane channel”. Again, the subscript
b denotes normalization by the friction velocity at the bottom
wall. Equation (16) is a straightforward extension of (10): the
generalized roughness function AU} in (16) exists in the sub-
layer, the log layer, and the wake layer, whereas AU} in (10)
exists only in the log layer. Thus defined AU} overcomes the
difficulty in measuring the roughness function when the log re-
gion is narrow and not well defined.

We proceed with deriving a decomposition for the gener-.;
alized roughness function AU,. Beginning with the double-s

averaged Navier-Stokes equation in a channel, we have: 485
d W d —11=1 d2 —
< >+ WV) gy eyt (17)
dy Oy d%y
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Figure 6: (a) AU — U?, as a function of ;. (b) Bottom wall-shear stress nor-
malized by bulk friction velocity. (c) Bulk velocity. (d) Skin friction coefficient.
The plane channel results are marked by the dashed lines.

with the mean convective term being zero. For a plane chan-
nel, Re; = Re;, and integrating (17) twice in the wall-normal
direction leads to

—+ 1 +2 + yl‘j_+ S+
Ltpc: _2R€ yb +yb +£ u’v/pcdyb'
T

(18)
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Figure 7: (a) Generalized roughness functions AU]:r for 0 < YZ < 80. (b) The viscous contributions. (c) The turbulent contributions. (d) The dispersive contributions.

(e) The summation of viscous and turbulent contributions.

sss  For the flows considered in this study, integrating twice leads toaes

Ré?
WUy = U5 =y = 5550

3
2ReT’b
Vi .
7 ~+
+f <”/V >h a5,

0
¥y .o
=11 =1 ~
+j(; @"'v"y, dy;.

(19)

469
470
471
472
473
uz /h due to the force balance. Next, subtractingas

9

w7  where F b =

(18) from (19), we have

R e% _ 1 y+2
3 b
2ReT’ » 2Re;

AU} =

AUy,

s . +
’ 73,7 5t
+ f (u Vipe = <u v >b)dyb
0
AU,
Vi R
—11 =11 ~+
- [y as
0

AUy,

(20)

Equation (20) serves as a decomposition of the generalized
roughness function. The terms on the right-hand side are due to
viscous stress, Reynolds stress, and dispersive stress and are de-
noted as AU;V, AU;J, AU;d, e, AU; = AU;V+AU;r+AU;d.
It should be noted that the contribution from the viscous stress
arises due to the asymmetric wall boundary conditions and the



475

476

477

478

479

480

482

483

484

485

486

487

488

489

490

492

493

494

495

496

497

498

499

500

501

502

503

504

term will vanish when Re.;, = Re;. 505
506
@ 0 507
R2 508
——R8
02+ ——R32 509
——R256
+/F\° : PC 510
> 04+ 511
=
P 512
0.6 000 ?
e —— 513
=
— 514

515

516

517

518

519

520

521

522

523

524

525

526

527
Figure 8: (a) Reynolds stress <u V') profiles for selected cases. (b) Same as (a)
but for the dispersive stress (u#’’?""). The normalization is based on the local
wall units. 529
530

Figure 7 (a) shows the generalized roughness functions as asst
function of y;. It remains nearly constant for y; > 30, reduc-ss
ing to its conventional definition. However, in case R2, the logsss
law slope of the mean flow differs from that of a plane channel,ss«
resulting in a continued increase of the generalized roughnesssss
function with y; beyond the buffer layer. Figures 7 (b, c, d)ss
isolate the contributions of viscous, turbulent, and dispersivessz
stresses to the generalized roughness function. Here, we con-sss
centrate on the wall layer, excluding data beyond y; = 60. Sev-ss
eral observations emerge. The viscous term AU;V is positiveswo
in R2-64 and contributes to drag increase. In these cases, these
term is an increasing function of y; and a decreasing functionss
of I;. In R128 and R256, AU is negative and therefore con-s«
trlbutes to drag reduction. The behavior of the turbulent termsss
AU; is more intricate. In R2-32, the term increases as a func-ss
t10n of y; in the sublayer and then decreases as a function ofss

. In R64-256, the term gradually increases as a function ofss
y;; and is slightly positive at y; = 60. The dispersive stressss
term is even more intricate. It is negative in R2, contributing tos«s
drag reduction. In R4 and R8, the term is negative near the wallsso
but quickly becomes positive in the log layer, contributing toss:
drag reduction near the wall and drag increase further away. Inss2
R16-256, the term stays positive and its magnitude decreasessss
as I decreases. Comparing AU, and AU, , we see that theysss
have opposite signs outside the wall layer Also, comparingsss
the two terms to AU;r 4» We see that the two terms significantlysss
exceed AU;r 4 outside the wall layer. This leads us to definess
AUy .., = AU; + AU; . Figure 7 (e) illustrates AU, Thesss

by+r by+r®

term is comparable to AU+’ InR2-16, AU}, and AU}, gen-sso
10

erally exhibit opposite signs, resulting in a |AU +| smaller than

|AU;VH| and |AU;d| Conversely, in R32-256, AU, . closely
approaches zero, and AU, AU;r 4~ Thus, we conclude that
the drag increase in R128 and R256 arises from the subdued
AU, ., alongside a non-zero AU},

To gain an understanding of the turbulent and dispersive

stress contributions, we plot <u v > and (@”’v"") as a functions
of y; in Figures 8 (a, b). Comparing R2 and the plane channel

flow, <W> in R2 is slightly smaller than that in a plane channel
in the wall layer for y* < 20 and larger for y* = 20. This ex-
plains the initial increase of AU;J in the wall layer and its sub-
sequent decrease further away. As I; decreases, the Reynolds
shear stress converges to the plane channel value, leading to a
vanishing AU, . The dispersive stress in R2 is positive near the
wall for y© < 20 and negative above, contributing to a decreas-
ing AU} 4 in the wall layer and an increasing AU} 4 outside. As
[} decreases, the region within which (@”¥"’) stays positive nar-
rows, leading to a positive AUM in R32 and R256.

4.3. Secondary flows

Having identified that the non-zero dispersive stress or the
secondary flows are responsible for drag increase at the antic-
ipated hydraulically smooth limit, we now study the behaviors
of the secondary flows as we vary the wavelength of the surface
pattern.

Figure 9 shows the contours of i, in the spanwise/wall-
normal plane. We see secondary flows that manifest as counter-
rotating vortices. In R2 and R4, the secondary vortices bring
fluid from the slip-wall regions to the no-slip-wall regions. This
gives rise to a positive and negative wall-normal velocity above
the slip and the no-slip walls, which in turn gives rise to a pos-
itive (#”’¥"). In R8 and R16, the secondary vortices bring fluid
from the no-slip-wall regions to the slip-wall regions, giving
rise to negative and positive wall-normal velocities above the
slip- and no-slip wall regions and a negative (&#”’?"”’). In R32
and R128, the secondary flows are confined in the viscous layer
and are hard to recognize in the figure.

The wall-normal location where (¥/7"") attains its maximum
measures the sizes of the secondary flows (Forooghi et al.,
2020). Figure 10 shows the secondary flow size as a function
of I;. We see that the size of the secondary flows H; does not
change monotonically as a function of [;: H; decreases from
about 19 in R2 to about 5.6 in R4. It then increases to about 13
in R8 and decreases to about 1.1 in R32. Further decreasing [}
has no effect on H} and its value remains about 1.1 in R32-256.

Lastly, we examine the flow above the no-slip-wall regions
and the slip-wall regions respectively to identify which region
is responsible for the observed drag increase in the anticipated
hydraulically smooth regime. Figure 11 shows the mean flow
as a function of the wall-normal coordinate at a few z locations.
We have subtracted the velocity at the wall so that the discus-
sion focuses on the roughness function AU} . The plane channel
result is included here for comparison purposes. We see that the
profiles above the no-slip wall regions are above the plane chan-
nel profile whereas the profiles above the slip-wall regions are
below the plane channel profile. As I; decreases, profiles above
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both the no-slip wall regions and the slip-wall regions converge
to the plane channel profile. However, the profiles above the
slip wall regions converge to the plane channel profile more
slowly than the profiles above the no-slip wall regions. Hence,
we conclude that the negative AU, in R128 and R256 is due to
the flow above the slip wall.

5. The effect of spanwise slip

In §4, we poist that the secondary flows in the viscous layer
are responsible for the drag increase at the hydraulically smooth
limit. If that were right, reducing/preventing secondary flows
in the viscous layer would reduce/prevent the drag increase at
the hydraulically smooth limit. To that end, we impose no-slip
in the spanwise direction in cases X4, X16, and X128. This
will effectively suppress motions in the spanwise direction very
close to the wall, leading to a reduction of secondary motions
in the viscous layer. In this section, we compare these modified
X cases to their counterpart R cases, examining the resulting
behaviors of the mean flow. We note that the method of sepa-
rating spanwise and streamwise slip has a long history and dates
back to Min and Kim (2004). In this context here, since the in-
tended application is the wall-shear-stress-dependent slip at the
molecular scale, it is particularly relevant to separate the slip in
the streamwise and the spanwise directions, as the wall-shear
stresses in these two directions are distinctly different.

Figure 12 shows the mean flow results. We see from Figure
12 (a) that preventing spanwise slip results in higher veloci-
ties in the log layer for the X cases compared to the R cases.
Figure 12 (c) shows the slip velocity at the wall. Due to the
reduced skin friction in the X cases, the spanwise length scale
l; = lu;/v in these cases is slightly smaller than that in the R
cases. Consequently, the symbols representing the X cases are
positioned slightly to the left of those representing the R cases
in Figure 12 (c). We see that imposing a no-slip condition in
the spanwise direction gives rise to a slightly higher slip veloc-
ity in X4 than in R4 but has essentially no effect on the slip
velocity in X/R16 and X/R128. Figure 12 (b) shows U, — U7,
and (d) illustrates the roughness function AU; . The roughness
functions in the X cases are noticeably smaller than those in
the counterpart R cases. In particular, Uy — U7, in X128 al-
ready follows closely the profile in a plane channel. Figure 13
shows U::b - AUy, Ty /U2, Upar and Cy. The four provide a
measure of the overall drag reduction/increase on the bottom
wall. We see reduced drag in the X cases compared to their R
counterparts. Of particular significance, the roughness function
is close to 0 in X128, i.e., U;b - AU;r ~ U:b. Hence, X128
achieves a state akin to the hypothesized hydraulically smooth
limit.

Next, we repeat the exercise in §4 and analyze the budget of
the generalized roughness function. The objective is to identify
the processes responsible for the differences between the X and
the R cases. Figure 14 shows the viscous, turbulent, and disper-
sive stress contributions to the generalized roughness function.
From Figure 14 (a), we see that imposing no-slip in the span-
wise direction leads to increased AUZ; , in the X cases than in
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the R cases. In particular, AU;r is negative in R128, contribut-szs
ing to drag reduction, but positive in X128, contributing to drages
increase. Examining the turbulent contribution AU} in Fig-ss
ure 14 (b), we observe minimal impact on this term when I} ises
large. Specifically, AU} in R4 and X4 are similar, as do R16es
and X16. However, a d1st1nct difference emerges between X 128634
and R128. In X128, AUJr is negative, Whereas in R128, it isess
positive. Finally, Figure 14 (c) presents AU Our expecta-ess
tion that a no-slip condition would impede secondary flows inss
the viscous layer, thereby reducing AU} 5o 18 confirmed. Thees
X cases exhibit a notable reduction in the magnitude of AU,; 5%

compared to the R cases. 640

The results in Figure 14 indicate that the subdued secondary
flows are responsible for the reduced skin friction coefficient
in the X cases when compared to the counterpart R cases. To

12

gain further insights into the response of the secondary flows
to the spanwise wall boundary condition, we revisit the anal-
ysis from §4.3. Specifically, we examine the velocity profiles
above the (streamwise) slip wall regions and the (streamwise)
no-slip wall regions. Figure 15 shows the results. At smaller [},
the imposition of a no-slip condition in the spanwise direction
leads to higher velocities above both the no-slip regions and the
slip regions. This results in a slower convergence of the pro-
files above the no-slip regions to the plane channel profile and a
faster convergence of the profiles above the slip regions. These
effects together contribute to the reduced drag forces in the X
cases than in the R cases.
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6. Conclusions

We conduct DNSs of flow over surfaces with spanwise al-
ternating strips of slip and no-slip walls. The size of the re-
peating surface pattern is varied from 1.5 times the half channel
height to 2 viscous units, reaching the anticipated hydraulically
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smooth limit. While this limit has little practical relevance to ri-ees
blets and grooves, it is relevant to the recently found slip at theess
molecular level. The slip wall induces a slip velocity Uy at thess
wall, which contributes to drag reduction. The spanwise het-ess
erogeneity in the surface gives rise to secondary flows. Thesesss
secondary flows lead to a downward shift in the log region AU 670
which contributes to drag increase. The sum of the two, i.e.,en
—U, + AU measures whether the surface increases or reducess
drag, with a positive value indicating drag increase and a nega-ezs
tive value indicating drag reduction. The common expectationes
is that a mixture of slip and no-slip walls should lead to drag re-ezs
duction. At worst, the flow reduces to that in a plane channel atszs
the hydraulically smooth limit when [ approaches 0. However,s7
we see a drag increase at the anticipated hydraulically smoothezs
limit. At that limit, the slip velocity is essentially O but thess
roughness function is slightly positive. According to the grides
convergence study in Tiirk et al. (2014), the present estimate ises:
an underestimate of the drag force and therefore the true dragss
increase can only be more significant. In order to identify thesss

14

R128
20 — — —X128

+
Yy

Figure 15: Mean streamwise velocity at some z locations. The symbols indicate
the spanwise location, see Figure 11. The normalization is by the local wall
units. The cases are (a) R/X4, (b) R/X16, (¢) R/X128.

mechanisms that are responsible for this drag increase and to
overcome the difficulty of measuring the roughness function
when the log region is narrow and hard to define, we derive a
Navier-Stokes-based decomposition of the generalized rough-
ness function. This decomposition contains a viscous contri-
bution, a turbulent contribution, and a dispersive contribution.
The analysis shows that a non-zero dispersive contribution in
the viscous layer is responsible for the drag increase at the antic-
ipated hydraulically smooth limit. Further analysis of the mean
flow data indicates that the flow above the slip-wall regions is
the culprit of the drag increase at the anticipated hydraulically
smooth limit. To further verify this conclusion, we follow Min
and Kim (2004); Fukagata et al. (2006) and impose the no-slip
boundary condition in the spanwise direction. Imposing no-
slip in the spanwise direction reduces the strength of secondary
flows in the viscous layer. If the drag increase at the anticipated
hydraulically smooth limit is truly a result of secondary flows,
imposing no-slip in the spanwise direction should effectively
reduce/remove that drag increase. This expectation bears out in
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Figure A.16: A comparison between the present DNS (lines) and the “30um —
30um” case (symbols) in Martell et al. (2009). (a) Mean streamwise velocity,
(b) Reynolds stresses.

our DNSs. In all, the results of this study, which are conser-
vative, suggest that the anticipated hydraulically smooth limit
might not exist for some surfaces.
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Appendix A. Further details

To further validate the DNS code, we replicate the results in
Martell et al. (2009). Figures A.16 (a,b) show the comparison.
We see a good agreement between the present DNS and the re-
sults in Martell et al. (2009). This serves as a further validation.

We conducted a domain convergence study for R2, i.e.,
where we see the largest difference between the bottom and top
wall shear stresses. The mean streamwise velocity and domi-
nated Reynolds stresses are shown in Figures A.17 (a,b). We
see good agreements from R2, LL2, and L2, with less than 1%
difference. Hence, the present domain size is adequate. The
same is true for other cases. Figures A.18 (a,b) compare RS
and L8, and we see a good agreement between the two DNSs.

We show the mean momentum budget for all the R cases in
Figure A.19. We see that the total stresses follow the expected
linear function, and therefore the flow is statistically converged.
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