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Abstract—We aim to understand the extent to which the
noise distribution in a planted signal-plus-noise problem
impacts its computational complexity. To that end, we
consider the planted clique and planted dense subgraph
problems, but in a different ambient graph. Instead of
Erdds-Rényi G(n,p), which has independent edges, we
take the ambient graph to be the random graph with
triangles (RGT) obtained by adding triangles to G(n,p).
We show that the RGT can be efficiently mapped to the
corresponding G(n,p), and moreover, that the planted
clique (or dense subgraph) is approximately preserved
under this mapping. This constitutes the first average-case
reduction transforming dependent noise to independent
noise. Together with the easier direction of mapping the
ambient graph from Erdés-Rényi to RGT, our results yield
a strong equivalence between models. In order to prove our
results, we develop a new general framework for reasoning
about the validity of average-case reductions based on low
sensitivity to perturbations.

Keywords—average-case complexity, randomness in com-
puting

I. INTRODUCTION

Most modern statistical inference problems exhibit a
striking phenomenon: the best efficient algorithm re-
quires substantially more data, or lower noise level, than
the information-theoretic limit achieved by inefficient al-
gorithms. Such problems are said to exhibit a statistical-
computational gap. In this paper we are interested in
average-case planted problems, meaning that their inputs
are sampled according to some probability distribution
with planted structure. In order to develop methodol-
ogy for rigorously reasoning about the computational
complexity of these average-case problems, a vibrant
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line of research at the interface of statistics, probability,
and computational complexity has emerged. There are
two main approaches to substantiating computational
limits: hardness against specific classes of algorithms and
average-case reductions.

The first approach attempts to determine the best
possible performance for restricted classes of algo-
rithms, such as low-degree polynomials [1], [2], sum-
of-squares (SoS) relaxations [3], [4], statistical query
algorithms [5]-[7], first-order methods [8], or classes
of circuits [9], [10]. Beyond hardness against specific
classes of algorithms, the overlap gap method introduced
in [11] and refined in [12] has revealed how structural
properties of a solution landscape can rule out multiple
classes of algorithms. The power of distinct classes of al-
gorithms for solving families of statistical problems have
been related: low-degree polynomials vs. statistical query
[13], low-degree polynomials vs. approximate message
passing [14], and SoS vs. spectral applied to matrices
of low-degree polynomials [4]. This broad approach
continues to see intense activity and yields insight into
the limits of current algorithms. However, it has the
drawbacks that (1) each given class of algorithms is
known to be suboptimal in certain settings [15]-[17],
which reduces confidence in lower bounds against any
specific class, and (2) one must prove fresh lower bounds
for each problem of interest and for each new class of
algorithms that emerges.

The second approach entails devising average-case
reductions that map one statistical problem to another
using a polynomial-time algorithm, whereby hardness
of the first problem is transferred to the second. The
reduction approach is a foundational tool across com-



plexity theory and cryptography for elucidating rela-
tionships between problems and constructing complexity
hierarchies. Moreover, it provides insights applicable to
all algorithms. The main drawback of this approach is
that in the average-case setting, one must precisely map
not just problem instances, but rather entire probability
distributions over inputs. This is notoriously challenging
due to a lack of techniques, as emphasized by Goldreich
[18], Barak [19], and Bogdanov and Trevisan [20].

A common starting hardness assumption in the
literature on average-case reductions is the Planted
Clique (PC) Conjecture. This conjecture posits that no
polynomial-time algorithm can detect a planted clique of
size k in an Erd6s-Rényi random graph with edge density
p, when p is constant and & = o(y/n). Many problems
have been shown to be computationally hard based on
PC Conjecture assumption including sparse principle
component analysis [21]-[25], submatrix detection or
biclustering [24], [26], [27], planted dense subgraph [24],
[28]. A variety reduction techniques were introduced in
[24] and [29], resulting in a web of reductions from PC to
problems including robust sparse mean estimation, tensor
PCA, general planted dense subgraph, dense stochas-
tic block model, mixtures of sparse linear regressions,
robust sparse mean estimation, and many others. Some
works show reductions from hypergraph planted clique
or hypergraph planted dense subgraph to other problems,
including tensor clustering [30] and SVD for random 3-
tensors [31]. Another line of research has also explored
reductions to statistical problems based on cryptographic
assumptions such as lattice problems [32]-[38] or local
pseudorandom generators [39], [40].

A slight generalization of Planted Clique is the Planted
Dense Subgraph (PDS) problem. Instead of planting a
clique of size k, PDS plants a subgraph of size k with
higher density than the rest of the graph. It is conjectured
to have the same k = o(y/n) hardness threshold as PC
when the edge probabilities (both inside and outside the
dense subgraph) are constant. Most problems that have
reductions from PC can also be reduced from PDS, for
instance all of the reductions in [24] and [29]. In this
paper, we will mostly focus on PDS rather than PC. We
remark that the worst-case version of the problem, i.e.,
detecting the densest k-subgraph, has also studied, with
the goal of finding the optimal approximation ratio [41]-
[43].

Despite these advances, the current literature on
average-case reductions for statistical problems exhibits
a notable limitation: the absence of two-way equiva-
lences. Most reductions rely on a single hardness as-

sumption, such as the Planted Clique Conjecture or
Learning Parity with Noise (LPN), and demonstrate a
statistical-computational gap for other problems. Going
beyond this, one might dream of partitioning statistical
problems into equivalence classes, just as has been
done so fruitfully in worst-case complexity. We mention
here, only briefly, that the notion of equivalence is
itself nontrivial because each statistical “problem” is
itself an entire parameterized family of problems. We
rigorously define what we mean by strong computational
equivalence in Section 3 of the full paper.

The primary obstacle to proving equivalence between
statistical problems, just as for one-way reductions, is
that average-case reductions are challenging: we must
transform one noise distribution into another while pre-
serving the planted signal. To date, all reductions have
converted models with independent noise to models with
either independent or dependent noise. The challenge
in establishing equivalence between planted problems
is therefore in developing techniques for removing de-
pendence in the noise of high-dimensional distributions.
In this paper, we introduce a general framework for
the validity of reductions based on low sensitivity to
perturbations and apply it to show the first non-trivial
computational equivalence between two statistical prob-
lems.

A second (related) motivation for the present paper is
towards developing an understanding of how general are
the phenomena observed in planted statistical problems.
For planted matrices or tensors with independent entries,
a reduction was devised from planted clique or planted
dense subgraph to a broad class of entry distributions
by [27], thereby showing that the observed phenomena
are universal for this class. Thus, we understand how to
change the distribution of the entries, but as of yet there
are no general techniques for connecting problems with
different dependence between the entries!.

A. The Problems We Consider

a) General Hypothesis Testing Setup: In a simple-
versus-simple hypothesis testing problem there is a pair
of distributions Py and P; on space 2, and one observes
X generated according to one of the distributions. The
task is to decide between the two hypotheses

Hy: X ~Py versus Hy: X~ Py.

We consider noisy signal detection problems indexed
by problem size parameter n, where the space is 2,

IThe exception is sparse PCA, which has a very specific dependence
structure.



Py, represents the pure noise distribution, and P, is
the distribution with planted signal. We often keep the
dependence on n implicit. An algorithm ® : Q@ — {0,1}
solves the hypothesis testing problem if the sum of type
I and type II errors asymptotically vanish, i.e.,

Pxop (®(X) =1)+ Px.p (2(X) =0) =0

as n — oo.

b) Planted Dense Subgraph Problem: In this paper,
we consider a slight generalization of Planted Clique
known as the Planted Dense Subgraph (PDS) problem.
Here, the pure noise distribution is the simple Erd&s-
Rényi random graph, G(n,p). The alternative hypoth-
esis, denoted by G(n,p,k,q), is generated by starting
with G(n, p), choosing a uniformly random subset .S of
size k from [n], erasing all edges in S, and independently
resampling the edges in S to be included with probability
q. The PDS problem is, given a graph G, to distinguish
between the two hypotheses

Hy:G~G(n,p) and Hy:G~ G(n,p,k,q).

It is believed that the PDS problem with constant p
and ¢ has the same k& = o(y/n) computational threshold
as the planted clique problem [3], [1].

¢) Random Graph with Triangles: Next, instead
of the ambient graph being Erd6s-Rényi, we consider
a simple graph distribution with dependent edges. We
emphasize that while this model is interesting in its own
right, our main motivation is as a tractable setting to
develop techniques for algorithmic decorrelation.

Definition 1 (Random Graph with Triangles). The ran-
dom graph with triangles distribution RGT(n,p,p’) is
the law of a graph generated as follows. Let G ~ G(n, p)
be an Erdds-Rényi random graph and for every triple of
nodes {3, j,k} € ([75]) with probability p’ independently
add the triangle consisting of the three edges (4, j), (4, k),
and (i,k) to E(G).

Remark 1. The expected edge density of G(n,p,p’) is
p+(1—p) (1 —(1—p')"~2). It is always assumed that
p’ = O(1/n) so that the edge density remains bounded
away from 1.

Remark 2. In certain parameter regimes, the RGT
model is close in total variation distance to the Ran-
dom Intersection Graph, a model inspired by real-world
networks. This will be explained in more depth in
Section I-B.

Remark 3. Adding triangles is not only a simple way
of introducing dependence among edges, but also a well

researched phenomenon in sociology [44]. This phe-
nomenon is commonly referred to as “triadic closure”,
which says if two people share a social connection, a
third person is more likely to form connections with both
of them than would be expected otherwise.

d) Planted Dense Subgraph in Random Graph with
Triangles: We plant a signal in the random graph with
triangles (planted RGT) to obtain RGT(n,p,p’,k,q),
the law of a graph generated as follows. Start with
RGT(n,p,p’), choose a random subset S of k vertices,
erase all edges within S and then independently include
each edge within S with probability ¢. The Planted RGT
problem is, given a graph G, to distinguish between the
two hypotheses

Hy: G ~RGT(n,p,p’)

and
H:G~ RGT(n7P7PI7kaQ) :

Remark 4. There are multiple options for the defi-
nition of Planted RGT. We will discuss a substantial
generalization in the next section. One could also, for
example, plant a smaller RGT with different edge or
triangle densities within a larger RGT. We leave this for
future work.

B. Our results

Our main result is a strong computational equivalence
between the planted dense subgraph (PDS) and planted
random graph with triangles (Planted RGT) problems.
To achieve this, we must design transformations that
connect these problems in both directions. Here, and
throughout the paper, for two distributions ¢ and v we
use 4 =2, v as shorthand for dyv(u,v) <e.

1/(nlogn) and 0 < p,q < 1, there are efficient al-
gorithms A and A that satisfy the following transition
properties.

1) An maps both Hy and Hy hypotheses of PDS to
planted RGT with parameter map f:

AA(G(nvp)) zon(l) RGT(n>p7p,)a
Aa(G(n,p. k,q)) =, 1) RGT(n,p, 0", k, f(q)),

2) A maps both Hy and H, hypotheses of planted
RGT to PDS with parameter map g:

A(RGT(’I’L,p,p/)) %O,L(l) G(nvp)a

A(RGT(n7p7p/7 k7 Q)) zon(l) G(n7p7 k7 Q(Q)) .

Theorem L1. For any k = o(n'/* logfu/4 n),p’ <



Moreover, the parameter mappings [ and g satisfy f o
9(q) = g+ o0n(1) and g o f(q) = q + on(1).

Part 1 entails transforming from PDS to planted RGT,
i.e., an independent noise model to a dependent noise
model. In the case of G(n,p) to RGT(n,p,p’), the
mapping itself is straightforward based on the definition
of RGT: one simply adds each triangle with probability
p’. However, the fact that the planted distributions are
mapped correctly via the very same procedure does still
require a nontrivial argument.

In Part 2, the other direction, we show how to map
from RGT to Erd8s-Rényi. Here the mapping even in
the unplanted pure-noise case is not obvious, and we
describe it in Section II-B. It is obtained by viewing the
triangle addition procedure as a Markov transition kernel
on graphs, and implementing its time-reversal.

To constitute a valid reduction from Planted RGT to
PDS, the same mapping must also work when a dense
subgraph has been planted. We face a delicate balance
between two competing objectives: (1) maintaining the
algorithm’s behavior outside of the dense subgraph,
ensuring that its performance remains approximately
invariant to the placement of the dense subgraph, and
(2) removing the dependence between triangles, which
inherently necessitates dependence in the algorithm’s
behavior.

Validity of both reductions is proved via application
of a general framework that we develop, stated as The-
orem II.1 in Section II. Applying our general theorem
presents a number of technical challenges in the form
of bounding total variation distances between perturbed
distributions. Methods for proving the proximity of two
high-dimensional distributions in total variation distance
are notably limited, and even more so when neither of
them is a product distribution. To this end, we introduce
several technical innovations that will be discussed in
detail in the next section.

We conjecture that the statement of Theorem 1.1 holds
for k up to O(y/n), while our result only applies for
O(n/*). The range of p’ is optimal up to log factors:
if p’ > 2.1n"!Inn, then with high probability the RGT
is the complete graph and planted RGT is information-
theoretically impossible, so the planted RGT cannot be
equivalent to PDS in this regime. We leave open the
problem of obtaining a similar result for the full range
of k,p,q, and p’.

a) General Planted Signal: Our results not only
demonstrate that the detection of planted dense sub-
graphs problem is equivalent in Erd6s-Rényi graphs and
RGT, but also reveal that a wide range of planted signal

detection problems are equivalent in both models. Let us
define the general planted signal (GPS) model.

Definition 2 (General Planted Signal (GPS)). For edge
sequence € = (e1,...,ex) and 7 = (p1, -+ ,pK) let
GPSg 5 take as input a graph, and for each 1 < 4 <
K, edge e; is resampled to be included in the graph
with probability p;. For a pure-noise distribution Py, let
GPS(Pg) denote the distribution of GPS(G) where G ~
Po.

Planted dense subgraph is a special case of GPS with
e, ,esx being the edges inside the dense subgraph,
and p; = qzis the planted edge density. The GPS problem
in random graph distribution Py is the hypothesis testing
problem between Py and GPS(Pyg).

Our bi-directional reduction result holds also in this
general setting.

Theorem L2. Let GPS, = GPSz; be a sequence
of general planted signal problems. For any K =
0(\/ﬁlog717/2 n),p’ <1/(nlogn)andps,...,pk each
bounded away from 0 and 1 by a constant, there are
distributions GPS}, = GPSgz (5 and GPSf; = GPSz ¢
(where f(p) stands for f : R — R applied to all
elements of the vector) and efficient algorithms A, A’
satisfying the transition properties.

1)
A(G(’I’L, p)) "N"On(l) RGT(TL, p7p/)

A(GPS,.(G(n,p))) o, 1) GPSL(RGT (n, p,p")),

and
2)

A'(RGT(n,p,p)) =, (1) G(n,p)

A'(GPS,(RGT(n,p,p"))) =, 1) GPSE(G(n,p)).

Moreover, the parameter mappings f and g satisfy f o
9(q) = g+ on(1) and g o f(q) = g+ on(1).

Remark 5. GPS includes Subgraph Stochastic Block
Model (SSBM), which has a rank-1 signal (i.e., a small
SBM) on k vertices planted inside an Erd6s-Rényi graph.
Its complete phase diagram was determined by [24], with
computationally hard region obtained via reduction from
the planted clique conjecture. Our result shows that for
k = o(n'/*1og™'"/*n), the computational complexity
of SSBM is the same in ambient graph being Erd&s-
Rényi or RGT.



b) Approximation of Random Intersection Graph:
Aside from RGT being intrinsically interesting as a
natural random graph model with low-order dependence,
it turns out that the RGT non-trivially approximates the
random intersection graph.

Definition 3 (Random Intersection Graph). A sam-
ple from RIG(n,d,d) is defined by sampling n sets
S1,++,Sp C [d] where each S; includes each element
of [d] independently with probability §. Vertices ¢ and j
are connected in G if and only if S; and S; have non-
empty intersection.

Theorem 1.3. For an RIG with constant edge density,
ie, d=0(1/6%), if d>> n?5, then

dtv(RIG(n,d,d),RGT (n,p,p")) = o(1),

o—d82+(n—2)ds? (1-8)"~°

where p = 1 — and p' =1 —

€7d53(175)"—3_

It was shown in [45] that the threshold for distin-
guishing RIG from Erd6s-Rényi occurs at d ~ n?>.
Thus, the RGT is close in total variation in the range
n?® <« d < n3, whereas in this range the RIG and
Erd6s-Rényi have total variation distance close to 1.

II. GENERAL RESULT AND APPLICATION TO RGT

We start by introducing a general theorem that shows
how a mapping between unplanted distributions yields a
mapping also in the planted case if the mapping satisfies
a certain perturbation invariance. We then describe our
specific mappings between Erd6s-Rényi and RGT. After
that, in the following section, we give the main ideas for
showing that our mappings satisfy the conditions of our
general perturbation theorem, which constitutes the bulk
of the paper’s technical innovation.

A. Reductions and Sensitivity to Perturbation

We introduce a novel and general framework for
validity of a reduction from one general graph model
to another. The general result will be used to show that
planted dense subgraph is computationally equivalent
in Erd6s-Rényi and in RGT. In this section, the graph
models and transformations are abstract and specific
constructions will be discussed in Section II-B.

Let Py and Py’ be two distributions of random graphs
on vertex set [n] and consider the general planted signal
GPS¢ 5 on both random graphs.

Suppose that A is a randomized algorithm (equiva-
lently, a Markov kernel) satisfying A(Py) = Py’. The
following theorem gives a general sufficient condition
for A to approximately correctly map the planted dis-
tribution P := GPSg 5(Po) to the planted distribution

Pi := GPSz7(Po’). For each 0 < i < K, let Py,
(or P{,) be the planted version of Py (or Po’), defined
by starting with Py (or Py’) and resampling edges
er ez, e; € (1), respectively, with probability
P12, pi (OF q1,q2+ -+ 5 3)

Theorem IL1. Let G be a set of graphs on n vertices
such that for any 0 <i < K, Pgp,,(G € G) >1—0.
Let A be a randomized mapping between graphs on n
vertices satisfying A(Po) = Po’. Suppose that for each
e € ([Z]), there exists p° ,pS. € [0, 1] such that for every
Geg:

C1 Presence of edge e in the input to A has little
influence on the other edges in the output of A:

A(G = €)|me ~e AG+ €)] e

C2 In the output graph, edge e is approximately inde-
pendent of the rest of the edges:

and

A(G —e) me AG = €)|ve X A(G —€)[e

A(G +e) me A(G + €)|ne X A(G +€)le-

C3 The marginal probability on edge e is approximately
constant as a function of the input graph:

|IP(e € A(G—¢)) —p°| <e and

|P(e € A(G+e) —p§| <e.
Then we have
drv(A(GPSz5(Po)), GPSz 7(Po)) = O(K (e +4)) ,

where q; = pipS + (1 — p;)p< for each i € [K].

The main technical challenge of this paper is to prove
that our proposed mapping .4 from RGT to Erdds-Rényi
satisfies conditions C1 and C2. The mapping is given in
Section II-B.

Remark 6. It turns out that the conditions in the theorem
are equivalent (up to constant factors) to the following
more compact conditions:

drv(A(G —¢e), A(G — €)|~e x Bern(p®)) < ¢ and
drv(A(G +¢), A(G — e)|~e x Bern(p)) <ce.

We state Theorem II.1 in the form above because it
corresponds to how we apply it.



1) Proof of Theorem Il.1 via Single Edge Lemma:
The idea is to resample edges of the input one at a time
and bound the effect of each step on the output of A.
Let Res? be the operation of resampling edge e to be
present with probability p.

Lemma II.1 (Single Edge Lemma). Under the condi-
tions of Theorem II.1, for any 1 <1 < K,

dTV (./4 e} Resg: (Pli—1)7 Resg;L e} A(Pli—l)) = O(G + (5) .

Thus, the operations of applying A and resampling
edge e; approximately commute, with p; being replaced
by ¢;.

Note that Py; = Res?’P1,_;, so Lemma IL1 equiva-
lently states that

dtv (.A(Plz), Resgj o A(Plifl)) = O(G + 5) .

Applying the triangle inequality K times and using the
last display for each term yields

drv(Res!o- - -oRes?X 0 A(Pq), A(P1x)) = O(K(e+96)) .

Note that A(Py) = Py/, and by definition
Res?l ---Res?®Py’ = Py%, so Theorem IL1 is
proved. It remains to prove Lemma II.1.

B. Mapping between Erdds-Rényi and RGT

To use Theorem II.1 to relate ordinary PDS to the
version in RGT, we first need to specify transformations
between the ambient graph models. Our mapping from
G(n,p) to RGT(n,p,p’) simply applies the definition of
RGT.

Definition 4 (Forward Transition). Given any graph G,
let Ax(G) be the graph obtained from G by the follow-
ing process: independently for each set of three vertices,
add the three edges between them with probability p'.
This defines a Markov transition kernel on the space of
graphs.

By the definition of random graph with triangles,
Ap transfers G(n,p) to RGT(n,p,p’). The reverse
transition is more complicated. We will first describe
the distribution of the set of triangles that were added
to Go, conditioned on observing G = Aa(Gg). Let
X € {0, 1}([21) be an indicator of a set of triangles. We
use | X| to denote the size of this set, F(X) to denote
the set of edges included in at least one of the triangles,
and e(X) = |E(X)| to denote the total number of edges.

Definition 5 (Triangle Distribution). For a given graph
G, the triangle distribution g is a distribution over

subsets of triangles x € {0, 1}([75]). The probability mass
function pg is given by

_ L(L/
C Zg1-p
if E(x) C G and pug(z) =0 if E(x) € G. Here Zg =

’

Zm:E(m)CG (fp,)lw p~¢®) normalizes pu¢.
[n]
2

It will be convenient to let Y € {0, 1}( ) be the
indicator vector of the edge set E(X),

pe () ) lpe@,

Y. =1{ee€ E(X)} foreachee <[Z]) .

To distinguish between different graphs, we use L (Y)
to denote the law of Y for a given graph G.

Definition 6 (Reverse Transition). Given any graph G,
let G = A(G) be the graph obtained from G by the
following process:

1) Sample a set of triangles X ~ ug

2) Let G’ be equal to G on the set E(X)°

3) For each e € E(X), include e in G’ independently
with probability p.

Remark 7. The reverse transition is only analyzed
for p’ = 1/(nlogn), not for any p’ < 1/(nlogn).
Nonetheless, we can still construct a reverse map that
works for any p’ < 1/(nlogn) by first adding triangles
to increase p’ to 1/(nlogn), and then applying A. This
is formalized in Corollary 7.1 of the full version.

Lemma IL2. The vreverse transition A maps
RGT(n,p,p’) to the Erdés-Rényi G(n,p) distribution.

For the purpose of reasoning about polynomial-time
algorithms, it is crucial that our reduction A can be
implemented in polynomial time. Fortunately, producing
a sample X ~ g can be done efficiently via the Glauber
dynamics Markov chain.

Lemma IL.3. For any fixed graph G over n vertices,
p’ < 1/n and constant p, the Glauber dynamics on g
mixes in O(n3logn) time.

The definition of Glauber dynamics and proof of the
lemma are in Section 9 of the full paper.

C. Applying Theorem II.1 to Triangle Removal Algo-
rithm

Having Theorem II.1 and the transformations in hand,
we are ready to prove Theorem I.1. In this section
we focus on the reverse transition, A, as it contains a
wider range of technical ideas. The proof for the forward
transition Aa, provided in Section 5 of the full paper,



is significantly easier and follows the same high-level
outline.

To begin, for the unplanted case Lemma II.2 states
that A(RGT(n,p,p")) = G(n,p), so it remains to prove
that A(RGT(n, p,p', k,q)) =0, (1) G(n.p.k,g(q)). We
focus here on the case p’ = ©(1/n).

Theorem II.2 (Triangle Removal in Planted Case). For
k= o(n'/*log™'"4n), p' = 1/(nlogn) and 0 < p <
q < 1 being constant,

dTV (A(RGT(napvplv S? Q))7 G(?’l,p7 S7 q- pE)) = On(l) )

where p. = B reT(n,p,p) Pale € A(G + ¢)) for an
arbitrary edge e.

Here RGT(n,p,p’, S, q) stands for the random graph
generated by planting a dense subgraph G(k, q) at vertex
set S in RGT(n,p,p’). Similarly, G(n, p, S, q-p.) stands
for the random graph generated by planting a dense
subgraph G(k, q - pe) at vertex set S in G(n,p).

To apply our general Theorem II.1, we need to specify
two items: the intermediate planted RGT models and the
class of graphs G. We will then check conditions C1, C2,
and C3.

1) Intermediate Planted Models: Define
RGT;(n,p,p'S,q) to be a random graph generated by
starting with RGT(n,p) and independently resampling
each edge ey, e, -+ ,e; to be included with probability
q.

2) Defining Class of Graphs G: It is not hard to devise
examples of graphs G for which each of the conditions
C1, C2, C3 are violated. We define the class of graphs
G to avoid these bad examples.

The class of graphs G is chosen to be G; N Go, where
these are as follows:

Gy is the set of graphs that are p?/3-uniformly 2-star

dense, where a graph is c-uniformly 2-star dense if
for any pair of nodes i, j, there are at least c(n—2)
nodes k such that both (i,k) and (j, k) are in the
graph; and

G- is the set of graphs G that satisfy for every e € ([g])

that

|cre(Ye = 1) = pf| = Cyn=?p'~2\/logn,
where Pe = ]EG/NRGT(n,p,p’)[MG’Jre(Ye = 1)], and
C) is a fixed constant depending on p.

The following lemma states that G is a high probability
set for each RGT; as required by Theorem IL1. It is
proved in Section 7.5 of the full paper.

Lemma IL4. For any RGT;, PgreT,(G€G)=1—
o(1/n).

3) Checking the Conditions of Theorem II.1: We now
state the main lemma needed to verify the conditions in
Theorem II.1. The lemma shows insensitivity of 4 to
perturbing the input by a single edge, and contains the
bulk of our technical contributions. The key ideas will
be presented in Section II-D with the full proof deferred
to Section 7 of the full paper.

Lemma IL5 (Perturbation Insensitivity). If G € Gy, then
‘CG—e(YNe) = £G+e(Y~eD/e = 0)
~0(log'7/2 n//n) £G+€(YN€|Y€ = 1),

and from this it follows that

Lave(Y) Ro(10g17/2 nyym) Lare(Yre) X Late(Ye).

We first check that condition C1 follows from the
lemma. Since Lgie(Yoe) is a mixture of the laws
Late(YelYe =0) and Lgie(Yoe|Ye = 1), Lemma I1.5
implies Lgte(Yoe) 61/ Vi) La—e(Yoe). Note that A
simply resamples edges in Y, so by the data processing
inequality for TV,

A(G +€)l~e o1/ ym) AG =€)~

Condition C2 for G — e is trivial: A(G — e) has no
edge in position e, so for any G,

A(G —e) = A(G — €)|~e x Bern(0).

For G + e, the second display of Lemma II.5 implies,
again by data processing inequality, that

A(G +e) 51, ) AG + €)|ve X AG +e€)le.

Lastly, condition C3 is immediate for G — e, since
A(G — €)|. = Bern(0) for all G. For G + e, it follows
from the definition of Gs: For any G € Go, we have by
conditioning on the value of Y, that

A(G +¢e)le

~ pigre(Ye = 1) - Bern(p) + [1 — pg4e(Ye = 1)] - Bern(1)

= Bern(l - (1 - p)MG-i-e(Ye = 1))

Roa,ym Bern (1 —(1-p) .G/NRGI-FZ"»P»T’/)

The last step used the fact that dtv(Bern(a), Bern(b)) =
|a - b| Let p. = EG/NRGT(n7p7p/) ]P(e S .A(G/ + 6)) =
1—(1-p)- B ~reT(n,pp) [l +e(Ye = 1)]. Combining
the last two displayed equations,

A(G +e) 51 ymy AG + €)|~e x Bern(pe) .

Therefore, the conditions of Theorem II.1 hold with ¢’ =
q - Pe, proving Theorem I1.2.

[MG”-{-@(Ye = 1)]) .



D. Showing Perturbation Insensitivity: Main Ideas Be-
hind Lemma I1.5

Let us examine more closely the generation of
variables in Lemma I.5. We fix G and let X ~
pGre(-[Ye =0) = pg—c and X ~ pgie(-|Ye = 1),
where recall that Y and Y are the corresponding edge
indicator vectors as defined in Section II-B. Without loss
of generality, assume e ¢ G, so G—e = G. Our objective
is to show that Y., and Yje are close in total variation.
Let X7(e), XT(C), and X . 7(e), X:T ¢ be the triangle
indicator vectors restricted to the set of triangles that
contain and do not contain e, respectively. The proof
of Lemma IL5 is divided into two conceptual parts: (1)
insensitivity to perturbing Y, of triangles X (. that do
not include e, and (2) conditioning on X 7(), address-
ing the difference of edges brought about by triangles
Xr(e) that include e. We decompose drv (Y., YT,) into
two terms (using Lemma 4.3 in Section 4.3 of the full

paper):
drv(Yee, Y2) < drv(Xarey X p)
+ (1)
+ dTv(YNe, X’N;](E LY. (,|X e = =X ))

~T(e)
We next describe how to bound each of the two terms
on the right-hand side.

1) Edge e Has Low Influence on Non-Containing
Triangles: We first bound dTV(XNT(e),X:rT(e)). Only
in Section II-D1 we will pretend that X ~ g rather
than pgie(-|Ye = 1), and this turns out to be valid as
the two distributions have roughly the same variation
distance to X.r(c), since pgie is a constant-weight
mixture of pgie(-|Ye =1) and pg—e.

Note that because ¢ ¢ G, Xp() is always 0, so
X.7(c) has the same distribution as X, defined by
ua. As for X:T(e), letting T, be the set of triangles
containing e,

= PXf,, =2)LX1,

ze{0,1}Te

(0 X0 = )

~T(e

is a mixture of Gibbs distributions indexed by the
value of X;(e . By Pinsker’s inequality we have
dTV(XNT(e)7X~T(e))2 < XQ(XNT(6)||XiT(e))’ and
we bound the latter quantity via Ingster’s 2nd mo-
ment method [46]. We emphasize that both L£(X 7(c))
and L(X 7 ( )) are complicated dependent distributions,
while all prior works to the best of our knowledge
have always shown bounds between mixtures of product
distributions (see, for instance, [28], [45]-[47]). We
show that despite this dependence it is still possible to
derive a tractable bound.

Lemma IL6 (y2-divergence for mixture of Gibbs mea-
sures). Let P be a distribution defined by

P(X) = f(X)/Z.

Let U be a discrete random variable and Q) be a mixture
of Gibbs distributions defined by

QLX) = Blfu (X

X)/H(X

Ex~p pu(X)pv (X)
u,u’ IEXNP pU(X) ]EXNP pU/(X) ’
where U’ is an independent and identically distributed
copy of U.

It turns out that when applying Lemma IL.6 to X 7.
versus XjT(e), we can bound the Xz-divergence via
marginal influences of the edge distribution £(Y"). Here
the marginal influence I},  characterizes how much
configurations on A’ can affect the conditional marginal
probability on edge e. A formal definition of marginal
influence can be found in Defn. 9 in Section 6 of the
full paper.

)/Zu] .

Letting py(X) = fu( ), we have that

X(QIP)+1=

Lemma IL.7. Suppose G € g and consider EG(Y) for
Y as in Section II-B and p' = o(1/n). Let T . be
the marginal influence of A’ on e for La(Y). Letting
X T(e ) be an independent copy of XT(E), we have that

YA(XT (o) ||X~T(e ) is upper bounded by

P |B|
(10 w) Mo
p A'CAUB
e€(AUB)\ A’

and
(1/p)|AI+IB\ -1,

where A = E(X, e and B = E(XT(e)) e.

T(e ))

The marginal influence I’} ., can be bounded by ex-
ploiting the fact that ¢ has small marginal probabilities
under arbitrary conditioning, and we prove a general
bound to this effect in Section 8 of the full paper.

Lemma IL8. Suppose G € G and consider Lg(Y') for
Y as in Section II-B and p' = o(1/n). Let I, be the

A—e
marginal influence of A on e for L (Y). For an edge

set A C E(G) with |A| = O(n),
L. =0(Al/n).

With high probability, | A| and | B| each have size O(1)
and [AN B| = 0, so the right hand of Lemma IL.7
is 1 + O(1/n) with high probability. Of course, the



tail distribution of |A| and |B| is important, and we
will make the bound rigorous in Section 7 of the full
paper to get that x*(Xor(o)|X 7)) = O(1/n). By
Pinsker’s inequality, this shows drv (X r(e), X 1p(,)) =
O(1/y/n).

2) Triangles Including e and TV Between Projections
of Distributions: Recalling the decomposition (1), we
now aim to bound the second term,

drv(Yee, ., B

+x+ — x/
xnlB, LOLXDr g =X0). @

This can be rewritten in a more symmetric way as the TV
distance between Ex/nx_r., L(Yee|Xor@ey = X)
and Bxrnx ., LOYLIX T, = X'). Since Yo |X
and Y1 |X™T are projections of triangle variables X
and XT onto the edge space, the most natural ap-
proach to establish their closeness is to show that
L(X7e)| Xor(e)) and 'E(Xt}'(e)|X:T(e)) are close'an'd
appeal to data processing inequality. However, this is
not true: As mentioned earlier, XT(e) = 0 since e ¢ G,
and in contrast X;I o) is non-zero with non-negligible
probability, since there are ©(n) triangles containing to
e and each is selected with probability approximately
P =06(1/n).

Nevertheless, the fact that we are proving a statement
about projection onto the edge space, Y., and Y,
allows us to carry out manipulations in the triangle
space before projection. We will design an auxiliary
distribution X over the same support as X .7 that
when added to X:’T(e) results in the identical edge

L T
projection as X, i.e.,

E(X*V X)) —e=B(Xf, VX)) —e.

()

This means the edge indicator vector of XXV X T

~T(e)’
which we denote by f@e, is the same as Yje. Thus,
instead of comparing Y.. and Yje in (2), it suffices to
compare Y. and Y., and by data processing inequality
itin turn suffices to compare X .7 and XjT(e) Vv X3

dtv (YNE, Yje) <dtv (XNT(8)7 XiT v XaUX) )

()

We now define X3, Each triangle in X;E(e) adds at
most two edges to Y. To simulate this change without
using any triangles containing e, we add a triangle to
X3 for each new edge introduced by X;C(e). Crucially,
this is done without adding other new edges. Avoiding
adding new edges is possible with high probability
as long as the graph G is sufficiently dense (here c-
uniformly 2-star dense plays a role) and p’ = ©(1/n),
which implies that the edge set of X jT(e) has sufficient

coverage of relevant triangles that we might potentially
add to X2,
From the previous section, we have XNT(C) (1))

XiT(e), so to show (3) it remains to prove that

Xore) = Xore) V X, ie., the addition of X%
must be undetectable. We show this via concentration
of the likelihood ratio between X.7() V X and
X 7(e)- In Section 8 of the full paper, we prove that
Lipschitz functions over pg concentrate. The likelihood
ratio under consideration is not quite Lipschitz — it is
Lipschitz only over a high probability subset — but this
turns out to suffice for it to concentrate.
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