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Abstract

Planted Dense Subgraph (PDS) problem is a prototypical problem with a computational-statistical

gap. It also exhibits an intriguing additional phenomenon: different tasks, such as detection or re-

covery, appear to have different computational limits. A detection-recovery gap for PDS was sub-

stantiated in the form of a precise conjecture given by Chen and Xu (2014) (based on the parameter

values for which a convexified MLE succeeds), and then shown to hold for low-degree polynomial

algorithms by Schramm and Wein (2022) and for MCMC algorithms for Ben Arous et al. (2020).

In this paper we demonstrate that a slight variation of the Planted Clique Hypothesis with secret

leakage (introduced in Brennan and Bresler (2020)), implies a detection-recovery gap for PDS. In

the same vein, we also obtain a sharp lower bound for refutation, yielding a detection-refutation

gap. Our methods build on the framework of Brennan and Bresler (2020) to construct average-case

reductions mapping secret leakage Planted Clique to appropriate target problems.

Keywords: Average-case Complexity, Planted Clique, Algorithmic Hardness

1. Introduction

The last decade has witnessed a dramatic shift in our understanding of the fundamental limits of

high-dimensional statistics problems. Rather than the statistical limit being the most relevant quan-

tity governing the minimum amount of data or signal strength needed to solve a problem, it has

emerged that for many problems of central importance there is a distinct and often much larger

computational limit at which computationally efficient algorithms begin to succeed. Berthet and

Rigollet (2013) showed how a statistical-computational gap for a binary variant of sparse PCA

follows via reduction from the planted clique hardness conjecture (Conjecture 1), spurring intense

research activity (see, e.g., Brennan and Bresler (2020) and references therein).

In this paper we investigate how the computational complexity of different tasks, including

detection, recovery, and refutation, can vary even for the same statistical model. The phenomena of

interest are exemplified by the Planted Dense Subgraph (PDS) problem, defined next.

Planted Dense Subgraph (PDS). A sample from the distribution PDS(n, k, p, q) is obtained by:

1. Sample G ∼ G(n, q) an Erdős-Renyi graph with edge density q.

2. Select a subset S of vertices uniformly among the
(
n
k

)
subsets of size k.

3. Re-sample edges with both endpoints in S independently, including each with probability

p > q.
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The detection (or decision) problem is to decide, given a graph G, between the two hypotheses

H0 : G ∼ G(n, q) and H1 : G ∼ PDS(n, k, p, q). (1)

The recovery problem is to (exactly) find the planted support S. (Weaker notions of recovery can

be found in Section 1.4.)

The special case of PDS where p = 1 is known as the Planted Clique (PC) problem. Let

G(n, k, p) = PDS(n, k, 1, p). We denote by PCD(n, k, p) the problem of deciding between

H0 : G ∼ G(n, p) and H1 : G ∼ G(n, k, p) .

Both detection and recovery have efficient (polynomial-time) algorithms whenever k = Ω(
√
n)

(Alon et al. (1998)), but a growing body of evidence (Barak et al. (2019); Feldman et al. (2017))

suggests that these problems become hard for clique size k = nβ with β < 1/2.

Conjecture 1 (PC Conjecture) Fix constant p ∈ (0, 1). Suppose that {An} is a sequence of

randomized polynomial time algorithms An : Gn → {0, 1} and kn is a sequence of positive integers

satisfying that lim supn→∞ logn kn < 1
2 . If G is an instance of PCD(n, k, p), then

lim inf
n→∞

(PH0 [An(G) = 1] + PH1 [An(G) = 0]) ≥ 1.

In our work, we will use a (stronger) variation of this assumption proposed by Brennan and Bresler

(2020) where some structural information of the planted clique is assumed (the secret leakage). See

Conjecture 4 and the associated discussion.

1.1. Computational feasibility of PDS

PDS Detection. Feasibility of detection in PDS is described by a phase diagram (see Fig. 1)

indicating for each possible parameter choice whether the problem is: (1) information-theoretically

impossible, (2) solvable in principle but computationally hard, or (3) solvable in polynomial time.

Complete phase diagrams were shown by reduction from PCD in the regime q = Θ(1) by Ma

and Wu (2015)1, for the sparse regime p = cq for constant c and q = 1/poly(n) by Hajek et al.

(2015a), and by Brennan et al. (2018) for a general regime interpolating between the two. Despite

the similarity between PCD and PDSD, it is non-trivial to construct reductions that are tight against

algorithms, since PDSD exhibits a trade-off between subgraph size and signal strength.

In all of the above parameter regimes, whenever k = ω(
√
n) the optimal polynomial-time test

Tsum simply compares the total number of edges to a threshold. A second moment calculation

shows that

Tsum succeeds w.h.p. if
k4(p− q)2

n2q(1− q)
= ω(1) .

By its nature, success of the sum statistic yields no information whatsoever about the location of the

planted dense subgraph. What can be said about recovery?

1. In the regime q = Θ(1), PDS is easily seen to be computationally equivalent up to log factors in the parameter values

to the Gaussian matrix model with corresponding means.
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PDS Recovery. The best currently-known algorithms (such as spectral, semi-definite program-

ming, and low-degree polynomials) for recovery turn out to require a dramatically higher signal

strength (Chen and Xu (2014); Hajek et al. (2016)). The following conjecture posits that this signal

strength is optimal for the recovery problem (Chen and Xu (2014); Hajek et al. (2015a)).

Conjecture 2 (PDS recovery conjecture) Suppose Gn ∼ PDS(n, kn, pn, qn). If k = ω(
√
n) and

lim sup logn
k2(p− q)2

nq(1− q)
< 0,

then no polynomial algorithm A : G →
([n]
k

)
can achieve exact recovery of PDS asymptotically.

The lower bound in this conjecture has been shown for restricted classes of algorithms: in

Schramm and Wein (2022) for low-degree polynomials and Ben Arous et al. (2020) for Markov

Chain Monte Carlo algorithms.

Recovery lower bound via reduction? Lower bounds have been shown for a wide variety of

detection problems via reduction from PC, and for the majority of these problems recovery is algo-

rithmically feasible in the same parameter regime (to within a constant factor) in which detection

is algorithmically feasible. Yet for problems where recovery seems strictly harder than detection,

demonstrating a detection-recovery gap via reduction from PC has remained elusive. Attempts in

this direction include those of Cai et al. (2017) showing hardness for a matrix model with highly

correlated entries (different from the independent edges in PDS
∗), and Brennan and Bresler (2020)

showed that the conjectured recovery lower bound follows from the PC conjecture for a semirandom

variant of PDS where an adversary may ªhelpfullyº remove edges outside of the dense subgraph.

The main question motivating our work is:

Can a detection-recovery gap be shown for Planted Dense Subgraph via reduction?

A first conceptual challenge is that, as shown by Alon et al. (2007), detection and recovery for

PC are equivalent. What this means is that the detection-recovery gap appearing in PDS is inherent

to PDS, and in particular, we cannot simply map from PC detection and PC recovery separately.

In fact, our reductions will still map to detection problems (with implications to recovery). But

we cannot simply map to the PDS detection hypotheses PDSD: Otherwise, we would be map-

ping a conjecturally hard instance of PC to an easy instance of PDSD! Our goal in this paper is

considerably more modest than to refute the planted clique conjecture, so we must find another way.

1.2. Contributions

In this work, we will utilize the insight that by constructing different statistical models with simi-

lar underlying properties, tailored to corresponding inference tasks, we can go beyond the simple

detection boundary to prove tighter results. Our main contributions are:

• We present the first reduction-based evidence of a computational detection-recovery gap (Corol-

lary 11) for recovering the hidden community in planted dense subgraph, via an average-case

reduction from Planted Clique with secret leakage (Conjecture 4).
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Figure 1: The pictures above (left: Detection vs Refutation; right: Detection vs Recovery) concerns PDS(n, k, p, q)

when p, q are bounded away from 0 and 1, and k ∈ Θ̃(nβ), DKL(p∥q) ∈ Θ̃(n−α), where E denotes easy, H

(computationally) hard, and I (statistically) intractable, hence the orange EH (computationally easy to detect

but hard to refute/recover) is our main results. Our statistical EI and computational EH characterization

of refutation (left) in this density regime are both novel. The orange-white region in the right denotes the

conjectural EH regime, where we close for orange and leave white open.

• We show how detection hardness for the two-community Imbalanced Stochastic Block Model

(ISBM), shown by reduction from Conjecture 4 by Brennan and Bresler (2020), can be used

to obtain a log-optimal lower bound on refuting dense k-subgraphs in G(n, p) and Gaussian

principal submatrix with large mean. This matches the algorithm-specific results of Barak

et al. (2019) and Jones et al. (2021) and shows a reduction-based detection-refutation gap.

• Combining our results with existing reductions yields analogous results also for other average-

case planted models such as Gaussian biclustering and biased sparse PCA. This yields detection-

recovery gaps for these problems and answers a question from Brennan et al. (2018).

• Finally, we also give insight into the relationships between the statistical boundaries for the

above problems, including showing a nearly sharp limit on refuting densest k-subgraphs in

Erdős RÂenyi Graphs via a novel reduction from recovery.

1.3. Reductions and Other Evidence for Hardness

Average-case Reductions. We will define an (average-case) reduction (in total variation) from

two source distributions P0, P1 to target pair Q0, Q1 as a (random) polynomial-time computable

map Φ such that the pushforward dTV(Φ(Pi), Qi) = o(1) for i = 1, 2. The implication is that

if P0, P1 are computationally hard to distinguish, then the same holds true for Q0 versus Q1: any

poly-time algorithm A for the latter task would yield a poly-time algorithm A◦Φ for the former by

composing with the reduction, contradicting the presumed hardness of P0 versus P1.

While reductions form the bread and butter of complexity theory, there is a general sentiment

in the community that average-case reductions are notoriously delicate. Such reductions must not

only map to a valid problem instance, they must precisely map entire probability distributions.

The upside is that reductions can give the strongest possible evidence for computational hard-

ness, and moreover, they demonstrate a connection between two formerly disparate problems which

is often of interest independent of hardness. We refer to Brennan and Bresler (2020) for a review of

the reductions literature.
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Algorithm-specific hardness There have been numerous results showing lower bounds for classes

of algorithms and we mention a few of the results that relate to PDS. In Barak et al. (2019), a

lower bound for refutation of large cliques in G(n, 12) was shown for the Sum-of-Squares hierar-

chy. Schramm and Wein (2022); Rush et al. (2022) sharply characterize the power of low-degree

polynomials for recovery in PDS. The overlap gap framework, introduced in Gamarnik and Sudan

(2014), connects algorithmic infeasibility with properties of the solution space geometry (see also

Gamarnik (2021); Gamarnik and Zadik (2019)). Other relevant results include that of Feldman et al.

(2017) on the statistical query model analyzed in the case of a bipartite ªsamplesº version of PC and

Brennan et al. (2021) relating the power of low-degree polynomials and the statistical query model.

1.4. Inference tasks beyond decision

Denote by H0 the null hypothesis (usually an Erdős-RÂenyi Graph), and H1 is a graph with a

planted structure with support v ∈ {0, 1}n. Consider a valuation function val on graphs such that:

PH0(val(G) < δ − ϵ) and PH1(val(G) > δ + ϵ) are both 1 − on(1). In the case of PDS, val is the

densest-k-subgraph density. Consider the following:

Refutation A refutation algorithm with success probability p is a (randomized) algorithm A sup-

ported on all graphs of size n:

• If val(G) > δ + ϵ, then A(G) = 1.

• For G ∼ PH0( · |val(G) < δ − ϵ), output A(G) = 0 with probability at least p.

Recovery Let π be a distribution over size k planted supports v ∈ {0, 1}n, and for each v let Pv be

a distribution over planted graphs. Let G ∼ P = Ev∼πPv. A recovery blackbox A : G → {0, 1}n
is said to achieve

1. Partial recovery: If E[vTA(G)] = Ω(||v||1).

2. Weak recovery: If E[vTA(G)] = ∥v∥1 − o(||v||1).

3. Exact (precise) recovery: If P[A(G) = v] = Ω(1).

In most models we consider, these variants of recovery only differ in sub-polynomial factors (via

reduction in Appendix C). We further remark that a refutation algorithm is only evaluated on the

input distribution H0, whereas a recovery algorithm is only evaluated on the distribution H1. The

latter fact was leveraged by Schramm and Wein (2022) and both will be crucial to our proofs.

Lemma 3 (Informal, see Lemma 22) For any H̃0 that does not have a k-subgraph with density

above
p+q
2 with high probability, weak recovery oracles nontrivially distinguish H̃0, H1 = PDS.

1.5. Planted Clique and Secret Leakage

We require a slight modification of the planted clique conjecture, proposed by Brennan and Bresler

(2020): Instead of a uniformly located clique, the clique is sampled according to some distribution ρ
over the

(
n
k

)
possible clique positions. One may interpret this as a form of secret leakage, whereby

some information about the clique position has been revealed to the algorithm.

The form of secret leakage we will use in our reductions is k-PCD(n, k, p), where there is

some fixed (known) partition E of [n] into k equally-sized subsets, and under H1 the planted set
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is obtained by selecting exactly one node uniformly from each part. We refer to the corresponding

hardness assumption as the k-PC conjecture.

Conjecture 4 (k-PC Conjecture) Fix constant p ∈ (0, 1). Suppose that {An} is a sequence of

randomized polynomial time algorithms An : Gn → {0, 1} and kn is a sequence of positive integers

satisfying that lim supn→∞ logn kn < 1
2 . Then if G is an instance of k-PCD(n, k, p), it holds that

lim inf
n→∞

(PH0 [An(G) = 1] + PH1 [An(G) = 0]) ≥ 1.

We refer to Brennan and Bresler (2020) for a general leakage PC conjecture and supporting evi-

dence. When the amount of leaked information is small enough, both low-degree polynomials and

statistical query algorithms succeed only above the same
√
n clique size as in ordinary PC.

Remark 5 (Binomial planted set) In the literature it is sometimes assumed that the planted set is

of fixed size k, and other times it is of binomial size (where each node is planted with probability

k/n independently). We use a fixed size k and note that all of our (hardness) results extend to corre-

sponding binomial versions by virtue of closeness of the hypergeometric and binomial distributions

in appropriate parameter regimes (which can be understood as an instance of a finite de Finetti type

theorem Diaconis and Freedman (1980)). In particular, one may carry out a reduction by keeping

a random o(n) sized fraction of the nodes and discarding the rest.

2. Reduction Techniques Overview

2.1. Selecting hypotheses

As discussed in Section 1.1, we cannot map to the standard two PDS hypotheses. A key insight

from Section 1.4 is that while detection concerns both H0 and H1, all other tasks deal with only one

of the two hypotheses. Specifically, for any pair of hypotheses with distributions satisfying the val

criteria, recovery algorithms are only evaluated on an input distributed according to H1 and not H0.

To this end, we are free to select qualifying ªquietº hypothesis H̃0 that is not Erdős-Renyi such that

it has a harder decision task and imply stronger recovery lower bounds. Similarly, for refutation we

may map to H̃1 that is different from the standard H1.

Now, suppose that we want to map from the two hypotheses in PC to H̃0, H1 in a target graph

such that H1 is PDS (so that a recovery blackbox enables us to test between H̃0 and H1). We have

the following naturally competing constraints:

1. For a recovery blackbox to achieve detection, val(G)|H0 has to be small with high probability,

suggesting the fact that H̃0 has to be far from H1, with respect to some metric.

2. We need to construct a reduction. From a data-processing inequality perspective, this means

that H̃0 has to be closer to H1 than the distance between source hypotheses.

It turns out that for recovery, the correct H̃0 is extremely hard to find (Appendix B in Schramm and

Wein (2022)), and even for good H̃0 candidates, constructing a tight reduction seems challenging.

However, we will show that by changing H0 to simply match the first-moment in H1, one can

achieve a H̃0 realizing a non-trivial gap between detection and recovery in PDS, while still being

feasible for us to map to from PC. Changing H0 as we do here was also analyzed for the case of

low-degree polynomials by Schramm and Wein (2022). Note that Brennan and Bresler (2020) in

their result on semirandom PDS modified H1, rather than H0, and we will use this same reduction

to demonstrate a detection-refutation gap. We define the following models:
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Mean-corrected Planted Dense Subgraph (PDS∗). Consider PDS with H0 modified to prevent

success of the obvious first moment test. Consider edge strengths q < p0 < p and size k such that

p0 = q + γ = p−
(n2

k2
− 1
)
γ

and define PDS
∗(n, k, p, q) as hypothesis testing between

H0 : G ∼ G(n, p0) and H1 : G ∼ PDS(n, k, p, q). (2)

Imbalanced Stochastic Block Model (ISBM). Consider a two-community Stochastic Block Model

ISBM(n, k, P11, P12, P22) to be the graph model generated by sampling S1 ∼
([n]
k

)
and S2 =

[n] \ S1. Connect nodes u ∈ Si, v ∈ Sj with probability Pij = Pji. Moreover, we force the degree

constraints on each node

n · P0 = k · P11 + (n− k) · P12 = k · P12 + (n− k) · P22

and formulate the decision problem ISBMD as (let r = n/k):

H0 : G ∼ G(n, P0), H1 : G ∼ ISBM(n, r, P11, P12, P22). (3)

This model can be considered as a mean-field analogue of recovering a first community in a general

balanced r-block SBM model (keeping one block while averaging out the rest). 2

2.2. Signal transformation

We start our reduction by viewing our problem as a planted bits problem, which is simply a vector

v ∼ Bern(q)⊗n with planted bits vI ∼ Bern(p) at the index set I ⊆ [n] with a different bias.

Concretely, because of the one clique vertex per partition assumption of k-PC, each n
k × n

k block of

the adjacency matrix has a single planted 1 entry. All of the reductions we consider can be viewed

as mapping a set of planted bits to another desired target set of planted bits with a larger planted

size and specific biases.

The difficulty at the core is thus the following: how to transform the planted bits distribu-

tion with unknown location to a desired target distribution while not losing signal-to-noise ratio

(measured by the KL-divergence) between planted and null bits and the size of planted location I
(Brennan et al. (2019)), so that the target instance remains at the threshold of algorithmic feasibility.

As in Brennan and Bresler (2020), we will use Gaussian distributions as intermediate steps in

transforming from k-PC. While Bernoulli data are challenging to non-trivially transform without

signal loss, we will leverage the nice behavior of Gaussians under linear maps, enabling us to

carefully control the added noise within the transformation (as discussed in the next subsection).

To see the approximate equivalence between Gaussians and Bernoulli variables, we note that a

Gaussian N (µ, 1) can be readily mapped to Bern(Φ(µ)), where Φ is the Gaussian CDF, by thresh-

olding at 0. If µ ≪ 1, the KL-divergence decreases only by a numerical constant factor independent

of µ. In the other direction, a rejection sampling procedure can map a pair of Bernoulli variables to

a pair of Gaussians with little information loss3:

2. Note that both models contain a dense subgraph (high val), and PDS
∗ is just a translated PDS.

3. This process introduces a log-factor, which is the (only) reason in later sections we ignore poly-log factors in rates.
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Lemma 6 (Gaussian Rejection Kernels ± Ma and Wu (2015); Brennan et al. (2018)) Let R be

a parameter and suppose that 0 < q < p ≤ 1, min(q, 1 − q, p − q) = Ω(1). Suppose that

µ <
(
1 ∧ δ

2
√

6 logR+2 log(p−q)−1

)
where δ = min

{
log
(
p
q

)
, log

(
1−q
1−p

)}
, then there exist map

RK(·) can be computed in poly(R) time such that the push-forward maps satisfy

dTV

(
RK(Bern(p)),N (µ, 1)

)
= O

(
R−3

)
and dTV

(
RK(Bern(q)),N (0, 1)

)
= O

(
R−3

)
.

Now that we have a Gaussian signal with planted mean, we apply a rotation (treating the en-

tire matrix as a vector). Specifically, in Brennan and Bresler (2020) the following process BERN-

ROTATIONS was introduced to transform an instance of N (v, Iℓ) where v ∈ R
ℓ contains signal.

1. We right-multiply the Gaussian vector by a design matrix A ∈ R
ℓ×m, which yields vA +

N (0, AAT ). Denote the square of the top-singular value of A to be λ = σ2(A).

2. On the re-scaled result vector N (λ−1/2vA,AAT /λ), we can add a Gaussian noise N (0, I −
AAT /λ) independent of µ to get exactly N( vA

σ(A) , In), which has unit variance.

In short, we transform signals as mean vectors of isotropic Gaussian distributions by rotating the

space and paying an extra whitening noise to produce an isotropic distribution again.

Lemma 7 (Dense Bernoulli Rotations ± Lemma 8.1 in Brennan and Bresler (2020)) Let m and

ℓ be positive integers and let A ∈ R
ℓ×m be a matrix with singular values all at most λ > 0. Let R,

0 < q < p ≤ 1 and µ be as in Lemma 6. Let A denote BERN-ROTATIONS applied with rejection

kernel parameter R, Bernoulli biases 0 < q < p ≤ 1, output dimension m, matrix A with singular

value upper bound λ and mean parameter µ. Then A runs in poly(ℓ, R) time and

dTV

(
A (PB(ℓ, i, p, q)) , N

(
µλ−1 ·Ai, Im

))
= O

(
ℓ ·R−3

)

dTV

(
A
(

Bern(q)⊗ℓ
)
, N (0, Im)

)
= O

(
ℓ ·R−3

)

for all i ∈ [ℓ], where Ai is the ith row of A and PB(ℓ, i, p, q) is the distribution on {0, 1}⊗ℓ where

the ith bit is sampled from Bern(p) and all others from Bern(q) independently.

As noted earlier, with the k-PC constraint we have r2 different blocks, given by the partition,

where each block has exactly one planted bit. This allows us to view the entire k-PC matrix as a

collection of PB problems and apply BERN-ROTATIONS on each (n/k)×(n/k) matrix (ℓ = n2/k2).

There are two remaining things to consider. Firstly, how to get from Gaussians back to Bernoullis

and the final output, and secondly, what criteria does our design matrix A ∈ R
k2×k2 have to follow.

For the first step, as noted above, transforming N (0, 1),N (ν, 1) to two Bernoullis by thresholding

at 0 will not lose too much information measured by dTV when µ is small, and the transformed

signal will be approximately Bern(0.5) and Bern(0.5+ µ√
2π
) since the Normal CDF is continuous.

To deal with the other part, we need each row of A to map directly to the edge density parameter

of output. Specifically, for any (unknown) input PB instance, it gets mapped to an unknown row of

A, which then becomes the output PDS mean. Our design in A is thus formulated as: how to find a

suitable A such that each row of A corresponds to a possible mean adjacency matrix in target PDS.
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2.3. Design matrices

We first remark that the key factor in BERN-ROTATIONS is the added noise N (0, I − AAT /λ),
which will in fact be the only part of our reduction process that may introduce irreversible signal

loss. Consequently, we want to construct matrix A such that I −AAT /λ is as small as possible: A
has to be close to an isometry. Let us first assume that σ(A) = 1 for simplicity.

As an example, suppose one wants to map from k-PC to the Gaussian version of PDS (i.e.,

N (γ, 1)⊗k×k planted in N (0, 1)⊗n×n) with tight recovery boundary such that k2γ2 ∼ n. As

k-PC contains at most n planted bits yet the squared ℓ2 norm of the target mean matrix is exactly

k2γ2 = Ω(n), the sum of squared ℓ2 norms of the n column vectors Ai being mapped to should

be at least Ω(n), which (informally) implies that the design matrix A has to be an almost perfect

isometry given σ(A) = 1.

Having independently generated random columns would allow to apply random matrix spectral

bounds. For example, a matrix with i.i.d entries from some fixed distribution was used by Brennan

and Bresler (2020). They proved that this methods achieves the desired spectral bound, but each

column has a random number of planted bits resulting in binomial planted size rather than the

desired fixed size (c.f., Remark 5).

Viewing the design matrix structure as the adjacency matrix of some graph, where i.i.d. matrices

corresponds to Erdős-RÂenyi graphs, a natural alternative is regular graphs. These satisfy our fixed

size constraint. Moreover, considering the tight recovery reduction again, one also needs all rows

to have squared norms of O(1) while summing up to Ω(n), making it an implicit regularization in

our construction that all row norms have Θ(1) norm. This fact provides a crucial motivation into

directed regular graph models for generating matrices such that the row norms and column norms

align, and the columns are roughly independent (i.e. perpendicular).

2.4. Singular value from recentering

We will now focus on what happens in each sub-block with size m = n/k given by partitioning

k-PC, and treat it as our main target.4 A line of works (Tikhomirov and Youssef (2019); Le et al.

(2015)) have given high probability bounds on the spectral norm ∥A−E(A)∥op of adjacency matrix

A for a random graph G with given degree distributions (planted signal). Here we consider when

A is the adjacency matrix of a directed d-regular graph (each node has out-degree and in-degree

exactly d). In this case the operator norm of concentration can be expressed with the second largest

singular value of A. In Tikhomirov and Youssef (2019), a (tight) high probability upper bound on

the said quantity has been proven when mα < d < m/2 we have |s2(A)| ≤ Cα,m

√
d with high

probability. With this result, we can establish the following lemma that will lead to the ultimate

design matrix by taking the (translated) Kronecker product to make it m2 ×m2:

Lemma 8 (Random matrix with regular constraints) Given constant α > 0, there exists a con-

stant Cα, such that for a m×m (random) matrix R = Rm,1/r where r < m1−α is an even divisor

of m, with entries sampled from the following procedure:

1. Sample G uniformly from all directed m/r-regular graphs with size m.

2. Rij =
−1√
mr

+ 1eij∈EG
·
√

r
m for j ̸= i off diagonal, Rii =

−1√
mr

on the diagonal.

4. With a slight abuse of notations, we note this is different from the target planted size in PDS.

9
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Then with probability 1− om(1) this matrix satisfies ∥R∥op ≤ Cα.

This (centered) matrix has a nice property in that it is an approximate isometry, where each row has
r−1
r fraction of −γ = −1/

√
mr and 1/r fraction of (r− 1)γ with norm 1. However, it is not yet in

the form we target (recall that we want to each column to map to the mean of the m×m adjacency

matrix of a graph). It is natural to view the target PDS density as a translated rank-1 product of

vectors (since it has one k × k elevated submatrix with uniform signal). Therefore we will simply

take the Kronecker product to result in a m2 × m2 matrix, which creates at the (i, j)th columns

RT
i Rj where Ri are the rows of the m×m matrix.

However, the canonical rank-1 PDS formulation is not centered, having zeroes everywhere

outside of the planted submatrix and elevated ones signal inside. To map to this instance, we first

need to transform the centered signal R → 1
γ (R + γ) so that we get m

r ones in an all-zero vector

for each row in R before taking the rank-1 product to get a m
r × m

r submatrix of ones inside m×m
zeroes. This would make sure that the design matrix has exactly two different values. Unfortunately,

doing so results in a product matrix that is guaranteed to have a large operator norm (since the output

PDSD is easy), explained intuitively because now our matrix is not centered.

To obtain a tighter spectral radius, it is natural for us to recenter the product matrix so that

it has zero mean per column, corresponding to exactly PDS
∗. This provides a justification from

a design matrix perspective of why PDS
∗ is probably harder than PDS: re-centering the design

matrix decreases spectral norm, which results in a higher signal strength at the output.

Lemma 9 (Construction of (fixed size) random K
1/r
m ) For given α, exist absolute constant Cα >

0, such that for every m > r > 2 where r < m1−α divides m, there exist m subsets A1, A2, . . . , Am

of [m] such that |Ai| = m
r , and that the m2 × m2 matrix K(ij),(kl) : i, j, k, l ∈ [m] defined as

K(ij),(kl) = µ
√

r
m · (1k∈Ai and l∈Aj

· r
m − 1

mr ) has largest singular value at most 1. Specifically,

K1/r
m := K = µ

√
r

m

[
(R+

1√
mr

J)⊗ (R+
1√
mr

J)− 1

mr
J ⊗ J

]

where J is the all-one matrix and R satisfies the criteria from the previous lemma (µ = (Cα+1)−2 ∈
Θm(1)). With probability 1− om(1) we can find a satisfying assignment in polynomial time.

3. Hardness of Detection in Mean-corrected Null

We are now ready to state hardness for the degree-1 corrected null hypothesis testing problem PDS
∗

by constructing an average case mapping. We refer to Figure 2 (Theorem 27) for the full reduction.

Theorem 10 (Lower bounds for efficient PDS∗ detection) Consider hypothesis testing PDS
∗ for

H0 : G(n, p0) versus H1 : PDS(n, k, q, p) where p0 = p − (n
2

k2
− 1)γ = q + γ. Let parameters

p0 ∈ (0, 1), α ∈ [0, 2), β ∈ (0, 1) and β < 1
2 + 2

3α. There exists a sequence {(Nn,Kn, pn, qn)} of

parameters such that:

• The parameters are in the regime p− q ∈ Θ̃(N−α), K ∈ Θ̃(Nβ). Formally,

lim
n→∞

log pn − qn
logNn

= −α, lim
n→∞

Kn

Nn
= β, lim

n→∞
log(pn − qn)

−1

logNn
= α.

10
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• For any sequence of (randomized) polynomial-time tests ϕn : GNn → {0, 1}, the asymptotic

Type I+II error of ϕn on PDS
∗(Nn,Kn, pn, qn) is at least 1 assuming the k-PC conjecture.

Furthermore, we note that there exists a matching upper bound for PDS∗D based on the empirical

variance of degrees (see Proposition 26 for the precise result).

Recall that as discussed in Section 1.4, any recovery oracle (on H1 = PDS
∗
H1

, which is the same

as PDSH1) detects between H0 : G(n, p0) versus H1 : PDS(n, k, q, p) on its supported parameters,

implying a natural upper bound on the decision problem. Combining Theorem 10 with Lemma 3,

we obtain our main (lower bound) result for the signal strength required for recovery.

Corollary 11 (Recovery Hardness for PDS) Let parameters p0 ∈ (0, 1), α ∈ [0, 2), β ∈ (0, 1)
and α < β < 1

2 + 2
3α,. Then for any p0 ∈ (0, 1) there exists a sequence {(Nn,Kn, pn, qn)} of

parameters such that the following holds:

• The parameters are in the regime γ := |p− q| ∈ Θ̃(N−α), K ∈ Θ̃(Nβ).

• For any sequence of (randomized) polynomial-time algorithm ϕn : GNn →
([Nn]
Kn

)
, ϕn cannot

achieve asymptotic exact recovery on PDS(Nn,Kn, pn, qn) assuming k-PC.

We remark that the constraint α < β comes from the fact that recovery is statistical impossible

at α ≥ β (see Theorem 24). For completeness, we refer to the appendix (Theorem 31) for an

extended discussion on the statistical boundaries associated. Moreover, we remark that in light of

our recovery to detection reduction framework, the detection-recovery gap can in fact be viewed as

a detection (PDS) - detection (PDS∗) gap.

4. Hardness of Refutation

4.1. Detection hardness for ISBM

As before, given that a refutation blackbox only operates on H0, we want to find some ªquietº

distribution H̃1, such that it has the correct valuation but is hard to distinguish from a null instance.

We will propose the ISBM model (3) in this section as a qualifying planted distribution. Due to

the rank-1 nature of its bias structure, it is easy to construct design matrices by just taking the per-

column rank-1 product from Lemma 8, hence hardness result can be proven similar to Theorem 27

with a reduction. As in the proof of reduction to PDS
∗, we can then generalize to the complete

boundary in ISBM detection, leading to refutation hardness. This is an extension of Theorem 3.2 in

Brennan and Bresler (2020) where their (deterministic rotation kernel) reduction only works with a

number-theoretic constraint restricting the parameters. Our results extend to the full boundary line

by the regular concentration lemma on random matrices.

Theorem 12 (Hardness of detection in ISBM) Consider hypothesis testing ISBMD (3) where

k = n/r is the planted size. Let parameters p0 ∈ (0, 1), α ∈ [0, 2), β ∈ (0, 1) and β > 1
2 − α.

There exist a sequence {(Nn, Rn, P
(n)
11 , P

(n)
12 , P

(n)
22 )} of parameters such that:

• The parameters are in the regime |P11 − P22| ∈ Θ̃(N−α), R ∈ Θ̃(Nβ).

• For any sequence of (randomized) polynomial-time tests ϕn : GNn → {0, 1}, the asymptotic

Type I+II error of ϕn on the decision problems ISBMD(Nn, Rn, P
(n)
11 , P

(n)
12 , P

(n)
22 ) will be at

least 1 assuming the k-PC.

11
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4.2. Refutation hardness for planted dense subgraph in G(n, p)

Equipped with the hardness results in ISBM, which has a large dense subgraph and thus can be used

as a candidate H̃1 in refutation, we obtain the formal refutation hardness results similar in how we

showed recovery hardness from a reduction with refutation (recovery) oracle:

Theorem 13 (Hardness in refutation of PDS in the dense regime) Consider the refutation prob-

lem for H0 : G(n, p0) and val function v(G) defined as the edge density of the largest k−subgraph.

Let parameters p0 ∈ (0, 1), α ∈ [0, 2), β ∈ (0, 1) and β > 1
2 − α. Then for any sequence of

parameters {(Nn,Kn, p
(n)
1 } satisfying:

• The parameters are in the regime p1 − p0 ∈ Θ̃(N−α), K ∈ Θ̃(Nβ).

• No sequence of (randomized) polynomial-time algorithms ϕn can achieve refutation with

asymptotic successful probability strictly above 0.

Finally, we note that a matching (computational) upper bound can be constructed via a semi-definite

programming relaxation (see appendix). Moreover, we also show that the statistical boundary for

refutation lies exactly as that for recovery from applying a reduction to (statistical) recovery.

Theorem 14 (Statistical bounds for refutation) Consider refutation problem for G ∼ G(n, p0)
and val function v(G) defined as the edge density of the largest k−subgraph. Assuming that p0 is

bounded away from 0 and 1, and k ∈ Θ̃(nγ) for some γ ∈ (0.5, 1), then:

• When kDKL(p∥p0) ∈ ω̃(1), the densest k subgraph val(G) ≤ p with probability → 1.

• When kDKL(p∥p0) ∈ õ(1), the densest k subgraph val(G) ≥ p with probability → 1.

Remark 15 The problem of densest-k-subgraph in G(n, 12) was very recently solved in Cheairi

and Gamarnik (2022) with deep techniques from Bernoulli Disorder. However, here we can derive

a log-optimal result using statistical reductions from recovery boundaries.

5. Biclustering and Biased Sparse PCA

We point out a couple of other random models that have a detection hardness gap as an implication

of PDS hardness guarantees. Those connections were first observed in Cai et al. (2017); Brennan

et al. (2018) but under the conjectural tight hardness bound and Schramm and Wein (2022) with

low-degree polynomials.

Bi-clustering This model is planting a k × k (not necessarily principal) submatrix and can be

formulated as the following Gaussian detection problem:

H0 : Z ∼ N (0, 1)⊗n×n, H1 : Z ∼ N (0, 1)⊗n×n + λuvT (4)

where u, v ∼ Bern(k/n)⊗n (or uniform from all subsets of size k) independently. The recovery

problem is to localize the latent vectors u, v given an instance Z ∼ N (0, 1)⊗n×n + λuvT , and the

refutation is to refute submatrices with large mean.

12
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Biased SPCA Consider the spiked covariance model where v is a k-sparse unit vectors with non-

zero entries equal to ± 1√
k

:

H0 : X1, X2, . . . , Xn ∼ N (0, Id)
⊗n and

H1 : X1, X2, . . . , Xn ∼ N
(
0, Id + θvv⊤

)⊗n
where

∣∣∣∣∥v∥+0 − k

2

∣∣∣∣ > δ · k. (5)

The recovery task is to estimate supp(v) given observations X1, X2, . . . , Xn sampled from H1.

Specifically for this variant where the sum test can be shown optimal for detection, our result implies

a detection-recovery gap which is lacking in its general unbiased form.

6. Open Problems

We point out two open problems related to our work:

1. Construct ªquietº H0 hypotheses without any dense subgraphs that are hard to distinguish

from PDS in order to resolve Conjecture 2. This would also imply a detection-certification

gap as well as Conjecture 2 itself.

2. Can one can construct the inverse of the reduction of Remark 5, from a binomial version of

PDS to the fixed sized PDS? This would show equivalence of the binomial and fixed versions.
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Appendix A. Notations and Preliminaries

We briefly introduce the notations. We use L(X) to denote the law of a random variation X ,

dTV, DKL, χ
2 to denote the total variation distance, KL-divergence, and χ2 divergence. Specifi-

cally we shorthand d(Bern(p),Bern(q)) := d(p, q) for Bernoullis with bias p, q. We use the Õ(·)
notation to denote big-O ignoring log-factors. For instance, r ∈ ω̃(n) means r ∈ ω(n logk n) for

any constant k, r ∈ Ω̃(n) means r ∈ Ω(n logk n) for some k, and Õ, õ likewise. Specifically,

Θ̃(n) = Õ(n)
⋂
Ω̃(n). We use

∏
i Pi to denote the tensor product of distributions, specifically

P⊗k =
∏k

i=1 P .

For a given partition F of [n] to k sets, we use Un(F ) to denote the uniform distribution of

k-subsets of [n] with each element in one of Fi. We let Unifn(k) to denote the uniform distribution

over all k-subsets of [n]. For a planted structure distribution, we use MA×B(S × T, P,Q) to

denote planted structure on community A × B with a planted submatrix S × T where the in-

community entries sampled from P and otherwise from Q. Specifically, if A = B and S =
T are unknown sampled from P , denote MA×B(P, P,Q) := ES∼P (MA×B(S × S, P,Q)) the

symmetric planting.

We use A⊗B ∈ R
n2×n2

for matrices (A,B) ∈ (Rn×n,Rn×n) to denote the Kronecker product

between A,B. We usually parameterize indices of A ⊗ B by a pair (ij) : i, j ∈ [n] such that

(A ⊗ B)(ij),(kl) = AikBjl. Fixing i, j and laying out the row of A ⊗ B as a n × n matrix, it is

exactly AT
i,·Bj,· the product of two row-vectors.

We then introduce the following (common) lemmas as preliminaries. Let f be a Markov transi-

tion kernel and P be any distribution we denote the law of f(P ) the push-forward. We also use sets

in V ∈ 2[n] and vectors v ∈ {0, 1}n interchangeably, and PDS(n, S, p, q) to be the planted dense

subgraph instance conditioned on planted location at set S.

Lemma 16 (Data Processing Inequality) Let { be a Markov transition kernel and A,B be two

distributions, then:

dTV(f(A), f(B)) ≤ dTV(A,B).

Lemma 17 (Tensorization of TV) Let Pi, Qi be distributions for i = 1, 2, . . . , n. Then:

dTV(
∏

Pi,
∏

Qi) ≤
∑

i

dTV(Pi, Qi).

Lemma 18 (Accumulation of TV distance) Consider a finite set of sequential functions on dis-

tributions Ai : i = 1, 2, . . . , k. Assuming one has distributions P0, P1, P2, . . . , Pk such that:

dTV(Ai(Pi−1), Pi) ≤ ϵi

for all i = 1, 2, . . . , k, then we have:

dTV(Ak(. . .A1(A1(P0)) . . . ), Pk) ≤
∑

i

ϵi.

The last lemma comes directly from data processing and induction. Next, we present a couple of

lemmas on Bernoulli distributions.
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Lemma 19 (KL divergence between Bernoullis) Assume a sequence of {pn} and {qn} such that

qn < pn < cqn, 1− qn < c(1− pn) for some constant c, then:

DKL(p∥q) := DKL(Bern(p)∥Bern(q)) = Θ(
(p− q)2

q(1− q)
).

Proof Note that the quantity
(p−q)2

q(1−q) is the χ2 divergence between two Bernoulli, which dominates

the KL divergence. For the other side, note that on the support of these two distributions ({0, 1})

their ratio of density is bounded. Thus by a reverse Pinsker’s inequality the result follows.

Lemma 20 (TV divergence between Binomials) Consider two parameters p, q ∈ (0, 1), then:

dTV(Bern(q)
⊗n,Bern(q)⊗n) ≤

√
n(p− q)2

2q(1− q)
.

Proof This comes directly from the Pinsker’s inequality on TV, KL, and χ2 divergences:

dTV(Bern(q)
⊗n,Bern(q)⊗n) ≤

√
DKL(Bern(q)⊗n,Bern(q)⊗n)

2

=

√
nDKL(Bern(p),Bern(q))

2

≤
√

nχ2(Bern(p),Bern(q))

2
=

√
n(p− q)2

2q(1− q)

due to 2d2TV ≤ DKL ≤ χ2 and the factorization of DKL for independent distributions.

Appendix B. Reductions to Detection

In this section we point out that all of the inference variants considered, detection is (almost) the

weakest version of all. This can be viewed from the perspective of reductions where a blackbox

for a different task implies a blackbox for detection. Such reductions were discussed in Hajek et al.

(2015a); Barak et al. (2019); Bandeira et al. (2020); Brennan et al. (2018). Here we re-formulate

the necessary proofs:

Lemma 21 (Refutation implies detection) Consider two hypotheses H0, H1 and valuation func-

tion val with separation thresholds ϵ and gap δ. If there is an efficient refutation blackbox A with

asymptotic success probability p = limn→∞ p(n) > 0, then (weak) detection is computationally

possible.

Proof Consider the canonical form of refutation as described in Section 1.4 with a polynomial-

timed refutation blackbox A having success probability p > 0. We show that A:

• When G ∼ H0, A(G) = 0 with probability at least p · P (val(G) < ϵ− δ|G ∼ H0), thus the

Type I error is at most 1− p · P (val(G) < ϵ− δ|H0).
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• When val(G) > ϵ+ δ the output is always 1, thus the Type II error is at most the probability

of a low valuation P (val(G) > ϵ+ δ|H1).

Therefore, the sum of errors is bounded above by:

1− p · P (val(G) < ϵ− δ|H0) + P (val(G) > ϵ+ δ|H1)

Note that as n → ∞,

P (val(G) < ϵ− δ|H0) → 1, P (val(G) > ϵ+ δ|H1) → 0.

Therefore, the detection error of this blackbox is bounded above by 1− p(n) < 1 in the limit. This

implies that it returns a better-than-random detection asymptotically.

Lemma 22 (Recovery implies detection) Fix two hypothesis H0, H1 with valuation function vals

that can be computed in polynomial time given key s and define val(G) = maxs vals(G).
Assuming val(G ∼ H0) ≤ ϵ − δ with high probability and suppose that a polynomial time

oracle (on input G) generates a key k such that valk(G) > ϵ with high probability over G ∼ H1,

then detection is possible in polynomial time equipped with such key oracle.

Proof Consider the alternate valuation function val
′ = valk, which can be computed in polynomial

time by first asking k(G) from the given oracle. From the previous lemma and the separation

conditions we know that:

1. For G ∼ H0, val′(G) ≤ val(G) ≤ ϵ− δ with high probability.

2. For G ∼ H1, val′(G) > ϵ with high probability.

Therefore, val′ is a polynomial time valuation, which obviously implies that refutation on this black-

box can be done in polynomial time. By Lemma 21, we have the desired conclusion.

Appendix C. Different Varieties of Recovery

Consider the notion of minimal recovery of strength α > 0, which is outputting a guess P̂ for the

planted location such that

lim
n→∞

(log k)αE[|P̂ ⋂P |]
k

≥ 1.

Specifically, weak recovery is just partial recovery of strength 1 and partial recovery implies minimal

recovery of strength α → 0. We can go on to prove that with partial recovery one can achieve precise

recovery with only sub-polynomial signal boost. This means that the PDS recovery conjecture can

be weakened to only assume hardness for minimal recovery. The following lemma applies both

statistically and computationally; we will use it as a crucial reduction step to Theorem 14.

Lemma 23 (Minimal recovery implies exact recovery) For the PDS(n, k, p, q) recovery prob-

lem when p, q are bounded by away by zero and one. If one can achieve minimal recovery with

strength α > 1 on a sequence of parameters (Nn,Kn, Pn, Qn) in polynomial time where Kn ∈
ω̃(

√
Nn)

⋂
o(Nγ

n ) for some exponent γ ∈ (12 , 1), then one can achieve exact recovery on a modified

sequence of parameters (Nn,Kn, Pn, Q
′
n) where Q′

n satisfies

DKL(Pn∥Qn) = Θ((log k)2αDKL(Pn∥Q′
n)).
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Proof The critical component here lies in a subroutine GRAPH-CLONE (Lemma 5.2 in Brennan

et al. (2019)) in which we generate independent graph instances conditioned on planted instance

locations. The lemma can be read off as the following form:

• Suppose we have a hidden planted location η, and a one-time sampler from the planted distri-

bution M[n]×[n](η × η,Bern(p),Bern(q)), then we have a one-time sampler from the tensor

product M⊗2
[n]×[n](η × η,Bern(p),Bern(Q)) where Q = 1−

√
(1− p)(1− q). Specifically,

the divergence measure χ2(p,Q) > 1
2χ

2(p, q).

Corollary: Suppose we have a hidden planted location η and as above a one-time sampler, then we

can have a sample generated from M⊗2
[n]×[n](η × η,Bern(p),Bern(Q)) where χ2(p,Q) >

1
2tχ

2(p, q).

Note that in the case when p, q are bounded away from zero and one, DKL(p∥q) ∼ χ2(p, q) ∼
(p − q)2 are of the same order. Therefore, with the cost of reducing (log k)2α in the distance we

can generate one instance from M⊗(log k)2α

[N ]×[N ] (η × η,Bern(P ),Bern(Q)) from a single instance of

the original M[N ]×[N ](η × η,Bern(P ),Bern(Q′)).
Our assumption also states that we have a black box to perform minimal recovery of strength α

on M[N ]×[N ](η × η,Bern(P ),Bern(Q)), and we arrive at log2α k estimates of the planted η, de-

noted by η̂1, . . . , η̂log2α k := η̂r. Moreover, given that the cloned copies are independently generated

conditioned on η and hence so are those η̂i’s, we wish to reconstruct η through those independent

estimate η̂i’s.

Note that it is safe to assume that any black-box takes in the input unlabeled, because we can

apply a hidden permutation π to the graph and feed it to the black-box instead, we know that for

each index i ∈ η, the probabilty that it lies in a η̂ is exactly E(η̂ · η)/k ∼ logα k where expectation

ranges over M[N ]×[N ](η × η,Bern(P ),Bern(Q)). For each node not in η, the probability of η̂

hitting it is at most k
n−k ≤ 2k

n . Therefore, if we compile a histogram of η̂i hits, we have k copies of

Binom(r,
√
r−1) and n− k copies of (at most) Binom(r, 2kn ).

We now only need to show that when r ∈ Θ((log k)2α), the two distributions (smallest from η
and largest from η) separates with probability → 1. Note that the probability that Binom(r, 2k/n)
is at least constant C is:

P(Binom(r, 2k/n) > C) ≤ r · rC · (2k
n
)C ≲ (log n)2(C+1)αn−C(1−γ)

Pick any C(1 − γ) > 1, then the above probability goes to õ(n−1), and a union bound over all

vertices in η says that with probability 1− on(1) all counts in that group is bounded by constant C.

Now we consider the group of nodes in η. The probability of one being bouneded by C is

P(Binom(r,
√
r−1) < C) ≤ C

(
r

C

)
(1−

√
r−1)r−C ≤ CrC exp

(
−(r − C)

√
r−1
)

because 1− x < e−x, and the union bound says that the minimum for counts in η is at most:

kP(Binom(r,
√
r−1) < C) ≲ krC exp

(
−1

2

√
r

)
= exp

(
log k − (log k)α

2
+O(log r)

)

assuming that α > 1, the above goes to 0 as k → ∞.
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Therefore, if we sum over statistics for η̂i’s we get that the entries in η goes above any constant

with probability → 1 whereas with high probability the other entries are bounded by a constant, and

hence precise recovery is achievable via the most popular nodes. Moreover, this entire procedure

applies in polynomial time.

We further comment that the case of when p, q are not bounded away by one (ªdenseº) are similar,

but require some further bounds on the exponents. Here we only present proof of this dense regime.

Moreover, the condition that k < nγ instead of k ∈ o(n) is also only needed for minimal recovery

(not required for a reduction from partial to exact), but for our purposes this is a fine assumption

to make. The condition α > 1 is to some extent unnecessary either because recovery of α implies

recovery of α+ for any α+ > α (α > 1 is only needed for convenience in expressing signal decay).

Moreover, note that the non-homogenity of planted instance in Theorem 25 means that the direct

reduction in Lemma 23 does not apply. In fact, it will be easy to see that partial recovery for our

instance in Theorem 25 can be implied by PDS recovery.

For completeness of arguments (which will be useful in statistical bound for refutation), we also

present a statistical condition for (exact) PDS recovery in below.

Theorem 24 (PDS recovery ± Theorem 2 in Hajek et al. (2015b)) Again consider the settings (and

parameters correspondence) as above, then exact recovery is statistically possible if:

kDKL(p∥q)
log n

> C

and impossible if

kDKL(p∥q)
log n

< c

for some absolute constants c, C.

C.1. Evidence of recovery hardness

We further remark that with some relaxed condition on the signal, one can prove tight recovery

hardness for some models on DkS (Densest k-Subgraph) valuation that resembles PDS in structure.

Theorem 25 For any kn ∈ ω(
√
n), pn ∈ (0, 1), there exists a symmetric edge density matrix on

subgraphs Dn ∈ R
kn×kn , such that the row (and column) sums of D are uniformly kn · λn and the

graph constructed by:

1. On G ∼ G(n, pn), randomly select a subset S of vertices of size kn. Choose a random

bijection π from S to [kn].

2. For the nodes u, v ∈ S, resample uv with probability Dπ(u)π(v) + p.

And if lim supn→∞
k2n
n

λ2
n

pn(1−pn)
∈ õ(1), no (randomized) polynomial algorithm can achieve exact

recovery on the planted instance, even given the knowledge of D, assuming the planted clique

conjecture with p = 1/2.
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It is not hard to check that for this general model (where recovery is at least as hard as PDS), one can

still find a log-optimal algorithmic matching upper bound. Specifically, consider simply taking the

k most popular nodes (those with the highest degrees), then as long as the ratio k2λ2

np(1−p) logn → ∞,

the output satisfies exact recovery criteria. This result also suggest that, if PDS recovery is indeed

easier than conjectured, the algorithm must use heavily the community structure.

Proof We start from the fact that, recovery for PC is hard at the regime when detection is hard,

which is a direct implication of the PC conjecture and Lemma 22. Consider the following procedure

applied on a graph G ∼ PDS(n, k, 1, 1/2) to obtain G′:

1. Add (t − 1)k vertices to G that will be part of the (new) planted structure where t > 1 is a

specified parameter such that the total planted size is tk.

2. For the (t− 1)k extra vertices, connect each pair with probability t
2(t−1) . Connect each edge

between the original n vertices to the new (t− 1)k vertices with probability 1/2.

3. Permute the nodes in G′ randomly.

Under this reduction, consider the new planted density matrix in R
tk×tk where a R

(t−1)k×(t−1)k

principal submatrix is 1
2(t−1)J(t−1)k and the other k×k principal submatrix has all entries 1/2. The

recovery hardness comes from the fact that even if the blackbox knows the exact location where our

planted (t − 1)k nodes are, it can still not precisely recover the original k vertices in the planted

clique instance with high probability, thus strong recovery is impossible.

Note that this satisfies the row-column sum constraint where the expected degree of each planted

node is exactly
n+(t+1)k

2 and the planted structure lifted each node’s degree by k/2. Consider the

distribution of the degrees for a node not in planted structure (which is d ∼ Binom(n + (t −
1)k, 1/2)) and the node inside planted structure which is either d ∼ k+Binom(n+ (t− 2)k, 1/2)
or d ∼ Binom(n, 1/2) + Binom((t− 1)k, 2t/(t− 1)) depending on which part of the planted set.

The separation of the first distribution (null) with the later two (latent) follows immediately by a

very simple Chernoff Bound when k ∈ ω̃(
√
n).

Appendix D. Proofs for Design Matrices

D.1. Proof of Lemma 8

Proof Note that the adjacency matrix of the sampled directed graph A is not symmetric. However,

we do know that the operator norm equals to the largest singular value of

(A− d

n
11

T )(AT − d

n
11

T ) = AAT − d2

n
11

T

where d = n/r and 1 ∈ R
n×1 is the all-one vector.

We know that the largest eigenvalue of AAT is d2/n corresponding to the all one vector because

it is a scaled doubly stochastic matrix. Therefore, from the Courant-Fischer Theorem we can show

that the second largest singular value of A which is the second largest eigenvalue of AAT is the

largest eigenvalue of AAT − d2

n 11
T , which is the largest singular value of A− d

n11
T .

Note that Theorem.B of Tikhomirov and Youssef (2019) asserts that under the conditions in the

lemma, the said quantity is bounded by C
√
d with probability 1−on(1). Therefore, our constructed
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R, which is exactly
√

r
n(A − A) =

√
d−1(A − d

n11
T ) has max singular value at most C with

probability 1− on(1).

D.2. Proof of Lemma 9

Note that we can sample from directed regular graphs efficiently by the ergodicity of a simple edge-

flipping Markov process (Greenhill (2011); Cooper et al. (2017)), and hence we have the following.

Proof Take R from the previous lemma. Note that the top singular value of a matrix is in fact sub-

additive, and the Kronecker product is a linear operator that preserves the product of the operator

norm of a matrix. We have:

σ(µ−1

√
n

r
K) ≤ σ(R⊗R) +

2√
nr

σ(R⊗ J) ≤ C2 +
2C√
nr

σ(J) = C2 + 2C

√
n

r

because the top eigenvalue of J = 11
T is exactly n. Therefore σ(K) ≤ 1 for any R satisfying the

criteria of Lemma 8.

Finally, note Theorem 1 in Greenhill (2011) states that the switch Markov Chain, on which

the unique stationary distribution is the uniform distribution over all directed d−regular graphs, is

fast-mixing, and Lemma 8 still holds if the sampling condition is approximate in L1. Therefore, in

polynomial time we can find one candidate K satisfying our lemma above. Moreover, note that if

we sample O(n) times independently, the probability of failure becomes exponentially small.

Appendix E. Proofs for Recovery

As a starter to detection problems in PDS
∗, we present a simple PDS

∗
D upper bound by a degree 2

polynomial test extending Proposition B.4 in Schramm and Wein (2022).

Proposition 26 (Upper bound on PDS
∗
D) Consider the degree corrected PDS

∗ model with planted

subgraph size k and average edge probability 0 < q < p < 2
3 , then as long as the product ratio

k3

n1.5 · (p−q)2

q(1−q) ∈ ωn(1), one can computationally efficiently resolve hypothesis testing for PDS∗.

The proof goes by considering the statistics f =
∑

d2i where di are the degrees of G and com-

puting the mean different over variance. The upper bound gives a boundary strictly between the

sum-test level for PDS and the spectral recovery level (Kesten-Stigum threshold), suggesting some

consideration into the ªcommunityº structures compare to a vanilla sum test.

Proof Consider the test statistics f(G) =
∑

d2i where di are the (independent) degrees. We show

that there exist τ such that PH0(f(G) > τ) + PH1(f(G) < τ) → 0 as n → ∞.

Firstly, consider what happens to the degrees under H0: they are n independent samples from

Binom(n, p0) with expectation given by

E(f) = n · Ex∼Binom(n,p0)x
2 = n2p0(1− p0) + n3p20 = n2p0 + (n3 − n2)p20

Similarly in H1, there are n− k nodes that are not in the planted set and their corresponding second

moment of degree is:

E(
∑

i ̸∈v
d2i ) = (n− k)Ex∼Binom(n,q1)x

2 = n(n− k)q1 +
(
(n− k)n2 − n(n− k)

)
q21
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and the k nodes planted has:

E(
∑

i∈v
d2i ) = kEx∼Binom(n−k, q1),y∼Binom(k, p1)(x+ y)2

= k
((
(n− k)q1(1− q1) + (n− k)2q21

)
+ kp1(1− p1) + k2p21 + 2q1p1k(n− k)

)

= k(n− k)q1 + k2p1 + k((n− k)q1 + kp1)
2 − k(n− k)q21 − k2p21

The difference between expectations in H0 and H1 is thus:

k((n− k)q1 + kp1)
2 + (n− k)(n2 − n− k)q21 − k2p21 − n2(n− 1)p20 ∈ Θ(k3(p1 − q1)

2).

Now we turn to estimating the variance of f . First consider the variance of f ∼ H0, which can be

computed via the moments of binomial distribution

var(f) = n · var(d2i )
= Ex∼Binom(n,p0)(x

4)−
(
Ex∼Binom(n,p0)(x

2)
)2

= n2p0(1− p0)(1 + (2n− 6)p0(1− p0)) ∈ Θ(n3p20(1− p0)
2)

due to a simple computation Ex∼Binom(n,p0)((x− np)4) = np(1− p)(1 + (3n− 6)p(1− p)).

For the variance of f ∼ H1, consider

var(f) = (n− k) · vari ̸∈v(d2i ) + k · varj∈v(d2j )
≤ Θ(n3 (q1(1− q1))

2) + k · Ej∈v
(
(dj − d̄)4

)

≤ Θ(n3 (q1(1− q1))
2) +O(kn2 (q1(1− q1))

2)

= Θ(n3p21(1− p1)
2)

because of local inequality (x+ y)4 ≤ 16(x4 + y4). Therefore, we know that

EH1(f)− EH0(f)√
varH0(f) + varH1(f)

∈ O(
k3(p1 − q1)

2

n1.5p0(1− p0)
) = O((

k2

n
)1.5DKL(p1∥q1))

and when this value is in ω(1), the two hypothesis can be separated (by, for instance, thresholding

at (EH1(f) + EH0(f))/2).

E.1. Proof of reduction to PDS
∗

Theorem 27 (Reduction to PDS
∗) Given any fixed constant α > 0. Let N, k0 be parameters of

planted clique graph size, (n, k) be the target graph sizes where n
k =: r <

(
N
k0

)1−α
. We present

the following reduction ϕ with absolute constant C > 1:

• Initial k-PDS Parameters: vertex count N , subgraph size k0 ∈ oN (N) dividing N , edge

probabilities 0 < q < p ≤ 1 with min{q, 1 − q, p − q} = Ω(1), and a partition E of [N ].
We further assume that k0 ∈ o(

√
N) holds (otherwise detection for the PDS problem will be

easy).

24



DETECTION-RECOVERY AND DETECTION-REFUTATION GAPS

• Target PDS∗ parameters: (n, r, k) where r ∈ o(
√
n) is a specified parameter, k = n/r is the

target subgraph size, and n is the smallest multiple of k0r greater than (1 + p
Q)N where

Q = 1−
√

(1− p)(1− q) + 1p=1(
√
q − 1)

is the cloned signal strength from pre-processing.

• Target PDS∗ edge strength:

γ = µ(
k0r

n
)1.5, P1 = Φ(

(r2 − 1)γ

r2
), P2 = Φ(− γ

r2
),

where µ ∈ (0, 1) satisfies that

µ ≤ 1

12C
√

log(N) + log(p−Q)−1
·min{log( p

Q
), log(

1−Q

1− p
)}.

where γ denotes the signal strength γ = Θ(DKL(P1∥P2)) roughly the KL-divergence be-

tween two output Bernoullis.

• Applying ϕ on the given input graph instance G yields the following:

dTV(ϕ(G(N,
1

2
)), G(n,

1

2
)) = on(1)

dTV(ϕ(PCE(N, k0,
1

2
)),PDS(n, k, P1, P2)) = on(1)

Proof sketch: Step by step, our proof proceeds from establishing the following lemmas for each step

of our reduction in Figure 2, a formal proof for the lemmas will be presented later.

Lemma 28 (TO-k-PARTITE-SUBMATRIX − Lemma 7.5 in Brennan and Bresler (2020)) With

the given assumptions, step 1 (denote as A1) of the reduction runs in poly(N) time and it follows

that:

dTV(A1(G(N, q)),Bern(Q)⊗n×n) ≤ 4k0 exp (
−Q2N2

48pkn
)

dTV(A1(G(N,UN (E), p, q)),M[n]×[n](Un(S), p,Q) ≤ 4k0 exp (
−Q2N2

48pkn
) +

√
CQk20
2n

where E is the partition of [N ] and S is the partition of [n].

Lemma 29 (Bernoulli Rotations for PDS
∗) Let A2 denote the output matrix M from the second

step of our reduction (before permutation). Suppose S is a partition of [n] to k0 equal parts and

planted set |T ∩ Si| = 1 for all i. Let Mi : Si → [n/k0] be any fixed bijection. Let K
1/r
n/k0

be the

design matrix obtained from Lemma 9 with embedded sets A1, A2, . . . , An/k0 ⊂ [n/k0], then the

following holds:

dTV(A2(Bern(Q)⊗n×n), N (0, 1)⊗n×n) = O(n−1)

dTV(A2(M[n]×[n](Un(S), p,Q)), L(γ ·X +N (− γ

r2
, 1)⊗n×n)) = O(n−1)

where X ∈ R
n×n is the random variable defined in each block Si × Sj as a function of T :

XSi,Sj
=
(
1(M−1

i (Af(i))×M−1
j (Af(j))) where f(i) = Mi(T ∩ Si)

)
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Algorithm From k-PDS to PDS
∗:

Inputs: Graph G of size N , subgraph parameter k0 dividing N , edge density q < p ∈ (0, 1]
and a partition E of [N ] to k0 equal parts E1, E2, . . . , Et. Target planted ratio r.

Steps :

1. To-bipartite and planted diagonal: The first step transforms PDS to a bipartite variant.

Let n be the smallest integer multiple of k0 that is greater than (1+ p
Q)N . Apply Graph

Cloning to input G to obtain G1 and G2 with edge density Q < p where:

Q = 1−
√
(1− p)(1− q) + 1p=1(

√
q − 1)

then construct F ∈ R
n×n equipped with a partition S1, S2, . . . , Sk0 of [n] such that:

• Given that each |Si| = n/k0, (uniformly) sample a random subset Ti in Si of size

N/k0. Construct (any) bijective map πi : Ti → Ei.

Sample a subset Xi ⊂ Ti where each element is included independently with

probability p and sample yi ∼ max{Bin(n/k0, Q) − |Xi|, 0}. Sample subset

Yi ⊂ (Si \ Ti) (with size yi) uniformly from
(
Si\Ti

yi

)
.

• Construct F for each FSi,Sj
in the following fashion:

± If i ̸= j, then:

FTi,Tj
=

{
G1[πi(Ti), πj(Tj)] i > j

G2[πj(Tj), πi(Ti)] i < j

F(i,j)∈Si×Sj\Ti×Tj
∼ Bern(Q).

± For the diagonal blocks:

FTk,Tk
(i, j) =





G1[πk(Tk), πk(Tk)]ij i < j

G2[πk(Tk), πk(Tk)]ij i > j

1{i ∈ Xi} i = j

F(i,j)∈Sk×Sk\Tk×Tk
=

{
∼ Bern(Q) i ̸= j

1{i ∈ yi} i = j
.

2. Flattened Bernoulli Rotations: Let S be a partition of [n] into k0 equal parts

S1, S2, . . . , Sk0 obtained from the previous part. Construct output matrix M :

(a) For i, j in {1, 2, . . . , k0}, flatten matrix FSi,Sj
to a (n/k0)

2 size vector.

(b) Apply Bernoulli Rotation on this vector with design matrix (K
1/r
n/k0

)T , Bernoulli

parameter strengths Q < p ≤ 1, output dimensions vij ∈ R
(n/k0)2 .

(c) Layout vector vij ∈ R
(n/k0)2 to (n/k0) × (n/k0) matrix in the order from part

(a). Apply permutation to [n].

3. Thresholding: Given matrix M from the previous step, construct G′ = ϕ(G) such that:

for distinct indices i < j, eij ∈ E(G′) if and only if Mij ≥ 0 and output.

Figure 2: Reduction from k-PDS to PDS
∗.
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Lemma 30 (Thresholding from Gaussians) Let A3 be the final step from the above reduction,

with the same notations as the previous lemma, then:

A3(N (0, 1)⊗n×n) ∼ G(n, 1/2)

A3(L(γ ·X +N (− γ

r2
, 1)⊗n×n)) ∼ PDS(n, k, P1, P2).

As an important pre-processing step, we single out the steps in Lemma 28 first, the proof in

its exact form is deferred to Brennan and Bresler (2020). The general idea is that, to construct a

bi-partite variant, after applying GRAPH-CLONE to the instance and occupying the lower half of

the adjacency matrix, we still need to figure out what happens in the diagonal. However, when we

plant around
√
k entries in a diagonal it’s almost the same as not planting anything in total variation,

which means that we only need to blow up the size by a little bit to hide the diagonal.

After Lemma 28, we arrive at a bi-partite k-PDS instance with slightly different parameters, and

we prove the following lemmas to complete the reduction.

Proof [Lemma 29] We take a close look at what Bernoulli rotation produces for H1. In the flattening

step, we first define k0 bijections πi from Si → [n/k0] (the order to be flattened). Looking at each

submatrix block with a planted bit at (T
⋂
Si, T

⋂
Sj) is equivalently an instance of

FSi×Sj
∼ PB((n/k0)

2, t, p,Q)

where the location indices are defined with (i, j) : i, j ∈ [n/k0] and planted bit

t = (πi(T
⋂

Si), πj(T
⋂

Sj)) := (ti, tj).

Therefore, the output row of K
1/r
n/k0

is precisely (indexed by r, s):

K(ti,tj),(rs) = µ

(
1{r ∈ Ati and s ∈ Atj} ·

√
r3k30
n3

−
√

k30
rn3

)
.

After sending A(·)(rs) → Mπ−1
i (r),π−1

j (s), we know that M ∈ R
(n/k0)×(n/k0) is a bi-partite matrix

with Ati ×Atj submatrix being elevated and (approximately) distributed as

MSi×Sj
(π−1

i (Ati)× π−1
j (Atj ),N ((r2 − 1)γ/r2, 1),N (−γ/r2, 1)).

with total variation loss at most O(( n
k0
)2R−3

rk ) by Lemma 7.

For the other hypothesis H0, simply note that the matrix gets sent to N (0, 1) independently for

each entry and gets send to independent standard normal Gaussians. Therefore the rotation matches.

Finally, note that in each block we differs from the target by at most O(n2R−3
rk ) in dTV, which

results in at most O(n4R−3
rk ) difference in dTV by the tensorization property. However, note that we

can choose Rrk to be any polynomial of n, and hence the Lemma holds.

Proof [Lemma 30] Note that if we threshold at zero, then:

1. N (0, 1) → Bern(1/2).

2. N (µ, 1) → Bern(Φ(µ)) for any µ.
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Therefore we know that N (−γ
r2

, 1) → Bern(Φ(P1)), and N ( (r
2−1)γ
r2

, 1) → Bern(Φ(P2)), so the

strength matches (and hence the case for H0 is proven).

Note that in our previous step in H1, in each block Si×Sj , a sub-block Ati ×Atj is elevated to

Bern(P2) whereas the rest are Bern(P1). This means that in the overall graph, the sets:

⋃

i

π−1
i (Ati)×

⋃

i

π−1
i (Ati)

have elevated density Bern(P2) where the rest has density Bern(P1). Finally, note that the total

size of
⋃

i π
−1
i (Ati) is exactly

∑k0
i=1

n
k0r

= n
r . Therefore, after permuting the nodes we get exactly

PDS(n, n/r, P2, P1) as the output.

Proof [Theorem 27] Define the steps of A to map inputs to outputs as follows

(G,E)
A1,ϵ1−−−→ (F, S)

A2,ϵ2−−−→ M
A3,ϵ3=0−−−−−→ G′

where the following ϵi denotes the total variation difference in each step (from output of A to the

next target). Under H1, consider the following sequence of distributions:

P0 = GE(N, k, p, q)

P1 = M[n]×[n](S × S,Bern(p),Bern(Q)) where S ∼ Un(F )

P2 = γ · 1S ⊗ 1S +N (− γ

r2
, 1)⊗n×n where S ∼ Unifn(k)

P4 = PDS(n, k, P1, P2)

Applying Lemma 28 before, we can take

ϵ1 = 4k0 · exp
(
− Q2N2

48pk0n

)
+

√
CQk20
2n

where CQ = max
{

Q
1−Q , 1−Q

Q

}
. For ϵ2, Lemma 29 guarantees that ϵ2 = O(n−1) suffices. The

final step A3 is exact and we can take ϵ3 = 0. Finally, note that from the data processing inequality

applied to dTV that dTV(Ai(·),Ai(·′)) ≤ dTV(·, ·′) so each step the total variation loss at most

accumulates (Lemma 18), thus by the triangle inequality on TV we get

dTV(A(GE(N, k, p, q)),PDS(n, k, P1, P2)) ≤ ϵ1 + ϵ2 = o(1).

Under H0, consider the distributions

P0 = G(N, q)

P1 = Bern(Q)⊗n×n

P3 = N (0, 1)⊗n×n

P4 = G(n, 1/2)

As above, Lemmas Lemma 28, Lemma 29 and Lemma 30 imply that we can take

ϵ1 = 4k0 · exp
(
− Q2N2

48pk0n

)
, ϵ2 = O(n−1), and ϵ3 = 0
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Again by the data processing inequality (Lemma 18), we therefore have that

dTV (A (G(N, q)) , G(n, 1/2)) = O(ϵ1 + ϵ2) = o(1)

which completes the proof of the theorem.

E.2. Proof of Theorem 10

Suppose we now have a direct reduction to PDS(n, k, P1, P2) following the previous notations, the

final step of reduction have to do with the making the uniform degree condition exact, and applying

it to general (dense) P0. Consider the following post-reduction process with given target (P0, p1, p2)

such that P0 = p1 − (n
2

k2
− 1)δ = p2 + δ for some δ:

1. Apply k-PDS-to-PDS∗ on given instance GE(n, k, p, q) and output G1 with specified µ, γ

such that the exact condition Φ( (r
2−1)γ
r2

) = P1
2P0

holds. As before, denote output density

P1, P2 (then p1 = 2P0P1, and δ can be expressed by P0, γ, r).

2. If P0 > 1/2, then output G2 by including all edges in G1 and independently including all

non-edge in G1 with probability 2P0 − 1, else include all edges in G1 with probability 2P0.

We show that the output of the above second post-processing step A4 satisfies:

A4(G(n, 1/2)) = G(n, P0)

dTV(A4(PDS(n, k, P1, P2)), PDS(n, k, p1, p2)) = o(1)

These two equations completely settles the reduction from PC to PDS
∗ to the general density.

Note that the first equation concerning H0 is trivial, because a Bern(s) instance get transferred

(independently) directly to Bern(2P0s) by A4. Thus we only need to deal with the second equation.

The general insights is that, when ν is small, Φ(ν) (Gaussian CDF) is almost a linear function of ν
where Φ(ν) ∼ 1

2 + 1√
2π
ν and the error term (when ν < 0.1) is:

∣∣∣∣Φ(ν)−
1

2
− 1√

2π
ν

∣∣∣∣ =
∣∣∣∣

1√
2π

∫ ν

0
(e−x2/2 − 1)dx

∣∣∣∣ ≤
1√
2π

∣∣∣∣
∫ ν

0
x2dx

∣∣∣∣ =
1

3
√
2π

|ν|3

since |ex − 1| < 2|x| when |x| < 0.01. Therefore the average degree condition approximately but

not exactly holds with P1 and P2 already.

Formally, note that A4(PDS(n, k, P1, P2)) = PDS(n, k, p1, 2P2P0), and we only need to show

that dTV(PDS(n, k, p1, 2P2P0),PDS(n, k, p1, p2)) = o(1). The trick here is to use the data pro-

cessing inequality again: because the distribution PDS(n, k, p, q) is obtained by applying the (ran-

dom) planted dense subgraph over G(n, q), thus the total variation:

dTV(PDS(n, k, p1, 2P2P0),PDS(n, k, p1, p2)) ≤ dTV(G(n, 2P2P0), G(n, p2))

= dTV(Bern(2P0P2)
⊗(n2),Bern(p2)

⊗(n2)).
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Moreover, by Lemma 20 we know that the above is bounded by |2P0P2 − p2| · O(n) because the

denominator P0(1 − P0) ∈ Θ(1). Now we only need to prove that |2P0P2 − p2| ∈ o(n−1). Note

that this can be computed as exactly:

|2P0P2 − p2| =2P0

∣∣∣∣Φ(
−γ2

r2
)− 1

2
+

1

r2 − 1

(
p1
2P0

− 1

2

)∣∣∣∣

=2P0

∣∣∣∣Φ(
−γ2

r2
)− 1

2
+

1

r2 − 1
(Φ(

(r2 − 1)γ

r2
)− 1

2
)

∣∣∣∣

≤4
γ3

r2
=

µ

n

(
k20
n

)(
k0r

n

)2.5

= o(n−1)

because
k20
n < k0r

N , k0rn <
k20
N are all assumed to be smaller than one, and µ →n 0.

We now turn to the formal lower bound from the reduction. Consider the following parametrized

model PDS(n, k, p1, p2) versus G(n, p0) such that:

p0 = p1 −
r2 − 1

r2
γ = p2 +

1

r2
γ

We prove that there is a computational threshold for all signal levels below γ2 ∈ õ(( r
2

n )1.5) by

filling out all possible growth rates below.

Note that fix P0 ∈ (0, 1) throughout (we only need it to be bounded away from 0 and 1), for

the reduction to work with a given sequence (N, k0, p, q) to n = kr where r ∈ õ(k), k0 ∈ õ(n1/2)
and k ∈ ω̃(k0) are (implicit) functions of N , we only need to characterize the range of viable signal

strength γ that can be reduced to:

γ = µ(
k0r

n
)1.5 >

1

w(n)
√
log n

(
k0r

n
)1.5

asymptotically where w can be any (slowly) increasing unbounded function (such as no(1)). Note

that this range do indeed cover the entirety of õ(( r
2

n )1.5) assuming k0 ∈ Θ̃(N0.5).

Therefore, we know that by the PC conjecture and the given reduction the computational lower

bound for PDS∗ holds up to the upper bound level in Proposition 26.

E.3. Proof of Corollary 11

Proof By Lemma 22, we only need to show that a weak recovery blackbox output is a qualifying

secret key k(G) for refutation.

Consider a set R that overlaps with the real PDS planted set with size ρ > 1/2 (ρ →n 1 holds

for weak recovery, but for the sake here we only need it at least 1/2 for convenience). Consider

PDS density parameters p > q > n−1 log n, p ∈ O(q), and consider the sequence of rn = pn+qn
2

such that p = O(q) = O(r) and DKL(p∥r) = Θ(DKL(p∥q)) ⊂ ω̃(k−1). However, by flipping

the graph for Theorem 37 in the dense case lim p = lim q = p0, we know that the smallest ρk-

subgraph in G(n, p) has density at least r with high probability. Thus the density of R is at least
1
4(r + 3q) = 7q+p

8 := s with high probability.

However, by Theorem 37 again we note that the densest k subgraph in G(n, p0) will not be of

density at least s+p0
2 because (s − p0) = Θ(p − q) so DKL((s + p0)/2∥p0) = Θ(DKL(p∥q)) ⊂
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ω̃(k−1). Therefore with high probability the densest k subgraph of G(n, p0) has a gap with the

density of 1/2 portion recovered densest k subgraph in PDS
∗. By Lemma 22 and Theorem 10 we

are done with the proof.

E.4. Statistical Optimal Boundary for PDS
∗

It is well known that the success of a statistical hypothesis testing between two distributions P,Q
from one sample depends on dTV(P,Q). However, because our alternate hypothesis is composite

(mixture over latent θ), it can be challenging to compute the total variation distance between mixture

EθPθ and null P0 beyond trivial geometric bounds. Thus alternative methods are needed.

In this section, for the completeness of our results on PDS
∗, we also present a statement of the

statistical boundaries drawing comparisons with a line of statistical lower bounds in the canonical

PDS such as Butucea and Ingster (2013); Hajek et al. (2015a); Ma and Wu (2015) where their

upper bound construction with mean comparison is now invalid in PDS
∗. While we can derive

asymptotically similar lower bounds, there is provably no polynomial test matching this boundary

in PDS
∗ and recovery is impossible. Instead, we derive a boundary necessary for the χ2 divergence

between H0 and H1 to be large via the Ingster’s trick to handle mixture in the latent structure.

Theorem 31 (Statistical lower bounds for PDS
∗) Consider PDS∗ when 0 < q < p0 < q < 1/2.

Consider the setting with a sequence of edge densities p(n), p
(n)
0 , q(n), k(n) with graph size n → ∞:

• If lim sup k(n)4

n2 · (p(n)−q(n))2

q(n)(1−q(n))
→ 0 and lim sup k(n) (p

(n)−q(n))2

q(n)(1−q(n))
→ 0, then no (statistical)

test on PDS
∗ on those parameters can achieve type I + type II error strictly less than 1

asymptotically.

Proof Consider the χ2 trick applied on the mixture: P0 = G(n, p0) and Pθ = PDS(n, θ, p, q) with

planted set at θ and θ ∼
(
n
k

)
be uniformly distributed.

χ2(Eθ(Pθ)∥P0) =

∫

G

Eθ(Pθ(G))Eθ′(Pθ′(G))

P0(G)
− 1

= Eθ⊥⊥θ′
Pθ(G)Eθ′(G)

P0(G)
− 1

If we expand the above expression and denote the λ = χ2(p, q) = (p−q)2

q(1−q) then we end up with the

above (tightly) upper bounded by:

E(exp(λ(H2 − E(H)2))

where H ∼ θ
⋂
θ′ is distributed according to Hypergeometric(n, k, k) (where k >

√
n). This eval-

uation goes to zero from a local inequality on Hypergeometric inequalities (Lemma 6 in Appendix

C of Hajek et al. (2015a)), which concludes our proof.

A better way to view it (from reductions) is as follows: we know that when the inequality con-

dition holds, PDS(n, k, p, q) is in-distinguishable from G(n, k, q) by the PDS boundary in Brennan

et al. (2018). However, in this case we have:

dTV(G(n, q), G(n, p0)) ≤ dTV(Bern(q)
⊗n2

,Bern(p0)
⊗n2

)

≤ n

√
(q − p0)2

q(1− q)
=

n

r2

√
λ
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by Lemma 20. Therefore, dTV(G(n, q), G(n, p0)) → 0 below the statistical PDSD testing thresh-

old, meaning that PDS∗D can also not be performed. This reduction proves the intuition that PDS∗D
is ªharderº than PDS.

Remark 32 We also remark that the reverse direction for the above lower bound is still open. Let

H be distributed according to Hypergeo(n, k, k) (where k >
√
n), then E(H) = k2/n. Assuming

that λE(H)2 ∈ ω̃(1), if one can prove that:

E(exp(λ(H2 − E(H)2)) → ∞

as well, which is a stronger version of Lemma 6 in Hajek et al. (2015a), then χ2 between two

hypotheses of PDS∗D diverges, which is still a necessary (insufficient) condition for the upper bound.

It is of interest to show a tight statistical detection upper bound for models like ISBM and PDS
∗ at

the regime when it is computationally infeasible and statistically impossible to recover.

Appendix F. Proofs for Refutation

F.1. Proof of Theorem 12

Theorem 33 (Reduction from k − PDS to ISBM) Let N, k0 be parameters of planted clique graph

size, r < N/k0 be a target output for ratio of planted set. Let α be a constant and assume

r <
(

N
k0

)1−α
. We present the following reduction ϕ with absolute constant Cα > 1:

• Initial k-PDS Parameters: vertex count N , subgraph size k0 ∈ oN (N) dividing N , edge

probabilities 0 < q < p ≤ 1 with min{q, 1− q, p− q} = Ω(1), and a partition E of [N ]. We

further assume that k0 ∈ o(
√
N) holds.

• Target PDS parameters: (n, r, k) where r ∈ on(
√
n) is the specified parameter and k is the

expected subgraph size k = n/r and n is the smallest multiple of k0r that is greater than

(1 + p
Q)N where

Q = 1−
√

(1− p)(1− q) + 1p=1(
√
q − 1).

• Target ISBM edge strength:

γ = µ(
k0r

n
), P11 = Φ(

(r − 1)2γ

r2
), P12 = Φ(−(r − 1)γ

r2
), P22 = Φ(

γ

r2
)

where µ ∈ (0, 1) satisfies that

µ ≤ 1

12C
√

log(N) + log(p−Q)−1
·min{log( p

Q
), log(

1−Q

1− p
)}.

• Applying ϕ on the given input graph instance G yields the following (when k0 ∈ o(
√
N)):

dTV(ϕ(G(N,
1

2
)), G(n,

1

2
)) = on(1)

dTV(ϕ(PCρ(N, k0,
1

2
)), ISBM(n, k, P11, P12, P22)) = on(1)
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Algorithm From k-PDS to ISBM:

Inputs: Graph G of size N , subgraph parameter k0 dividing N , edge density q < p ∈ (0, 1]
and a partition E of [N ] to k0 equal parts E1, E2, . . . , Et. Target planted ratio r = ϵ−1.

Steps :

1. To-bipartite and planted diagonal: Compute M1 ∈ {0, 1}m×m with partition F of [n]
as TO-k-PARTITE-SUBMATRIX (Lemma 28) applied with initial dimension N , parti-

tion E, edge probabilities p and q and target dimension m.

2. Flattened Bernoulli Rotations: Let S be a partition of [n] into k0 equal parts

S1, S2, . . . , Sk0 obtained from the previous part. Construct output matrix M :

(a) For i, j in {1, 2, . . . , k0}, flatten matrix FSi,Sj
to a (n/k0)

2 size vector.

(b) Apply Bernoulli Rotation on this vector with design matrix
1
C2

(
Rn/k0,ϵ ⊗Rn/k0,ϵ

)
, Bernoulli parameter strengths Q < p ≤ 1, output

dimensions vij ∈ R
(n/k0)2 .

(c) Layout vector vij ∈ R
(n/k0)2 to (n/k0)×(n/k0) matrix in the order from part (a).

(d) Assign submatrix MSi,Sj
to be the values of flattened v.

3. Thresholding: Given matrix M from the previous step, construct G′ = ϕ(G) such that:

for distinct indices i < j, eij ∈ E(G′) if and only if Mij ≥ 0. Finally, randomly

permute vertex orders in G′ and output.

Figure 3: Reduction from k-PDS to ISBM.

The key distinction here from the reduction in PDS
∗ lies almost solely in the design matrix, which

is simply the Kronecker (tensor) product of two matrices given by Lemma 8. Therefore:

Lemma 34 (Bernoulli Rotation for ISBMD) Consider the second step A2 applied on the output

of Lemma 28 and assuming notations through Lemma 29, we have:

dTV(A2(Bern(Q)⊗n×n,N (0, 1)⊗n×n) = o(n−1)

dTV(A2(M[n]×[n](Un(S), p,Q)), L( γ
r2

· (rv − 1)T (rv − 1) +N (0, 1)⊗n×n)) = o(n−1)

where v ∼ Unifn(k).

Proof Similar to Lemma 29, the only different part is the output to Bernoulli Rotation in H1 after

performing distribution shifts to N (0, 1) and N (µ, 1).
We analyze the output for the specific design matrix. For the sub-block Si×Sj , it gets mapped to

exactly the flattened product of the tith row of 1
CRn,r−1 (transposed) times the tj th row of 1

CRn,r−1 .

Denote the set of positive terms in the tth row to be Pt, then the output distribution (conditioning

on T , the source planted set) is exactly:

L( γ
r2

· (rv − 1)T (rv − 1) +N (0, 1)⊗n×n))
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for v =
∏k0

i=1 Pti (this can also be viewed in the light Tensor Bernoulli Rotation, see Corollary 8.2

in Brennan and Bresler (2020)). Afterwards we can simply permute the nodes (note that v has size

k = n/r) and the Bernoulli rotation target follows.

To finish off, we get the exact same bound on total variation at most o(n4R−3
rk ), at which point

the total variation bound from applying this algorithm step by o(n−1).

After the Bernoulli rotation, we proceed in a similar fashion with Theorem 27. We defer a

formal full proof in thresholding Gaussians and aligning the precise density to Corollary 14.5 and

Theorem 3.2 in Brennan and Bresler (2020), here we only remove the condition (T) they imposed

during Bernoulli Rotation to imply the lower bound results in a general regime. This gives us the

desired lower bound.

F.2. Proof of Theorem 13

Proof [Refutation hardness] Consider applying Lemma 21, we know that as long as we can find a

satisfying ªquietº adversarial distribution H1, such that

• H1 is computationally indistinguishable from H0.

• H0, H1 satisfies the refutation valuation function criteria.

then we can claim that refutation is hard for H0. For the case of the Erdős-Renyi graph null

hypothesis H0 : G(n, P0) and val = DkS, we may simply consider the alternate hypothesis as

H1 : ISBM(n, k, P11, P12, P22) with specific pairs of parameters.

In fact, when k(P11 − P0) ∈ ω̃(1) we know that the densest subgraph in H1 has density at

least 2P11+P0
3 with probability 1−on(1) from the Markov inequality. And by Theorem 37 we know

that as long as k(P11 − P0)
2 ∈ ω̃(1) the (statistical) densest k-subgraph in H0 is smaller than

(P0 + P11)/2 with high probability. These two constraints of parameter growth will be satisfied

because the (optimal) output regime for Theorem 12 actually reads (P11 − P0)
2 ∈ Θ̃(n/k2).

Therefore, from Theorem 12 we know that as long as H0 is indistinguishable with H1, one

cannot refute in polynomial time the densest k-subgraph in G(n, P0) to have value larger than
P0+2P11

3 := q. Plugging in the boundary for ISBMD we know that refutation (of PDS) is computa-

tionally impossible under the regime

k2DKL(p∥q)
n

∈ õ(1)

which contrasts the detection threshold
k4DKL(p∥q)

n2 ∈ O(1) above which one can perform the opti-

mal sum-test. This fact, combined with semi-definite programming, completely resolves the refuta-

tion problem of DkS in Erdős-Renyi graphs.

F.3. Computational upper bound for refutation

To prove an upper bound for refutation, we first need to introduce the semi-definite programming

relaxation, which is a common method to computational approach problems such as densest-k-

subgraph, considered in many works such as Hajek et al. (2016); Chen and Xu (2014).
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Consider the following relaxation of the densest-subgraph:

ẐSDP = argmax
Z

⟨E,Z⟩

s.t. Z ⪰ 0, Z ≥ 0 (6)

Zii ≤ 1, ∀i ∈ [n]

⟨I, Z⟩ = k

⟨J, Z⟩ = k2.

It is not hard to see that:

• A feasible solution of a true subgraph is also feasible for (6), thus the latter will always return

objective at least the true density.

• (6) is a semi-definite programming problem, and can be efficiently solved.

With the sufficiency results given in Hajek et al. (2016) (specifically, combine their results in Lemma

14, Lemma 15, and Theorem 5), we can show that under the separation conditions of k2

n
(p−q)2

q(1−q) → ∞
and k (p−q)2

p(1−p) → ∞, the above formulation of convexified programming for planted dense subgraph

will have the optimal solution converging to the true planted instance of our graph P (ẐSDP =
Z) → 1 assuming the null density satisfies 0.9 > q ∈ Ω( lognn ). Here we use their results for the

objective function instead (that is, the objective ⟨E,Z⟩ ≤ k2p+ck
√

p(1− p) with probability → 1
as constant c ∈ Ωn,k(1) by Markov Inequality).

Theorem 35 Consider the semi-definite programming relaxation for G ∼ G(n, q). Then when
k2

n
(p−q)2

q(1−q) → ∞ and k (p−q)2

p(1−p) → ∞, the probability that the objective function is at least k2 q+2p
3

goes to zero as n, k → ∞. Moreover, in H1 = PDS(n, k, p, q), the objective will be at least
q+4p
5

with probability → 1. This means that (6) will successfully refute the densest k-subgraph valuation

problem in G(n, q) vs PDS(n, k, p, q).

Proof We start with the following lemma from stochastic domination:

Lemma 36 Let F (P ) be the distribution of objective (6) under the graph distribution P . If edges

in G ∼ P are sampled independently with probability matrix EP for two distributions P,Q, such

that EP − EQ ≥ 0 (entry-wise), then for any x > 0, P(F (P ) > x) ≥ P(F (Q) > x). In other

words, the convex program is monotone with respect to the underlying density.

Proof Consider the following process:

1. On G ∼ Q, find optimal Ẑ for (6).

2. Update G in the following way: for any eG = 0, flip eG = 1 with probability
Ep(e)−Eq(e)

1−Eq(e)
.

The objective never decreases because we only add edges in the second step, whereas the uncondi-

tional distribution of the graph generated from 2 is exactly P . Hence we find a coupling between

two distributions of graphs such that F (P |G) is bounded below by F ({G}) for any G, and the

result follows.
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Moreover, note that the above lemma applies to the mixture problem too. Since (6) is symmetric,

the objective will not change if we condition the planted dense subgraph to a specific location, then

we can use the above lemma and conclude that F (PDS(n, k, p, q)) dominates F (G(n, q)) for any

density p > q. Consider the alternative PDS(n, k, (p + q)/2, q) for (6), which also satisfies the

conditions for successful recovery by (6). Note that in this case, we know that the objective:

1

k2
⟨E, Ẑ⟩ ≤ p+ q

2
+

c

k

√
p(1− p)

with probability → 1 if c → ∞. Consider plugging in p to the RHS we get c = k
6 · (p−q)√

p(1−p)
→ ∞

by the asymptotic conditions. Thus that the above objective is bounded above by k2 · q+2p
3 with

probability going to 1.

On the other hand, clearly for X ∼ Binom(k2, p), we have X ≤ k2 · 4p+q
5 with probability at

most

P(X ≤ k2 · 4p+ q

5
|Binom(k2, p)) ≤ (

k(p− q)

5
√

p(1− p)
)−2 → 0

by Markov inequality. So the valuation condition for H1 is met.

F.4. Statistical bounds for refutation

We now turn to show that the statistical limit of DkS problem lies upon recovery boundary for

G(n, q) (ignoring log factors). This has also been studied under the name quasi-cliques (k-subgraphs

with edge count at least γ
(
k
2

)
) in random graphs by a line of works such as Veremyev et al.

(2012); Anantharam and Salez (2016); Balister et al. (2019). However, our regime of interest

(k = Θ(nα), q ∈ Ω(1)) remains largely unstudied in past literature.

Theorem 37 Consider d = DKL(Bern(p)∥Bern(q)) = Θ( (p−q)2

q(1−q)) when the densities p/q →
Θ(1) and np > nq > log n. Then the densest k subgraph density of G(n, q) will be smaller than
p+q
2 with probability → 1 if kd

logn → ∞ and k → ∞. Thus statistical refutation is possible.

Proof Firstly we need a tail bound on the Binomial distribution (for r := ⌈pN⌉):

P(Binom(N, q) ≥ pN) ≤ N · P(Binom(N, q) = r)

= N

(
N

r

)
qr(1− q)N−r

≤ N2 N !

r!(N − r)!
eN(p log q+(1−p) log(1−q))

< 2N2 1√
2πp(1− p)N

eNDKL(p∥q) = e−NDKL(p∥q)+O(logN)

from Stirling’s formula and N, r → ∞.

Therefore, we can go on to look at each block, which has k2 independent Bernoullis and thus

satisfies the density tail with probability at most e−k2d+O(log k). However, there are at most
(
n
k

)
such

blocks, so if assign random variables X =
∑

Xi to those we have:

P(X > 0) ≤ E(X) =
∑

E(Xi) ≤ nke−k2d+O(log k) = e−k2d+k logn+O(log k)
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when kd
logn → ∞, we know that the above objective goes to zero. Replacing p with p+q

2 for the

above arguments works the same, and thus we are done.

As an extension, when kdk
logn →k ∞ with parameters pk, we can show that (via a union bound)

the densest k subgraph density does not exceed q+pk
2 for all k > log n simultaneously because the

objective is bounded by exp (−k(kd− log n) +O(log k)) < exp(−k log n) = n−k).

Next, we deal with the lower bound on refutation, which states that in G(n, q) there is a dense

subgraph with density p and size k with high probability if kd ∈ õ(1). The following theorem is

sufficient to close the boundary for statistical impossibility. Assuming the same set of parameters,

we have the following lower bound:

Theorem 38 (Lower bound on refutation) Assuming that k ∈ o(nα)
⋂
ω̃(

√
n) for some fixed

constant α < 1 and p, q are all bounded away from 0 and 15. Moreover, for any α > 0, as-

sume that k(p − q)2 ∈ Θ(log−1.01 n). There exist a k-subgraph in G(n, q) with density at least

(p+ q)/2 with probability 1− on(1).

Proof First of all, the conditions assert that p− q ∈ Ω( log
2 n
n ). In fact, from the statistical boundary

on exact recovery given in Hajek et al. (2015b), we know that recovery is impossible in this regime,

even in the minimal variant (from the reduction given in Lemma 23).

Consider the densest k subgraph estimator Ê, which happens to be the MLE estimator on the

planted instance (though we do not need this fact), we know that under this regime it correlates with

the true planted mean with expected density < ϵ for any constant ϵ asymptotically (partial recovery),

we try to bound the density in Ê before planting the dense subgraph.

Formally, assume that Ê ∩E = T where E is the true planted set. Consider the original G1 the

instance from G(n, q) and G′
1 be the graph after planting on E. The total edges in G1(Ê) is at least

(since it is the densest subgraph in G′
1):

EG1

Ê
= E

G′
1

Ê
− E

G′
1

T + EG1
T ≥ E

G′
1

E − E
G′

1
T + EG1

T

and we bound those terms one by one. To start, note that |T | > log n, else the total edges offset in

T is at most
(|T |

2

)
< (log n)2, and

(|T |
2

)
/
(
k
2

)
= O((log n)2/k2) ⊂ o(p − q). Now we consider the

case when |T | > log n → ∞ and apply the densest |T | subgraph in (G′
1)E :

1. E
G′

1
E is just the edge count of the planted instance that is distributed according to G(k, p). We

know that the total number of edges is at least

E
G′

1
E ≥ 2p+ q

3

(
k

2

)

from a simple Markov inequality (as in the previous theorem).

2. E
G′

1
T is equivalent to |T |-subgraph sampled from G(n, q). From the previous theorem, we

know that if
|T |(p−r|T |)

2

log k ∈ ω(1), then with probability 1 − o(1) the densest |T | subgraph in

planted set has density at most r|T |, and E
G′

1
T < r|T |

(|T |
2

)
.

5. Observe that here the KL divergence reduces to Θ((p− q)2) and log n/k = Θ(log n) = Θ(log k)
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3. Similar as the previous part, we know that when
|T |(p−s|T |)

2

logn ∈ ω(1) the probability that

G1 has such a sparse subgraph is at most 1 − o(1) (note that here we use the reverse side

of the tail bound, which is a trivial implication when p, q are bounded away by one) and

EG1
T > s|T |

(|T |
2

)
.

Combining the above, we only need to show that:

(r|T | − s|T |)

(|T |
2

)
≤ 1

6
(p− q)

(
k

2

)
.

Let d|T | = r|T | − p > 0 and f|T | = q − s|T | > 0 then |T |(d2T + f2
|T |) ∈ O(log n), thus the sum

bound over all edges |T |2(dT + f|T |) ∈ O(
√
log n|T |3/2). Moreover, recall the condition on p, q

we have k2(p− q) ∈ Θ(k3/2
√
log−1.01 n).6

Now note that r − s = p− q + (d+ f), thus what remains to show is the local inequality

|T | ∈ o(
k

log0.7 k
), when k(p− q) ∈ Θ(log−1 n)

after which apply the fact that
(|T |

2

)
(d+ f) ∈ o(k2(p− q)) we are done.

Finally, note that the information theoretical limit for precise recovery is k(p− q)2 ∈ Θ(log n)
(Theorem 24), below which it is impossible to perform (even weak) recovery, so the above bound

on |T | follows immediately from Lemma 23 with strength α = 1.004 (so the expected size of |T |
cannot be greater than k

(log k)1.004
< k

(log k)0.7
by minimal recovery).

As a conclusion to this section, we note that a version of the refutation bound was very recently

closed in Cheairi and Gamarnik (2022), which states that the exact refutation boundary lies in k(p−
q)2 ∈ Θ(log n) (below which a dense subgraph exist with high probability). Though our theorem

above is a weaker version of their result, the goal is to provide insights into reductions via recovery.

Appendix G. Detection-Recovery gaps in other problems

In this section, we finish our discussions on two other problems that observe a detection-recovery

gap from reduction to a detection-recovery gap in PDS. In Brennan et al. (2018), such relations were

considered assuming the PDS recovery conjecture, here we do so at a lower rate of signal from only

assuming PC conjecture and Theorem 11. Denote the H1 hypothesis distributions in Section 5 as

BC(n, k, µ) and BSPCA(m = n, k, d, θ), respectively.

G.1. Detection-Recovery gap in Biclustering

This follows from a canonical process of simply performing TO-k-PARTITE-SUBMATRIX and

Gaussianizing. This gives us a symmetric planted Gaussian principal submatrix with elevated mean.

Lastly, we can permute the columns if needed.

6. Note that here the key is that (somewhat counterintuitively) we want p, q to be far enough so that we can utilize the

fact that small error terms cannot dominate the total density of at least p in Ê.
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Lemma 39 (Reduction to Bi-clustering ± Lemma 6.7 in Brennan et al. (2018)) Suppose that n, µ
and ρ ≥ n−1 are such that

µ =
log(1 + 2ρ)

2
√
6 log n+ 2 log 2

>
ρ

4
√
6 log n+ 2 log 2

Then there is a randomized polynomial time computable map ϕ = BC-RECOVERY with ϕ : Gn →
R
n×n such that for any subset S ⊆ [n] with |S| = k, it holds that

dTV

(
ϕ (PDS(n, S, 1/2 + ρ, 1/2)) ,ET∼Unifn(k)

L
(
µ · 1S1

⊤
T +N (0, 1)⊗n×n

))
= O

(
1√
log n

)
.

With this, we can now state the lower bound for recovery and refutation in BC by Lemma 22:

Corollary 40 (Recovery Hardness for Bi-Clustering) Let α > 0 and β ∈ (0, 1), then there exists

such parameters (Nn,Kn, µn) such that: (assuming the k-PC detection hypothesis)

1. The parameters are in the regime:

lim
n→∞

logKn

logNn
≤ β, lim

n→∞
logµn

logNn
≤ −α.

2. If β < 1
2 + 2

3α, then there is no (randomized) polynomial-time recovery blackbox An :

R
Nn×Nn →

(
Nn

Kn

)2
=: (Ŝ, T̂ ) such that |Ŝ⋂S| + |T̂ ⋂T | − 2Kn ∈ o(Kn) with probabil-

ity greater than 0 asymptotically with A applied over the distribution on the Bi-clustering

instance conditioning on S, T and the uniform prior distribution S ⊥⊥ T ∼ Unifn(k).

3. If β < 1
2 + α, then there is no polynomial-time refutation blackbox An : RNn×Nn → {0, 1}

such that A returns 0 with asymptotically positive probability applied on N (0, 1)⊗n×n and

returns A(M) = 1 if there is a k × k submatrix S in M with mean at least k2µ.

We finally comment that the detection boundary is µ ∈ ω̃(n/k2) from the same reduction and hence

the detection problem is computationally easy when β > 1
2 + 1

2α.

G.2. Detection-Recovery gap in BSPCA

Theorem 41 (Recovery Hardness in BSPCA) Let α ∈ R and β ∈ (0, 1). There exists a sequence

{(Nn,Kn, Dn, θn)}n∈N of parameters such that: (assuming the k-PC detection hypothesis)

1. The parameters are in the regime

lim
n→∞

log θn
logNn

≤ −α, lim
n→∞

logKn

logNn
≤ β

2. If α > β − 1
2 > 0, then there is no randomized polynomial-time recovery blackbox ϕn :

R
Dn×Nn →

([Nn]
k

)2
such that the probability that ϕn recovers exactly the pair of latent

row and column supports of an instance from BSPCA(Nn,Kn, Dn, θn) is greater than 0

asymptotically, where the supports are independently distributed from the uniform prior.
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Proof The proof follows from the following lemma:

Lemma 42 (Random Rotation ± Lemma 8.7 in Brennan et al. (2018)) Let τ : N → N be an

arbitrary function with τ(n) → ∞ as n → ∞. There exists map ϕ : Rm×n → R
m×n that sends

ϕ(N (0, 1)⊗m×n) ∼ N (0, 1)⊗m×n and for any unit vectors u ∈ R
m, v ∈ R

n we have that

dTV

(
ϕ
(
µ · uv⊤ +N (0, 1)⊗m×n

)
, N

(
0, Im +

µ2

τn
· uu⊤

)⊗n
)

≤ 2(n+ 3)

τn− n− 3
∈ o(1)

We defer the proof to Brennan et al. (2018) and focus on the reduction forward. Note that the left-

hand side can be viewed as the asymmetric biclustering distribution, thus combining Lemma 39 and

Lemma 42 with Lemma 18 we get a polynomial-time map A such that:

dTV(A(PDS(n, u,
1

2
+ ρ,

1

2
)),N (In +

µ2

τn
uuT )) = o(1).

Now the only thing left is to define precise parameter correspondence to apply Theorem 11.

Consider the following set of parameters (let γ := β − 1−α
2 ):

Kn ∈ Θ̃(Nβ), ρn ∈ Θ̃(N−γ), Nn = Dn = N, µn =
log(1 + 2ρn)

2
√
6 logN + 2 log 2

, θn =
k2nµ

2
n

τn

Observe that because ρ → 0, log(1 + 2ρ) ∈ Θ(ρ) and thus µn ∈ Θ̃(ρn), one can easily verify that

the conditions are equivalent to:

lim
n→∞

log(K3
nρ

2
n)

log(Nn)
= 1− α+ β < 1.5

thus we can apply Theorem 11, which concludes that no polynomial black-box can successfully

recover the planted instance u here.
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