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Abstract

Planted Dense Subgraph (PDS) problem is a prototypical problem with a computational-statistical
gap. It also exhibits an intriguing additional phenomenon: different tasks, such as detection or re-
covery, appear to have different computational limits. A detection-recovery gap for PDS was sub-
stantiated in the form of a precise conjecture given by Chen and Xu (2014) (based on the parameter
values for which a convexified MLE succeeds), and then shown to hold for low-degree polynomial
algorithms by Schramm and Wein (2022) and for MCMC algorithms for Ben Arous et al. (2020).

In this paper we demonstrate that a slight variation of the Planted Clique Hypothesis with secret
leakage (introduced in Brennan and Bresler (2020)), implies a detection-recovery gap for PDS. In
the same vein, we also obtain a sharp lower bound for refutation, yielding a detection-refutation
gap. Our methods build on the framework of Brennan and Bresler (2020) to construct average-case
reductions mapping secret leakage Planted Clique to appropriate target problems.

Keywords: Average-case Complexity, Planted Clique, Algorithmic Hardness

1. Introduction

The last decade has witnessed a dramatic shift in our understanding of the fundamental limits of
high-dimensional statistics problems. Rather than the statistical limit being the most relevant quan-
tity governing the minimum amount of data or signal strength needed to solve a problem, it has
emerged that for many problems of central importance there is a distinct and often much larger
computational limit at which computationally efficient algorithms begin to succeed. Berthet and
Rigollet (2013) showed how a statistical-computational gap for a binary variant of sparse PCA
follows via reduction from the planted clique hardness conjecture (Conjecture 1), spurring intense
research activity (see, e.g., Brennan and Bresler (2020) and references therein).

In this paper we investigate how the computational complexity of different tasks, including
detection, recovery, and refutation, can vary even for the same statistical model. The phenomena of
interest are exemplified by the Planted Dense Subgraph (PDS) problem, defined next.

Planted Dense Subgraph (PDS). A sample from the distribution PDS(n, k, p, ¢) is obtained by:
1. Sample G ~ G(n, q) an Erdés-Renyi graph with edge density gq.
2. Select a subset S of vertices uniformly among the (2) subsets of size k.
3. Re-sample edges with both endpoints in .S independently, including each with probability

p>q.
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The detection (or decision) problem is to decide, given a graph (G, between the two hypotheses
Hy:G~G(n,q) and H;:G ~ PDS(n,k,p,q). (1)

The recovery problem is to (exactly) find the planted support S. (Weaker notions of recovery can
be found in Section 1.4.)

The special case of PDS where p = 1 is known as the Planted Clique (PC) problem. Let
G(n,k,p) = PDS(n, k, 1,p). We denote by PCp(n, k, p) the problem of deciding between

Hy:G~G(n,p) and H;:G~ G(n,k,p).

Both detection and recovery have efficient (polynomial-time) algorithms whenever £ = Q(y/n)
(Alon et al. (1998)), but a growing body of evidence (Barak et al. (2019); Feldman et al. (2017))
suggests that these problems become hard for clique size k = n” with 8 < 1/2.

Conjecture 1 (PC Conjecture) Fix constant p € (0,1). Suppose that {A,} is a sequence of
randomized polynomial time algorithms A,, : G, — {0, 1} and k,, is a sequence of positive integers
satisfying that lim sup,,_, . log,, k, < % If G is an instance of PCp(n, k, p), then

liminf (P, [An(G) = 1] 4+ Py, [An(G) = 0]) > 1.

n—oQ

In our work, we will use a (stronger) variation of this assumption proposed by Brennan and Bresler
(2020) where some structural information of the planted clique is assumed (the secret leakage). See
Conjecture 4 and the associated discussion.

1.1. Computational feasibility of PDS

PDS Detection. Feasibility of detection in PDS is described by a phase diagram (see Fig. 1)
indicating for each possible parameter choice whether the problem is: (1) information-theoretically
impossible, (2) solvable in principle but computationally hard, or (3) solvable in polynomial time.
Complete phase diagrams were shown by reduction from PCp in the regime ¢ = O(1) by Ma
and Wu (2015)!, for the sparse regime p = cq for constant ¢ and ¢ = 1/poly(n) by Hajek et al.
(2015a), and by Brennan et al. (2018) for a general regime interpolating between the two. Despite
the similarity between PCp and PDS p, it is non-trivial to construct reductions that are tight against
algorithms, since PDSp exhibits a trade-off between subgraph size and signal strength.

In all of the above parameter regimes, whenever k& = w(/n) the optimal polynomial-time test
Tsum simply compares the total number of edges to a threshold. A second moment calculation
shows that

kK'(p —q)?
Tsum succeeds w.h.p. if ————— =w(1).
o P =g~
By its nature, success of the sum statistic yields no information whatsoever about the location of the
planted dense subgraph. What can be said about recovery?

1. In the regime ¢ = ©(1), PDS is easily seen to be computationally equivalent up to log factors in the parameter values
to the Gaussian matrix model with corresponding means.
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PDS Recovery. The best currently-known algorithms (such as spectral, semi-definite program-
ming, and low-degree polynomials) for recovery turn out to require a dramatically higher signal
strength (Chen and Xu (2014); Hajek et al. (2016)). The following conjecture posits that this signal
strength is optimal for the recovery problem (Chen and Xu (2014); Hajek et al. (2015a)).

Conjecture 2 (PDS recovery conjecture) Suppose G,, ~ PDS(n, kyn, pn, qn)- If k = w(y/n) and
K (p - q)®

2T,
nq(l —q)

lim sup log,,

then no polynomial algorithm A : G — ([Z}) can achieve exact recovery of PDS asymptotically.

The lower bound in this conjecture has been shown for restricted classes of algorithms: in
Schramm and Wein (2022) for low-degree polynomials and Ben Arous et al. (2020) for Markov
Chain Monte Carlo algorithms.

Recovery lower bound via reduction? Lower bounds have been shown for a wide variety of
detection problems via reduction from PC, and for the majority of these problems recovery is algo-
rithmically feasible in the same parameter regime (to within a constant factor) in which detection
is algorithmically feasible. Yet for problems where recovery seems strictly harder than detection,
demonstrating a detection-recovery gap via reduction from PC has remained elusive. Attempts in
this direction include those of Cai et al. (2017) showing hardness for a matrix model with highly
correlated entries (different from the independent edges in PDS*), and Brennan and Bresler (2020)
showed that the conjectured recovery lower bound follows from the PC conjecture for a semirandom
variant of PDS where an adversary may “helpfully” remove edges outside of the dense subgraph.
The main question motivating our work is:

Can a detection-recovery gap be shown for Planted Dense Subgraph via reduction?

A first conceptual challenge is that, as shown by Alon et al. (2007), detection and recovery for
PC are equivalent. What this means is that the detection-recovery gap appearing in PDS is inherent
to PDS, and in particular, we cannot simply map from PC detection and PC recovery separately.

In fact, our reductions will still map to detection problems (with implications to recovery). But
we cannot simply map to the PDS detection hypotheses PDSp: Otherwise, we would be map-
ping a conjecturally hard instance of PC to an easy instance of PDSp! Our goal in this paper is
considerably more modest than to refute the planted clique conjecture, so we must find another way.

1.2. Contributions

In this work, we will utilize the insight that by constructing different statistical models with simi-
lar underlying properties, tailored to corresponding inference tasks, we can go beyond the simple
detection boundary to prove tighter results. Our main contributions are:

* We present the first reduction-based evidence of a computational detection-recovery gap (Corol-
lary 11) for recovering the hidden community in planted dense subgraph, via an average-case
reduction from Planted Clique with secret leakage (Conjecture 4).
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Figure 1: The pictures above (left: Detection vs Refutation; right: Detection vs Recovery) concerns PDS(n, k, p, q)
when p, ¢ are bounded away from 0 and 1, and k € ©(n?), D1 (p|lq) € ©(n~*), where E denotes easy, H
(computationally) hard, and I (statistically) intractable, hence the orange (computationally easy to detect
but hard to refute/recover) is our main results. Our statistical EI and computational characterization
of refutation (left) in this density regime are both novel. The orange-white region in the right denotes the
conjectural regime, where we close for orange and leave white open.

* We show how detection hardness for the two-community Imbalanced Stochastic Block Model
(ISBM), shown by reduction from Conjecture 4 by Brennan and Bresler (2020), can be used
to obtain a log-optimal lower bound on refuting dense k-subgraphs in G(n, p) and Gaussian
principal submatrix with large mean. This matches the algorithm-specific results of Barak
et al. (2019) and Jones et al. (2021) and shows a reduction-based detection-refutation gap.

» Combining our results with existing reductions yields analogous results also for other average-
case planted models such as Gaussian biclustering and biased sparse PCA. This yields detection-
recovery gaps for these problems and answers a question from Brennan et al. (2018).

* Finally, we also give insight into the relationships between the statistical boundaries for the
above problems, including showing a nearly sharp limit on refuting densest k-subgraphs in
Erd6s Rényi Graphs via a novel reduction from recovery.

1.3. Reductions and Other Evidence for Hardness

Average-case Reductions. We will define an (average-case) reduction (in total variation) from
two source distributions Py, P; to target pair (Jg, )1 as a (random) polynomial-time computable
map P such that the pushforward dpy(®(F;),Q;) = o(1) for ¢ = 1,2. The implication is that
if Py, P, are computationally hard to distinguish, then the same holds true for (g versus (J1: any
poly-time algorithm A for the latter task would yield a poly-time algorithm .A o ® for the former by
composing with the reduction, contradicting the presumed hardness of Py versus P;.

While reductions form the bread and butter of complexity theory, there is a general sentiment
in the community that average-case reductions are notoriously delicate. Such reductions must not
only map to a valid problem instance, they must precisely map entire probability distributions.

The upside is that reductions can give the strongest possible evidence for computational hard-
ness, and moreover, they demonstrate a connection between two formerly disparate problems which
is often of interest independent of hardness. We refer to Brennan and Bresler (2020) for a review of
the reductions literature.
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Algorithm-specific hardness There have been numerous results showing lower bounds for classes
of algorithms and we mention a few of the results that relate to PDS. In Barak et al. (2019), a
lower bound for refutation of large cliques in G(n, %) was shown for the Sum-of-Squares hierar-
chy. Schramm and Wein (2022); Rush et al. (2022) sharply characterize the power of low-degree
polynomials for recovery in PDS. The overlap gap framework, introduced in Gamarnik and Sudan
(2014), connects algorithmic infeasibility with properties of the solution space geometry (see also
Gamarnik (2021); Gamarnik and Zadik (2019)). Other relevant results include that of Feldman et al.
(2017) on the statistical query model analyzed in the case of a bipartite “samples” version of PC and
Brennan et al. (2021) relating the power of low-degree polynomials and the statistical query model.

1.4. Inference tasks beyond decision

Denote by Hy the null hypothesis (usually an Erd6s-Rényi Graph), and H; is a graph with a
planted structure with support v € {0,1}". Consider a valuation function val on graphs such that:
Py, (val(G) < § —€) and Py, (val(G) > 6 + €) are both 1 — 0,,(1). In the case of PDS, val is the
densest-k-subgraph density. Consider the following:

Refutation A refutation algorithm with success probability p is a (randomized) algorithm .4 sup-
ported on all graphs of size n:

e Ifval(G) > & + ¢, then A(G) = 1.
* For G ~ Py, (- |val(G) < 6 — €), output A(G) = 0 with probability at least p.

Recovery Let 7 be a distribution over size k planted supports v € {0, 1}", and for each v let P, be
a distribution over planted graphs. Let G ~ P = E,, . P,. A recovery blackbox A : G — {0,1}"
is said to achieve

1. Partial recovery:  1If E[vT A(G)] = Q(||v[|1).
2. Weak recovery: 1f EvT A(G)] = ||v]|1 — o(||v||1).
3. Exact (precise) recovery:  If P[A(G) = v] = Q(1).

In most models we consider, these variants of recovery only differ in sub-polynomial factors (via
reduction in Appendix C). We further remark that a refutation algorithm is only evaluated on the
input distribution Hy, whereas a recovery algorithm is only evaluated on the distribution H;. The
latter fact was leveraged by Schramm and Wein (2022) and both will be crucial to our proofs.

Lemma 3 (Informal, see Lemma 22) For any ffo that does not have a k-subgraph with density

above pTJrq with high probability, weak recovery oracles nontrivially distinguish Hy, H; = PDS.

1.5. Planted Clique and Secret Leakage

We require a slight modification of the planted clique conjecture, proposed by Brennan and Bresler
(2020): Instead of a uniformly located clique, the clique is sampled according to some distribution p
over the (Z) possible clique positions. One may interpret this as a form of secret leakage, whereby
some information about the clique position has been revealed to the algorithm.

The form of secret leakage we will use in our reductions is k-PCp(n, k,p), where there is
some fixed (known) partition E of [n] into k equally-sized subsets, and under H; the planted set
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is obtained by selecting exactly one node uniformly from each part. We refer to the corresponding
hardness assumption as the k-PC conjecture.

Conjecture 4 (k-PC Conjecture) Fix constant p € (0,1). Suppose that {A,} is a sequence of
randomized polynomial time algorithms A,, : Gy, — {0, 1} and k,, is a sequence of positive integers
satisfying that lim sup,,_, . log,, k, < % Then if G is an instance of k-PCp(n, k, p), it holds that

lim inf (P, [4,(G) = 1] + Py, [4(G) = 0]) > 1.

We refer to Brennan and Bresler (2020) for a general leakage PC conjecture and supporting evi-
dence. When the amount of leaked information is small enough, both low-degree polynomials and
statistical query algorithms succeed only above the same /n clique size as in ordinary PC.

Remark 5 (Binomial planted set) In the literature it is sometimes assumed that the planted set is
of fixed size k, and other times it is of binomial size (where each node is planted with probability
k/n independently). We use a fixed size k and note that all of our (hardness) results extend to corre-
sponding binomial versions by virtue of closeness of the hypergeometric and binomial distributions
in appropriate parameter regimes (which can be understood as an instance of a finite de Finetti type
theorem Diaconis and Freedman (1980)). In particular, one may carry out a reduction by keeping
a random o(n) sized fraction of the nodes and discarding the rest.

2. Reduction Techniques Overview

2.1. Selecting hypotheses

As discussed in Section 1.1, we cannot map to the standard two PDS hypotheses. A key insight
from Section 1.4 is that while detection concerns both Hy and H, all other tasks deal with only one
of the two hypotheses. Specifically, for any pair of hypotheses with distributions satisfying the val
criteria, recovery algorithms are only evaluated on an input distributed according to H and not Hy.
To this end, we are free to select qualifying “quiet” hypothesis Hy that is not Erdés-Renyi such that
it has a harder decision task and imply stronger recovery lower bounds. Similarly, for refutation we
may map to H; that is different from the standard Hj. B

Now, suppose that we want to map from the two hypotheses in PC to Hy, H; in a target graph
such that Hy is PDS (so that a recovery blackbox enables us to test between ﬁfo and Hq). We have
the following naturally competing constraints:

1. For arecovery blackbox to achieve detection, val(()| g, has to be small with high probability,
suggesting the fact that Hy has to be far from H;, with respect to some metric.

2. We need to construct a reduction. From a data-processing inequality perspective, this means
that Hy has to be closer to H; than the distance between source hypotheses.

It turns out that for recovery, the correct Hy is extremely hard to find (Appendix B in Schramm and
Wein (2022)), and even for good H, candidates, constructing a tight reduction seems challenging.
However, we will show that by changing Hy to simply match the first-moment in H;, one can
achieve a H realizing a non-trivial gap between detection and recovery in PDS, while still being
feasible for us to map to from PC. Changing H, as we do here was also analyzed for the case of
low-degree polynomials by Schramm and Wein (2022). Note that Brennan and Bresler (2020) in
their result on semirandom PDS modified Hy, rather than H(, and we will use this same reduction
to demonstrate a detection-refutation gap. We define the following models:
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Mean-corrected Planted Dense Subgraph (PDS*). Consider PDS with Hy modified to prevent
success of the obvious first moment test. Consider edge strengths ¢ < pg < p and size k such that

n2
Po=q+y=p-— <ﬁ—1)7

and define PDS™(n, k, p, q) as hypothesis testing between
Hy: G~ G(n,pp) and H;:G ~ PDS(n,k,p,q). )

Imbalanced Stochastic Block Model (ISBM). Consider a two-community Stochastic Block Model
ISBM(n, k, P11, P12, P22) to be the graph model generated by sampling S; ~ ([Z]) and Sy =
[n] \ S1. Connect nodes u € S;, v € S; with probability P;; = Pj;. Moreover, we force the degree
constraints on each node

n-PO:k-P11+(n—/<:)~P12:k~P12+(n—k)-P22
and formulate the decision problem ISBMp as (let r = n/k):
H() . GNG(TL,P()), H1 . GNISBM(TL,T,PH,PH,P22>. (3)

This model can be considered as a mean-field analogue of recovering a first community in a general
balanced r-block SBM model (keeping one block while averaging out the rest).

2.2. Signal transformation

We start our reduction by viewing our problem as a planted bits problem, which is simply a vector
v ~ Bern(q)®™ with planted bits v; ~ Bern(p) at the index set I C [n]| with a different bias.
Concretely, because of the one clique vertex per partition assumption of k-PC, each 7 x 7 block of
the adjacency matrix has a single planted 1 entry. All of the reductions we consider can be viewed
as mapping a set of planted bits to another desired target set of planted bits with a larger planted
size and specific biases.

The difficulty at the core is thus the following: how to transform the planted bits distribu-
tion with unknown location to a desired target distribution while not losing signal-to-noise ratio
(measured by the KL-divergence) between planted and null bits and the size of planted location 1
(Brennan et al. (2019)), so that the target instance remains at the threshold of algorithmic feasibility.

As in Brennan and Bresler (2020), we will use Gaussian distributions as intermediate steps in
transforming from k-PC. While Bernoulli data are challenging to non-trivially transform without
signal loss, we will leverage the nice behavior of Gaussians under linear maps, enabling us to
carefully control the added noise within the transformation (as discussed in the next subsection).

To see the approximate equivalence between Gaussians and Bernoulli variables, we note that a
Gaussian N (1, 1) can be readily mapped to Bern(®(u)), where @ is the Gaussian CDF, by thresh-
olding at 0. If ;4 < 1, the KL-divergence decreases only by a numerical constant factor independent
of p. In the other direction, a rejection sampling procedure can map a pair of Bernoulli variables to
a pair of Gaussians with little information loss®:

2. Note that both models contain a dense subgraph (high val), and PDS™ is just a translated PDS.
3. This process introduces a log-factor, which is the (only) reason in later sections we ignore poly-log factors in rates.
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Lemma 6 (Gaussian Rejection Kernels — Ma and Wu (2015); Brennan et al. (2018)) Let R be

a parameter and suppose that 0 < ¢ < p < 1, min(q,1 — q¢,p — q) = Q(1). Suppose that
)

#o< (1 A 2\/610gR+2log(p7q)_

RK(+) can be computed in poly(R) time such that the push-forward maps satisfy

-) where § = min {log (%) ,log (}_%)} , then there exist map

drv (RK(Bern(p)), N(u,1)) = O (R™®) and drv(RK(Bern(q)),N'(0,1)) =0 (R7%).

Now that we have a Gaussian signal with planted mean, we apply a rotation (treating the en-
tire matrix as a vector). Specifically, in Brennan and Bresler (2020) the following process BERN-
ROTATIONS was introduced to transform an instance of A/ (v, I;) where v € R’ contains signal.

1. We right-multiply the Gaussian vector by a design matrix A € R™, which yields vA +
N (0, AAT). Denote the square of the top-singular value of A to be A\ = 0%(A).

2. On the re-scaled result vector N'(A~'/2vA, AAT /), we can add a Gaussian noise N/ (0, I —

AAT /)) independent of 1 to get exactly N (%, I,,)), which has unit variance.

In short, we transform signals as mean vectors of isotropic Gaussian distributions by rotating the
space and paying an extra whitening noise to produce an isotropic distribution again.

Lemma 7 (Dense Bernoulli Rotations — Lemma 8.1 in Brennan and Bresler (2020)) Let m and
{ be positive integers and let A € R be a matrix with singular values all at most X > 0. Let R,
0 < q<p<1andpubeasin Lemma 6. Let A denote BERN-ROTATIONS applied with rejection
kernel parameter R, Bernoulli biases 0 < q < p < 1, output dimension m, matrix A with singular
value upper bound \ and mean parameter pi. Then A runs in poly(¢, R) time and

drv (A(PB(4,i,p,q)), N (uA™ - A3, 1,)) = O (¢- R™?)
dry (.A (Bern(q)g’e) , NV (0, Im)> =0 (t-R7%)

for all i € [{), where A; is the ith row of A and PB({,1,p, q) is the distribution on {0,1}®* where
the ith bit is sampled from Bern(p) and all others from Bern(q) independently.

As noted earlier, with the k-PC constraint we have 2 different blocks, given by the partition,
where each block has exactly one planted bit. This allows us to view the entire k-PC matrix as a
collection of PB problems and apply BERN-ROTATIONS on each (n/k) x (n/k) matrix (¢ = n?/k?).

There are two remaining things to consider. Firstly, how to get from Gaussians back to Bernoullis
and the final output, and secondly, what criteria does our design matrix A € RF**** have to follow.
For the first step, as noted above, transforming A/(0, 1), (v, 1) to two Bernoullis by thresholding
at 0 will not lose too much information measured by drv when g is small, and the transformed
signal will be approximately Bern(0.5) and Bern(0.5 + \/%) since the Normal CDF is continuous.

To deal with the other part, we need each row of A to map directly to the edge density parameter
of output. Specifically, for any (unknown) input PB instance, it gets mapped to an unknown row of
A, which then becomes the output PDS mean. Our design in A is thus formulated as: how to find a
suitable A such that each row of A corresponds to a possible mean adjacency matrix in target PDS.
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2.3. Design matrices

We first remark that the key factor in BERN-ROTATIONS is the added noise N'(0,1 — AAT /),
which will in fact be the only part of our reduction process that may introduce irreversible signal
loss. Consequently, we want to construct matrix A such that I — AA” /X is as small as possible: A
has to be close to an isometry. Let us first assume that o(A) = 1 for simplicity.

As an example, suppose one wants to map from k-PC to the Gaussian version of PDS (i.e.,
N (v,1)®F>F planted in N(0,1)®"*") with tight recovery boundary such that k2742 ~ n. As
k-PC contains at most n planted bits yet the squared £ norm of the target mean matrix is exactly
k%242 = Q(n), the sum of squared £, norms of the n column vectors A; being mapped to should
be at least ©2(n), which (informally) implies that the design matrix A has to be an almost perfect
isometry given o(A) = 1.

Having independently generated random columns would allow to apply random matrix spectral
bounds. For example, a matrix with i.i.d entries from some fixed distribution was used by Brennan
and Bresler (2020). They proved that this methods achieves the desired spectral bound, but each
column has a random number of planted bits resulting in binomial planted size rather than the
desired fixed size (c.f., Remark 5).

Viewing the design matrix structure as the adjacency matrix of some graph, where i.i.d. matrices
corresponds to Erd&s-Rényi graphs, a natural alternative is regular graphs. These satisfy our fixed
size constraint. Moreover, considering the tight recovery reduction again, one also needs all rows
to have squared norms of O(1) while summing up to 2(n), making it an implicit regularization in
our construction that all row norms have O(1) norm. This fact provides a crucial motivation into
directed regular graph models for generating matrices such that the row norms and column norms
align, and the columns are roughly independent (i.e. perpendicular).

2.4. Singular value from recentering

We will now focus on what happens in each sub-block with size m = n/k given by partitioning
k-PC, and treat it as our main target.4 A line of works (Tikhomirov and Youssef (2019); Le et al.
(2015)) have given high probability bounds on the spectral norm ||A —E(A)||,, of adjacency matrix
A for a random graph G with given degree distributions (planted signal). Here we consider when
A is the adjacency matrix of a directed d-regular graph (each node has out-degree and in-degree
exactly d). In this case the operator norm of concentration can be expressed with the second largest
singular value of A. In Tikhomirov and Youssef (2019), a (tight) high probability upper bound on
the said quantity has been proven when m® < d < m/2 we have |s2(A)| < CynV/d with high
probability. With this result, we can establish the following lemma that will lead to the ultimate
design matrix by taking the (translated) Kronecker product to make it m? x m?:

Lemma 8 (Random matrix with regular constraints) Given constant o > 0, there exists a con-
stant Cy, such that for a m x m (random) matrix R = Ry, 1 where r < m!'=% is an even divisor
of m, with entries sampled from the following procedure:

1. Sample G uniformly from all directed m /r-regular graphs with size m.

2. Rjj = % +leeE6 /5 for § # i off diagonal, R;; = ﬁ on the diagonal.

4. With a slight abuse of notations, we note this is different from the target planted size in PDS.
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Then with probability 1 — oy, (1) this matrix satisfies ||R||op < Ca.

This (centered) matrix has a nice property in that it is an approximate isometry, where each row has
=1 fraction of —y = —1//mr and 1/r fraction of (r — 1)y with norm 1. However, it is not yet in
the form we target (recall that we want to each column to map to the mean of the m x m adjacency
matrix of a graph). It is natural to view the target PDS density as a translated rank-1 product of
vectors (since it has one k£ x k elevated submatrix with uniform signal). Therefore we will simply
take the Kronecker product to result in a m? x m? matrix, which creates at the (7, 7)th columns
RT R;j where R; are the rows of the m x m matrix.

However, the canonical rank-1 PDS formulation is not centered, having zeroes everywhere
outside of the planted submatrix and elevated ones signal inside. To map to this instance, we first
need to transform the centered signal R — %(R + ) so that we get "* ones in an all-zero vector
for each row in R before taking the rank-1 product to get a 7+ x “* submatrix of ones inside m x m
zeroes. This would make sure that the design matrix has exactly two different values. Unfortunately,
doing so results in a product matrix that is guaranteed to have a large operator norm (since the output
PDSp is easy), explained intuitively because now our matrix is not centered.

To obtain a tighter spectral radius, it is natural for us to recenter the product matrix so that
it has zero mean per column, corresponding to exactly PDS*. This provides a justification from
a design matrix perspective of why PDS™ is probably harder than PDS: re-centering the design
matrix decreases spectral norm, which results in a higher signal strength at the output.

Lemma 9 (Construction of (fixed size) random Krln/ ") For given o, exist absolute constant C, >
0, such that for every m > r > 2 where r < m!'~% divides m, there exist m subsets Ay, Ay, ..., Ay,
of [m] such that |A;| = 2, and that the m* x m?* matrix Kj) ) : i,7,k,1 € [m] defined as

T

Kij), ety = Br/ 77 (1kea, and I€A; * 77 — %) has largest singular value at most 1. Specifically,

1 1 1
KV = K = |~ (R+ ——J)® (R J——J®J
m M\/m[( T ) @By o) - T @

where J is the all-one matrix and R satisfies the criteria from the previous lemma (. = (Co+1)72 €
O, (1)). With probability 1 — 0,,(1) we can find a satisfying assignment in polynomial time.

3. Hardness of Detection in Mean-corrected Null

We are now ready to state hardness for the degree-1 corrected null hypothesis testing problem PDS*
by constructing an average case mapping. We refer to Figure 2 (Theorem 27) for the full reduction.

Theorem 10 (Lower bounds for efficient PDS* detection) Consider hypothesis testing PDS™ for
Hy : G(n,po) versus Hy : PDS(n, k, q,p) where pg = p — (Z—; — 1)y = q + . Let parameters
po € (0,1), a €[0,2),8 € (0,1) and B < 5 + 2cv. There exists a sequence {(Ny, Ky, pn, qn)} of
parameters such that:

« The parameters are in the regime p — q € O(N~%), K € ©(N?). Formally,

1 — 1 -1
lim w:—a, lim —* =3, lim log(pn — gn) "

n—oo  log N, n—oo [N, n—00 log N, -

10
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e For any sequence of (randomized) polynomial-time tests ¢,, : Gn, — {0, 1}, the asymptotic
Type I+11 error of ¢, on PDS*(Ny, Ky, Dy qn) is at least 1 assuming the k-PC conjecture.

Furthermore, we note that there exists a matching upper bound for PDS7, based on the empirical
variance of degrees (see Proposition 26 for the precise result).

Recall that as discussed in Section 1.4, any recovery oracle (on H; = PDS%;,, which is the same
as PDSy, ) detects between Hy : G(n,po) versus Hy : PDS(n, k, ¢, p) on its supported parameters,
implying a natural upper bound on the decision problem. Combining Theorem 10 with Lemma 3,
we obtain our main (lower bound) result for the signal strength required for recovery.

Corollary 11 (Recovery Hardness for PDS) Let parameters py € (0,1), a € [0,2),8 € (0,1)
and o < B < % + %a,. Then for any po € (0,1) there exists a sequence {(Ny, Ky, Pn,qn)} of
parameters such that the following holds:

« The parameters are in the regime y := |p — q| € O(N~*), K € O(NP).

* For any sequence of (randomized) polynomial-time algorithm ¢,, : Gn, — ([%:]) ¢n cannot
achieve asymptotic exact recovery on PDS(Ny,, Ky, pn, qn) assuming k-PC.

We remark that the constraint o < 3 comes from the fact that recovery is statistical impossible
at @ > [ (see Theorem 24). For completeness, we refer to the appendix (Theorem 31) for an
extended discussion on the statistical boundaries associated. Moreover, we remark that in light of
our recovery to detection reduction framework, the detection-recovery gap can in fact be viewed as
a detection (PDS) - detection (PDS™) gap.

4. Hardness of Refutation
4.1. Detection hardness for ISBM

As before, given that a refutation blackbox only operates on Ho, we want to find some “quiet”
distribution H7, such that it has the correct valuation but is hard to distinguish from a null instance.
We will propose the ISBM model (3) in this section as a qualifying planted distribution. Due to
the rank-1 nature of its bias structure, it is easy to construct design matrices by just taking the per-
column rank-1 product from Lemma 8, hence hardness result can be proven similar to Theorem 27
with a reduction. As in the proof of reduction to PDS*, we can then generalize to the complete
boundary in ISBM detection, leading to refutation hardness. This is an extension of Theorem 3.2 in
Brennan and Bresler (2020) where their (deterministic rotation kernel) reduction only works with a
number-theoretic constraint restricting the parameters. Our results extend to the full boundary line
by the regular concentration lemma on random matrices.

Theorem 12 (Hardness of detection in ISBM) Consider hypothesis testing ISBMp (3) where
k = n/r is the planted size. Let parameters py € (0,1), a € [0,2),8 € (0,1) and 8 > 3 — cv.
There exist a sequence {(Ny, Ry, Pl(?), P1(;L ), PQ(; ) )} of parameters such that:

« The parameters are in the regime |P1y — Py| € ©(N~®), R € O(NP).

* For any sequence of (randomized) polynomial-time tests ¢, : Gn,, — {0, 1}, the asymptotic
Type I+11 error of ¢y, on the decision problems ISBMp(N,,, R, Pl(?), Pl(g ), PQ(Q )) will be at
least 1 assuming the k-PC.

11
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4.2. Refutation hardness for planted dense subgraph in G(n, p)

Equipped with the hardness results in ISBM, which has a large dense subgraph and thus can be used
as a candidate H; in refutation, we obtain the formal refutation hardness results similar in how we
showed recovery hardness from a reduction with refutation (recovery) oracle:

Theorem 13 (Hardness in refutation of PDS in the dense regime) Consider the refutation prob-
lem for Hy : G(n,po) and val function v(G) defined as the edge density of the largest k—subgraph.
Let parameters py € (0,1), a« € [0,2),8 € (0,1) and 8 > % — a. Then for any sequence of
parameters {(Ny,, Ky, pgn)} satisfying:

« The parameters are in the regime py — py € O(N~%), K € O(NP).

* No sequence of (randomized) polynomial-time algorithms ¢,, can achieve refutation with
asymptotic successful probability strictly above (.

Finally, we note that a matching (computational) upper bound can be constructed via a semi-definite
programming relaxation (see appendix). Moreover, we also show that the statistical boundary for
refutation lies exactly as that for recovery from applying a reduction to (statistical) recovery.

Theorem 14 (Statistical bounds for refutation) Consider refutation problem for G ~ G(n,pg)
and val function v(QG) defined as the edge density of the largest k—subgraph. Assuming that py is
bounded away from 0 and 1, and k € ©(n") for some vy € (0.5, 1), then:

» When kD 1,(p||lpo) € w(1), the densest k subgraph val(G) < p with probability — 1.

o When kD1 (p||po) € 0(1), the densest k subgraph val(G) > p with probability — 1.

Remark 15 The problem of densest-k-subgraph in G(n, %) was very recently solved in Cheairi
and Gamarnik (2022) with deep techniques from Bernoulli Disorder. However, here we can derive
a log-optimal result using statistical reductions from recovery boundaries.

5. Biclustering and Biased Sparse PCA

We point out a couple of other random models that have a detection hardness gap as an implication
of PDS hardness guarantees. Those connections were first observed in Cai et al. (2017); Brennan
et al. (2018) but under the conjectural tight hardness bound and Schramm and Wein (2022) with
low-degree polynomials.

Bi-clustering This model is planting a k£ X k (not necessarily principal) submatrix and can be
formulated as the following Gaussian detection problem:

Ho:Z ~N(0,1)%™"  Hy:Z ~ N(0,1)" 4 \upT “4)
where u,v ~ Bern(k/n)®™ (or uniform from all subsets of size k) independently. The recovery

problem is to localize the latent vectors u, v given an instance Z ~ A (0,1)®"*" 4+ \uv™, and the
refutation is to refute submatrices with large mean.

12
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Biased SPCA Consider the spiked covariance model where v is a k-sparse unit vectors with non-

zero entries equal to & i

Hoy: X1,Xo,..., X ~N(0,1;)®" and

®n k
H1:Xl,Xz,...,Xn~J\/’<0,Id+9mT> where Hv[f{—z‘ >4k (5)
The recovery task is to estimate supp(v) given observations X1, Xo, ..., X,, sampled from H;.

Specifically for this variant where the sum test can be shown optimal for detection, our result implies
a detection-recovery gap which is lacking in its general unbiased form.

6. Open Problems
We point out two open problems related to our work:

1. Construct “quiet” Hy hypotheses without any dense subgraphs that are hard to distinguish
from PDS in order to resolve Conjecture 2. This would also imply a detection-certification
gap as well as Conjecture 2 itself.

2. Can one can construct the inverse of the reduction of Remark 5, from a binomial version of
PDS to the fixed sized PDS? This would show equivalence of the binomial and fixed versions.
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Appendix A. Notations and Preliminaries

We briefly introduce the notations. We use £(X) to denote the law of a random variation X,
drv, Dir,x? to denote the total variation distance, KL-divergence, and y? divergence. Specifi-
cally we shorthand d(Bern(p), Bern(q)) := d(p, q) for Bernoullis with bias p, . We use the O(-)
notation to denote big-O ignoring log-factors. For instance, r € W(n) means r € w(n log® n) for
any constant k, r € Q(n) means r € Q(nlog®n) for some k, and O, o likewise. Specifically,
O(n) = O(n)NQ(n). We use [L; P; to denote the tensor product of distributions, specifically
Pk = Hf:l P.

For a given partition F of [n] to k sets, we use U,,(F') to denote the uniform distribution of
k-subsets of [n] with each element in one of F;. We let Unif,,(k) to denote the uniform distribution
over all k-subsets of [n|. For a planted structure distribution, we use M4 p(S x T, P,Q) to
denote planted structure on community A x B with a planted submatrix S x 71" where the in-
community entries sampled from P and otherwise from (). Specifically, if A = B and § =
T are unknown sampled from P, denote M axp(P, P, Q) = Egwp (Maxp(S x S, P,Q)) the
symmetric planting.

We use A® B € R"**"” for matrices (4, B) € (R"*", R"*") to denote the Kronecker product
between A, B. We usually parameterize indices of A ® B by a pair (ij) : i,j € [n] such that
(A ® B)(j),k1) = AixBji. Fixing i, j and laying out the row of A ® B as a n x n matrix, it is
exactly AZT Bj . the product of two row-vectors.

We then introduce the following (common) lemmas as preliminaries. Let f be a Markov transi-
tion kernel and P be any distribution we denote the law of f(P) the push-forward. We also use sets
in V e 2[ and vectors v € {0,1}™ interchangeably, and PDS(n, S, p, ¢) to be the planted dense
subgraph instance conditioned on planted location at set S.

Lemma 16 (Data Processing Inequality) Ler { be a Markov transition kernel and A, B be two
distributions, then:

drv(f(A), f(B)) < drv(A, B).

Lemma 17 (Tensorization of TV) Let P;, QQ; be distributions fori = 1,2, ..., n. Then:

dTv(H P, H Qi) < Z drv(P;, Qi)

Lemma 18 (Accumulation of TV distance) Consider a finite set of sequential functions on dis-
tributions A; : 1 = 1,2, ..., k. Assuming one has distributions Py, Py, Ps, . .., Py such that:

drv(Ai(Pi-1), Pi) < €

foralli=1,2,...,k, then we have:

dov(Ap(. .. AL (AL(Py))...), P) < Ze

The last lemma comes directly from data processing and induction. Next, we present a couple of
lemmas on Bernoulli distributions.
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Lemma 19 (KL divergence between Bernoullis) Assume a sequence of {p,} and {q,} such that
Gn < Pn < CGn, 1 — qn < c(1 — py,) for some constant c, then:

Dkr(pllq) :== Dk r(Bern(p)|Bern(q)) = ©(=~—).

(r—9)*
q(1—q)
the KL divergence. For the other side, note that on the support of these two distributions ({0, 1})

their ratio of density is bounded. Thus by a reverse Pinsker’s inequality the result follows. |

Proof Note that the quantity is the y? divergence between two Bernoulli, which dominates

Lemma 20 (TV divergence between Binomials) Consider two parameters p,q € (0, 1), then:

n n n(p - Q)2
dry (Bern(q)®", Bern(q)®") < Wi —q

Proof This comes directly from the Pinsker’s inequality on TV, KL, and x? divergences:

()", Bern(g)®")
2

_ \/nDKL(Bern(p), Bern(q))
2

nx?(Bern(p), Bern(q))  [n(p — q)?
= \/ 2 ~V 2(1—9g)

due to Qd?rv < D1, < x? and the factorization of D, for independent distributions. |

D B
drv(Bern(q)®", Bern(g)®") s\/ st (Bern

Appendix B. Reductions to Detection

In this section we point out that all of the inference variants considered, detection is (almost) the
weakest version of all. This can be viewed from the perspective of reductions where a blackbox
for a different task implies a blackbox for detection. Such reductions were discussed in Hajek et al.
(2015a); Barak et al. (2019); Bandeira et al. (2020); Brennan et al. (2018). Here we re-formulate
the necessary proofs:

Lemma 21 (Refutation implies detection) Consider two hypotheses Hy, H and valuation func-
tion val with separation thresholds € and gap 6. If there is an efficient refutation blackbox A with
asymptotic success probability p = lim, . p™ > 0, then (weak) detection is computationally
possible.

Proof Consider the canonical form of refutation as described in Section 1.4 with a polynomial-
timed refutation blackbox A having success probability p > 0. We show that A:

* When G ~ Hy, A(G) = 0 with probability at least p - P(val(G) < € — §|G ~ Hp), thus the
Type I error is at most 1 — p - P(val(G) < € — 6|Hp).
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* When val(G) > € + § the output is always 1, thus the Type II error is at most the probability
of a low valuation P(val(G) > € + §|Hy).

Therefore, the sum of errors is bounded above by:
1 —p- P(val(G) < € — 0|Hp) + P(val(G) > e + 6|Hy)
Note that as n — oo,
P(val(G) < e —0|Hp) — 1, P(val(G) > e+ d§|Hy) — 0.

Therefore, the detection error of this blackbox is bounded above by 1 — p(™) < 1 in the limit. This
implies that it returns a better-than-random detection asymptotically. |

Lemma 22 (Recovery implies detection) Fix two hypothesis Hy, Hy with valuation function vals
that can be computed in polynomial time given key s and define val(G) = maxg vals(G).

Assuming val(G ~ Hy) < € — § with high probability and suppose that a polynomial time
oracle (on input G) generates a key k such that valy(G) > € with high probability over G ~ Hj,
then detection is possible in polynomial time equipped with such key oracle.

Proof Consider the alternate valuation function val’ = val,, which can be computed in polynomial
time by first asking k(G) from the given oracle. From the previous lemma and the separation
conditions we know that:

1. For G ~ Hy, val'(G) < val(G) < € — § with high probability.
2. For G ~ Hy,val'(G) > e with high probability.

Therefore, val’ is a polynomial time valuation, which obviously implies that refutation on this black-
box can be done in polynomial time. By Lemma 21, we have the desired conclusion. |

Appendix C. Different Varieties of Recovery

Consider the notion of minimal recovery of strength o > 0, which is outputting a guess P for the
planted location such that R

L (ogh)"E[PN P

n—00 k
Specifically, weak recovery is just partial recovery of strength 1 and partial recovery implies minimal
recovery of strength @ — 0. We can go on to prove that with partial recovery one can achieve precise
recovery with only sub-polynomial signal boost. This means that the PDS recovery conjecture can
be weakened to only assume hardness for minimal recovery. The following lemma applies both
statistically and computationally; we will use it as a crucial reduction step to Theorem 14.

> 1.

Lemma 23 (Minimal recovery implies exact recovery) For the PDS(n, k,p,q) recovery prob-
lem when p, q are bounded by away by zero and one. If one can achieve minimal recovery with
strength o > 1 on a sequence of parameters (N, K, P, Q) in polynomial time where K, €
@(v/No) N o(N,) for some exponent vy € (3, 1), then one can achieve exact recovery on a modified
sequence of parameters (Ny, K, P,,, Q') where Q) satisfies

D r(Pn|Qn) = ©((og k)** Di (Pl @1,))-
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Proof The critical component here lies in a subroutine GRAPH-CLONE (Lemma 5.2 in Brennan
et al. (2019)) in which we generate independent graph instances conditioned on planted instance
locations. The lemma can be read off as the following form:

* Suppose we have a hidden planted location 7, and a one-time sampler from the planted distri-
bution My, (7 X 1, Bern(p), Bern(q)), then we have a one-time sampler from the tensor

product M[@f’l]?x ] (n x n,Bern(p), Bern(Q)) where @ =1 — /(1 — p)(1 — q). Specifically,
the divergence measure x2(p, Q) > %XQ (p,q).

Corollary: Suppose we have a hidden planted location 7 and as above a one-time sampler, then we
can have a sample generated from M®2 (5 x 1, Bern(p), Bern(Q)) where x2(p, Q) >

o [n]x[n]
25X (P, q)-

Note that in the case when p, ¢ are bounded away from zero and one, D (p|lq) ~ x%(p,q) ~
(p — q)? are of the same order. Therefore, with the cost of reducing (log k)2® in the distance we

can generate one instance from /\/l%\g]lig[]@]m (n x n,Bern(P), Bern(Q)) from a single instance of

the original My (n7(1 X 1, Bern(P), Bern(Q')).

Our assumption also states that we have a black box to perform minimal recovery of strength o
on My« (7 % 0, Bern(P), Bern(Q)), and we arrive at log?® k estimates of the planted ), de-
noted by 71, . . ., jg2a j, := 7)r. Moreover, given that the cloned copies are independently generated
conditioned on 7 and hence so are those 7);’s, we wish to reconstruct 7 through those independent
estimate 7);’s.

Note that it is safe to assume that any black-box takes in the input unlabeled, because we can
apply a hidden permutation 7 to the graph and feed it to the black-box instead, we know that for
each index i € 7), the probabilty that it lies in a 77 is exactly E(7) - ) /k ~ log™ k where expectation
ranges over My)x(n](n X 0, Bern(P), Bern(Q)). For each node not in 7, the probability of 7
hitting it is at most n—fk < % Therefore, if we compile a histogram of 7; hits, we have k copies of
Binom(r, vr—1) and n — k copies of (at most) Binom(r, Qn—k)

We now only need to show that when r € ©((log k)?%), the two distributions (smallest from 7
and largest from 77) separates with probability — 1. Note that the probability that Binom(r, 2k /n)
is at least constant C' is:

P(Binom(r, 2k/n) > C) <717 (%)C < (log n)2(@Fog=C01=)

Pick any C(1 — 7) > 1, then the above probability goes to 6(n~1), and a union bound over all
vertices in 7] says that with probability 1 — 0,,(1) all counts in that group is bounded by constant C'.
Now we consider the group of nodes in 7. The probability of one being bouneded by C' is

P(Binom(r, Vi) < €) < (1) (1= Vi€ = € exp (- Vi)

xT

because 1 — xz < e~*, and the union bound says that the minimum for counts in 7 is at most:

1 log k)“
kP(Binom(r, Vr—1) < C) < kr%exp (—2\/?> = exp <logk‘ - (og2) + O(log 7“)>
assuming that o > 1, the above goes to 0 as k — oo.
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Therefore, if we sum over statistics for 7);’s we get that the entries in 77 goes above any constant
with probability — 1 whereas with high probability the other entries are bounded by a constant, and
hence precise recovery is achievable via the most popular nodes. Moreover, this entire procedure
applies in polynomial time. |

We further comment that the case of when p, ¢ are not bounded away by one (“dense”) are similar,
but require some further bounds on the exponents. Here we only present proof of this dense regime.
Moreover, the condition that £ < n” instead of k € o(n) is also only needed for minimal recovery
(not required for a reduction from partial to exact), but for our purposes this is a fine assumption
to make. The condition o > 1 is to some extent unnecessary either because recovery of o implies
recovery of a™ for any a™ > «a (a > 1 is only needed for convenience in expressing signal decay).

Moreover, note that the non-homogenity of planted instance in Theorem 25 means that the direct
reduction in Lemma 23 does not apply. In fact, it will be easy to see that partial recovery for our
instance in Theorem 25 can be implied by PDS recovery.

For completeness of arguments (which will be useful in statistical bound for refutation), we also
present a statistical condition for (exact) PDS recovery in below.

Theorem 24 (PDS recovery — Theorem 2 in Hajek et al. (2015b)) Again consider the settings (and
parameters correspondence) as above, then exact recovery is statistically possible if:

kDk1(pllq)

>C
logn

and impossible if

kD
xL(pllq) <.
logn

for some absolute constants c, C.

C.1. Evidence of recovery hardness

We further remark that with some relaxed condition on the signal, one can prove tight recovery
hardness for some models on DkS (Densest k-Subgraph) valuation that resembles PDS in structure.

Theorem 25 For any k, € w(y/n),pn € (0,1), there exists a symmetric edge density matrix on
subgraphs D,, € RFn»*Fn_such that the row (and column) sums of D are uniformly k,, - \,, and the
graph constructed by:

1. On G ~ G(n,py), randomly select a subset S of vertices of size k,. Choose a random
bijection m from S to [ky,).

2. For the nodes u,v € S, resample uv with probability D (,)x () + D-

2 2
And if lim sup,,_, %m € 0(1), no (randomized) polynomial algorithm can achieve exact
recovery on the planted instance, even given the knowledge of D, assuming the planted clique

conjecture with p = 1/2.
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It is not hard to check that for this general model (where recovery is at least as hard as PDS), one can
still find a log-optimal algorithmic matching upper bound. Specifically, consider s1m£>12/ taking the
k most popular nodes (those with the highest degrees), then as long as the ratio np(lkw — 00,
the output satisfies exact recovery criteria. This result also suggest that, if PDS recovery is indeed
easier than conjectured, the algorithm must use heavily the community structure.

Proof We start from the fact that, recovery for PC is hard at the regime when detection is hard,
which is a direct implication of the PC conjecture and Lemma 22. Consider the following procedure
applied on a graph G ~ PDS(n, k,1,1/2) to obtain G’

1. Add (t — 1)k vertices to G that will be part of the (new) planted structure where t > 1 is a
specified parameter such that the total planted size is tk.

2. For the (t — 1)k extra vertices, connect each pair with probability ﬁ Connect each edge
between the original n vertices to the new (¢ — 1)k vertices with probability 1/2.

3. Permute the nodes in G’ randomly.

Under this reduction, consider the new planted density matrix in R%**%* where a R(t=1kx(t—1k

principal submatrix is ﬁ(}(t_l) 1. and the other k x k principal submatrix has all entries 1/2. The
recovery hardness comes from the fact that even if the blackbox knows the exact location where our
planted (¢ — 1)k nodes are, it can still not precisely recover the original & vertices in the planted
clique instance with high probability, thus strong recovery is impossible.

Note that this satisfies the row-column sum constraint where the expected degree of each planted
node is exactly w and the planted structure lifted each node’s degree by k/2. Consider the
distribution of the degrees for a node not in planted structure (which is d ~ Binom(n + (¢t —
1)k, 1/2)) and the node inside planted structure which is either d ~ k + Binom(n + (t — 2)k, 1/2)
or d ~ Binom(n,1/2) + Binom((t — 1)k, 2t/(t — 1)) depending on which part of the planted set.
The separation of the first distribution (null) with the later two (latent) follows immediately by a
very simple Chernoff Bound when k € W(y/n). [ |

Appendix D. Proofs for Design Matrices
D.1. Proof of Lemma 8

Proof Note that the adjacency matrix of the sampled directed graph A is not symmetric. However,
we do know that the operator norm equals to the largest singular value of

2
(A— g]l]lT)(AT — i]l]lT) _aar_ L
n n n

117

where d = n/r and 1 € R™*! is the all-one vector.

We know that the largest eigenvalue of AA” is d? /n corresponding to the all one vector because
it is a scaled doubly stochastic matrix. Therefore, from the Courant-Fischer Theorem we can show
that the second largest singular value of A which is the second largest eigenvalue of AA7 is the
largest eigenvalue of AAT — %2]1]1”[, which is the largest singular value of A — %]l]lT.

Note that Theorem.B of Tikhomirov and Youssef (2019) asserts that under the conditions in the
lemma, the said quantity is bounded by C'v/d with probability 1 — on(1). Therefore, our constructed
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R, which is exactly \/Z(A — A) = Vd~1(A - 9717 has max singular value at most C' with
probability 1 — o, (1). [

D.2. Proof of Lemma 9

Note that we can sample from directed regular graphs efficiently by the ergodicity of a simple edge-
flipping Markov process (Greenhill (2011); Cooper et al. (2017)), and hence we have the following.
Proof Take R from the previous lemma. Note that the top singular value of a matrix is in fact sub-
additive, and the Kronecker product is a linear operator that preserves the product of the operator
norm of a matrix. We have:

a(ul\/fK) <o(R®R)+ \/%U(R ®J)<C*+ j%a(J) =C% + QCﬁ
because the top eigenvalue of J = 117 is exactly n. Therefore o(K) < 1 for any R satisfying the
criteria of Lemma 8.

Finally, note Theorem 1 in Greenhill (2011) states that the switch Markov Chain, on which
the unique stationary distribution is the uniform distribution over all directed d—regular graphs, is
fast-mixing, and Lemma 8 still holds if the sampling condition is approximate in L1. Therefore, in
polynomial time we can find one candidate K satisfying our lemma above. Moreover, note that if
we sample O(n) times independently, the probability of failure becomes exponentially small. W

Appendix E. Proofs for Recovery

As a starter to detection problems in PDS*, we present a simple PDS?, upper bound by a degree 2
polynomial test extending Proposition B.4 in Schramm and Wein (2022).

Proposition 26 (Upper bound on PDS7})) Consider the degree corrected PDS™ model with planted
subgraph size k and average edge probability 0 < q < p < % then as long as the product ratio

nkT?fS . ((1’(’1_32; € wy(1), one can computationally efficiently resolve hypothesis testing for PDS*.

The proof goes by considering the statistics f = ) d% where d; are the degrees of G and com-
puting the mean different over variance. The upper bound gives a boundary strictly between the
sum-test level for PDS and the spectral recovery level (Kesten-Stigum threshold), suggesting some
consideration into the “community” structures compare to a vanilla sum test.
Proof Consider the test statistics f(G) = Y. d? where d; are the (independent) degrees. We show
that there exist 7 such that P, (f(G) > 7) + Py, (f(G) < 7) = 0as n — oo.

Firstly, consider what happens to the degrees under Hy: they are n independent samples from
Binom(n, pp) with expectation given by

E(f) =n: Eachinom(n,po)x2 = n2p0(1 - pO) + 77,3])(2) = 77,2])0 + (n3 - n2)p%

Similarly in H7, there are n — k nodes that are not in the planted set and their corresponding second
moment of degree is:

E(Z dz2) = (n - k)EmNBinom(n,ql)x2 = n(n - k)‘]l + ((n - k)n2 - n(n - k)) q%
v
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and the k£ nodes planted has:

E(Z d?) = kEzNBinom(n—k, ql),yNBinom(k,pl)(x + y>2

S
=k (((n—k)q(1 = q1) + (n — k)*q}) + kp1(1 — p1) + k°pT + 2qupr1k(n — k)
= k(n —k)qu + kp1 + k((n — k)q1 + kp1)* — k(n — k)@ — k*p;

The difference between expectations in Hy and H is thus:
k((n = k)1 + kp1)® + (n — k) (n® —n — k)g; — k*pf —n®(n — 1)pg € Ok (01 — 1))

Now we turn to estimating the variance of f. First consider the variance of f ~ H, which can be
computed via the moments of binomial distribution

var(f) = n - var(d?)

2
= Eszinom(n,po)($4) - (EmwBinom(n,po)(x2))
= n’po(1 = po)(1 + (2n — 6)po(1 — po)) € O(n’p3(1 — po)*)

due to a simple computation E,_Binom(n,p) ( — 7p)*) = np(1 — p)(1 + (3n — 6)p(1 — p)).
For the variance of f ~ Hy, consider

var(f) = (n—k) - varigv(d?) +k- varj@(d?)
<O (@1 —q)*) + k- Ejey ((dj — d)*)
<O (11— q1)*) + O(kn® (a1 (1 — q1))?)
=0(n’pi(1 —p1)?)

because of local inequality (x + y)* < 16(z* + y*). Therefore, we know that

Egx, (f) — Eg, k3 (p1 — qq)? k2
e e T Ottt o)~ O Pt

and when this value is in w(1), the two hypothesis can be separated (by, for instance, thresholding
at (Bg, (f) + Eno (f))/2)- |

E.1. Proof of reduction to PDS*

Theorem 27 (Reduction to PDS*) Given any fixed constant o > 0. Let N, ko be parameters of
1

—Q
planted clique graph size, (n, k) be the target graph sizes where 7 =: r < (%) . We present

the following reduction ¢ with absolute constant C' > 1:

o Initial k-PDS Parameters: vertex count N, subgraph size ko € on(N) dividing N, edge
probabilities 0 < q < p < 1 withmin{q,1 — q,p — q} = Q(1), and a partition E of [N].
We further assume that ko € o(\/N) holds (otherwise detection for the PDS problem will be
easy).
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* Target PDS™ parameters: (n,r, k) where r € o(y\/n) is a specified parameter, k = n/r is the
target subgraph size, and n is the smallest multiple of kor greater than (1 + %)N where

Q=1-V{1-p)(1-q+1p=1(g—1)
is the cloned signal strength from pre-processing.

 Target PDS* edge strength:

kor r2—1)y 0%
S L R R O )

r
where 1 € (0, 1) satisfies that
1 : p 1-Q
< - min{log(==),log(—) }.
4 a0 o) e sl e )

where vy denotes the signal strength v = ©(Dg,(P1||P2)) roughly the KL-divergence be-
tween two output Bernoullis.

* Applying ¢ on the given input graph instance G yields the following:
1 1
drv(¢(G(N, ) = on(1)

N.G(n. =
2 ))7 (n7 2 )
1
drv(d(PCg(N, ko, 5)), PDS(n, k, Pi, P5)) = 0,(1)
Proof sketch: Step by step, our proof proceeds from establishing the following lemmas for each step
of our reduction in Figure 2, a formal proof for the lemmas will be presented later.

Lemma 28 (T0O-k-PARTITE-SUBMATRIX — Lemma 7.5 in Brennan and Bresler (2020)) With
the given assumptions, step 1 (denote as A1) of the reduction runs in poly(N) time and it follows
that:

—-Q22]V2
v (A (GIN 0)), Bern(Q)"") < ko exp (e )
_0O2N? Cok?
Aoy (ALG(N,Un (B): ;) Minjx[n) Un () P, Q) < ko exp ( 4§p;m o @

where E is the partition of [N] and S is the partition of [n].

Lemma 29 (Bernoulli Rotations for PDS™) Let As denote the output matrix M from the second
step of our reduction (before permutation). Suppose S is a partition of [n| to ko equal parts and

anted set |T' N S;| = 1 for all i. Let M; : S; — |n/ko| be any fixed bijection. Let e the
pl d |T'NS;| = 1foralli. Let M; : S [n/ko] b y fixed bijection. L Kl/r be th

n/ko
design matrix obtained from Lemma 9 with embedded sets Ay, As, ..., Ap iy C [n/ko], then the
following holds:

dry (Az(Bern(Q)#™™), N'(0,1)®™*") = O(n™")
drv (A (M« Un(S),p,Q)), L(v-X +N(_r127 1)#m)) = O(n™)
where X € R™" is the random variable defined in each block S; x S; as a function of T':

Xg,5, = <]1(Mi’1(Af(i)) x M; Y (Az))) where f(i) = My(T 1) Si))
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Algorithm From k-PDS to PDS*:
Inputs: Graph G of size N, subgraph parameter ko dividing N, edge density ¢ < p € (0, 1]
and a partition E of [N] to ko equal parts E1, Es, . .., E;. Target planted ratio 7.
Steps :
1. To-bipartite and planted diagonal: The first step transforms PDS to a bipartite variant.
Let n be the smallest integer multiple of kg that is greater than (1 + %)N . Apply Graph
Cloning to input G to obtain (G; and G5 with edge density () < p where:

Q=1-vV(A-p)(1-q+L=1(Vg—1)
then construct F' € R™*" equipped with a partition S1, S, . . ., Sk, of [n] such that:

* Given that each |.S;| = n/ko, (uniformly) sample a random subset 7; in .S; of size
N/kg. Construct (any) bijective map 7; : T; — FE;.
Sample a subset X; C 7; where each element is included independently with
probability p and sample y; ~ max{Bin(n/ko, Q) — |X;|,0}. Sample subset
Y; C (S; \ T;) (with size y;) uniformly from (s ZJ\ZTZ)

¢ Construct F' for each F; s in the following fashion:

- If i # j, then:
Fr,r, = {Gl[ﬂi(Ti)vﬂj(I})] 2 >]:
Golmj(Ty), m(T3)] i<j
Flij)esixs\tix; ~ Bern(Q).
— For the diagonal blocks:

Gulm(Th), mi(Th)];; @< j
Fr . (6,3) = § Golmi(Th), me(Ti);; 0> 7

1{i € X;} i=3j
~Bern(Q) i#j

F(i,j)ESkXSk\TkXTk = {1{1 € yi} i=j )
i =

2. Flattened Bernoulli Rotations: Let S be a partition of [n] into kp equal parts
51,52, ..., Sk, obtained from the previous part. Construct output matrix M:

(a) Forid,jin {1,2,...,ko}, flatten matrix Fg, 5, to a (n/ko)? size vector.

(b) Apply Bernoulli Rotation on this vector with design matrix (K%;O)T Bernoulli
parameter strengths ) < p < 1, output dimensions v;; € R(n/ko)?,

(c) Layout vector v;; € R(™/ k0)® to (n/ko) x (n/ko) matrix in the order from part
(a). Apply permutation to [n].

3. Thresholding: Given matrix M from the previous step, construct G’ = ¢(G) such that:
for distinct indices ¢ < j, ¢;; € E(G') if and only if M;; > 0 and output.

Figure 2: Reduction from k-PDS to PDS*.
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Lemma 30 (Thresholding from Gaussians) Let A3 be the final step from the above reduction,
with the same notations as the previous lemma, then:

A3(N(0, )2 ~ G(n,1/2)
As(£(y X +N (=5, 1)) ~ PDS(n, k, P1, Py).

As an important pre-processing step, we single out the steps in Lemma 28 first, the proof in
its exact form is deferred to Brennan and Bresler (2020). The general idea is that, to construct a
bi-partite variant, after applying GRAPH-CLONE to the instance and occupying the lower half of
the adjacency matrix, we still need to figure out what happens in the diagonal. However, when we
plant around v/% entries in a diagonal it’s almost the same as not planting anything in total variation,
which means that we only need to blow up the size by a little bit to hide the diagonal.

After Lemma 28, we arrive at a bi-partite k-PDS instance with slightly different parameters, and
we prove the following lemmas to complete the reduction.
Proof [Lemma 29] We take a close look at what Bernoulli rotation produces for H;. In the flattening
step, we first define k¢ bijections 7; from S; — [n/ko] (the order to be flattened). Looking at each
submatrix block with a planted bit at (7' S;,T'(") S;) is equivalently an instance of

Fs,xs; ~ PB((n/ko)? t,p, Q)
where the location indices are defined with (4, j) : i, j € [n/ko] and planted bit
t = (m(T ()8, (T () S) := (tir t)).

Therefore, the output row of K rlfl;:o

r3k3 k3
K(ti,tj),(TS) = U ]1{7” S Ati and s € Atj} . 3 - ﬁ .

After sending A(-) sy — M, - ()= (s)> W€ know that M € R(7/ko)x(n/ko) i5 a bi-partite matrix
K]

T

is precisely (indexed by 7, s):

with Ay, X A, submatrix being elevated and (approximately) distributed as
Msixcs, (17 (Ag) x w7 (A N (72 = 1)y/r?, 1), N (= /%, 1)).

with total variation loss at most O((%)QR;,?) by Lemma 7.
For the other hypothesis Hy, simply note that the matrix gets sent to A/(0, 1) independently for
each entry and gets send to independent standard normal Gaussians. Therefore the rotation matches.
Finally, note that in each block we differs from the target by at most O(n> R;kB) in dtv, which
results in at most O(n4RT_ k3) difference in dtv by the tensorization property. However, note that we
can choose R, to be any polynomial of n, and hence the Lemma holds. |

Proof [Lemma 30] Note that if we threshold at zero, then:
1. N(0,1) — Bern(1/2).

2. N(u,1) — Bern(®(p)) for any p.
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Therefore we know that N'(—',1) — Bern(®(P;)), and /\/((7"274421)77 1) — Bern(®(F2)), so the
strength matches (and hence the case for Hy is proven).

Note that in our previous step in H1, in each block S; x S;, a sub-block A;; x Atj is elevated to
Bern(P,) whereas the rest are Bern(P; ). This means that in the overall graph, the sets:

Uﬁfl(Ati) X Uﬁfl(Ati)

have elevated density Bern(P,) where the rest has density Bern( ;). Finally, note that the total
size of |J,; m; 1 (Ay,) is exactly Zfil oy = - Therefore, after permuting the nodes we get exactly
PDS(n,n/r, Py, P1) as the output. [ |

Proof [Theorem 27] Define the steps of .4 to map inputs to outputs as follows

Aa,e2 As,e3=0

(G, E) 2% (B, 8) 222y , G

where the following €; denotes the total variation difference in each step (from output of A to the
next target). Under H1, consider the following sequence of distributions:

Po = Ge(N,k,p.q)

P1 = Mipxjn) (S x S, Bern(p), Bern(Q)) where S ~ Uy, (F)
Po=v-1g®1g +N(_7“l2’ 1)®n><n where S ~ Unif,, (k)
7)4 = PDS(n, k,Pl,PQ)

Applying Lemma 28 before, we can take

Q*N? ) Cokg

— Akq - _
“l ko exp( 48pkon 2n

where Cg = max {%, %} For €3, Lemma 29 guarantees that e; = O(n~!) suffices. The

final step A3 is exact and we can take €3 = 0. Finally, note that from the data processing inequality
applied to drvy that dpyv(A4;(+), Ai(7")) < drpv(-,-") so each step the total variation loss at most
accumulates (Lemma 18), thus by the triangle inequality on TV we get

drv(A(GE(N, k,p,q)), PDS(n, k, P, P5)) < €1 + €2 = o(1).
Under Hy, consider the distributions

7)0 = G(N7 Q)

P1 = Bern(Q)®"*"
7)3 — N(O, 1)®n><n
Ps=G(n,1/2)

As above, Lemmas Lemma 28, Lemma 29 and Lemma 30 imply that we can take

2N2
€1 = 4kg - exp <_4C§pk0n) , €2 = O(n_l), and e3 =0
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Again by the data processing inequality (Lemma 18), we therefore have that
drv (A(G(N,q)),G(n,1/2)) = O(e1 + e2) = o(1)

which completes the proof of the theorem. |

E.2. Proof of Theorem 10

Suppose we now have a direct reduction to PDS(n, k, P;, P») following the previous notations, the

final step of reduction have to do with the making the uniform degree condition exact, and applying

it to general (dense) Py. Consider the following post-reduction process with given target ( Py, p1, p2)
2

such that Py = p1 — (3z — 1)d = p2 + J for some §:

1. Apply k-PDS-to-PDS™ on given instance Gg(n, k, p, q) and output G with specified u,y

such that the exact condition @(&2;721)7) = 2%0 holds. As before, denote output density

Py, P, (then p; = 2Py P, and J can be expressed by Py, v, ).

2. If Py > 1/2, then output G4 by including all edges in G; and independently including all
non-edge in (G with probability 2Py — 1, else include all edges in G; with probability 2 F.

We show that the output of the above second post-processing step A4 satisfies:
As(G(n,1/2)) = G(n, P)

drv(As(PDS(n, k, Pr, P2)), PDS(n, k, p1,p2)) = o(1)

These two equations completely settles the reduction from PC to PDS™ to the general density.
Note that the first equation concerning H is trivial, because a Bern(s) instance get transferred

(independently) directly to Bern(2Pys) by .A4. Thus we only need to deal with the second equation.

The general insights is that, when v is small, ®(v) (Gaussian CDF) is almost a linear function of v

where ®(v) ~ 1 + —_v and the error term (when v < 0.1) is:

Vor
1 1 1 v 2 1 v 1 .
O(v) — = — - /2 _1)q </ 2d': 3
v) 2 \/27ry '\/271'/0 (e ) < Vom |Jo var 3\/27TM

since |e” — 1| < 2|z| when |z| < 0.01. Therefore the average degree condition approximately but
not exactly holds with P; and P, already.

Formally, note that A4(PDS(n, k, P1, P»)) = PDS(n, k, p1,2P>»Fp), and we only need to show
that dpyv (PDS(n, k, p1,2P>Py), PDS(n, k, p1,p2)) = o(1). The trick here is to use the data pro-
cessing inequality again: because the distribution PDS(n, k, p, q) is obtained by applying the (ran-
dom) planted dense subgraph over G(n, q), thus the total variation:

drv(PDS(n, k,p1, 2P, Py), PDS(n, k, p1,p2)) < dov(G(n, 2Py Fy), G(n, p2))
— dry(Bern(2Py Py)®(3) Bern(py) ©(2)).
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Moreover, by Lemma 20 we know that the above is bounded by [2Py P, — p2| - O(n) because the
denominator Py(1 — Py) € ©(1). Now we only need to prove that 2Py P> — pa| € o(n™!). Note

that this can be computed as exactly:
(I) (—72) 1 N 1 pr 1
r? 2 r2—1\2P 2

A2 2 _
W) - g+ S - )

2Py P> — po| =2F

—2P,

2 rz2—1 r2

<% =2 (5) (%) =)
T n n n
kor  kor

2 2
because %‘) < TEL %‘) are all assumed to be smaller than one, and p —, 0.
We now turn to the formal lower bound from the reduction. Consider the following parametrized
model PDS(n, k, p1, p2) versus G(n, pp) such that:

r2—1

r2

1
Po=Dp1 — ’7=p2+1727

We prove that there is a computational threshold for all signal levels below 72 € 5((%)1'5 ) by
filling out all possible growth rates below.

Note that fix Py € (0,1) throughout (we only need it to be bounded away from 0 and 1), for
the reduction to work with a given sequence (N, ko, p, q) to n = kr where r € o(k), ko € o(n'/?)
and k € w(kg) are (implicit) functions of N, we only need to characterize the range of viable signal
strength -y that can be reduced to:

k()?“ 1.5 1 ko?“ 1.5
7 =u n ) w(n)\/logn( n )

asymptotically where w can be any (slowly) increasing unbounded function (such as n°™)). Note
that this range do indeed cover the entirety of 5((%)1'5) assuming ko € O(NO5).

Therefore, we know that by the PC conjecture and the given reduction the computational lower
bound for PDS* holds up to the upper bound level in Proposition 26.

E.3. Proof of Corollary 11

Proof By Lemma 22, we only need to show that a weak recovery blackbox output is a qualifying
secret key k(G) for refutation.

Consider a set R that overlaps with the real PDS planted set with size p > 1/2 (p —,, 1 holds
for weak recovery, but for the sake here we only need it at least 1/2 for convenience). Consider
PDS density parameters p > ¢ > n~'logn, p € O(q), and consider the sequence of r,, = w
such that p = O(q) = O(r) and D (p||r) = ©(Dk1(pllq)) C @(k~'). However, by flipping
the graph for Theorem 37 in the dense case limp = limq = pg, we know that the smallest pk-
subgraph in G(n,p) has density at least » with high probability. Thus the density of R is at least
1(r + 3¢) = "2 .= s with high probability.

However, by Theorem 37 again we note that the densest &k subgraph in G(n, pg) will not be of
density at least *£2° because (s — pg) = O(p — q) s0 Dxr((s + po)/2|[po) = O(Dxkr(pllq)) C
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@w(k~1). Therefore with high probability the densest k subgraph of G(n,po) has a gap with the
density of 1/2 portion recovered densest & subgraph in PDS*. By Lemma 22 and Theorem 10 we
are done with the proof. |

E.4. Statistical Optimal Boundary for PDS*

It is well known that the success of a statistical hypothesis testing between two distributions P, )
from one sample depends on dyv (P, Q). However, because our alternate hypothesis is composite
(mixture over latent 6), it can be challenging to compute the total variation distance between mixture
[Eg Py and null Py beyond trivial geometric bounds. Thus alternative methods are needed.

In this section, for the completeness of our results on PDS*, we also present a statement of the
statistical boundaries drawing comparisons with a line of statistical lower bounds in the canonical
PDS such as Butucea and Ingster (2013); Hajek et al. (2015a); Ma and Wu (2015) where their
upper bound construction with mean comparison is now invalid in PDS*. While we can derive
asymptotically similar lower bounds, there is provably no polynomial test matching this boundary
in PDS* and recovery is impossible. Instead, we derive a boundary necessary for the x? divergence
between Hy and H; to be large via the Ingster’s trick to handle mixture in the latent structure.

Theorem 31 (Statistical lower bounds for PDS*) Consider PDS* when 0 < g < py < ¢ < 1/2.
Consider the setting with a sequence of edge densities p(™, pén), ¢ ™, k") with graph size n — oo:

. k<") C(p™—g(m)? . (n) (p™) —q(™)? c
If lim sup gy 0 and limsup k Sy 0, then no (statistical)
test on PDS on those parameters can achieve type I + type Il error strictly less than 1
asymptotically.

Proof Consider the y? trick applied on the mixture: Py = G(n,po) and Py = PDS(n, 6, p, q) with
planted set at 6 and 6 ~ (Z) be uniformly distributed.

Ey(Py(G))Eg (Pyr (G))
2 o\1L0 0 0
Eo(Py)|| FPo) = / -1
X~ (Eo(Py) | Fo) ; )
_,,, PUCEAG) |
Py(G)
If we expand the above expression and denote the A = x?(p, q) = ((11(’1_33;; then we end up with the

above (tightly) upper bounded by:
E(exp(\(H? — E(H)?))

where H ~ 6 (¢’ is distributed according to Hypergeometric(n, k, k) (where k > /n). This eval-
uation goes to zero from a local inequality on Hypergeometric inequalities (Lemma 6 in Appendix
C of Hajek et al. (2015a)), which concludes our proof.

A better way to view it (from reductions) is as follows: we know that when the inequality con-
dition holds, PDS(n, k, p, q) is in-distinguishable from G(n, k, ¢) by the PDS boundary in Brennan
et al. (2018). However, in this case we have:

drv(G(n,q),G(n,po)) < drv(Bern(q)®" Bern(po) 2)
(

q— po) n\ﬁ\

A
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by Lemma 20. Therefore, drv (G (n, q), G(n,po)) — 0 below the statistical PDSp testing thresh-
old, meaning that PDS7, can also not be performed. This reduction proves the intuition that PDST,
is “harder” than PDS. |

Remark 32 We also remark that the reverse direction for the above lower bound is still open. Let
H be distributed according to Hypergeo(n, k, k) (where k > \/n), then E(H) = k*/n. Assuming
that \E(H)? € &(1), if one can prove that:

E(exp(A(H? — E(H)?)) =

as well, which is a stronger version of Lemma 6 in Hajek et al. (2015a), then x? between two
hypotheses of PDST, diverges, which is still a necessary (insufficient) condition for the upper bound.
It is of interest to show a tight statistical detection upper bound for models like ISBM and PDS* at
the regime when it is computationally infeasible and statistically impossible to recover.

Appendix F. Proofs for Refutation
F.1. Proof of Theorem 12

Theorem 33 (Reduction from & — PDS to ISBM) Let N, kg be parameters of planted clique graph
size, 1 < N/ko be a target output for ratio of planted set. Let « be a constant and assume

-«
r < (%) . We present the following reduction ¢ with absolute constant C,, > 1:

o Initial k-PDS Parameters: vertex count N, subgraph size kg € on(N) dividing N, edge
probabilities 0 < ¢ < p < 1 withmin{q, 1 —q,p — q} = Q(1), and a partition E of [N]. We
further assume that ko € o(~/N) holds.

e Target PDS parameters: (n,r, k) where r € o,(\/n) is the specified parameter and k is the
expected subgraph size k = n/r and n is the smallest multiple of kor that is greater than

(1+ &)N where
Q=1-V{1-p(1 =g +L=1(Va-1).

* Target ISBM edge strength:

—1)2 _
R L)y Yy Y&
n r r
where p € (0, 1) satisfies that
1 : P 1-@Q
"= 12C+/log(N) + log(p — Q)1 mm{log(Q), tog I—p 2

* Applying ¢ on the given input graph instance G yields the following (when kg € o(\/]v )):

Arv(B(G(N, 3)), G, 5)) = on(1)

1
drv(p(PC,(N, ko, 5))7ISBM(7% k, P11, P12, Pa2)) = on(1)
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Algorithm From k-PDS to ISBM:
Inputs: Graph G of size N, subgraph parameter kg dividing N, edge density ¢ < p € (0, 1]
and a partition E of [N] to ko equal parts Ey, E», ..., E;. Target planted ratio r = ¢~ L.

Steps :

1. To-bipartite and planted diagonal: Compute M; € {0, 1}™*™ with partition F’ of [n]
as TO-k-PARTITE-SUBMATRIX (Lemma 28) applied with initial dimension N, parti-
tion F, edge probabilities p and ¢ and target dimension m.

2. Flattened Bernoulli Rotations: Let S be a partition of [n] into k¢ equal parts
S1, 52, ..., Sk, obtained from the previous part. Construct output matrix M:

(a) Fori,jin{1,2,... ko}, flatten matrix Fg, 5, to a (n/ko)? size vector.

(b) Apply Bernoulli Rotation on this vector with design matrix

é (Rn/kg’6 ®Rn/k076), Bernoulli parameter strengths Q < p < 1, output

dimensions v;; € R(n/k0)?,
(c) Layout vector v;; € R(™/ k0)* to (n/ko) x (n/ko) matrix in the order from part (a).
(d) Assign submatrix Mg. g. to be the values of flattened v.
g i,5;
3. Thresholding: Given matrix M from the previous step, construct G’ = ¢(G) such that:

for distinct indices ¢ < j, ¢;; € E(G') if and only if M;; > 0. Finally, randomly
permute vertex orders in G’ and output.

Figure 3: Reduction from k-PDS to ISBM.

The key distinction here from the reduction in PDS* lies almost solely in the design matrix, which
is simply the Kronecker (tensor) product of two matrices given by Lemma 8. Therefore:

Lemma 34 (Bernoulli Rotation for ISBM ) Consider the second step As applied on the output
of Lemma 28 and assuming notations through Lemma 29, we have:

drv(Az(Bern(Q)®™™ N(0,1)2™%") = o(n~1)
1 (Ao M (9).2. Q). £ - (r0 = 1 (r0 = 1)+ N(0,1)777)) = o{n ™)

where v ~ Unif, (k).

Proof Similar to Lemma 29, the only different part is the output to Bernoulli Rotation in H; after
performing distribution shifts to A/(0, 1) and A/ (u, 1).

We analyze the output for the specific design matrix. For the sub-block .S; x .S, it gets mapped to
exactly the flattened product of the ¢;th row of %Rmfl (transposed) times the ¢ ;th row of %Rnrl.
Denote the set of positive terms in the ¢th row to be P, then the output distribution (conditioning
on 7', the source planted set) is exactly:

L

= (rv— l)T(rv — 1) + N(0,1)&mxm))
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forv = Hfil P, (this can also be viewed in the light Tensor Bernoulli Rotation, see Corollary 8.2
in Brennan and Bresler (2020)). Afterwards we can simply permute the nodes (note that v has size
k = n/r) and the Bernoulli rotation target follows.

To finish off, we get the exact same bound on total variation at most o(n4R;k3), at which point
the total variation bound from applying this algorithm step by o(n~1). |

After the Bernoulli rotation, we proceed in a similar fashion with Theorem 27. We defer a
formal full proof in thresholding Gaussians and aligning the precise density to Corollary 14.5 and
Theorem 3.2 in Brennan and Bresler (2020), here we only remove the condition (T) they imposed
during Bernoulli Rotation to imply the lower bound results in a general regime. This gives us the
desired lower bound.

F.2. Proof of Theorem 13

Proof [Refutation hardness] Consider applying Lemma 21, we know that as long as we can find a
satisfying “quiet” adversarial distribution H, such that

* H; is computationally indistinguishable from Hy.
* Hy, H; satisfies the refutation valuation function criteria.

then we can claim that refutation is hard for Hy. For the case of the Erdds-Renyi graph null
hypothesis Hy : G(n, Py) and val = DkS, we may simply consider the alternate hypothesis as
Hy : ISBM(n, k, P11, P12, Ps2) with specific pairs of parameters.

In fact, when k(P;; — Py) € w(1) we know that the densest subgraph in H; has density at
least % with probability 1 — o, (1) from the Markov inequality. And by Theorem 37 we know
that as long as k(P;; — Py)? € @(1) the (statistical) densest k-subgraph in Hy is smaller than
(Po + P11)/2 with high probability. These two constraints of parameter growth will be satisfied
because the (optimal) output regime for Theorem 12 actually reads (P11 — Py)? € ©(n/k2).

Therefore, from Theorem 12 we know that as long as Hy is indistinguishable with H;, one
cannot refute in polynomial time the densest k-subgraph in G(n, Py) to have value larger than
% := ¢. Plugging in the boundary for ISBMp we know that refutation (of PDS) is computa-
tionally impossible under the regime

k*D ~
KL(pHQ) e 0(1)
n
which contrasts the detection threshold % € O(1) above which one can perform the opti-
mal sum-test. This fact, combined with semi-definite programming, completely resolves the refuta-
tion problem of DkS in Erd6s-Renyi graphs. |

F.3. Computational upper bound for refutation

To prove an upper bound for refutation, we first need to introduce the semi-definite programming
relaxation, which is a common method to computational approach problems such as densest-k-
subgraph, considered in many works such as Hajek et al. (2016); Chen and Xu (2014).
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Consider the following relaxation of the densest-subgraph:

Zspp = arg mZaX<E, Z)

st. Z»=0, Z>0 (©6)
Zii <1, VYie€e|n]
I,2) =k
(J,Z) = k2.

It is not hard to see that:

* A feasible solution of a true subgraph is also feasible for (6), thus the latter will always return
objective at least the true density.

* (6) is a semi-definite programming problem, and can be efficiently solved.

With the sufficiency results given in Hajek et al. (2016) (specifically, combine their results in Lemma
(p—q)?
q(1-q)

and kl(fz ;_qz):) — 00, the above formulation of convexified programming for planted dense subgraph

will have the optimal solution converging to the true planted instance of our graph P(Zg pp =
Z) — 1 assuming the null density satisfies 0.9 > ¢ € Q(lo%) Here we use their results for the
objective function instead (that is, the objective (E, Z) < k%p+ck+/p(1 — p) with probability — 1
as constant ¢ € €, (1) by Markov Inequality).

14, Lemma 15, and Theorem 5), we can show that under the separation conditions of % — 0

Theorem 35 Consider the semi-definite programming relaxation for G ~ G(n,q). Then when

2 (p—q)2 —q)? .7 Lo . .
% Efglfé) — oo and kg()lfz)) — 00, the probability that the objective function is at least k2@
t q+54p

goes to zero as n, k — oo. Moreover, in Hy = PDS(n, k, p, q), the objective will be at leas
with probability — 1. This means that (6) will successfully refute the densest k-subgraph valuation
problem in G(n, q) vs PDS(n, k, p, q).

Proof We start with the following lemma from stochastic domination:

Lemma 36 Let F'(P) be the distribution of objective (6) under the graph distribution P. If edges
in G ~ P are sampled independently with probability matrix Ep for two distributions P, Q), such
that Ep — Eg > 0 (entry-wise), then for any x > 0, P(F(P) > z) > P(F(Q) > x). In other
words, the convex program is monotone with respect to the underlying density.

Proof Consider the following process:

1. On G ~ @, find optimal Z for (6).

2. Update G in the following way: for any e = 0, flip e = 1 with probability %ﬁg;e)

The objective never decreases because we only add edges in the second step, whereas the uncondi-
tional distribution of the graph generated from 2 is exactly P. Hence we find a coupling between
two distributions of graphs such that F'(P|G) is bounded below by F({G}) for any G, and the
result follows. |
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Moreover, note that the above lemma applies to the mixture problem too. Since (6) is symmetric,
the objective will not change if we condition the planted dense subgraph to a specific location, then
we can use the above lemma and conclude that F'(PDS(n, k, p, ¢)) dominates F'(G(n, q)) for any
density p > ¢. Consider the alternative PDS(n, k, (p + ¢)/2, q) for (6), which also satisfies the
conditions for successful recovery by (6). Note that in this case, we know that the objective:

1 = p+q c
~ B2y <P pas
with probability — 1 if ¢ — co. Consider plugging in p to the RHS we getc = £ - % — 00
p(1—p

by the asymptotic conditions. Thus that the above objective is bounded above by k2 - @ with
probability going to 1.
On the other hand, clearly for X ~ Binom(k?, p), we have X < k? - 4’}# with probability at

most 4 i
PX <2 PEBom(i2 p) < (P2 =D )2 g
5 5v/p(1—p)
by Markov inequality. So the valuation condition for H; is met. |

F.4. Statistical bounds for refutation

We now turn to show that the statistical limit of DkS problem lies upon recovery boundary for
G (n, q) (ignoring log factors). This has also been studied under the name quasi-cliques (k-subgraphs
with edge count at least 'y(g)) in random graphs by a line of works such as Veremyev et al.
(2012); Anantharam and Salez (2016); Balister et al. (2019). However, our regime of interest
(k= 0O(n%),q € (1)) remains largely unstudied in past literature.

Theorem 37 Consider d = Dy (Bern(p)|Bern(q)) = @(((f(’;fz]j) when the densities p/q —

©(1) and np > nq > logn. Then the densest k subgraph density of G(n, q) will be smaller than

p%'q with probability — 1 if ; Okgdn — o0 and k — oo. Thus statistical refutation is possible.

Proof Firstly we need a tail bound on the Binomial distribution (for r := [pN]):

P(Binom(N, ¢) > pN) < N - P(Binom(N, q) = )
= N(];]) (11—

< N? Nt eV (plog g+(1-p)log(1—q))

- rl(N—=7)!

coN?____ 1 NDwi(lla) _ ,~NDxr(pla)+O(logN)
2mp(1 — p)N

from Stirling’s formula and NV, r — oc.

Therefore, we can go on to look at each block, which has k2 independent Bernoullis and thus
satisfies the density tail with probability at most e+ @002 k) However, there are at most (1) such
blocks, so if assign random variables X = ) X; to those we have:

P(X > 0) < E(X) _ ZE(X1> < nkekadJrO(logk) _ efk2d+klogn+0(logk)
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when lokgdn — 00, we know that the above objective goes to zero. Replacing p with 1% for the

above arguments works the same, and thus we are done.

As an extension, when {ég’;l — o0 with parameters pg, we can show that (via a union bound)

the densest k& subgraph density does not exceed H% for all k& > logn simultaneously because the
objective is bounded by exp (—k(kd — logn) + O(logk)) < exp(—klogn) = n~F). [ |

Next, we deal with the lower bound on refutation, which states that in G(n, g) there is a dense
subgraph with density p and size k& with high probability if kd € o(1). The following theorem is
sufficient to close the boundary for statistical impossibility. Assuming the same set of parameters,
we have the following lower bound:

Theorem 38 (Lower bound on refutation) Assuming that k € o(n®)(\w(\/n) for some fixed
constant o < 1 and p, q are all bounded away from 0 and 1°. Moreover, for any o > 0, as-
sume that k(p — q)> € O(log™ 1% n). There exist a k-subgraph in G(n,q) with density at least
(p + q)/2 with probability 1 — 0, (1).

Proof First of all, the conditions assert that p — q € Q(@) In fact, from the statistical boundary
on exact recovery given in Hajek et al. (2015b), we know that recovery is impossible in this regime,
even in the minimal variant (from the reduction given in Lemma 23).

Consider the densest k& subgraph estimator E, which happens to be the MLE estimator on the
planted instance (though we do not need this fact), we know that under this regime it correlates with
the true planted mean with expected density < e for any constant € asymptotically (partial recovery),
we try to bound the density in E before planting the dense subgraph.

Formally, assume that ENE =T where E is the true planted set. Consider the original GG1 the
instance from G(n, ¢) and G| be the graph after planting on E. The total edges in G} (E’ ) is at least
(since it is the densest subgraph in G/):

ES = S B + BS > B - B 4+ EQ
and we bound those terms one by one. To start, note that |7'| > log n, else the total edges offset in
T is at most (I71) < (logn)2, and (I11) /(%) = O((logn)?/k?) C o(p — q). Now we consider the
case when |T'| > logn — oo and apply the densest || subgraph in (G})g:

1. Egll is just the edge count of the planted instance that is distributed according to G(k, p). We
know that the total number of edges is at least

el 2p+q (k
B> 230(,)

from a simple Markov inequality (as in the previous theorem).

2. E? 1 equivalent to |T'|-subgraph sampled from G(n,q). From the previous theorem, we

(p—ri7))?

know that if 7 gk € w(1), then with probability 1 — o(1) the densest |T'| subgraph in

/
planted set has density at most |7, and E?l <77 (g').

5. Observe that here the KL divergence reduces to ©((p — ¢)?) and log n/k = O(logn) = ©(log k)
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_ 2
3. Similar as the previous part, we know that when W € w(1) the probability that

G1 has such a sparse subgraph is at most 1 — o(1) (note that here we use the reverse side
of the tail bound, which is a trivial implication when p, ¢ are bounded away by one) and
Bzt > s (13)-

Combining the above, we only need to show that:

(rir) — 7)) ('Z‘) < é(p —q) (];)

Let dp| = 77 —p > 0 and fir) = ¢ — sy > 0 then |T|(d% + f|2T|) € O(logn), thus the sum
bound over all edges |T|?(dr + fir|) € O(v/Iogn|T|*>/?). Moreover, recall the condition on p, g
we have k%(p — q) € O(k%2/log= 1 n).0

Now note that r — s = p — ¢ + (d + f), thus what remains to show is the local inequality

1

k
|T| € O(Tk), when k(p — ¢) € O(log™ " n)

log
after which apply the fact that (‘g') (d+ f) € o(k*(p — q)) we are done.
Finally, note that the information theoretical limit for precise recovery is k(p — q)? € ©(logn)
(Theorem 24), below which it is impossible to perform (even weak) recovery, so the above bound
on |T'| follows immediately from Lemma 23 with strength v = 1.004 (so the expected size of |T|

cannot be greater than oz kk)wozl < (1ogl7c)0»7 by minimal recovery). |

As a conclusion to this section, we note that a version of the refutation bound was very recently
closed in Cheairi and Gamarnik (2022), which states that the exact refutation boundary lies in k(p —
q)? € ©(logn) (below which a dense subgraph exist with high probability). Though our theorem
above is a weaker version of their result, the goal is to provide insights into reductions via recovery.

Appendix G. Detection-Recovery gaps in other problems

In this section, we finish our discussions on two other problems that observe a detection-recovery
gap from reduction to a detection-recovery gap in PDS. In Brennan et al. (2018), such relations were
considered assuming the PDS recovery conjecture, here we do so at a lower rate of signal from only
assuming PC conjecture and Theorem 11. Denote the H; hypothesis distributions in Section 5 as
BC(n, k, u) and BSPCA(m = n, k, d, 0), respectively.

G.1. Detection-Recovery gap in Biclustering

This follows from a canonical process of simply performing TO-k-PARTITE-SUBMATRIX and
Gaussianizing. This gives us a symmetric planted Gaussian principal submatrix with elevated mean.
Lastly, we can permute the columns if needed.

6. Note that here the key is that (somewhat counterintuitively) we want p, ¢ to be far enough so that we can utilize the
fact that small error terms cannot dominate the total density of at least p in E.
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Lemma 39 (Reduction to Bi-clustering — Lemma 6.7 in Brennan et al. (2018)) Suppose that n, i
and p > n~" are such that

_ log(1+2p) p
M_Q\/Glogn+210g2 4/6logn + 21log 2

Then there is a randomized polynomial time computable map ¢ = BC-RECOVERY with ¢ : G,, —
R™ ™ such that for any subset S C [n] with |S| = k, it holds that

dry (6(PDS(0,5,1/2+ 9.1/2) Ery £ (- 1585 + M0, ) ) =0 ().

With this, we can now state the lower bound for recovery and refutation in BC by Lemma 22:

Corollary 40 (Recovery Hardness for Bi-Clustering) Ler o > 0 and 8 € (0, 1), then there exists
such parameters (N, K, i) such that: (assuming the k-PC detection hypothesis)

1. The parameters are in the regime:

im 088 g, Jogpm
n—oo log N, n—oo log N,

2 If B < % + %a, then there is no (randomized) polynomial-time recovery blackbox A, :

RNnxNn (%2)2 =: (8,T) such that |S (S| + |TNT| — 2K, € o(Ky,) with probabil-
ity greater than 0 asymptotically with A applied over the distribution on the Bi-clustering
instance conditioning on S, T and the uniform prior distribution S 1L T ~ Unif, (k).

3 Ifg< % + a, then there is no polynomial-time refutation blackbox A, : RN~*Ne — {0 1}
such that A returns 0 with asymptotically positive probability applied on N'(0,1)®"*" and
returns A(M) = 1 if there is a k x k submatrix S in M with mean at least k*yu.

We finally comment that the detection boundary is p € @w(n/k?) from the same reduction and hence
the detection problem is computationally easy when 5 > % + %a.

G.2. Detection-Recovery gap in BSPCA

Theorem 41 (Recovery Hardness in BSPCA) Let o € R and B € (0, 1). There exists a sequence
{(Ny, Ky, Dy, 6,,) }nen of parameters such that: (assuming the k-PC detection hypothesis)

1. The parameters are in the regime

log 8,

< . log K,
1m —Q 11m
n—oo log N,, — " n—oo log N,

<pB
2. Ifa > 8 — % > 0, then there is no randomized polynomial-time recovery blackbox ¢,, :

2
RDP»xNn (U\li”]) such that the probability that ¢, recovers exactly the pair of latent
row and column supports of an instance from BSPCA(N,,, K, Dy, 0,,) is greater than 0
asymptotically, where the supports are independently distributed from the uniform prior.
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Proof The proof follows from the following lemma:

Lemma 42 (Random Rotation — Lemmma 8.7 in Brennan et al. (2018)) Let 7 : N — N be an
arbitrary function with T(n) — oo as n — oo. There exists map ¢ : R™*"™ — R™*™ that sends
H(N(0,1)2m>1) ~ N(0,1)2™X" and for any unit vectors u € R™, v € R™ we have that

2

XN
drv <¢ (u cuv! + N0, 1)®W“) N <0,Im " % , uuT> > < 2(n + 3)

———=co(l

™ —n—3 o(1)

We defer the proof to Brennan et al. (2018) and focus on the reduction forward. Note that the left-
hand side can be viewed as the asymmetric biclustering distribution, thus combining Lemma 39 and
Lemma 42 with Lemma 18 we get a polynomial-time map A such that:

1 1 2
dryv(APDS(n, u, = + p, 5)) N (I + S—un”)) = o(1).
2 2 ™
Now the only thing left is to define precise parameter correspondence to apply Theorem 11.
Consider the following set of parameters (let v := § — 1_7"‘):

~ X e log(1 +2pn) ko iz
K, € O(N?), p, € ®(N7), Ny=D,=N, pip = . 6, = "nkn
" (N7), pn ( ), Nn " Hin 2y6log N + 2log2’ " ™

Observe that because p — 0, log(1 + 2p) € ©(p) and thus p,, € (:)(pn), one can easily verify that
the conditions are equivalent to:

log(K;p2)

=1- 1.5
w55 log(NV,) ars

thus we can apply Theorem 11, which concludes that no polynomial black-box can successfully
recover the planted instance u here. |
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