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Deconvolving (“unfolding”) detector distortions is a critical step in the comparison of cross-section
measurements with theoretical predictions in particle and nuclear physics. However, most existing
approaches require histogram binning while many theoretical predictions are at the level of statistical
moments. We develop a new approach to directly unfold distribution moments as a function of another
observable without having to first discretize the data. Our moment unfolding technique uses machine
learning and is inspired by Boltzmann weight factors and generative adversarial networks (GANs). We
demonstrate the performance of this approach using jet substructure measurements in collider physics.
With this illustrative example, we find that our moment unfolding protocol is more precise than bin-based
approaches and is as or more precise than completely unbinned methods.
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I. INTRODUCTION

Studying the dependence of physical observables on
various quantities like energy scale offers a rich probe into
the complex scaling dynamics of fundamental physical
theories. In many cases, it is advantageous to summarize a
probability distribution through a small number of stat-
istical moments, which makes visualization and interpre-
tation more tractable and lends itself to more precise
theoretical predictions. For example, the spectra of many
quark and gluon jet observables cannot be computed from
first principles in perturbative quantum chromodynamics
(QCD), but the energy dependence of their moments can be
precisely predicted from factorization and Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution [1–3].
Additionally, one of the most precise extractions of the
QCD coupling constant comes from comparing measured
moments [4–15] to theoretical calculations [16].
Unfolding, also known as deconvolution, is the process of

correcting detector distortions in experimental data. This is

necessary for the accurate comparison of data between
experiments, and with theoretical predictions. Typically,
entire spectra are unfolded and then moments are computed
afterward. In order to capture the dependence of an observ-
able Z’s moments on another quantity Y, these two features
must be simultaneously unfolded. Current unfolding
approaches discretize the ðZ; YÞ support, and then the
two-dimensional histogram is unfolded such that the
moments of Z can be computed in bins of Y. This binning
procedure introduces discretization artifacts that hinder
comparisons between measurements and theory, and
between data from different experiments.
One possibility to improve the extraction of moments

from data is to unfold without binning. A number of
unbinned unfolding techniques have been proposed, includ-
ing many based on machine learning [17–34] (see
Refs. [35,36] for overviews). In terms of experimental
applications, the OmniFold method [22,26] has recently
been applied to studies of hadronic final states with data
fromH1 [37–40], LHCb [41], CMS [42,43], STAR [44], and
ATLAS [45]. By construction, these unbinned approaches
do not introduce binning artifacts. Nevertheless, because
they offer a generic solution to unfolding entire spectra,
unbinned methods may compromise precision for any
particular aspect of the spectrum, such as a small set of
moments. Furthermore, existing unbinned methods are also
mostly iterative [22,26,28,34], which increases their com-
putational complexity.

*Contact author: krish.desai@berkeley.edu
†Contact author: bpnachman@lbl.gov
‡Contact author: jthaler@mit.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 110, 116013 (2024)

2470-0010=2024=110(11)=116013(15) 116013-1 Published by the American Physical Society

https://orcid.org/0000-0003-2559-8910
https://orcid.org/0000-0003-1024-0932
https://orcid.org/0000-0002-2406-8160
https://ror.org/01an7q238
https://ror.org/02jbv0t02
https://ror.org/01an7q238
https://ror.org/042nb2s44
https://ror.org/04pvzz946
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.110.116013&domain=pdf&date_stamp=2024-12-13
https://doi.org/10.1103/PhysRevD.110.116013
https://doi.org/10.1103/PhysRevD.110.116013
https://doi.org/10.1103/PhysRevD.110.116013
https://doi.org/10.1103/PhysRevD.110.116013
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


In this paper, we introduce a dedicated machine learning-
based unfolding method to directly unfold moments of
observable distributions. Our moment unfolding technique
is motivated by the Boltzmann distribution from statistical
mechanics and uses a structure that is similar to generative
adversarial networks (GANs) [46]. In particular, we learn a
reweighting function at particle level whose form is
determined by a Boltzmann weight factor so that its
parameters can be identified with the observable moments.
This function is optimized by requiring that the reweighted
simulation at detector level is as similar as possible to the
target data (determined by a discriminator), similar to the
two-level GAN setups in Refs. [30,47,48]. Like OmniFold
[22,26], our approach is based on reweighting, but it is
fundamentally different because it is not iterative. We
restrict our attention here to a small number of moments
of a single observable. In principle, this approach could be
extended to multiple observables and even full distribu-
tions, which we leave for future studies.
The remainder of this paper is organized as follows. We

briefly review the statistics of moments in Sec. II and how
these quantities are can be measured using binned or
unbinned approaches. Our moment unfolding protocol is
introduced in Sec. III. In Sec. IV, we provide numerical case
studies, first on aGaussian toy example and then on a realistic
particle physics study involving jet substructure observables.
The paper ends with conclusions and outlook in Sec. V.

II. THE STATISTICS OF MOMENT
MEASUREMENTS

As a reminder, the kth moment of a probability density
pZðzÞ is calculated formally by taking an integral over the
weighted density1

hZki≡
Z

∞

−∞
zkpZðzÞdz: ð1Þ

When studying the dependence of the kth moment of
Z on another observable Y, the probability density pZðzÞ is
replaced with the conditional probability density pZjYðzjyÞ.
Throughout this paper, we restrict our attention to the case
that Z and Y are one-dimensional observables.

A. Biases from binning

To estimate the quantity in Eq. (1), one often uses a
histogram approximation of pZðzÞ

hZki ≈ hZkibin ≡ 1

N

Xnbins
i¼1

Nizkbin;i; ð2Þ

where Ni is the number of counts in bin i, N ¼ P
i Ni

is the total number of counts, and zbin;i is the center of bin i.

In the limit that N; nbins → ∞ with equally spaced bins,
hZkibin → hZki.2
To see that binning generically leads to biases, one can

rewrite Eq. (1) as

hZki ¼ lim
nbins→∞

Xnbins
i¼1

Z
ziþ1

zi

zkpZðzÞdz ð3Þ

≡ lim
nbins→∞

Xnbins
i¼1

pihZkii; ð4Þ

where hZkii is the moment of z in bin i and pi is the fraction
of pZðzÞ that falls in bin i. Therefore, in the limit that
N → ∞, but nbins is finite, the bias due to the binning is

hZki − hZkibin ¼
Xnbins
i¼1

ðhZkii − zkbin;iÞ: ð5Þ

This equation emphasizes that, if instead of using the bin
centers as in Eq. (2), one were to use the kth moment per
bin, then the binning bias could be removed. The histo-
gramming tool YODA [49] keeps track of first and second
moments within bins for precisely this reason.
For spectra that are monotonically increasing or decreas-

ing, Eq. (5) predicts the sign of the bias. For spectra that
have one or more maxima, it is not possible to even know,
in general, if there is a bias and if so, what is the sign of
the bias.

B. Unfolding binned measurements

In an experimental context, before computing hZkibin in
Eq. (2), it is necessary to estimate Ni. A variety of
regularized matrix inversion approaches have been pro-
posed, which use a response matrixR to relate the counts at
detector level to the counts at particle level. In particular,
the folding equation can be written as x ¼ Rz, where x and
z are vectors with the detector-level and particle-level
counts, respectively, and R is the response matrix. The
elements of the response matrix are

Rij ¼ Prðmeasure in bin ijtruth is bin jÞ; ð6Þ

where Prð·Þ indicates probability of the argument. Note that
in general, R need not be a square matrix, which is one
reason why simple matrix inversion is not typically
effective for unfolding.
The most common approaches to inferring z from x

include iterative Bayesian unfolding (IBU) [50] (also
known as Richardson-Lucy deconvolution [51,52]), singu-
lar value decomposition (SVD) [53], and TUnfold [54].

1Upper-case letters represent random variables and lower-case
letters represent realizations of those random variables.

2Often nonuniform bin spacing is used to accommodate
nonlinear detector resolutions. The statement in the text is true
more generally when the maximum bin width goes to zero.
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Reviews on unfolding methods can be found in
Refs. [55–58]. The method we will use as a baseline for
the case studies in Sec. IV is IBU, which proceeds
iteratively

zðtÞj ¼
X
i

Prðt−1Þðtruth is jjmeasure iÞ Prðmeasure iÞ

¼
X
i

Rijz
ðt−1Þ
jP

mRimz
ðt−1Þ
m

× xi; ð7Þ

where zð0Þ is a prior distribution (often taken to be the
particle-level simulation) and t is the iteration number.
After unfolding, a number of classical approaches have

been proposed to correct for the bias in Eq. (5). Perhaps the
most common is to apply a multiplicative correction to the
binned unfolded data

hZkimeas ¼ hXkibin;data ×
hZkiMC truth

hXkibin;MC reco
; ð8Þ

where hZkiMC truth is the moment computed in simulation
without binning. A challenge with this approach is that it
does not make use of any local information in Z, since all
values that enter in the above equation are summed over
bins. To solve this, one could apply a correction per Z bin

hZkimeas ¼
1

N

Xnbins
i¼1

NihZkiMC truth;i; ð9Þ

where hZkiMC truth;i is the mean value of X in the ith bin
from simulation. In this case, one relies on the prior density
within a given bin of Z, but if the prior is not too different
from nature, the resulting bias will be suppressed. It may be
possible to further improve this by using data to unfold also
the values of hZkii.

C. Unbinned unfolding methods

One way to completely avoid the bias in Eq. (5) is to
unfold without binning in the first place. There are a
number of unbinned unfolding methods, but to our knowl-
edge, the only one applied to data so far is OmniFold
[22,26], which generalizes IBU. It uses neural network
classifiers to iteratively reweight the particle- and detector-
level Monte Carlo events, respectively. The final product of
OmniFold is a weighting function νðzÞ so that the unfolded
expectation value of any observable computable from Z is
given by

hOi ¼
X

z∈Gen

νðzÞOðzÞ; ð10Þ

where the sum runs over synthetic particle-level events
from a Monte Carlo generator. Usually, O represents the

counts in a given bin of a histogram from a differential
cross section measurement. However, O could also be the
kth moment of Z directly. A key benefit of OmniFold is that
all unfolded expectation values are derived simultaneously
from a single reweighting function.
Because of its generality, OmniFold may not be as

precise for any particular observable and moment. In
principle, OmniFold is capable of unfolding all observables
and all moments simultaneously and studies have shown
that adding more features can improve the precision on a
given observable [22]. However, the same studies have also
shown that adding more information can reduce precision.
This may be due to cases where the gains from new
information covariate with the detector response are out-
weighed by the additional regularization needed to fit
higher-dimensional data. Detailed studies of this bias-
variance trade off would be interesting to explore in the
future.
A computational challenge with OmniFold and most

other methods that actively mitigate prior dependence
[22,26,28,34] is that they are iterative. In practice, this
means that unfolding may require training tens of neural
networks (one for each step of each iteration), which can
easily reach thousands when ensembling is added into the
workflow to achieve stability.

III. MOMENT UNFOLDING

Motivated by the above challenges, we introduce
moment unfolding, which can directly learn moments
without first unfolding the entire spectrum. Moment
unfolding is an unbinned, noniterative, reweighting-based
method to unfold the statistical moments of observables,
inspired by Boltzmann’s approach to construct the
Maxwell–Boltzmann distribution [59].

For the following discussion, we use the nomenclature of
Ref. [22], where unfolding involves four datasets: truth,
data, generation, and simulation. Each synthetic collision
event comes as a pair ðZ; XÞ, for Z∈RNGen and X∈RNSim ,
where Z is the predetector version of the event (“gener-
ation”) and X is the postdetector observation of the event
(“simulation”). In experimental data, we only have access
to the detector-level version (“data”), so we use the
simulation to infer the underlying predetector distribution
(“truth”).

A. Leveraging Boltzmann weights

Moment unfolding uses a weight function gðzÞ, similar
to OmniFold’s νðzÞ in Sec. II C. Instead of determining the
weight functions in an iterative fashion, though, moment
unfolding uses a fixed functional form

gðzÞ ¼ 1

P
exp

�
−
Xn
a¼1

βaza
�
; ð11Þ
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where n is the number of moments to be simultaneously
unfolded, βa are parameters to be determined, and P is a
normalization constant, similar to the partition function
from statistical mechanics. When we want to unfold
moments conditional on another observable y, the param-
eters βa are replaced with functions βaðyÞ, as discussed
more in Sec. IV C. The exponential form of Eq. (11) is
inspired by the e−βE Boltzmann factor from statistical
physics, whose derivation is reviewed in Appendix A.
To better understand this choice, recall that the Maxwell–

Boltzmann distribution is the one that maximizes the
entropy of an ensemble while holding mean energy con-
stant. This logic can be extended beyond means to arbitrary
constraints, yielding the maximum entropy probability
distribution [59]. In this language, Eq. (11) optimizes
the relative entropy of the reweighted truth-level distribu-
tion with respect to the Z prior, while holding the first n
moments fixed to some value.
As described in more detail in Sec. III B, we determine

the values of βa by maximizing the maximum likelihood
classifier loss [60–62] between the reweighted detector-
level simulation and experimental data.3 Crucially, the
learned values of βa are not the learned moments them-
selves. Rather, analogously to Eq. (10), the moments are
given by

hZkiMoment Unfolding ¼
X

z∈Gen

gðzÞzk; ð12Þ

where the sums run over synthetic particle-level events, and
the normalization P is determined numerically

P ¼
X

z∈Gen

exp

�
−
X
a

βaza
�
: ð13Þ

In this way, the extracted kth moment depends on all n βa
values.4

There is some arbitrariness in the choice of gðzÞ, since
many weight functions with n free parameters can in
principle be used to match n moments of a distribution.
The advantage of our choice of gðzÞ is that, for the training
procedure described below, moment unfolding provably
converges to the truth moments under certain conditions, as
described in Appendix B.
The hyperparameter n sets the degree of the polynomial

in the exponent, i.e., the number trainable weights in the
generator and consequently the number of moments that
are unfolded. One might attempt to perform this procedure
for arbitrarily large values of n to reconstruct arbitrarily
high moments. However, n also simultaneously serves as a

regularization parameter that restricts the class of gen-
erator functions that the algorithm can optimize over. As
n → ∞, this class is the set of all positive analytic
functions. This is a manifestation of the bias-variance
trade-off; increasing n to reconstruct higher moments
results in a reduction in the precision of the prediction
of any individual moment.

B. Adversarial optimization

To implement moment unfolding, we modify the learn-
ing setup of a generative adversarial network (GAN) [46]
to find the optimal values of βa in Eq. (11). As shown
schematically in Fig. 1, the weight function gðzÞ can be
viewed as a “generator” which is optimized adversarially
against a “discriminator” that tries to distinguish the
reweighted simulation from the experimental data.
In a typical GAN, the generator g surjects a latent space

onto a data space, while a discriminator d distinguishes
generated examples from real examples. These two neural
networks are then trained simultaneously to optimize the
binary cross entropy (BCE) loss functional, where the
generator tries to maximize the loss with respect to g while
the discriminator tries to minimize the loss with respect
to d.
For moment unfolding, the latent space probability

density is the truth-level simulation density, and the
generation process is simply reweighting events by gðzÞ,
where gðzÞ ¼ gNNðzÞ=P̂ for neural network gNN and batch-
level normalization estimate P̂. Our discriminator is a
neutral network dðxÞ that operates on detector-level
distributions. Instead of BCE, we use the maximum like-
lihood classifier (MLC) [60–62] loss functional, because
it satisfies the analytic closure guarantees proven in
Appendix B. That said, we tested BCE for our case studies,
finding that it yields similar empirical performance. The
functions gðzÞ and dðxÞ are trained simultaneously to

Data

Re-weighted
Simulation

Re-weighted
Generation

Generation

Detector Level

Particle Level

g

d
emulated
detector

detector

Truth

Target

Estimate

FIG. 1. A schematic diagram of the training setup for moment
unfolding. Like a GAN, g is the generator and d is the
discriminator, but now g is simply a reweighting factor given
by Eq. (11). The reweighted simulation dataset inherits its weight
from the matching generation dataset. The detector emulations
are only run once, since a new simulated dataset is created via
importance weights and not by changing the features themselves.

3See Ref. [63] for related discussions using the binary cross
entropy loss.

4This distinction is why we use k to index the measured
moments but a to index the learned parameters.
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optimize a weighted version of MLC loss

L½g; d� ¼ −
X

x∈Data

logdðxÞ −
X

ðz;xÞ∈ ðGen;SimÞ
gðzÞð1 − dðxÞÞ;

ð14Þ

In the first sum, x are examples obtained from data, while in
the second sum, ðz; xÞ are tuples sampled from generation
and simulation. A similar setup (with unrestricted g) was
used for domain adaptation in Ref. [64].
For the empirical studies in Sec. IV, each neural network

is implemented using Keras [65] with the TensorFlow2 backend
[66] and optimized with ADAM [67]. The discriminator
function d has three hidden layers, using 50 nodes per layer.
Rectified Linear Unit (ReLU) activation functions are used
for the intermediate layers and a sigmoid function is used
for the last layer.

IV. CASE STUDIES

To demonstrate the features of moment unfolding, we
perform numerical cases studies, both in a Gaussian
example and in the realistic setting of jet measurements
at the Large Hadron Collider (LHC).

A. Gaussian example

We begin by unfolding Gaussian data with Gaussian
distortions. Let N ðμ; σ2Þ be a normal distribution with
mean μ and variance σ2. The particle-level truth distribution
is drawn fromN ð0; 1Þ while the particle-level generation is
drawn from N ð−0.5; 1Þ. Detector effects are represented
by additive noise that is also Gaussian, with distribution

N ð0; 5Þ. Since the Gaussian probability density is uniquely
specified by its first two moments, moment unfolding with
weighting function

gðzÞ ¼ 1

P
e−β1z−β2z

2 ð15Þ

can in principle result in a perfect unfolding of the entire
distribution. As discussed in Appendix B, no unfolding
method can be successful in all cases, and moment
unfolding in particular cannot recover the true distribution
when there are large off-diagonal elements in the detector
response, which is indeed the case here.
Nevertheless, as shown in Fig. 2(a), the numerical results

of applying moment unfolding to this Gaussian example
are quite promising. Here, we show histograms at particle
level, comparing the truth dataset (blue shaded), generation
dataset (orange shaded), and the result of weighting the
generation dataset by Eq. (15) (black dotted line). Visually,
the close overlap between the truth histogram and the
weighted generation histogram shows that the moment
unfolding procedure was successful.
Since this is a simple one-dimensional problem, we can

study the success of this procedure more precisely.
Specifically, we can check whether the maximum of the
discriminator loss function is indeed at values of βa that
correspond to the moments of the truth distribution. In
practice, we do not have access to the full loss landscape,
but for this one-dimensional problem, we can scan over a
discrete set of generator parameters for illustration. Then, to
obtain the value of the loss, we can train the discriminator
for fixed values of βa.

(a) (b)

FIG. 2. (a) Distributions from the Gaussian example of particle-level truth, generation, and reweighted generation (i.e., moment
unfolding). The agreement between the truth and reweighted samples demonstrates the qualitative performance of moment unfolding.
(b) The weighted MLC loss from Eq. (14) for fixed g but optimized d, found by scanning over β1 and β2. The correct value is indicated
by a red star. Indicated in shaded blue is the 1σ bootstrapped interval for moment unfolding’s prediction of βa.
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In Fig. 2(b), we plot the discriminator-optimized loss as a
function of β1 and β2. The red star represents the loss
maximum. The solid blue region represents the 1σ con-
fidence interval for the values of βa learned by the moment
unfolding algorithm, estimated from a bootstrapping
procedure. Since the red star coincides with the correspond-
ing solid blue ellipse, the success of the procedure is
verified.

B. Jet substructure

As a more realistic case study, we study hadronic jets
from the LHC. Jets are collimated sprays of particles that
arise from the fragmentation of high-energy quarks and
gluons. Measuring the substructure of jets is an active area
of research, both to understand QCD dynamics and to
search for physics beyond the Standard Model [68,69]. For
this study, we consider four jet substructure observables: jet
mass m, jet charge q with κ ¼ 1=2 [70], jet width w [68],
and momentum fraction zg [71] after Soft Drop grooming
[72,73] with zcut ¼ 0.1 and β ¼ 0:

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
k

E2
k −

X
k

p2
k

r
; ð16Þ

q ¼ 1P
k

ffiffiffiffiffiffiffiffi
pT;k

p
X
k

qk
ffiffiffiffiffiffiffiffi
pT;k

p
; ð17Þ

w ¼ 1

pT;jet

X
k

pT;kΔRk; ð18Þ

zg ¼
pT;subleading

pT;leading þ pT;subleading
: ð19Þ

Here, the sums run over the constituents of a jet, and Ek, pk,
pT;k, ΔRk, and qk are the constituent energy, three-momen-
tum, transverse momentum, angular distance from the jet
axis, and electric charge for particle k, respectively, and
pT;ðsubÞleading is the transversemomentumof the (sub)leading

prong [74] returned by the Soft Drop algorithm.
The jet mass and jet width are examples of infrared-and-
collinear-safe observables that are expected to be less
sensitive to detector effects, while the groomed momentum
fraction (as β → 0) is Sudakov safe [71]. Jet charge is
infrared but not collinear safe and therefore expected to be
more susceptible to certain kinds of detector distortions. The
first moment of the jet charge distribution as a function of jet
pT has been calculated in Refs. [70,75–78] andmeasured by
ATLAS [79] and CMS [80,81].
The simulated samples used for this study are the same

as in Refs. [22,82] and briefly summarized here. Proton-
proton collisions are simulated at

ffiffiffi
s

p ¼ 14 TeV with the
default tune of Herwig 7.1.5 [83–85] and Tune 26 [86] of
Pythia 8.243 [87–89]. As a proxy for detector effects and a
full detector simulation, we use the DELPHES 3.4.2 [90] fast
simulation of the CMS detector, which uses particle
flow reconstruction [91]. Jets with radius parameter
R ¼ 0.4 are clustered using either all particle flow objects
(detector-level) or stable non-neutrino truth particles
(particle-level) with the anti-kT algorithm [92] imple-
mented in FastJet 3.3.2 [93,94]. To reduce acceptance effects,
the leading jets are studied in events with a Z boson with
transverse momentum pZ

T > 200 GeV. For this study, we
treat Pythia +DELPHES as “truth/data” and Herwig +DELPHES as
“generation/simulation.”
For each of the four observables above, we unfold the

first two moments from detector-distorted jet substructure
data. We emphasize that this unfolding is done separately
for each observable, leaving joint unfolding to future work.
The moment results are presented in Table I, where we see
that moment unfolding has good performance recovering
the expected truth moments within statistical uncertainties.
The uncertainties in the “truth” and “generation” columns
are computed by bootstrapping the respective datasets,
computing the relevant moment for each bootstrapped
dataset, and then computing the 1σ interval for this
moment. The uncertainties in the “moment unfolding”
column are computed by adding the uncertainty in

TABLE I. Moments of jet observables at particle level. The uncertainties in the truth and generation columns are computed by
bootstrapping the datasets. The uncertainties in the moment unfolding column are computed by adding the uncertainty in Generation in
quadrature to the empirical uncertainty obtained by computing the 1σ confidence interval for the moment predicted by moment
unfolding on the same dataset multiple times.

Observable Truth Generation Moment unfolding

hMi ð2.182� 0.030Þ × 101 ð2.064� 0.043Þ × 101 ð2.173� 0.047Þ × 101

hM2i ð6.049� 0.222Þ × 102 ð5.360� 0.350Þ × 102 ð6.115� 0.364Þ × 102

hQi ð1.006� 0.037Þ × 10−2 ð1.582� 0.038Þ × 10−2 ð1.090� 0.040Þ × 10−2

hQ2i ð1.216� 0.082Þ × 10−2 ð1.508� 0.074Þ × 10−2 ð1.207� 0.074Þ × 10−2

hWi ð1.498� 0.025Þ × 10−1 ð1.231� 0.029Þ × 10−1 ð1.499� 0.029Þ × 10−1

hW2i ð3.370� 0.113Þ × 10−2 ð2.421� 0.128Þ × 10−2 ð3.374� 0.128Þ × 10−2

hZgi ð2.334� 0.029Þ × 10−1 ð2.457� 0.030Þ × 10−1 ð2.353� 0.059Þ × 10−1

hZ2
gi ð6.789� 0.166Þ × 10−2 ð7.425� 0.165Þ × 10−2 ð6.767� 0.330Þ × 10−2

DESAI, NACHMAN, and THALER PHYS. REV. D 110, 116013 (2024)

116013-6



“generation” in quadrature to the intrinsic uncertainty
of the empirical procedure estimated by learning the
same moment on the same dataset multiple times and
computing the 1σ confidence interval for the predicted
moment.
As an alternative visualization, we show the inferred

particle-level distributions in Fig. 3. The jet mass follows a
unimodal distribution peaked at about 20 GeV, with a
relatively long tail many standard deviations to the right.
These features are observed both in truth and generation
with a sharper peak in truth. The jet charge has an
approximately Gaussian distribution, and is close to sym-
metric with a small positive skew because approximately
equal number of positively and negatively charged particles
are produced, with a small excess of positively charged
particles produced because this is a proton-proton process.
Radiation within jets is enhanced at low values of ΔR
which leads to the unimodal distribution of the jet width

that falls off rapidly after about 0.1; these features are
present in both the truth and generation, albeit with a longer
tail in truth. The groomed momentum fraction offers an
opportunity to study the performance of moment unfolding
for data that is not well approximated as a Gaussian
distribution and has a sharp cutoff feature. For all four
observables, even though the first and second moments of
the reweighted generation match the truth well, the full
distributions are not statistically identical. This is because
higher moments are relevant and are not the same between
truth and generation.
In Fig. 4, we perform a loss function analysis where we

scan over values of βa, learn the optimal discriminator for
the fixed generator, and then compare the loss function
maximum to the learned values of βa. The red star
represents the maximum of the MLC loss. The solid blue
region represents the 1σ confidence interval for the values
of βa learned by the moment unfolding algorithm,

(a) (b)

(c) (d)

FIG. 3. Distributions of (a) jet mass, (b) jet charge, (c) jet width, and (d) groomed momentum fraction at particle-level, comparing
truth, generation, and the results from moment unfolding.
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estimated from a bootstrapping procedure. Since the red
star coincides with the corresponding solid blue ellipse, the
success of the procedure is verified.

C. Momentum dependence

Typically, we are interested in more than just inclusive
moments. For jet substructure observables, it is interesting
to study the moments as a function of jet pT . We can
slightly modify our generator g to accommodate this case
by adding momentum dependence to the coefficients in
Eq. (11)

gðz;pTÞ ¼
1

P
exp

�
−
Xn
a¼1

βaðpTÞza
�
; ð20Þ

where βaðpTÞ is an arbitrary function of pT . While we
could parametrize βaðpTÞ as a neural network, we found
that this resulted in unstable performance. Since the
pT-dependence is often weak and since the starting simu-
lations are already quite accurate, we regularize the βa by
parametrizing them as low-order polynomials. Empirically,
we observe that the ratio of spectra between Pythia and Herwig

is approximately linear, so we restrict the βa to be first-order
polynomials in pT

βaðpTÞ ¼ βð0Þa þ βð1Þa pT: ð21Þ

In Fig. 5, we show the results of carrying out this
procedure for the jet mass, jet charge, jet width, and
groomed momentum fraction on the inclusive distribution.

(a) (b)

(c) (d)

FIG. 4. The discriminator-optimized MLC loss as a function of β1 and β2, for (a) jet mass, (b) jet charge, (c) jet width, and (d) groomed
momentum fraction. The correct βa values are indicated by red dot, while the 1σ intervals for moment unfolding’s predictions of βa are
shown as a blue circle.
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These can be contrasted with the plots in Fig. 3 which
did not have pT dependence in the unfolding. With a
pT-dependent weight function, there is stronger similarity
between the truth and moment unfolding. Having observed
the improved inclusive behavior, we now study jet observ-
able moments differentially in pT .
In Fig. 6, we plot the dependence of jet observable

moments on the jet pT . The left column shows the first
moments of the jet mass, jet charge, and jet width,
while the right column shows the corresponding
second moments. The moments are computed in bins
of transverse momentum for the truth dataset (blue
triangles), the generation dataset (orange triangles), and
moment unfolding result using the weight factor gðx;pTÞ
from Eq. (20) (black circles). Up to statistical uncertain-
ties, we see that the moment unfolding results coincide
with the moments of the truth dataset, which are sub-
stantially distinct from the moments of the generation
dataset.

D. Comparison to other methods

Finally, we compare the unfolded moments computed
through moment unfolding method to those obtained
through three alternative unfolding methods:

(i) OmniFold: An example of unbinned unfolding.
(ii) IBU: An example of binned unfolding.
(iii) IBU + Bin Correction: Same as above but perform-

ing the binwise correction from Eq. (9).
The results of this comparison are shown in Fig. 7, for the

first and secondmoments of jetmass, jet charge, jetwidth, and
groomed momentum fraction. The top panel of each plot
shows the moments as a function of jet pT , comparing
moment unfolding (black circles), the three method listed
above (IBU in green squares, IBUwith the binwise correction
in yellow diamonds, and Omnifold in red triangles), and the
truth dataset (blue triangles). To better highlight the perfor-
mance of each method, the bottom panels of each plot
show the ratio of the unfoldedmoments to the truthmoments.

(a) (b)

(c) (d)

FIG. 5. Inclusive distributions of (a) jet mass, (b) jet charge, (c) jet width, and (d) groomed momentum fraction unfolded conditionally
on the traverse momentum of the jet. Compared to the unconditional unfolding in Fig. 3, the agreement between truth and moment
unfolding is typically better.
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In general, the unbinned methods OmniFold and moment
unfolding outperform both versions of IBU. Despite having a
more rigid reweighting function and simpler training para-
digm, moment unfolding nevertheless exhibits comparable
(and in some cases) better performance than OmniFold. On

average, moment unfolding takes about 104 times longer to
run than IBU, and Omnifold takes about 102 times longer to
run than moment unfolding.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 6. The mean (left column) and variance (right column) of
the jet mass (a, b), jet charge (c, d), jet width (e, f), and groomed
momentum fraction (g, h) as a function of the transverse
momentum of the jet. For visual clarity, only statistical uncer-
tainties on the truth distribution are shown. With uncertainties, the
moment unfolding results are in good agreement with the truth.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 7. Same observables and moments as Fig. 6, but now
comparing the moment unfolding result to those of OmniFold, IBU,
and IBU with binwise correction. The lower panel in each plot
shows the ratio of the extracted moments to the truth as a function of
jet pT , demonstrating the strong performance of moment unfolding
relative to IBU, and comparable performance to OmniFold.
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V. CONCLUSIONS AND OUTLOOK

In this paper, we introduced the first dedicated approach
to unfolding the moments of distributions without binning.
Our moment unfolding protocol is based on the structure of
a generative adversarial network, where the generator is a
weighting function at particle level and the discriminator is
a classifier acting at detector level. The weight function is
inspired by the Boltzmann distribution, with a small
number of parameters that have a physical interpretation
as Lagrange multipliers imposing moment constraints.
Through both a simple Gaussian example and physically

relevant examples from jet physics, we showed that
moment unfolding is able to recover the desired truth
moments. The performance is comparable to a generic
approach for unbinned unfolding (OmniFold), but without
the complexity of an iterative algorithm. Moment unfolding
is able to recover moments inclusively, and with a small
modification, also differential in at least one quantity.
While the dependence of one moment on one other
observable is a common case, this new method can in
principle be extended to more moments and differential in
more quantities, though the practical challenges of this
scaling is left to future studies.
Going to the extreme limit, themoment unfolding strategy

could be extended to full distributions. Unfolding full
distributions typically requires some kind of regularization,
such as limiting the number of iterationswhen using iterative
methods. For a noniterative method like moment unfolding,
one would need to regularize the functional form of the
weight factor in some way, for example by using neural
networks with a Lipschitz constraint [95,96]. With appro-
priate regularization, a generalized version of moment
unfolding could potentially combine the flexibility of
machine-learning-based approaches like OmniFold with
the robustness of traditional unfolding strategies.

ACKNOWLEDGMENTS

We thank Shuchin Aeron, Benjamin Fischer, and Dennis
Noll for useful discussions. B. N. would like to thank
Stefan Kluth for discussions about unfolding moments
nearly a decade ago in the context of Ref. [97]. J. T. would
like to thank Benoit Assi, Stefan Hoeche, and Kyle Lee for
discussions of moments in the context of theory calcu-
lations. K. D. and B. N. are supported by the U.S.
Department of Energy (DOE), Office of Science under
Contract No. DE-AC02-05CH11231. J. T. is supported by
the National Science Foundation (NSF) under Cooperative
Agreement No. PHY-2019786 (The NSF AI Institute for
Artificial Intelligence and Fundamental Interactions, [98]),
by the U.S. DOE Office of High Energy Physics under
Grant No. DE-SC0012567, by the Simons Foundation
through Investigator Grant No. 929241, and his work
was performed in part at the Aspen Center for Physics,
which is supported by NSF Grant No. PHY-2210452.

DATA AVAILABILITY

The code for this paper can be found at [100],
which makes use of Jupyter notebooks [99] employing
NumPy [101] for data manipulation and Matplotlib [102] to
produce figures. All of the machine learning was performed
on an Nvidia RTX6000 Graphical Processing Unit (GPU)
and running the notebook to perform unfold the first few
moments of a dataset takes less than five minutes per
iteration (to extract bootstrapped uncertainties we perform
500 iterations). The physics data sets are hosted on Zenodo
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APPENDIX A: REVIEW OF BOLTZMANN
WEIGHTS

In this appendix, we derive the weight factor from
Eq. (11), following the familiar derivation of the Boltzmann
distribution. The goal is to learn a distribution lðzÞ that
optimizes the relative entropy of lðzÞwith respect to a prior
qðzÞ, subject to moment constraints from a distribu-
tion pðzÞ.
The KL divergence of lðzÞ from qðzÞ is

DKLðlkqÞ ¼
Z

lðzÞ loglðzÞ
qðzÞ dz: ðA1Þ

In the absence of constraints, this quantity would be
minimized when lðzÞ ¼ qðzÞ. Note that the KL divergence
is not symmetric between lðzÞ and qðzÞ, which is essential
to the following derivation.
To impose the moment constraints, we include Lagrange

multipliers βa to force lðzÞ to have the same first n
moments as pðzÞ. This corresponds to the loss function

L ¼ DKLðlkqÞ þ
Xn
a¼0

βa

Z
zaðlðzÞ − pðzÞÞdz; ðA2Þ

where the a ¼ 0 term enforces that lðzÞ is properly
normalized. Taking a functional derivative of the loss with
respect to lðzÞ

δL
δlðzÞ ¼ log

lðzÞ
qðzÞ þ 1þ

Xn
a¼0

βaza: ðA3Þ

Setting this to zero to find the minimum, the solution is

lðzÞ ¼ qðzÞ exp
�
−1 −

Xn
a¼0

βaza
�
: ðA4Þ

Writing lðzÞ ¼ gðzÞqðzÞ and solving β0 for the normali-
zation condition, we recover the desired weight factor from
Eq. (11), repeated for convenience
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gðzÞ ¼ 1

P
exp

�
−
Xn
a¼1

βaza
�
: ðA5Þ

Here, the normalization factor is

P ¼
Z

qðzÞ exp
�
−
Xn
a¼1

βaza
�
dz: ðA6Þ

The remaining Lagrange multipliers βa are determined by
solving the moment constraints, which do not have a closed
form in general.

APPENDIX B: ANALYTIC CLOSURE TESTS

In this appendix, we derive the asymptotic conditions
under which moment unfolding will correctly recover the
moments of the true distribution.

1. Perfect detector response

We start with the case of perfect detector response, such
that we can work entirely with particle-level distributions in
z. The derivation in Appendix A shows that the weight
factor from Eq. (11) optimizes the relative entropy subject
to the moment constraints. Here, we prove that minimizing
the MLC loss with respect to the weight factor parameters
recovers the desired moments. This is a nontrivial closure
test of moment unfolding, since loss functions other than
MLC do not generically satisfy this property.
Let pðzÞ be the true particle-level distribution, qðzÞ be

the particle-level generator, and gðzÞ be the weight factor
from Eq. (11). For convenience, we define the reweighted
distribution after moment unfolding as

q̃ðxÞ ¼ qðzÞgðzÞ: ðB1Þ

Asymptotically, the MLC loss of pðzÞ to q̃ðzÞ is

L ¼ −
Z

pðzÞ logdðzÞdz −
Z

q̃ðzÞð1 − dðzÞÞdz; ðB2Þ

where dðzÞ is the discriminator function. Because we are
assuming perfect detector response, it makes sense to talk
about the discriminator acting on particle-level quantities.
Taking a functional derivative of the loss with respect to

dðzÞ, we find

δL
δdðzÞ ¼ −

pðzÞ
dðzÞ þ q̃ðzÞ: ðB3Þ

Setting this equal to zero, the optimal discriminator is
d�ðzÞ ¼ pðzÞ=q̃ðzÞ. Plugging this back into the MLC loss
and using the fact that pðzÞ and q̃ðzÞ are both normalized,
we find

Ljd¼d� ¼ −
Z

pðzÞ logpðzÞ
q̃ðzÞ dz ¼ −DKLðpkq̃Þ: ðB4Þ

Note that this result is not symmetric between pðzÞ and
q̃ðzÞ, which is essential to the rest of the derivation.
We now want to optimize the generator parameters

assuming the optimal discriminator. Letting L̃≡ Ljd¼d�
for notational convenience, the derivative of the discrimi-
nator-optimized loss with respect to the generator param-
eters is

∂L̃
∂βa

¼
Z

δL̃
δgðzÞ

∂gðzÞ
∂βa

dz: ðB5Þ

The functional derivative of the loss with respect to the
generator is

δL̃
δgðzÞ ¼

pðzÞ
gðzÞ ; ðB6Þ

while the derivatives of the generator with respect to its
parameters are

∂gðzÞ
∂βa

¼ −gðzÞ
�
za þ 1

P
∂P
∂βa

�
¼ −gðzÞðza − hZaiq̃Þ: ðB7Þ

Therefore, setting Eq. (B5) equal to zero is equivalent to
enforcing

hZaiq̃ ¼ hZaip; ðB8Þ

for all a ¼ 1;…; n. This proves that the learned moments
match those from data, at least in the asymptotic limit
assuming perfect detector response and optimal learning.

2. Universal detector response

In the case of a realistic detector, the learned moments
will not in general match the truth moments. That said, the
deviations from closure will be small as long as detector
distortions are small.
Crucially, all unfolding methods assume that the detector

response is universal between real data and simulation. This
means that the detector-level distributions can be written in
terms of a universal response function rðxjzÞ as

pðxÞ ¼
Z

rðxjzÞpðzÞdz; ðB9Þ

qðxÞ ¼
Z

rðxjzÞqðzÞdz: ðB10Þ

The reweighted distribution after moment unfolding is

q̃ðxÞ ¼
Z

rðxjzÞqðzÞgðzÞdz: ðB11Þ
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In the case that rðxjzÞ ¼ δðx − zÞ, we recover the closure
result from Eq. (B8). We now derive the moment relation in
the case that the detector is imperfect but still universal.
The discriminator dðxÞ now acts on detector-level

quantities. Apart from swapping z for x, though, the
derivation of the discriminator-optimized MLC loss is
the same as in Eq. (B4)

L̃ ¼ −
Z

pðxÞ logpðxÞ
q̃ðxÞ dx: ðB12Þ

The derivative of this with respect to the generator
parameters is somewhat more involved than Eq. (B5)

∂L̃
∂βa

¼
Z

δL̃
δq̃ðxÞ

δq̃ðxÞ
δgðzÞ

∂gðzÞ
∂βa

dzdx: ðB13Þ

The functional derivatives are

δL̃
δq̃ðxÞ ¼

pðxÞ
q̃ðxÞ ; ðB14Þ

δq̃ðxÞ
δgðzÞ ¼ rðxjzÞqðzÞ: ðB15Þ

The ∂gðzÞ=∂βa derivative is the same as Eq. (B7).
Setting Eq. (B13) equal to zero, we find that the learned

moments satisfy

hZaiq̃ ¼ hZaipmod
; ðB16Þ

where the modified data distribution is

pmodðzÞ ¼
Z

pðxÞrðxjzÞq̃ðzÞ
q̃ðxÞ dx: ðB17Þ

Thus, the moments of q̃ðzÞ match the moments of pmodðzÞ,
which are in general different from those of pðzÞ.

To better interpret pmodðzÞ, it is convenient to rewrite it in
the following form:

pmodðzÞ ¼
Z

fðzjz0Þpðz0Þdz0; ðB18Þ

where fðzjz0Þ can be thought of as a transfer function that
maps the actual particle-level truth information to the
learned particle-level information. In the case of perfect
detector response, fðzjz0Þ ¼ δðz − z0Þ. For a realistic detec-
tor, one can manipulate Eq. (B17) to find

fðzjz0Þ ¼
Z

q̃ðzjxÞrðxjz0Þdx: ðB19Þ

Here, q̃ðzjxÞ ¼ rðxjzÞq̃ðzÞ=q̃ðxÞ is the inverse detector
response derived from the reweighted simulation, which
is in general not universal.
Thus, one can interpret fðzjz0Þ as taking the particle-level

information, passing it through the universal detector
response, and pulling it back through the nonuniversal
reweighted simulation. To the extent that the reweighted
simulation is sufficiently similar to the real data, pmodðzÞ
will be similar enough to pðzÞ to satisfy closure. One
obstruction to closure is if the detector response includes
large distortions, such that the inverse detector response is
highly dependent on the reweighting function. Another
obstruction is if the particle-level generator has poor
overlapping support with the truth, such that the reweight-
ing function needs to be large in poorly modeled regions of
phase space. Both of these obstructions are common to all
unfolding methods, though, and not unique to moment
unfolding.
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