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Abstract

With the advent of the Vera C. Rubin Observatory, the discovery rate of supernovae (SNe) will surpass the rate of
SNe with real time spectroscopic follow-up by 3 orders of magnitude. Accurate photometric classifiers are essential
to both select interesting events for follow-up in real time and for archival population-level studies. In this work,
we investigate the impact of observable host-galaxy information on the classification of SNe, both with and
without additional light-curve and redshift information. We find that host-galaxy information alone can
successfully isolate relatively pure (>90%) samples of Type Ia SNe with or without redshift information. With
redshift information, we can additionally produce somewhat pure (>70%) samples of Type II SNe and
superluminous SNe. Additionally with redshift information, host-galaxy properties do not significantly improve the
accuracy of SN classification when paired with complete light curves. In the absence of redshift information,
however, galaxy properties significantly increase the accuracy of photometric classification. As a part of this
analysis, we present the first formal application of a new objective function, the weighted hierarchical cross
entropy, to the problem of SN classification. This objective function more naturally accounts for the hierarchical
nature of SN classes and, more broadly, transients. Finally, we present a new set of SN classifications for the Pan-
STARRS Medium Deep Survey of SNe that lack spectroscopic redshift, increasing the full photometric sample to
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>4400 events.

Unified Astronomy Thesaurus concepts: Supernovae (1668); Light curve classification (1954); Neural

networks (1933)
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1. Introduction

Early classification of extragalactic transients, in particular
supernovae (SNe), is paramount to enabling multiwavelength
and spectroscopic analysis in real time. Currently, ~10% of
SNe receive a spectroscopic classification, the traditional
means for understanding the underlying nature of an SN. The
fraction of SNe which remain spectroscopically unclassified
will significantly grow with the upcoming Legacy Survey of
Space and Time (LSST) conducted by Vera C. Rubin
Observatory and expected to commence in 2025. LSST will
discover over one million SNe annually (R. Kessler et al.
2019); without additional spectroscopic resources, <0.1% of
all SNe will have spectroscopic follow-up. Large-scale spectro-
scopic follow-up campaigns, such as 4MOST (E. Swann et al.
2019), will increase this to ~1%. As a result of this mismatch
in discovery versus follow-up rates, the time-domain commu-
nity has placed significant emphasis on photometric classifiers
in the years leading up to LSST.

Photometric classifiers aim to classify SNe into their historically
spectroscopic classes based on photometric data alone. The
taxonomy of SNe has actively evolved as increasingly large
samples unveil new diversity in SNe observables, leading to a
branching hierarchical structure. Broadly speaking, Type II SNe
are those which show spectroscopic signatures of hydrogen near
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the peak of their optical emission. Within this class, the spectra of
Type IIP/L SNe have broad H emission (typically with P-Cygni
profiles), while Type IIn SNe are dominated by narrow H
emission. In contrast, Type I SNe lack said features, with Type Ib
SNe showing signs of helium and Type Ic SNe lacking signs of
either. Types Ibc and II SNe arise from the core collapse of
massive stars. Type Ia SNe, arising from thermonuclear
explosions of white dwarfs, lack H and He in their optical spectra
but show strong signatures of Sill near the peak. A broad
overview of the hierarchical SN taxonomy is presented in
A. Gal-Yam (2017).

Some photometric classification methods can be conducted
in real time (e.g., D. Muthukrishna et al. 2019; A. Moller &
T. de Boissiere 2020; R. Carrasco-Davis et al. 2021; H. Qu &
M. Sako 2022; A. Gagliano et al. 2023) while others rely on
complete light curves (e.g., G. Hosseinzadeh et al. 2020;
K. Boone 2021) for feature extraction. It can be especially
challenging to identify and measure useful SN features in the
early photospheric phases of the light curves. However, prompt
identification of SNe is key to capturing early observational
phenomena (e.g., flash spectroscopy for young core-collapse
SNe (CCSNe); D. Khazov et al. 2016; R. J. Bruch et al. 2021;
W. Jacobson-Galan et al. 2024), to guide multiwavelength
follow-up and to optimize spectroscopic resources. In order to
perform this early classification, all available information must
be utilized, including the contextual information provided by
the host galaxy of the transient.

Specifically, host-galaxy information is known to correlate
with transient properties. For example, while thermonuclear
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(Type Ia) SNe are broadly observed across all galaxy types,
CCSNe occur only in galaxies with recent or ongoing star
formation (J. Leaman et al. 2011; A. Hakobyan et al. 2012;
M. Childress et al. 2013). Type Ib and Ic SNe, specific
subtypes of stripped-envelope SNe (SESNe), prefer slightly
more-massive (and typically higher-metallicity) host galaxies
compared to their hydrogen-rich counterparts of Type II(b)
SNe (S. Schulze et al. 2021). Similarly, SESNe are over-
represented in disturbed galaxies compared to their H-rich
counterparts (S. M. Habergham et al. 2012). Rare CCSN
classes seem to show stronger and more exotic preferences.
Both Type Ic-BL (high-energy, “broad-lined” events) and
H-poor superluminous SNe (SLSNe) prefer low-mass (metal-
poor) galaxies with high specific star formation rates
(P. L. Kelly & R. P. Kirshner 2012; S. Schulze et al. 2021).
On local scales, SESNe strongly trace Ha (a tracer of ongoing
star formation), while Type II SNe tend to show larger spreads
in local environment properties (J. P. Anderson et al. 2012). In
contrast the Type IIn SNe, which show signs of interaction
between the SN blast wave and dense, preexisting circumstellar
material, show highly heterogeneous local environments
(C. L. Ransome et al. 2022). The rarer Ca-rich SNe of yet
unknown progenitor origin show strong preference for high
offsets in their host galaxies, although they are not preferen-
tially found in star-forming hosts (M. M. Kasliwal et al. 2012;
Y. Dong et al. 2022). These correlations are clues toward the
underlying progenitor populations for each of these SN classes.
Here, however, we utilize the correlations between global host
properties and transients as a tool to help classify the
underlying physics of the SNe.

Classifiers that utilize galaxy information for SN identifica-
tion have been explored in the literature, although they have
been primarily limited to binary classification tasks. R. J. Foley
& K. Mandel (2013) introduced the first galaxy-based SN
classifier based on a Naive Bayes architecture with the LOSS
SN sample. In a similar vein, A. Baldeschi et al. (2020) showed
that galaxy morphology and star formation could be used to
increase the purity of thermonuclear and CCSN samples
compared to randomly guessing. A. Gagliano et al. (2021)
introduced a random forest classifier based on host-galaxy
properties from the GHOST sample of 216,000 SNe associated
with host galaxies, finding that such a method could perform
thermonuclear versus CCSNe classification with ~68% accur-
acy. S. Gomez et al. (2020) presented one of the first host-
aware classifiers that extend beyond Ia/CCSNe classification,
focusing instead on a Type I SLSNe versus non-SLSNe
classification from a combination of host and light-curve
properties; a classifier based on host-galaxy properties alone is
not explored in that work. M. Kisley et al. (2023) presented a
hierarchical SN classifier based solely on optical and (near)-
infrared host-galaxy photometry from the THEXx catalog
(Y.-J. Qin et al. 2022). They use a likelihood-based approach
reminiscent of a Naive Bayes classifier, using a series of binary
classifications to distinguish 11 SN classes (in addition to tidal
disruption events). They were able to classify Type Ia subtypes
and Type II SNe with a purity statistically above random
guessing. Most recently, A. Gagliano et al. (2023) presented a
neural-network-based classifier for Zwicky Transient Facility
(ZTF) Bright Transient Survey data which utilizes the light-
curve and host-galaxy information for Type Ia, II, and Ibc SN
classification, achieving an accuracy of ~82% within 3 days
(observer frame) of discovery.
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Furthermore, the hierarchical nature of SN taxonomy is rarely
used in photometric classification. P. Sdnchez-Sdez et al. (2021)
presented a broad hierarchical classifier for ZTF data. There,
multiple “flat” (i.e., those lacking a hierarchical structure) random
forest algorithms are trained at each “level” of the hierarchical
classifier. For example, all SNe are classified as transient
phenomena, then a second flat classifier is trained to classify
them as one of four SN types. M. Kisley et al. (2023) consider the
hierarchical nature of SNe in the sense of a prior distribution,
which is then used in the classifier’s objective function. For
example, the rate of Type Ia-91bg events are included when
calculating the rate of Type Ia SNe, which is then used to define a
Type Ia prior probability within the objective function. However,
this prior information is not used in their primary analysis.

Here, we present a broad, hierarchical classifier based on
host-galaxy properties alone and explore how galaxy properties
can improve our transient classifications. We specifically test
how simple, measurable properties of the host impact our
classification accuracy both with and without redshift informa-
tion. The paper is organized as follows. In Section 2, we review
the data used in this work and the features selected for our SN
classifiers. In Section 3 we present the weighted hierarchical
cross-entropy score to more naturally account for the
hierarchical nature of SN classification. We additionally
discuss the architecture of our neural-network-based classifier
used here for classification. In Section 4, we discuss the results
of our classifiers for different subsets of SN classes, feature
sets, and the inclusion/exclusion of redshift information. In
Section 5, we present new classifications of SNe within the
Pan-STARRS Medium Deep Survey (PS1-MDS) sample.
We conclude in Section 6. Throughout this work, we assume
a flat ACDM cosmology with Hy=67.8kms ' Mpc~' and
Qm =0.308 (Planck Collaboration et al. 2020).

2. Data and Feature Selection

We aim to understand if and when host-galaxy features can
aid in SN photometric classification. Therefore, we require a
SN sample for which both a light-curve-only classifier and a
host-galaxy classifier are both available. While there now exist
two large catalogs of host galaxies with associated SNe,
GHOST (A. Gagliano et al. 2021) and THEx (Y.-J. Qin et al.
2022), we instead opt to use a uniform survey in order to
directly compare the light-curve versus host features. For this
reason, we utilize the PS1-MDS catalog of SN-like light curves
published by V. A. Villar et al. (2020) and G. Hosseinzadeh
et al. (2020). In total, our sample includes 557 spectro-
scopically identified SNe, in five classes: Type Ia SNe (404
objects), Type I SNe (93 objects), Type IIn SNe (24 objects),
Type Ib/c SNe (19 objects), and Type I SLSNe (17 objects).
Our Pan-STARRS sample has the additional benefit of being a
close analog to Vera C. Rubin data in terms of cadence, filter
selection, and depth, offering a realistic view of how our
algorithm will perform on the LSST data stream.

We use the full set of light-curve features available from
SuperRAENN (44 in total; V. A. Villar et al. 2020), which
includes:

1-8: Nonlinear features extracted from an autoencoder,
trained on the PSI-MDS data set. The correlations
between these data-driven features and “typical”
observational features are explored in more detail in
V. A. Villar et al. (2020).
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9-21: The griz rise times, calculated using 1, 2, and 3 mag
below peak. Note that these are calculated using light
curves which have been interpolated via a 2D
Gaussian process. These are, when redshift is utilized,
calculated in the rest frame of the SN (using only the
cosmological k-corrections).

22-32: The griz decline times, calculated for 1, 2, and 3 mag

below peak.

33-36 : The griz peak magnitude. When redshift is utilized,
these are absolute magnitudes.

37-40: The median slope measured in griz between 10 and
30days postpeak in the observer frame. Note that
these features in particular help distinguish between
Type II and Type Ibc SNe.

41-44: The integrals of the interpolated griz light curves.

To associate SNe with host galaxies and extract galaxy
features, we use the “Finding Luminous and Exotic Extra-
galactic Transients” (FLEET) pipeline (S. Gomez et al. 2020,
2023). FLEET is a classification methodology designed to
classify rare, extragalactic transients (SLSNe and tidal disrup-
tion events) using a combination of host-galaxy and light-curve
information. FLEET queries a 1’ region of the Pan-STARRS
37 survey around a given transient to identify the most likely
host galaxy using the follow algorithm. First, a probability of
being a galaxy (as opposed to a star) is assigned to every object
in the field, where 0 means most like a star, and 1 means most
likely a galaxy. This probability is estimated using a custom
k-nearest neighbors algorithm trained on data from the
Canada—France-Hawaii Telescope Legacy Survey, which has
complete star/galaxy labels down to ~26 mag (P. Hudelot
et al. 2012). Then, the probability of chance coincidence P.. of
every galaxy in the search region is calculated using the
J. S. Bloom et al. (2002) method described in E. Berger (2010).
More precisely, we follow Equation (2) of S. Gomez et al.
(2020):

Pec=1-— e~ T (@ +4RDE(<m) (D)
100-33(m—24)—2.44
S(€m) = ———, )
0.331n(10)

where d is the angular separation between the transient and its
host in arcseconds; R is the half-light radius of the host also in
arcseconds; and m is the i-band magnitude of the host (or the r
band if the i band is not measured). We select the galaxy with
the lowest P as the host galaxy of the transient, or (for SNe in
which P, >0.1) consider the transient to be ‘“hostless.”
Hostless transients are retained in the data set, as these are
often associated with rare CCSN types (e.g., SLSNe and Type
IIn). The selection of P.. > 0.1 is somewhat arbitrary, but
found to be a reasonable threshold in S. Gomez et al. (2020).

Many host-galaxy features are available via FLEET,
including multisurvey observables (e.g., magnitudes), derived
properties (e.g., photo-z), and inferred properties more directly
related to the transient (e.g., offset). We restrict ourselves to
data from the Pan-STARRS 37 survey, in order to minimize
missing features in our data set. We use the following features
from the pipeline:

1-5: g-, - i-, z- and y-band Kron magnitudes, estimated
using SExtractor.

6-8: g-, r- and i-band Kron radii, estimated using
SExtractor.
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9: Host-galaxy separation from the transient in arcseconds. If
the transient is deemed ‘“hostless,” the offset value is set
to zero.

10: Point-source score, a measurement of probability of the
object being an extended object (score of 0) or a point
source (score of 1). This is a property within the PS1 37
Survey.

11: Number of detections in all bands from the independent
images used to generate the stacked image.

12: Host-galaxy half-light radius in i band or in r band if i
band is not available.

13: Host-galaxy nature, a measurement of probability of the
object being a galaxy (score of 1) or a star (score of 0).
This is a custom function within FLEET.

14: Probability of chance coincidence, as calculated by
FLEET.

All magnitudes are corrected for Milky Way extinction. In
some of our pipelines, we additionally include the redshift
(spectroscopically measured from the host or transient) as a
feature.

Although we attempt to minimize missing data, a small fraction
of events are missing some observational features. Most often (in
four cases of the 557 objects in the spectroscopic data set), the
point-source score and uncertainties on the measured magnitudes
are missing due to a transient being “hostless”. We use a K-means
imputation method (KNNImputer in scikit-learn)to fill in
the missing data. This method utilizes the information from the
K =3 neighbors in the 13-dimensional galaxy feature space, and
fills in missing values with an average from these neighbors. This
imputation method works as expected with no ad-hoc corrections:
for hosts that are not detected due to missing data (e.g., they were
never observed in the z band), the nearest neighbor provides a
reasonable estimate of the missing properties. For hosts near the
survey limit, the method naturally fills in the missing data with
dim apparent magnitudes and small observed radii. In testing, we
find that changing the value of k£ has minimal impact on results.
Finally, we normalize our data such that each feature values
between 0 and 1 (MinMaxScaler in scikit-learn).

We note that there are clear correlations between SN type
and host-galaxy properties, visible without the aid of a
specialized classifier. We show a number of representative
feature spaces in Figure 1. Brighter objects (SLSNe, Type IIn
SNe) tend to occur in dimmer galaxies. This is likely an
observational bias of PS1-MDS, as our SLSNe and Type IIn
SNe sample skew to higher redshifts (see Figure 1 of
V. A. Villar et al. 2019). The color of these galaxies also
clearly strongly correlates with type. For any given magnitude,
CCSNe (especially Type II SNe) are more likely to occur in
bluer galaxies (i.e., those with ongoing star formation).

3. Classification Methods
3.1. A Novel Hierarchical Loss Function

We explicitly include the hierarchical nature of SN taxonomy
within our analysis via a weighted hierarchical cross-entropy
(WHXE) objective function (also presented in V. A. Villar et al.
2023 for SNe and variable stars). L. Bertinetto et al. (2020)
originally introduced the HXE to classify images with a similar
hierarchical taxonomy. They compare the performance of HXE to
standard cross entropy, finding that the two perform similarly in
overall accuracy but that HXE “makes better mistakes,” i.e., the
HXE enforces a graph structure that encourages the classifier to
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Figure 1. Scatter plot of various host-galaxy features to classify SNe in this work (see Section 2 for feature definitions). SNe are spectroscopically labeled as part of
PS1-MDS, and for features where the host-galaxy features were not observed, they are inferred via K-means imputation. Even in these simple feature spaces, clear
clustering is seen.
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Figure 2. Hierarchical graph structure used in this work. Blue text is meant as a guide to the various components of a generic tree.

place objects in the correct broader category. In our SN context,
the WHXE allows us to (1) train a multilayered classifier that can
easily perform binary and general classification and (2) encourage
transients to be misclassified within their broader class (e.g.,
CCSNe are less likely to be classified as Type Ia SNe). In this
section, we define the graph structure used for our SN
classification and WHXE in detail.

The graphical nature of our classification hierarchy is shown
in Figure 2. Given the small data set size, we have not
subdivided Type Ia, Type IIP/L, and Type Ib/c SNe into
additional subclasses. We emphasize, however, that this is not
the only choice for a classification graph. For example, some
bright Type IIn SNe share similar hosts to SLSNe. One could
include galaxy information in the graph structure (e.g.,
preferring to classify bright transients in low-luminosity
galaxies together), although the classification bias would be
less physically motivated. Alternatively, one could follow the
“classic” classification schema, first distinguishing Type I
versus Type II SNe (rather than thermonuclear versus core
collapse). This may aid in isolating hydrogen-rich transients,
but is not explored in this work.

We next describe the WHXE objective function, largely
following the notation of V. A. Villar et al. (2023). The classic
categorical cross entropy, most often used in classification
tasks, is defined as

c
L= —Z tilog(p(c), 3

where C is the total number of classes, c; is a specific SN class,
and #; is an indicator variable for the true SN class. This
indicator function means that the cross-entropy score only
rewards the classifier based on assigning a high likelihood to
the true class. There is no reward structure for how probabilities
are distributed over the incorrect classes.

We contrast this to the WHXE, which utilizes the
hierarchical graph structure of the SN taxonomy by factorizing
each class by its leaf nodes. We represent the SN class “height”
on the tree as ci(h). The root (the “SN” parent class) is
represented as ¢/ (where H = 4 is the height of the tree), and a
lowest leaf (e.g., the Type Ib/c class) is represented as ¢ ". For
any given class ¢; with height 4/, the classification probability
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can be written as

H—1

pe) = [ p”lg" "), @

h=h'
where ¢; and ¢, are ancestor nodes of class ¢; (i.e., nodes on the
path from the leaf to the root). Here, we are assuming that the
probability of being an SN (the root node) is equal to 1. The
conditional probabilities can be written more explicitly as

aneSibnngs(c_;’”)p (¢a)
b
Zq,e Siblings(c{ ) P ()

where Siblings(c) represent the sibling set of node ¢ (i.e., those
sharing the same parent). As an example, the probability that an
SN is Type Ib/c given it is H-poor is equal to the probability
that it is a Type Ib/c (as opposed to SLSN-I) divided by the
probability that it is H-poor (as opposed to H-rich).
Analogous to Equation (3), we can define the WHXE as

(h)|cl£h+1)) _

p(c! 5)

H—-1
Lwixe(c”) = =37 W) A(c™)logp(c|c 1),  (6)
h=h'

where W(c(h')) weights each SN class, and )\(c( h)) is a weighting
which emphasizes each level of the taxonomy tree (as a
function of class height, /). For W(c(h)), we choose to weight
each SN by Nui/(NViabels X NN,), where Ny is the total number
of SNe in our training set, Ny ,pels 1S the number of SN classes
(all nodes), and N, is the number of SNe of type c. L. Bertinetto
et al. (2020) suggest the following form for )\(c(h)):

A(c™) = exp(—ah), @)

where « is a free parameter. Larger values of a weight the top
of the hierarchy more strongly (i.e., Ia versus CC classifica-
tion); lower values of o weight each level of the hierarchy
equally, emphasizing fine-grained classifications; « is therefore
a hyperparameter of our model which we optimize.

Based on our graph in Figure 2, our objective function
requires nine outputs from our classifier, reflecting a probability
at each node of the graph. The top node (the “SN” designation)
is always equal to 1. A softmax function is then applied to each
branch of the tree such that the neural-network output can be
interpreted as a conditional probability. For example, one
output represents the probability* of being H-rich and another
represents the probability of being H-poor. As these are a pair
of siblings, these outputs will be renormalized such that their
sum is equal to 1. The height of each output is also tracked,
with an appropriate weighting (a function of «) applied. A
working PyTorch implementation of the WHXE is presented
in V. A. Villar et al. (2023) and available via Zenodo
(V. A. Villar 2024) and GitHub.”

3.2. Multilayer Perceptron Classifier

Throughout this work, we use a fully connected multilayer
perceptron (MLP, a simple neural network) to classify the SN
subclasses. The MLP transforms an input feature vector into an
output probability vector which optimizes the WHXE objective

4 Note that these are not “true” probabilities as they are not properly

calibrated. Instead, they share qualitative similarities to a probability vector:
they contain nonnegative values which sum to one.

5 https://github.com/VTDA-Group /hxe-for-tda/

Villar et al.

function. Between these are a series of “hidden” layers with
optimizable weights and nonlinear activation functions. Here,
we use the standard rectified linear unit. We optimize the MLP
using the standard Adam optimizer (D. P. Kingma &
J. Ba 2014), a momentum-based gradient descent algorithm.
Our model and training procedure is built in Pytorch.

In total, our hyperparameters of the model are: (1) the
hierarchy weighting, o € {0.0, 0.1, 1.0, 3.0}; (2) the learning
rate, 8 € {0.001, 0.005, 0.01, 0.05, 0.1}; (3) the batch size
€ {16, 32, 64, 128, 256}; and (4) the number of neurons per
layer, a number from the set € {3, 5, 10}. Using each
combination of hyperparameters, we train an MLP for 300
epochs with early stopping and select the optimal set for each
feature set. We train six unique classifiers using different light-
curve/host features (see Section 4 for details). However, the
best hyperparameter values (as determined by tracking the F1-
score) do not vary greatly. Typically, the best hierarchy
weighting is a~1, the learning rate on the higher end
£ 0.05, the batch size is on the higher end (128-256), and the
number of neurons is on the higher end (5-10). Our model
takes minutes on a single CPU to complete training. We note
that we also attempted to use synthetic minority oversampling
techniques to reweight our training set (as opposed to including
the class weights in our objective function), finding somewhat
worse results.

4. Classification Results and Discussion

Our goal is to understand how contextual host-galaxy
information improves classification performance of SNe both
with and without redshift information. Therefore, we train and
compare six classifiers in total: (1) one which uses solely the
observer-frame host-galaxy information; (2) one which uses
observer-frame host-galaxy information and redshift; (3) one
which uses solely the observer-frame light-curve information;
(4) one which uses the rest-frame light-curve and redshift
information; (5) one which uses the galaxy information and the
observer-frame light-curve information; and (6) one which uses
the galaxy, rest-frame light-curve, and redshift information.

We track the purity, completeness, and Fl-score of each
classifier, defined as

Purity = _TP 3
TP + FP
Completeness = L ©))
TP + TN

2 x (Purity x Competeness)

F1 (10)

Purity + Completeness

TP is the true positive rate or the fraction of SNe within a given
class correctly identified as belonging to said class. TN is the
true negative rate or the fraction of SNe not in a given class and
correctly identified as not being a member of said class. Finally,
FP is the false positive rate or the fraction of SNe which are
identified as belonging to a given class but in fact are not of that
class. The Fl-score is the harmonic mean of the purity and
completeness and a commonly used metric for evaluating
classifiers.

We report the purity, completeness, and Fl-score for each
SN class, as well as the class-averaged and the “weighted”
versions of these metrics. Here, the “weighted” averages
reweight each class to represent the total number of objects in
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each class. In this case, the statistic is dominated by the
majority class, Type Ia SNe. Note that we do not use accuracy
to evaluate each classifier, which can be a particularly poor
metric of success for highly imbalanced training sets; however,
when appropriate (i.e., when comparing to other works), we
report accuracy of specific models.

We test our classifier on three classification tasks: (1) five-
way classification (SLSN, Type II, Type IIn, Type Ia, and Type
Ibc); (2) three-way classification (Type II, Type Ia, and stripped
envelope); and (3) binary classification (core collapse versus
Type Ia). As described above, the classifier does not need to be
retrained for each of these tasks; instead, we calculate the
conditional probabilities of each, assigning the final label of
each object as the category with the highest conditional
probability, e.g., for Type IIn SNe:

p(IIn) = p(CC)P (H-richICC) P (IIn|H-rich). (11)

In total, we compare 18 combinations of feature sets and
output classes. Our results are fully summarized in Table 1 and
visually summarized in Figure 3. Throughout this section, we
will exclude uncertainties (which have been calculated using 10
random seeds for each MLP) for purity, completeness, and F1-
scores. However, these values are listed within Table 1 and are
typically <0.05.

4.1. Classification Performance with Host-galaxy
Information Only

We first explore the performance of SN classification from
host-galaxy information, with and without redshift information
(the first two columns of Table 1). Our results are primarily
visualized in the confusion matrices of Figure 4.

In the five-way task without redshift information, we achieve
a poor average Fl-score of 0.36 across all classes. We find
class completeness ranging from 0.28 (for Type Ibc SNe) to
0.59 (for Type Ia SNe). We see a much wider spread in purity,
from just 0.11 (for Type Ibc SNe) to 0.86 (for Type Ia SNe).
Unsurprisingly, the majority of incorrectly labeled SNe are
dominated by Type Ia SNe, making up 250% of each sample.
Including redshift information, our average Fl-score greatly
improves from 0.36 to 0.45. Classification purity and
completeness also increase to 0.41 and 0.51, respectively.
The class completeness ranges from 0.27 (for Type IIn SNe) to
0.83 (for SLSNe). The improvement in the latter is not
surprising, as SLSNe are intrinsically luminous and can
therefore be uniquely found at higher redshift for a magni-
tude-limited survey like PS1-MDS (and this will similarly be
true in LSST). The spread in purity is still quite high, ranging
from 0.09 (for Type Ibc SNe) to 0.91 (for Type Ia SNe). If we
impose a confidence cutoff (p > 0.8), we find a substantial
improvement in overall performance, with the (unweighted)
average purity increasing from 032 to 0.41, and the
completeness from 0.40 to 0.50, suggesting that purer samples
of SNe can be collected with these cuts. Type la purity, in
particular, increases to 0.94, suggesting that a highly pure
sample of cosmological Type Ia SNe can be selected from host-
galaxy properties alone. Similarly, SLSNe and Type II SNe can
achieve relatively high purity (>0.7) with high thresholds
(p > 0.8) when redshift information is included. Unfortunately,
the purity of Type IIn and Type Ibc SNe remain low (<0.2)
even at this high cutoff.

In the three-way classification task, the galaxy-only classifier
achieves a notably higher Fl-score of 0.49 even when
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excluding redshift information. The average purity (0.46) and
completeness (0.52) also increase. Here, again, the minority
classes (stripped-envelope and H-rich SNe) suffer from
generally low purity scores (0.14 and 0.36, respectively), while
Type Ia SNe can be classified with a high purity of 0.88.
Including redshift information, the purity and completeness
again show positive trends for each class, particularly for
SESNe, whose purity increases from 0.14 to 0.22. The
F1-score, again, significantly improves from 0.49 to 0.54.

In the binary classification task (Type Ia versus CCSN), we
find average class purity of 0.64 and completeness of 0.67. This
final classifier is most readily compared to literature studies.
The binary average accuracy of our classifier (0.66) is very
similar to that of GHOST (A. Gagliano et al. 2021), which
reported a class-average accuracy of 0.68. Including redshift
information, we increase this accuracy to ~0.74, showing state-
of-the-art performance in the binary classification task.

Similarly, in the three-way classification task, we find that
our classifier outperforms state-of-the-art in the literature.
In particular, we compare the performance of our host-only
classifications to those of A. Gagliano et al. (2023). A. Gagliano
et al. (2023) uses early (within three days of detection) light-
curve information, redshift, and host information to classify SNe.
They find, using the same three-way classification schema, a
class-balanced F1-score of 0.48. Without redshift information, we
achieve an Fl-score of 0.49 and with redshift information this
substantially increases to 0.54.

We additionally compare the performance of our classifier
on the specialized FLEET classifier for SLSNe. S. Gomez et al.
(2020) present three versions of the FLEET classifier: one
which only uses host-galaxy information and early light-curve
information (e.g., rise); one which uses host-galaxy information
and redshift; and one which uses host properties, the full light
curve, and redshift information. Here, we compare to both the
first and second versions. Without redshift information, we
achieve low purity in SLSNe (with a maximum purity of ~25%
with a threshold p > 0.5). In contrast, FLEET boasts a purity of
~85% (with a corresponding completeness of ~220%) without
redshift information. However, we find that—given redshift
information—our classifier notably outperforms that of
FLEET. We achieve a purity ~85% at a corresponding
completeness of ~50%. FLEET achieves a similar purity at a
completeness of ~25%.

The key takeaways from the galaxy-based classifier are
threefold. First, we are able to successfully isolate a pure
(=~0.9) sample of Type Ia SNe with host-galaxy information
alone at a reasonably high completeness (~~0.6) even without
any redshift information. Second, using redshift information,
we can produce reasonably pure samples of Type II SNe and
SLSNe, but not Type IIn and Type Ibc SNe. Finally, in the
absence of any light-curve information, redshift does improve
the performance of our classifier for all classes, suggesting that
accurate photo-z information will be valuable for rapid
classification.

4.2. Classification Performance Using Light-curve and Galaxy
Features

We next turn our attention to a combined feature set that
includes both light-curve and host-galaxy features. First, we
focus on the case where redshift information is not known.
Although photometric redshift estimates are often available in
current surveys and will be available in the era of LSST, the
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Table 1
Classification Performance

Gal. without z Gal. with z

LC without z LC with z Gal. + LC without z Gal. + LC with z

Five-way Classification

SLSN F1 0.19 (0.03) 0.63 (0.11)
Purity 0.12 (0.02) 0.50 (0.14)

Completeness 0.47 (0.06) 0.83 (0.09)

)i F1 0.38 (0.02) 0.46 (0.06)
Purity 0.39 (0.03) 0.41 (0.04)

Completeness 0.36 (0.03) 0.53 (0.14)

IIn F1 0.16 (0.02) 0.16 (0.03)
Purity 0.10 (0.02) 0.11 (0.02)

Completeness 0.33 (0.05) 0.27 (0.10)

Ia F1 0.70 (0.02) 0.73 (0.04)
Purity 0.86 (0.01) 0.91 (0.01)

Completeness 0.60 (0.03) 0.61 (0.06)

Ibc F1 0.16 (0.03) 0.13 (0.05)
Purity 0.12 (0.03) 0.09 (0.04)

Completeness 0.26 (0.07) 0.29 (0.19)

Average F1 0.36 (0.01) 0.45 (0.03)
Purity 0.32 (0.01) 0.41 (0.03)

Completeness 0.40 (0.02) 0.51 (0.06)

Weighted Avg. Fl 0.60 (0.02) 0.65 (0.03)
Purity 0.69 (0.01) 0.75 (0.01)

Completeness 0.53 (0.03) 0.58 (0.05)

0.23 (0.02) 0.77 (0.05) 0.29 (0.05) 0.73 (0.05)
0.20 (0.02) 0.73 (0.07) 0.25 (0.06) 0.73 (0.06)
0.27 (0.04) 0.80 (0.05) 0.33 (0.09) 0.73 (0.08)
0.52 (0.03) 0.71 (0.03) 0.56 (0.04) 0.73 (0.02)
0.55 (0.05) 0.79 (0.04) 0.62 (0.04) 0.79 (0.03)
0.51 (0.05) 0.65 (0.03) 0.51 (0.05) 0.67 (0.02)
0.34 (0.04) 0.38 (0.06) 0.37 (0.04) 0.41 (0.04)
0.29 (0.05) 0.32 (0.08) 0.29 (0.04) 0.41 (0.06)
0.42 (0.09) 0.46 (0.06) 0.50 (0.07) 0.42 (0.05)
0.88 (0.01) 0.94 (0.02) 0.91 (0.01) 0.94 (0.01)
0.93 (0.01) 0.95 (0.01) 0.94 (0.01) 0.93 (0.01)
0.84 (0.02) 0.93 (0.04) 0.89 (0.01) 0.95 (0.01)
0.27 (0.04) 0.31 (0.04) 0.29 (0.03) 0.36 (0.04)
0.19 (0.04) 0.24 (0.04) 0.22 (0.03) 0.32 (0.04)
0.47 (0.06) 0.47 (0.08) 0.42 (0.08) 0.42 (0.06)
0.46 (0.01) 0.63 (0.02) 0.49 (0.02) 0.64 (0.02)
0.43 (0.02) 0.61 (0.02) 0.46 (0.02) 0.64 (0.02)
0.50 (0.03) 0.66 (0.02) 0.53 (0.03) 0.64 (0.02)
0.76 (0.01) 0.85 (0.02) 0.79 (0.01) 0.85 (0.01)
0.79 (0.01) 0.86 (0.01) 0.81 (0.01) 0.85 (0.01)
0.73 (0.02) 0.84 (0.03) 0.77 (0.01) 0.85 (0.01)

Three-way Classification

I F1 0.44 (0.02) 0.48 (0.04)
Purity 0.36 (0.02) 0.37 (0.04)

Completeness 0.58 (0.03) 0.70 (0.10)

Ta F1 0.68 (0.03) 0.70 (0.05)
Purity 0.88 (0.02) 0.92 (0.01)

Completeness 0.56 (0.04) 0.57 (0.06)

SE F1 0.20 (0.02) 0.31 (0.06)
Purity 0.14 (0.02) 0.22 (0.06)

Completeness 0.41 (0.06) 0.51 (0.10)

Average F1 0.49 (0.01) 0.54 (0.03)
Purity 0.46 (0.01) 0.50 (0.02)

Completeness 0.52 (0.03) 0.59 (0.05)

Weighted Avg. F1 0.62 (0.02) 0.66 (0.03)
Purity 0.72 (0.01) 0.75 (0.01)

Completeness 0.55 (0.03) 0.59 (0.05)

0.66 (0.02) 0.75 (0.04) 0.71 (0.02) 0.75 (0.02)
0.65 (0.03) 0.79 (0.07) 0.72 (0.02) 0.79 (0.03)
0.68 (0.04) 0.72 (0.03) 0.70 (0.03) 0.72 (0.02)
0.88 (0.01) 0.94 (0.02) 0.91 (0.01) 0.94 (0.01)
0.93 (0.01) 0.95 (0.01) 0.94 (0.01) 0.93 (0.01)
0.83 (0.02) 0.92 (0.04) 0.88 (0.01) 0.95 (0.01)
0.30 (0.03) 0.48 (0.04) 0.38 (0.03) 0.52 (0.03)
0.22 (0.03) 0.38 (0.04) 0.29 (0.03) 0.47 (0.04)
0.47 (0.05) 0.65 (0.05) 0.53 (0.06) 0.59 (0.05)
0.63 (0.01) 0.73 (0.02) 0.68 (0.01) 0.74 (0.01)
0.60 (0.01) 0.71 (0.03) 0.65 (0.01) 0.73 (0.02)
0.66 (0.02) 0.76 (0.03) 0.70 (0.02) 0.75 (0.02)
0.80 (0.01) 0.87 (0.02) 0.83 (0.01) 0.87 (0.01)
0.82 (0.01) 0.88 (0.02) 0.85 (0.01) 0.87 (0.01)
0.78 (0.02) 0.86 (0.03) 0.82 (0.01) 0.88 (0.01)

Binary Classification

Ia F1 0.54 (0.02) 0.62 (0.03)
Purity 0.44 (0.02) 0.49 (0.03)

Completeness 0.68 (0.04) 0.84 (0.04)

CcC F1 0.74 (0.02) 0.76 (0.04)
Purity 0.84 (0.01) 0.91 (0.01)

Completeness 0.65 (0.04) 0.65 (0.05)

Average Fl 0.66 (0.01) 0.72 (0.02)
Purity 0.64 (0.01) 0.70 (0.02)

Completeness 0.67 (0.03) 0.74 (0.03)

Weighted Avg. F1 0.69 (0.02) 0.74 (0.02)
Purity 0.73 (0.01) 0.79 (0.01)

Completeness 0.66 (0.03) 0.70 (0.04)

0.77 (0.02) 0.85 (0.03) 0.81 (0.01) 0.85 (0.02)
0.73 (0.03) 0.85 (0.06) 0.78 (0.01) 0.88 (0.02)
0.82 (0.02) 0.86 (0.02) 0.83 (0.01) 0.82 (0.02)
0.90 (0.01) 0.94 (0.02) 0.92 (0.01) 0.94 (0.01)
0.93 (0.01) 0.94 (0.01) 0.93 (0.01) 0.93 (0.01)
0.87 (0.02) 0.94 (0.04) 0.91 (0.01) 0.96 (0.01)
0.84 (0.01) 0.90 (0.02) 0.86 (0.01) 0.90 (0.01)
0.83 (0.01) 0.90 (0.03) 0.86 (0.01) 0.91 (0.01)
0.85 (0.01) 0.90 (0.02) 0.87 (0.01) 0.89 (0.01)
0.86 (0.01) 0.92 (0.02) 0.89 (0.01) 0.92 (0.01)
0.87 (0.01) 0.92 (0.02) 0.89 (0.01) 0.92 (0.01)
0.86 (0.01) 0.92 (0.03) 0.88 (0.01) 0.92 (0.01)

Note. Classification performance (quantified by accuracy, purity, and completeness) using a five-way, three-way, and two-way split. Optimal feature sets are bolded

for each category.

fraction of catastrophic outlier redshift estimates will be ~0.1
in the first half of LSST (M. L. Graham et al. 2018). Transients
which are primarily found in intrinsically low-luminosity
galaxies (e.g., SLSNe) will have particularly unreliable redshift
information. As a baseline comparison, we will contrast our

results with both the galaxy-only classifier and a classifier that
relies solely on light-curve features. Our results can be
primarily visualized by the confusion matrices in Figure 5.

In the five-way classification task, our “baseline” classifier
with only light-curve information achieves an average F1-score
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Figure 3. Purity (top row), completeness (middle row), and F1-score (bottom row) achieved with the various feature sets and confidence thresholds as a function of
SN type (columns). Shaded regions represent 1o uncertainties, computed using the same classifier with different random model initializations during training.

of 0.46. This is only marginally improved with the inclusion of
galaxy information, increasing to an average F1-score of 0.49.
Although the purity and completeness of all classes improve
with the addition of galaxy information, although most are not
statistically significant (>10). Notably, the purity (0.20-0.25),
completeness (0.27-0.33), and F1-score (0.23-0.29) of SLSNe
substantially improve, with the Fl-score having a statistically
significant increase. This is not surprising, as SLSNe are
known to prefer unusually low-mass galaxies. The contextual
information of their hosts is therefore likely a useful feature.
Imposing a higher confidence threshold (p > 0.8) notably
improves the purity of Type II SNe (from 0.62 to 0.70), Type
IIn SNe (from 0.29 to 0.52), and Type Ibc SNe (from 0.22 to
0.50) when including galaxy information. These improvements
are not seen for Type IIn and Type Ibc SNe when excluding
galaxy information.

In both the three-way and binary classification tasks, we see
even greater performance improvement. In the three-way task,
including galaxy information improves our average F1-score to
0.65, compared to the light-curve-only baseline of 0.60; this is
a >3o0 performance improvement. We again see improvement
in purity, completeness, and Fl-scores for all classes. This
improvement is substantial for both Type II and SESNe, with
the Fl-score improving from 0.66 to 0.71 and from 0.30 to
0.38, respectively. For the binary classification, the average F1-
score improves from 0.84 to 0.86 (>10), with both Type Ia
purity and CC completeness most notably improving (both
by >10).

Finally, we explore how galaxy information impacts
classification performance when redshift is known. Across all
three tasks (five-way, three-way, and binary classifications),
there is no statistical difference of average F1l-scores between
classifier with and without galaxy information (see Figure 6).
The only statistically significant difference (>10) is an
improvement on the purity of Type Ibc SNe (from 0.24 to
0.32) when including galaxy information, although this comes
with a decrease in completeness (from 0.47 to 0.42, within 1o
uncertainties). We note that including galaxy information leads
to higher SN Ia completeness (0.95 versus 0.98; a >2¢ result).
As expected, a high-confidence cutoff (p >0.8), improves
accuracy, completeness, and purity across all classification
tasks with or without galaxy information. To understand if the
relative unimportance of host-galaxy features is due to the
imbalance of host versus light-curve features, we train a simple
random forest to perform a five-way classification, which
allows us to calculate a relative “importance” score for all
features. We find that no galaxy features appear in the top 10
important features, and five appear in the upper half of all
features. This is in contrast to the importance of features
calculated without redshift information. There, five of the top
10 important features come from host galaxies.

In short, contextual host-galaxy information improves
classification performance when redshift is not known.
However, when redshift is known, galaxy information does
not significantly improve classification performance. As a
caveat, host-galaxy information does improve classification
performance for Type Ia SNe (with or without redshift
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Figure 4. Confusion matrices for the classifier using only host galaxy with (left) and without (right) redshift information. Numbers are overall percent, while
uncertainties are given in parentheses (e.g., the completeness of SLSNe in the five-way classifier is 0.48 £ 0.06). The classifier reaches state-of-the-art results for the
Type Ia vs. CC classification, but fails to achieve high accuracy in the five-way class split.

information) when a high-confidence threshold is used. These
findings hold true for complete light curves, but may change in
the case where partial light-curve information is known. For
example, A. Gagliano et al. (2023) found that host information
led to a ~2¢ increase in binary classification accuracy when
utilizing redshift information.

5. Classifications of the PS1-MDS Sample

We use our redshift-independent classifier, which uses both
host and light-curve information, to classify the full set of 4407
SN-like transients from the PS1-MDS originally presented in
V. A. Villar et al. (2020) and G. Hosseinzadeh et al. (2020).
This sample includes all objects that are not spectroscopically
classified and not identified as variables or otherwise “bad”
objects. The full classifications are provided in Table 2.

The class fractions, as derived by our new classifier, are
shown in Figure 7. Compared to the spectroscopic data set, we
find an underrepresentation of the two majority classes (Type la
and Type II SNe) in our photometric classifications, and an
overrepresentation of the minority classes (SLSNe and Type
Ibc). G. Hosseinzadeh et al. (2020) showed that the expected
number of misclassifications can be used to correct the
expected class breakdown (by dotting the purity matrix with
the final classifications). When we apply this correction to our

final class breakdown, we do recover a five-way class
breakdown similar to the spectroscopic sample, lending
credence to the idea that we correctly capture the biases of
our imperfect classifier, even when applied to a new test set.

We more quantitatively compare our results to the SNe
photometrically classified in V. A. Villar et al. (2020) and
G. Hosseinzadeh et al. (2020) by analyzing the agreement (A)
between these three classifiers. For a given SN class, the
agreement between two classifiers is the number of events that
have been identified as the same class by both classifiers divided
by the size of the class in the older classifier. G. Hosseinzadeh
et al. (2020) showed that the agreement between two classifiers,
assuming independent biases, can be calculated as

A= PTC (12)

where P is the purity matrix of the new classifier and C is the
completeness matrix of the old classifiers. Using this, the
expected agreement for each class and either classifier is shown
in Table 3. We will note that the definition of agreement listed
above assumes that the two classifiers are independent, which
is not true in our case, as both SuperRAENN and our new
classifier use the same feature set. This may lead to more
agreement than expected between the classifiers. We also note
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Figure 5. Confusion matrices for the classifier using solely light-curve features (left) and a combination of galaxy and light-curve features (right), both excluding
redshift information. Inclusion of galaxy features does not improve classification for any one class to a statistically significant degree, and the overall performance only

moderately increases.

that both SuperRAENN and SuperPhot utilize redshift
information, which is not used in our new classifier.

Averaged across the five SN classes, we find 67% agreement
between the new classifications and those from SuperRAENN,
and 59% agreement between our new classifier and SuperPhot.
For each SN class, the agreement between classifiers ranges from
~5% to 90%. Our classifier shows roughly expected agreement
for both Type Ia and Type II classes. Type Ia SNe, in particular,
have strong agreement between the three classifiers (80%—85%),
giving high confidence in the purity of our Type la sample. Type
Ibc SNe have notably higher agreement (~220%) than expected.
Interestingly, this is similar to what was found in G. Hosseinzadeh
et al. (2020) when comparing SuperPhot to SuperRAENN.
Type IIn and SLSNe, on the other hand, have much smaller
agreement than expected by a factor of 2—4; however, these two
classes are commonly identified as the other.

We draw further attention to the rare class of SLSNe. Most
objects classified by SuperRAENN or SuperPhot as SLSNe
were classified as Type Ia SNe by the new classifier.
Interestingly, of the ~150 SLSNe identified by the three
classifiers, only one object is identified as a SLSN by all three
—PSc010186. Examination of the light curve and a crossmatch
with known active galactic nuclei suggest that objectis a z~ 1
active galactic nucleus undergoing regular, long-term variation

10

(B. Hsu et al. 2022). No objects are classified as SNe by our
new classifier and one of the two original classifiers. We also
note two other events presented in B. Hsu et al. (2022) that are
not classified as SLSNe by our new classifier: PSc000036
(classified as a Type Ia) and PSc000553a (classified as a Type
IIn). The former is the highest-redshift (z=2.026) and
brightest (M, = —24) object in the sample of B. Hsu et al.
(2022), which likely led to the initial classification. We take
these results as an important warning: without redshift
information, our photometric classifiers seemingly fail to
produce consistent and pure samples of SLSNe. Furthermore,
accurate AGN classifiers may be particularly important in
isolating SLSNe photometrically.

Finally, we visualize our agreement in Figure 8. In general,
Type Ia SNe tend to dominate the sample of objects for which
both our new classifier and V. A. Villar et al. (2020)
confidently agree. It is reassuring that all disagreements occur
with the new confidence level <0.5, and are evenly distributed
across the classes. However, a small sample of events have a
highly confident classification from V. A. Villar et al. (2020)
despite disagreement with the new classifier. In particular, 14
events have a confidence score of <0.05 in this work and
>0.95 for the same class. Of these, six were originally
classified as SLSNe and are now labeled as Type Ia SNe; one
of these is the aforementioned PSc310006. An additional six
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Figure 6. Confusion matrices for the classifier using redshift information, trained using only light-curve features (left) and with both light-curve and galaxy features
(right). Including host information provides similar overall classification accuracy.

Table 2
Classification Probabilities of All SN-like Objects in PS1-MDS

Name pda) p(CC) p(H-rich) p(H-poor) Pp(SLSN) pdD) pdIn) p(Ibc)
PSc000012 1.00 + < 0.01 0.00 + < 0.01 0.00 + < 0.01 0.00 + < 0.01 0.00 + < 0.01 0.00 + < 0.01 0.00 + < 0.01 0.00 + < 0.01
PSc000013 0.98 £ 0.02 0.02 £ 0.02 0.01 £0.01 0.01 £0.01 0.00 £ 0.00 0.01 £ 0.01 0.00 + < 0.01 0.01 £ 0.01
PSc000015 1.00 + < 0.01 0.00 + < 0.01 0.00 + < 0.01 0.00 + < 0.01 0.00 + < 0.01 0.00 + < 0.01 0.00 + < 0.01 0.00 + < 0.01
PSc590246 0.00 £ 0.00 1.00 £ 0.00 1.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00 0.67 £0.18 0.33 £0.18 0.00 £ 0.00
PSc590248 0.99 +0.01 0.01 £0.01 0.01 +0.01 0.00 = 0.00 0.00 = 0.00 0.01 +0.01 0.00 £ 0.00 0.00 £ 0.00
PSc590260 0.85 £0.08 0.15+£0.08 0.14 £ 0.09 0.00 £ 0.01 0.00 £ 0.00 0.13 £0.07 0.01 £0.02 0.00 £ 0.01
PSc590263 0.00 £ 0.00 1.00 + 0.00 0.51 +0.42 0.49 +0.42 0.44 +0.42 0.08 + 0.09 0.43 +0.38 0.04 +=0.05

(This table is available in its entirety in machine-readable form in the online article.)

were originally Type Ia SNe, and are now labeled as CCSNe
(Type II and Ibc).

A key takeaway of this analysis is that expected classification
accuracies and “agreement” between photometric classifiers are
highly variable, and any population-level studies of photome-
trically classified SNe should take care to understand underlying
biases and misclassifications in the observed SNe population.

6. Conclusions

We have presented an analysis on the impact of galaxy
properties on the photometric classification of SNe, focusing on
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CCSN subtypes. We present our key findings and products
below:

1. In corroboration with previous results, we find that the
observable properties of host galaxies visibly correlate
with SN type. We are able to successfully distinguish
CCSNe from Type Ia SNe with ~70% accuracy,
matching similar studies in the literature.

2. We are able to produce relatively pure (>90%) samples
of Type Ia SNe using host-galaxy information alone, with
or without redshift information. We are able to produce
reasonably pure (>70%) samples of SLSNe and Type 11
SNe when using host-galaxy and redshift information.
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Table 3

Expected and Actual Agreements between Classifiers

SuperRAENN SuperRAENN SuperPhot SuperPhot
Class (Expected) (Actual) (Expected) (Actual)
SLSNe 0.14 0.06 0.16 0.04
SN II 0.48 0.43 0.52 0.41
SN IIn 0.15 0.08 0.13 0.09
SN Ia 0.85 0.88 0.78 0.85
SN Ibc 0.07 0.24 0.07 0.19

3. We present the first application of the weighted
hierarchical cross-entropy score (see V. A. Villar et al.
2023), which better accounts for the hierarchical
taxonomy of SN classification.

4. Given redshift, we find that contextual information—i.e.,
the host-galaxy observable properties—does not neces-
sarily aid in SN classification when a full light curve is
available. Host-galaxy information is most helpful in
improving the classification accuracy of Type Ia and
Type II SNe, but does not necessarily increase the
accuracy of classification for other subtypes.

5. Given no redshift information, host-galaxy features
consistently improve the classification accuracy of SNe
across all subtypes. Galaxy information can greatly
increase the completeness of Type Ia samples.

6. Finally, we present an updated classification set for the PS1-
MBDS set of SN-like transients without redshift information.
We explore the agreement between these classifications and
those originally presented in G. Hosseinzadeh et al. (2020)
and V. A. Villar et al. (2020), finding strong agreement in
some classes (Type Ia, Type Ibc) and weaker than expected
agreement in others (most notably, SLSNe).

In the era of LSST, thousands of new SNe are expected to
be discovered nightly. Our results show that host galaxy
information alone can distinguish between core-collapse
and thermonuclear SNe, even in the absence of redshift
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Figure 8. Comparison of SN classifications from V. A. Villar et al. (2020) and
this work. On the abscissa, we plot the confidence level of the V. A. Villar et al.
(2018) classifier, while the ordinate shows the confidence of the new classifier
for the same class. Objects plotted as a point have the same classification with

both methods; objects plotted as an “x” have different classifications with either

method. The color of the central point (“x” or “0”) identifies the label from this

paper. In the case of mismatches (the “x” objects), the colored circle represents

the label from V. A. Villar et al. (2020).

information. However, accurate photometric redshift estimates
from host galaxies will likely greatly increase our ability to
rapidly classify further subtypes (particularly Type Ia and
SLSNe). Given the expected on-sky density of galaxies (~10*
per square degree), reliable host-galaxy association techniques,
such as GHOST, are essential in utilizing this contextual
information.

Finally, the variation on agreement between classifiers explored
here emphasizes the need for methodologies to calibrate
classification confidence and build reliable populations of
photometrically classified SNe. SLSNe stand out as particularly
challenging. Here, we find just a single object labeled as a SLSN
by all three classifiers out of dozens of events. Future work should
investigate the use of probabilistic labels into population-level
inference, e.g., similar to M. Kunz et al. (2007).
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