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1 Introduction

Six-dimensional supersymmetric Quantum Field Theories (SQFTs) can have two different
ultraviolet (UV) complete behaviors: one corresponds to theories that have emergent super-
conformal symmetry and a local energy-momentum tensor, and are characterized by a tower
of tensionless strings [1–3]. The second type of theories admits strings in the spectrum that
do not become tensionless in the UV. The tension of these strings sets a characteristic scale
MS , which defines the UV cutoff above which a Hagedorn growth of states emerges [4]. This
is very characteristic of the closed-string sector, which contains the graviton, and although
LSTs are not coupled to gravity, the UV behavior of both theories are therefore very similar.
Just like SCFTs, LSTs admit a “tensor branch” description below Ms, which may not be
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perturbative, but allows for a description in terms of ordinary 6D quantum fields, such as
vector, hyper-, and tensor multiplets.

SUGRA, LSTs and SCFTs do not exist in isolation from each other: both LSTs and
SCFTs can be obtained by a careful decoupling limit of a gravity theory that sends the Planck
mass to infinity while preserving a non-trivial interacting theory. In particular, one may
view LSTs and SCFTs as a generic sub-sector of (almost any) gravity theory. The converse,
however, is generally not true: only a finite subset of theories lying in the infinite landscape
of SCFTs and LSTs can be coupled to gravity in a consistent fashion. This is also clear from
the expectation that the landscape of supergravity theories is finite.1

LSTs and SCFTs also very closely related: in fact, there are various “tensor-decoupling
limits” in which the Little String scale is taken to infinity, that give rise to SCFTs. It has
been proposed that a plethora of 6D SCFTs may be obtained as a decoupling limit of a
(not necessarily unique) LST [8]. Conversely, most SCFTs can be “affinized” — in a fashion
described below — to at least one LST.2 Thus the landscape of a generic UV-complete SQFT
will consist mostly of LSTs and deformations thereof.

String theory — and by extension F-theory — provides an elegant and consistent way
of constructing and studying SUGRAs, LSTs, and SCFTs via geometry. This systematic
approach may therefore give us hints about the nature of their landscape, and the potential
consistency conditions that are yet missing from a low-energy point of view. Furthermore,
our current understanding of symmetries has recently undergone rapid acceleration, initiated
in [10], see e.g. [11–13] and references therein for an overview of recent progress. Guided by
geometry, a first step towards the study of LSTs and their non-local properties is to map
out their symmetry and duality structures. In the context of six-dimensional QFTs, recent
work shows that these theories generally admit a wide range of higher-form symmetries
(HFS) [14–23]. In this regard, LSTs are special, since they possess a unique continuous global
1-form symmetry mixing non-trivially with other conventional 0-form symmetries to form a
continuous 2-group [24, 25].3 This improved understanding of symmetries therefore yields a
finer characterization of the theories and provides novel invariants across dualities [26].

These invariants, together with their geometric engineering, give us additional leverage
to chart the space of LSTs modulo T-duality, and has been used recently to study LSTs
of Heterotic type [27–32]. These theories are defined by a choice of either GHet = E8 × E8
or GHet = Spin(32)/Z2 Heterotic string theory, and by a stack of M NS5 branes probing a
transverse ADE-type singularity C2/Γ, whose worldvolume is described by the 6D theory.4
We denote these theories by

KGHet(g, µ)M , (1.1)

where g is the algebra associated with the singularity, and µ is a homomorphism embedding
Γ→ GHet. These holonomies act on the 10D gauge groups GHet, which lives on non-compact

1Although believed to belong to the Swampland, new classes of models seemingly consistent with all known
field-theory constraints have been constructed in [5–7].

2In [9], the author proposes the existence of SCFTs that do not descend from LSTs.
3In contrast, 6D SCFTs may admit discrete 2-group symmetries [15].
4For work on twisted T-duals in theories with eight supercharges, see [33–35], and for generalization to

frozen F-theory vacua see [36].
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flavor 9-branes in the Hořava-Witten or Type I dual pictures. Unsurprisingly, this flavor
symmetry structure can be elegantly geometrized into the Picard lattice of an elliptically
polarized K3 fiber, from which other T-dual theories can be systematically be derived [28, 29].

This work aims to extend this exploration to the second type of LSTs finding their origin
in Type II string theories. We will therefore refer to them as Type II LSTs, in contrast to the
Heterotic LSTs described above. This type of theories is instead specified by two choices of
singularities (gF , gB), that are also of ADE type (or possibly of the special Kodaira Type
II, III, IV). We denote these theories by

KII(gF , gB) . (1.2)

In the Type IIB description, gF and gB may be viewed as 7- and 5-brane singularities,
respectively.5

The absence of a 10D gauge group that could become generic 6D flavor branes severely
restricts this class of models as compared to Heterotic LSTS. Moreover, it allows for non-trivial
higher-form symmetries: first, there is a diagonal 1-form symmetry sector acting diagonally
on gauge group factors [18], and secondly, there may be a non-trivial string defect group [37].
In this work we show explicitly that these higher-form symmetries D(1) and D(2) have a
natural relation to the defining singularities via the centers Z of the associated algebras,

D(1) : Z(gF ) , D(2) : Z(gB) . (1.3)

Being yet another set of generalized symmetries, it is natural to expect that they are
preserved under T-duality. Indeed, we explicitly show that T-duality acts as an exchange
of the defining singularities

gF
T-Duality←→ gB (1.4)

and hence, exchanges the higher form symmetry sectors.
Geometry gives both a beautiful and self-consistent way to construct either kind of LSTs

from the top down, which can be used to prove the relation (1.4). From the bottom-up
perspective, there are a priori substantially more theories that satisfy all known consistency
conditions than those that can be realized via geometric engineering. This is true even
when considering the frozen phase of F-theory, see [38, 39], and when gravity is coupled to
the theory. Novel consistency conditions have recently been uncovered in the presence of
extended BPS strings, whose worldsheet theories receive current algebra contributions from
bulk symmetries via anomaly inflow. Unitarity considerations for these extended objects then
allow to constrain bulk symmetries in SUGRA theories [40–42]. Similar BPS strings are also
present in theories without gravity such as SCFTs and LSTs, and one might therefore expect
analogous consistency conditions to play a similarly important role even when gravity is
decoupled. Typically, many such BPS strings are present in a generic 6D theory, which makes
a general analysis rather cumbersome, and the same is true for LSTs.6 However, as their
name suggests, Little String Theories have a universal characteristic string which receives
contributions only from the bulk flavor symmetries for which strong constraints can be derived.

5In this work we denote gF as the fibral singularity while f denotes the flavor algebra.
6Rank-one SCFTs on the other hand are simple enough to extract universal features of BPS strings [43].

– 3 –



J
H
E
P
1
1
(
2
0
2
4
)
1
4
9

This work is structured as follows. In section 2, we give a general account of 6D LSTs
from a field theory perspective: in section 2.1 we set notation and review basic concepts,
and section 2.2 focuses in particular on the generalized symmetry structure of Type II and
Heterotic LSTs, and we propose that they are new T-duality invariants. In section 2.3,
we derive new bounds on the flavor symmetry of these theories by demanding unitarity of
the Little String worldsheet description. In section 3, we give a bottom-up construction
of Type II LSTs and discuss their dualities and HFS structures. In section 4 we give a
top-down construction of Type II LST and present a geometric framework in which T-duality
is manifest via a double fibration structure. We give an outlook and conclusion in section 5.
Appendix A we summarize the possible Type II LSTs, appendix B gives more details on
six- and two-dimensional SCFTs, and appendix C summarizes SUSY enhancements and
possible obstructions in the 5D M-theory picture.

Note added. While writing up this work, a related article [44] appeared on the arXiv,
which has some overlap with our results of matching discrete higher-form symmetries across
T-duality of LSTs as described in section 2.2.

2 The symmetry structure of Little Strings

Many Little String Theories (LSTs) can be engineered by fusing 6D SCFTs together [8]. This
vast landscape of theories can be ordered by their symmetries. Moreover, different LSTs can
be related by T-duality, either in pairs or in some cases in larger families of T-dual theories.
The notion of T-duality for LSTs is the same as for the 10D E8 × E8 and Spin(32)/Z2
Heterotic strings: both theories are different in 10D, but after compactifying both theories
on a circle and moving along their lower-dimensional moduli space, ones reaches a point
where both theories are identical.7 This, however, allows one to define certain 6D invariants
that must match across each T-dual theory:

1. The 5D Coulomb branch dimension, dim(CB) = nT + rk(G), where nT is the number
of tensor multiplets and rk(G) is the rank of the gauge group.

2. The universal 2-group structure constants: (κP , κR) [26].

3. The rank of the 0-form flavor symmetry algebra f and group Gf, rk(f) [26, 32, 45].

4. The 5D 1-form symmetry sector D(1)
6D ×D

(2)
6D ⇝ D

(1)
5D, which receives contribution from

the 6D 1-form symmetry and the defect group as discussed in section 2.2.

These invariants — which will be reviewed in more detail below — needs to match individually
across T-duality, and therefore severely constrain a candidate dual theory. Not all of the
invariants listed above are independent; in fact, the most central one is the 2-group structure
constant κP , which can only take two values [8]:

κP = 2 for Heterotic LST ,

κP = 0 for Type II LST .
(2.1)

7Phrased differently, T-duality means that there is a KK theory that can be UV completed by two (or
more) higher dimensional theories.
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In terms of F-theory, this is equivalent to the statement that LSTs can be constructed from
non-compact elliptically fibered Calabi-Yau threefolds. These geometries can only have two
types of birational bases,

BHet
2 = P1 × C , and BT-II

2 = (T2 × C)/Λ , (2.2)

where Λ ⊂ SU(2) is a discrete group associated with the algebra g. Physically, we may
interpret the structure constants κP in three different ways:

1. from their 10D LST origin, which is either Type II or Heterotic 5-branes;

2. as the number of flavor 9-branes;

3. on the LST 2D worldsheet, the quantity 8κp counts the number of 3–7 string defects [46].

All three perspectives are consistent with each other: κp determines possible non-trivial bulk
flavor symmetries. The three perspectives will allow us to derive new consistency conditions
from the LST worldsheet in section 2.3.

2.1 Review

Before delving into the analysis of Type II LSTs and their symmetries, we shortly review
the six-dimensional generalized quivers and the main properties of LSTs, which we use as an
opportunity to set our notation and conventions. For a more in-depth treatment of generalized
quivers and their F-theory construction, we refer the reader to the reviews [29, 47].

The tensor branch of a six-dimensional N = (1, 0) theory can be described in terms of
weakly-coupled supermultiplets. In the presence of tensor multiplets, there exist additional
BPS strings which couple naturally to the self-dual tensor fields, inducing a Dirac pairing ηIJ

for the strings. In the F-theory description, they are obtained by wrapping branes on curves
CI in the base of the elliptic fibration, and the pairing is given by their intersection form8

ηIJ = −CI · CJ . (2.3)

Since the matrix ηIJ has an interpretation as the Dirac pairing of strings, it must be positive
semi-definite. For LSTs, we furthermore demand the presence of a single null eigenvector,
which we refer to as the (integer-valued) LST charge ℓLST,

ηIJℓLST
J = 0 , ℓLST

I > 0 ∀I , gcd(ℓLST
1 , ℓLST

2 , . . . ) = 1 . (2.4)

Here and throughout, we sum over repeated indices. The LST charge is then interpreted as the
coefficients of the linear combination of self-dual two-forms that couple to the Little String:

BLST
2 = ℓLST

I BI
2 , (2.5)

where BI is the tensor associated with the curve CI . There then remains nT dynamical tensors.
8Note that the matrix η is sometimes defined as the intersection matrix itself rather than the Dirac pairing:

ηIJ = +CI · CJ . It is then negative semi-definite, since the curve have to have negative self-intersection in
order for them to be shrinkable to zero size to reach the LST phase. In our convention, the diagonal elements
are always positive integers.
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In addition to tensor multiplets, there can also be vector and hypermultiplets charged
under gauge symmetries. To ensure gauge anomaly cancellation, each gauge algebra must be
associated with a tensor multiplet, or equivalently its magnetic dual string. Indeed, in six
dimensions, gauge anomalies generically do not cancel and a Green-Schwarz-West-Sagnotti
mechanism, or GS mechanism for short, mediated by the tensor fields is necessary to obtain a
consistent theory [48, 49]. In F-theory, the gauge sector arises naturally from non-trivial elliptic
fibers over the curves CI , and the dictionary between the matter content and the geometry
can be obtained straightforwardly [50, 51]. Gauge anomaly cancellation is then guaranteed if
the theory descends from a well-defined elliptically fibered Calabi-Yau compactification.

It is common to summarize the spectrum of an N = (1, 0) six-dimensional theory on
its tensor branch in a pictorial way called a (generalized) quiver. The Ith tensor multiplet
with ηII = n associated with an algebra g is denoted by

g
n . (2.6)

If there is more than one tensor multiplet, they are arranged in a graph whose adjacency matrix
is given by the Dirac pairing. If the algebra is trivial, the label g is omitted. Furthermore,
flavor symmetries of tensor multiplets are indicated with brackets, [f].

For instance, the following quiver represents a Heterotic LST:

[so16]
spN

1
spN

1 [so16] , η =
(

1 −1
−1 1

)
. (2.7)

The two strings of charge 1 intersect once, and there are 2N +8 hypermultiplets transforming
in the fundamental representation of each spN , necessary to ensure anomaly cancellation.
Some of these transform in the bifundamental representation (2N ,2N ), and there are sixteen
remaining half-hypermultiplets on each side, rotated by an so(16) flavor symmetry. As one
can see, the quiver notation provides a convenient book-keeping device that (almost) uniquely
encodes the spectrum upon demanding absence of anomalies.

In F-theory, two curves are depicted side by side if they have a normal crossing intersection.
While this is enough when considering SCFTs, the requirement of a unique null eigenvector
for the Dirac pairing of an LST allows for different patterns of intersections:

Normal intersection: g1
m

g2
n ,

Tangential intersection: g1
m||g2

n ,

Triple intersection: g1
n1

g2
n2
∆ g3
n3 ,

Loop configuration: //
g1
n1

g2
n2 . . .

gk−1
nk−1

gk
nk//

(2.8)

In the last case, the symbol // denotes the intersection between the first and last curve.
Note that the quiver notation summarizes the theory at a generic point in the tensor

branch. At such a generic point, the strings, being BPS objects, have a tension TI that is
given by the vacuum expectation value of the scalar field tI of the associated tensor multiplet,
TI ∼ ⟨tI⟩. For theories where η does not have a null eigenvector, moving to a point where the
vacuum expectation value of all tensor fields vanish, leads to a conformal fixed point where
no scales can be present. However, the existence of the null eigenvector ℓLST means that not
all curves can be shrunk and hence ensures that an intrinsic LST scale remains.
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The two-form field BLST
2 acts as a background field for the U(1)(1)

LST one-form symmetry,
and the Bianchi identity of the associated 3-form field strength HLST

3 controls the 2-group
structure constant:

dHLST
3 = κ̂Rc2(R)−

κP

4 p1(T )− κA
F c2(FA) , (2.9)

where c2(R), c2(FA) are the one-instanton-normalized second Chern classes of the R- and
f = ⊕Af

A flavor symmetry bundles respectively, and p1(T ) is the first Pontryagin class of the
spacetime tangent bundle. The two-group structure constants can then be obtained from
the quiver data by expanding BLST

2 in terms of the tensors BI
2 . At a generic point in the

tensor branch, their respective Bianchi identities are given by

dHI
3 = hIc2(R)−

aI

4 p1(T )−BIAc2(fA) , (2.10)

where hI = h∨
gI is the dual Coxeter number of the Ith algebra, aI = 2− ηII , and BIA encodes

the pairing between the Ith string and the Ath flavor algebra. Comparing with equation (2.9),
we find that the 2-group structure constants are given by

κP = hIℓLST
I , κR = aIℓLST

I , κA
f = BIAℓLST

I . (2.11)

In [26], the first two structure constants were called universal structure constants. They have
to match across T-duality, which is not true for the third structure constant κA

f .

2.2 Higher symmetry dualities in LSTs

Beyond the 2-group symmetry structure, 6D QFTs may also admit general (discrete) higher
form symmetries. In the following, we shortly review how such symmetries can arise and
propose to use them as novel invariants across T-duality. Our main interest lies in the
following two types of generalized symmetries

1. Discrete center 1-form symmetries D(1)
6D associated to Wilson lines not screened

by dynamical gauge or matter fields.

2. Defect Group D(2)
6D associated to self-dual string defects that can not be screened by

dynamical BPS strings [37].

We propose that a suitable combination of the above higher symmetries serves as a novel
invariant across T-dual LSTs.

Since LSTs may be T-dual in 5D, we next review circle compactifications of higher form
symmetries. Compactifying a 6D theory on a circle to 5D decomposes an n-form symmetry
into D(n)

D−1×D
(n−1)
D−1 symmetries. From the perspective of a (D−n−1)-dimensional topological

operator that generates the D-dimensional n-form symmetry, the two possibilities correspond
to a case where the defect does or does not wrap the circle. Indeed, the 1-form symmetry
D(1) becomes a 1-form and a 0-form symmetry in 5D.

As discussed in [37], the 6D defect group D(2)
6D is special as strings are self-dual. Upon

compactification to five dimensions these objects remain either strings, or lines when they
wrap the circle, and are related to one- and two-form symmetries. Due to the self-duality in
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six dimensions we can then make a choice of electric polarization in five dimensions which
keeps only the 5D one-form symmetry [14, 52–54]. Thus we obtain two contributions to
the 1-form symmetries in 5D,

D(1)
6D ×D

(2)
6D ⇝ D(1)

5D . (2.12)

We therefore expect T-dual LSTs to have a non-trivial 1-form and defect group structure
that combines into a single 5D 1-form symmetry upon circle compactification.

6D defect group. The defect group D(2)
6D of LSTs can be obtained from the Dirac pairing

matrix ηIJ . The defect group receives contributions from string defects, modulo those that
can be screened by dynamical ones, which we can represent as a lattice quotient. However,
one of these combinations is exactly the little string itself appearing as a null vector in ηIJ

and coupling to a non-dynamical tensor field. We already attribute this to the U(1)(1)
LST

symmetry, which has to be quotiented out so that the defect group is given by

D(2)
6D = ZnT +1

[ηIJ ]ZnT +1 /Z =
nT∏
i=1

Zmi . (2.13)

A convenient way to compute the defect group is via the Smith normal form of η,

M = S · η · T . (2.14)

Here, S and T are invertible matrices and M is diagonal. The integers mi in equation (2.13)
are given by the diagonal entries of M . Note that for LSTs there is always a null entry
m0 = 0 associated with the null eigenvector of η. The other diagonal element are then mi ≥ 0,
i = 1 . . . nT . The defect groups of LSTs and SCFTs are therefore computed in the same
way, up to the presence of m0 in the former case.

It is easy to check that D(2)
6D is invariant under blow-ups and blowdowns of smooth

points [37]. It might therefore be simplest to compute the defect group for a maximal
(smooth) blowdown of the quiver, a phase we will refer to as the endpoint configuration. For
LSTs, the respective endpoint configurations and possible defect groups are

Heterotic LSTs: η = (0) , D(2)
6D = ∅ ,

Type II LSTs: η = Â(G) , D(2)
6D = Z(G) .

(2.15)

Here, Â(G) is the affine extended Dynkin diagram of the gauge algebra G and Z(G) is its
center. For all ADE groups, we have listed the respective center symmetries in table 1. As
already remarked in [26], Heterotic LSTs cannot have a non-trivial defect group. In contrast,
Type II LSTs generally have a non-trivial defect group which, however, is bounded by the
ADE center symmetries. Note that this strongly constrains the higher symmetry structure
of Heterotic LSTs: since the defect group is always trivial, two Heterotic LSTs can only
be T-dual if they have the same global center 1-form symmetry. However, in all examples
discussed in the literature [26–29, 45], only gauged center 1-form symmetries were found.

1-form symmetries. Center 1-form symmetries are the simplest higher form symmetries
and are hence well-explored and understood. A center 1-form symmetry is associated to line
defects, such as Wilson lines of a gauge group G with non-trivial center Z(G). The 1-form
symmetry D(1) acts on Wilson lines that are in the weight lattice of G modulo the screening

– 8 –
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by dynamical W-bosons living in the root lattice. In N = (1, 0) theories, there can be
additional sources that can break the symmetry, such as hypermultiplets charged under Z(G).
Depending on their representations, Wilson lines may then end on those hypermultiplets
and get screened, such that the 1-form symmetry is also broken. This can be generalized to
non-simple gauge groups, G = ∏

I GI with center Z(G) = ∏
I Z(GI). This combined center

symmetry cannot be fully realized, since various matter representations charged under G
(typically bifundamentals of GI × GI±1) have to be present in the theory to ensure gauge
anomaly cancellation. Nevertheless, there is generically a diagonal combination of center
symmetries Z ∈ Z(G) that acts trivially on all matter representations, which can then be
a center 1-form symmetry.

The putative center 1-form symmetry identified above can be rendered inconsistent by
BPS instanton strings that are charged under it. The consistency of the 1-form symmetry can
be studied as follows [18, 22, 55]: for a consistent 1-form symmetry D(1)

6D = Z ∈ Z(G), one
should be able to treat it as a non-trivial background field. The background is parameterized
by a twist vector k⃗ for Z whose entries are integral values in the centers

kI ∈ Z(GI) . (2.16)

Upon switching on the above background twist, the respective gauge instanton fractional-
izes [55]. By performing large gauge transformations of the 2-form fields, we are then left
with a fractional shift that leads to a phase in the path integral. This phase is trivial if∑

j

ηIJk2
JαGJ

= 0 mod 1 ∀I , (2.17)

which signals consistency of the chosen 1-form symmetry background. Note that the ki

have to be trivial for the flavor symmetry factors (which are mostly absent in Type II LSTs
anyways), and hence do not appear in the sum (2.17).

The above consistency check is the same for center 1-form quotient symmetries that
appears in the total symmetry group G̃ = ([Gf]×G)/Z, which acts simultaneously on gauge
and flavor group factors. This is precisely what happens in Heterotic LSTs: the global gauge
group structure is fixed by the flavor branes. The Z2 quotient of the Spin(32)/Z2 flavor
group acts diagonally on all gauge group factors.9

Examples. We illustrate the above considerations with a few concrete examples. First, let
us consider a theory with a G = SU(n) singularity, whose quiver has the necklace shape of
the corresponding affine Dynkin diagram with Dirac pairing matrix

η =


2 −1 0 .. −1
−1 2 −1 .. 0
0 −1 2 .. 0
.. .. .. .. ..

−1 0 0 .. 2

 (2.18)

9The global quotient structure can be engineered in F-theory, for both compact and non-compact cases via
a non-trivial Mordell-Weil torsion group [16, 18, 19, 56, 57].
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G Z(G) αG

SU(N) ZN
N−1
2N

Sp(N) Z2
N
4

Spin(2N + 1) Z2
1
2

Spin(4N + 2) Z4
2N+1

4

Spin(4N) Zs
2 ×Zc

2 (N
4 ,

1
2)

G2 Z1 −

F4 Z1 −

E6 Z3
2
3

E7 Z2
3
4

E8 Z1 −

Table 1. Summary of center symmetries and group theory coefficients for all simple groups, reproduced
from [36]. For Spin(4N), the two Z2 factors act on the spinor and co-spinor, respectively; the vector
representation is charged under both.

and LST vector ℓ⃗LST = (1, 1, 1, . . . 1). The defect group can be computed using the Smith
normal form, which is given by

M = diag(0, 1, 1, . . . , 1, n) . (2.19)

Hence, the defect group of the theory is

D(2) = Zn . (2.20)

We may now decorate the theory with an SU(m) gauge symmetry, which gives the quiver

//
sum

2
sum

2
sum

2 . . .
sum

2︸ ︷︷ ︸
n×

// . (2.21)

The theory has a non-trivial diagonal 1-form symmetry: all matter transforms in bifunda-
mental representations (m,m), which leaves the diagonal Zm 1-form symmetry unbroken
upon choosing all twists ki = 1. The 2-group structure constants and Coulomb branch
dimension of this theory are

κP = 0 , κR = m · n , dim(CB) = m · n− 1 , (2.22)

using the formulas given in equation (2.11) Together with the higher form symmetries

D(2) : Z(2)
n , D(1) : Z(1)

m , (2.23)

this gives the T-duality invariant data. An obvious T-dual of the above theory is given by
exchanging fiber and base singularities, which results just in a flip of the respective 1-form
and 2-form symmetries, leaving CB and 2-group structure constant invariant.
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The situation at hand is in fact even more general: recall that the total space of the
fibration can be represented by the orbifold of X3 = (T2 × T2 × C1)/Λ with Λ given by
the two actions

Zn : gn : (e2πi/n,1, e−2πi/n)
Zm : gm : (1, e2πi/m, e−2πi/m).

If m and n are co-prime, the Chinese Remainder Theorem tells us that we can write

Λ = Zm ×Zn = Zm·n , (2.24)

leading to a Z
(1)
n·m 1-form symmetry in 5D. This hints at the possibility that there might

be more T-dual Type II LSTs of type KII(suk, sul) with

k · l = m · n , (2.25)

as those have the same Z
(1)
nm 1-form symmetry, Coulomb branch dimension and 2-group

structure constants. Indeed, it is has been proposed in [58, 59] that there exist flop transitions
in the extended Kähler cone of the threefold which lead to multiple T-duals for each k, l

partition of n,m. Since the 1-form symmetry group in 5D is insensitive to flop transitions,
this perspective would be consistent with conditions imposed by the matching of higher form
symmetries. Similarly, for gcd(n,m) = k we can then write Γ = Zn·m/k × Zk, which gives
the maximal 1-form symmetry in 5D. In fact, any other partition nm = ñm̃ that leads to
the above symmetry is also consistent, which implies the additional condition gcd(ñ, m̃) = k.
In section 4, we give an explicit geometric construction for the case of two inequivalent
elliptic fibrations.

The computation of the defect group is generally straightforward by either moving to the
endpoint configuration, where the base has an ADE singularity and taking its center, or by
directly computing the Smith Normal Form on the full tensor branch geometry. Determining
the center 1-form symmetry can be more involved, so we discuss two more examples in
the following to illustrate the computation. Generically, we might need to identify a center
symmetry transformation on the gauge group factors that acts faithfully on all representations.

Our next example is a slightly more complicated LST, which is the theory KII(sun, so12)
with tensor branch quiver

KII(sun, so12) :
sun

2

sun

2
su2n

2
su2n

2

sun

2
su2n

2
sun

2 . (2.26)

The total gauge group has a Z4
n ×Z3

2n center, which is broken to a diagonal subgroup by the
various bifundamental matter representations of the quiver. For example, the fundamental
representation n of sun has center charge 1 and transforms with phase

Zn : ϕ(n) = e
2πi
n . (2.27)

Bifundamental representations such as (n,2n) may leave a diagonal center symmetry Z =
Zn ⊂ Zn × Z2n invariant, since

(ϕ1 ⊗ ϕ2
2)(n,2n) = e

2πi
n · e

−2·2πi
2n = 1 . (2.28)
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The above Z
(1)
n generator must be further extended to encompass all gauge symmetry factors

in order to account for all bifundamental hypermultiplets. Furthermore, we need to check the
BPS string obstruction in (2.17). We find a consistent Zn background flux for the following
twist choice for ki in (2.17): ki = 1 for Gi = SU(n) and kj = 2 for Gj = SU(2n). In summary,
the HFS structure of the above LST is

D(2) : Zs (2)
2 ×Z

c (2)
2 , D(1) : Z(1)

n (2.29)

We may proceed similarly for the KII(so12, sun) theory, whose quiver has the necklace shape

KII(so12, sun) : //
so12
4

sp2
1

so12
4

sp2
1 . . .

so12
4

sp2
1 // (2.30)

with n pairs of
so12
4

sp2
1 . Each so12 gauge factor has a Zs

2 ×Zc
2 center symmetry and each sp2

factor has a Z2 symmetry. The fundamentals of so4N are charged under both Z
s/c
2 factors,

and spM fundamentals are charged under the Z2 center symmetry of Sp(2). Hence, we obtain
two invariant generators. One is the diagonal combination of the Zs

2 × Z2 generator, and
the other of the Zc

2 ×Z2 generator, ϕs/c
so12 ⊗ ϕsp2 , which acts trivially on the bifundamental

representations. With this, the full quiver has a

Z =
n∏

i=1
(Zs

2,i ×Zc
2,i ×Z2,i) (2.31)

center symmetry. The bifundamental matter will be invariant under a diagonal combination
of the invariant generators of each block,

Z
s (1)
2 ×Z

c (1)
2 :

n⊗
i=1

(
ϕ

s/c
so12,i ⊗ ϕsp2,i

)
. (2.32)

Note that there are no spinor or co-spinor representations that would break the respective
Z

s/c
2 center symmetries. Further we also have to check that the BPS strings are consistent

with the center symmetries.
Checking the BPS string obstruction works out just as in the previous case: there are

two non-trivial center twists (ks, kc) for an SO(4N), each of which contributes a term [22]

ηij
(
Nj

4 (ks
j + kc

j)2 + 1
2(k

s
j · kc

j)
)

(2.33)

to the condition (2.17). For each of the n blocks
so12
4

sp2
1 in the quiver (2.30), we need to choose

three Z2-valued entries for ki, which encode the Zs
2,i ×Zc

2,i ×Z2,i for the SO(12)i × Sp(2)i

centers. There are two consistent choices: we can choose ki = (1, 0, 1) or ki = (0, 1, 1).
Both choices correspond to a 1-form symmetry background generator of order two, and it is
straightforward to check that the path integral phase (2.17) is trivial for either of them.

To summarize, the higher form symmetries of this example are

D(2) : Z(2)
n , D(1) :

(
Z

(1)
2

)2
. (2.34)

The two Type II LSTs in the example are T-dual, which is consistent with the exchange
of the higher form symmetry sectors we observe.
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2.3 Flavor bounds from the LST worldsheet theory

We now turn to the 0-form flavor symmetries of LSTs. The presence of BPS string in the
spectrum is known to impose constraints on the flavor symmetries demanding unitarity of
the worldsheet theory [40–42].

From the perspective of the six-dimensional effective description at a generic point of
the tensor branch, the D3-branes wrapping two-cycles in the geometry arise as strings with
finite tension. Their worldsheet description is that of a two-dimensional N = (0, 4) gauge
theory, which flows in the deep infrared (IR) to a 2D SCFT. By studying the consequences
of unitarity for such SCFTs, one can obtain constraints on the allowed spectrum and the
properties of extended objects, since the two-dimensional central charges of the theory are
inherited from protected quantities in six dimensions. We will follow the methods developed
in [40], which were used to obtain bounds for the rank of the possible gauge groups appearing
in supergravity theories containing BPS strings.

The relevant quantities are encoded in the anomaly polynomial of the 2D worldsheet theory

I4 =
∑

a

kac2(Fa)−
kG

24 p1(T2) , (2.35)

where c2(Fa) = 1
4 TrF 2

a are the one-instanton-normalized second Chern classes of the world-
sheet flavor symmetries, and p1(T2) is the first Pontryagin class of the worldsheet tangent
bundle. Note that both the gauge and flavor symmetries of the 6D bulk are seen as flavor
symmetries from the worldsheet point of view. The anomaly polynomial I4 can be written in
term of the string charges and their intersection pairing, as well as other quantities of the
6D theory [60, 61]. In the deep IR, the emergent superconformal invariance fixes the left-
and right-handed central charges in terms of the level of the su(2)l ⊕ su(2)r R-symmetry, and
their difference is furthermore fixed by the gravitational anomaly kG.10 In the normalization
defined in equation (2.35), we have

cl = 6kl , cr = 6kr , cr − cl = kG . (2.36)

On the worldsheet, the 6D bulk flavor and gauge symmetries fa manifest themselves through
the presence of holomorphic currents associated with a Kac-Moody algebra f̂a at level ka in
the spectrum, whose contribution to the left-handed central charge is given by

cF =
∑

a

kadim(f)
ka + h∨f

, (2.37)

where h∨fa is the dual Coxeter number of the algebra fa. We are therefore led to a lower bound
on the central charge, which constrains the possibles flavor symmetries:

cF ≤ cl . (2.38)

While these constraints have been derived for supergravity theories in the context of
the Swampland Program [40, 41], they are very generic, and we will now apply them to

10We use lowercase subscripts to indicate the worldsheet left and right R-symmetry, reserving the letter R

for the bulk R-symmetry as the focus of this work is on six-dimensional theories. In the literature, c2(I) is
sometimes used for the Chern class of the bulk R-symmetry bundle.
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LSTs.11 All the necessary quantities can be obtained from the anomaly polynomial of the
six-dimensional effective theory — which can be computed directly from the tensor-branch
description — and are reviewed in appendix B.1 for convenience and to set our conventions.

This gives us the spectrum on the D3-brane, and the anomaly polynomial of the CFT is
obtained by removing the contributions of the center-of-mass universal hypermultiplet:

ICFT
4 = I4 − ICoM

4 . (2.39)

Furthermore, the left and right R-symmetries of the UV description might mix with the
other worldsheet flavor factor, changing that of the IR CFT. In our case, the right-handed
part of the R-symmetry su(2)r remains unchanged. The left-handed central charges can
then be inferred from the gravitational anomaly, see equation (2.36), which is easily read
off from the anomaly polynomial. We obtain

cl = 6kl = 6kr + kG = 3(3QIa
I −QIη

IJQJ) + 2 , (2.40)

where QI denotes the charge of the string, and aI = 2−ηII . A short summary and additional
details on the derivation of the central charges can be found in appendix B.1. A bound on
the possible symmetries then depends on the values of the levels ka. Those arise from the
Green-Schwarz coupling in the 6D bulk theory, and are given by

ka = BaIQI , (2.41)

where BaI is the pairing between the ath flavor and the Ith string charge.
Let us now specialize to the little string itself. In that case, the charge of the string

is by definition

QI = ℓLST
I , ηIJℓLST

I = 0 , (2.42)

see equation (2.4). Moreover, the string charge also fixes the two-group structure constant,

κP = aIℓLST
I , aI = 2− ηII . (2.43)

On the worldsheet we can therefore simply rewrite the left-handed central charge as

cl = 9κP + 2 . (2.44)

The bound then follows from the value of the possible worldsheet flavor symmetry. As already
mentioned above, from the two-dimensional point of view, both bulk gauge gI and flavor fA

symmetries appear as flavor symmetries. We must therefore distinguish between the two
types of possibilities, namely when a = I where the flavor pairing is simply BIJ = ηIJ ,
and those of the bulk flavor symmetries

kI = ηIJℓLST
J = 0 , kA = BAIℓLST

I (2.45)

We then conclude that only bulk flavor symmetries can contribute to the bound given in
equation (2.38). Moreover, in the geometric picture, the flavor pairing matrix is given by

11Via generalized blow-up equations, the elliptic genus of LSTs has been computed recently in [62].
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the intersection of D7-branes wrapping non-compact divisors DA with quiver curves wI ,
BAI = D

A · wI , so that in the overwhelming majority of cases BAI ∈ {0, 1}, and the level of
the flavor symmetry is simply the charge of the tensor the flavor is attached to in the quiver
description.12 Putting everything together, we therefore obtain the bound

∑
A

kAdim(fA)
kA + h∨A

≤ 9κP + 2 , (2.46)

where we remind the reader that the sum is taken only over the flavor symmetry factors
f = ⊕Af

A of the 6D theory. Equation (2.46) can be used to derive a bound on the total
rank of the flavor symmetry. Indeed, a consequence of the strange formula of Freudenthal
and de Vries is that for any simple algebra

rk(g) ≤ dim(g)
(1 + h∨g )

. (2.47)

This relation is saturated when g is simply laced, and is easily found to be correct by
inspection, see table 10.

We conclude that given an LST with two-group structure constant κP , the rank of its
total flavor symmetry f = ⊕Af

A must satisfy

rk(f) ≤ 9κP + 2 . (2.48)

Note that this bound is weaker than the one given in equation (2.46), as the levels kA related
to the little string charges ℓLST

I can be larger than one. At the end of this section, we give an
example of a would-be LST that satisfies the bound given in equation (2.48), but violates
the stronger constraints of equation (2.46).

Using the two possible values of κP in the Heterotic and Type II cases, we obtain
the bounds

Heterotic LSTs: rk(f) ≤ 20 ,
Type II LSTs: rk(f) ≤ 2 .

(2.49)

For Type II LSTs, we see that there is very little room for a potential flavor symmetry; the
only possibilities are f ∈ {u(1), u(1)2, u(1)⊕ su(2), so(4), su(3)} flavor algebras. On the other
hand, it is well known that a wealth of other algebras are permitted for Heterotic LSTs. For
instance, a rank-16 flavor arises from the 3–7 strings stretching between the LST curve and
the two (unbroken) M9-branes. When fixing e2

8 as the flavor symmetry, one has kG = 16 as
expected, and there are very few possible additional contributions, such as u(1)4, su(2)4 or a
combination thereof. Notably, a concrete case of an Heterotic LST with rank-18 flavor has
been discussed in [28]. We are however not aware of any theory saturating the bounds above.

To obtain the bound in equation (2.48), we have used the anomaly polynomial for strings
arising in six-dimensional N = (1, 0) theories derived in [61]. The numerical values can be
confirmed from the F-theory point of view by looking at the matter content arising from

12As pointed out in [63], there are a few cases where the flavor pairing entries can be larger than one,
occurring for instance in the presence of undecorated (−1)-curves in the quiver description, where the e8 flavor
is decomposed into a non-maximal subalgebra.
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(0,4) Multiplet Multiplicity (cl, cr) Het LST (g = 0) Type II LST (g = 1)

Hyper C2 + 1− g (4,6) 1 0
Twisted Hyper 1 (4,6) 1 1

Fermi g (2,0) 0 1
Half-Fermi 8C2 + 16(1− g) (1,0) 16 0

Table 2. Summary of the (0, 4) 2D SCFT field content and their contributions to left- and right-
handed central charges of a D3-brane wrapping a curve C of genus g. The multiplicities are evaluated
for Heterotic (g = 0) and Type II (g = 1) LSTs using C2 = 0.

D3-branes wrapping a curve C ⊂ B2. For an LST, the curve has by definition self-intersection
zero, C · C = 0, and its genus g is either g = 1 for the Heterotic cases, or g = 0 for Type II
cases. The multiplicity of the N = (0, 4) multiplets was derived in [46] for curves of arbitrary
genera, which we have collected in table 2 for convenience.13 The anomaly polynomial is
then obtained by summing the contributions of each supermultiplets. It is then easy to
see that, taking the center-of-mass modes into account, the left- and right-handed central
charges are those discussed above.

3 LSTs from minimal affinization of SCFTs

We have seen that the possible flavor symmetries of general LSTs are quite constrained, in
particular those of Type II LSTs. Conversely, Superconformal Field Theories (SCFTs) can
host a vast zoo of flavor symmetries, which can be used to construct LSTs. Indeed, through
an operation called fusion [64], certain SCFTs can be glued together to obtain an LST.

From the field-theory point of view, this procedure gauges a common flavor symmetry
(or a subalgebra thereof) of two decoupled SCFTs to obtain a new theory. The presence of a
new vector multiplet in the spectrum may lead to gauge anomalies that need to be cancelled
through a Green-Schwarz-West-Sagnotti mechanism [48, 49], requiring the introduction of an
additional tensor multiplet to mediate it. The fusion procedure can, however, substantially
alter the UV behavior of the new theory. Depending on the (anti-)self duality of the new
tensor, the SCFT can be converted to an LST, or even to a SUGRA theory [36].

The reverse procedure, where a tensor multiplet and the associated gauge symmetry are
decoupled, is called fission. Since the pairing matrix of an LST has by definition a single
null eigenvector, see equation (2.3), fission leads a positive definite pairing matrix, i.e., that
of an SCFT. This is known as the tensor-decoupling criterion [8].

Geometrically, fusion can be understood as Kähler deformations rendering a curve in the
base compact. Schematically, given two SCFTs T1 and T2 with a common flavor symmetry
f, they can be fused together to obtain a new theory K:

T1 ⊕ T2 = K ,

· · · g1
n1

g2
n2 [f] ⊕ [f]

h1
k1

h2
k2 · · · = · · · g1

n1
g2
n2

f
m

h1
k1

h2
k2 ,

(3.1)

13We have used that by adjunction, 2(g − 1) = C2 − C · c1(B) to write the multiplicities purely in terms of
the self-intersection of the curve and its genus.
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where we have highlighted the new compact curve in blue, whose precise self-intersection
(−m) is dictated by anomaly cancellation. We again stress that the theory obtained after
fusion must be free of any gauge anomaly, and not all fusions lead to consistent theories.

The SCFT T2 can be taken to be trivial, in which case we are simply gauging the
flavor symmetry:

· · · g1
n1

g2
n2 [f] −→ · · · g1

n1
g2
n2

f
m. (3.2)

To study LSTs, we can therefore start with SCFTs, and through fusion introduce a null
eigenvalue. However, this can drastically change the (higher) symmetry structure of the
new theory compared to the original SCFT. First, we have removed the flavor symmetry
f, which may have an impact on the one-form (gauge) symmetry. Second, the introduction
of a new compact curve, or equivalently new dynamical BPS strings, may also modify the
defect group D(2). This in turn gives additional constraints on the set of consistent fusions.
For example, for Heterotic LSTs, the defect group must be trivialized and the flavor group
reduced to at most rank 20. For Type II LSTs, the flavor rank must be almost trivialized to
at most rank two, and D(2) reduced to the center of a simple ADE algebra. The landscape of
those theories is therefore much more sparse than their Heterotic cousins, and the possible
bases giving rise to the defect group have been classified in [8]. Through the tensor-decoupling
criterion, one might then ask which SCFT is closest to being an LST in the sense that their
defect group agrees, and the only operation needed is to gauge the flavor symmetry. We
will define such an operation as follows:

Definition 1. Given a 6D SCFT T with a flavor symmetry f, a Little String Theory K is
reached through minimal affinization if:

• At a generic point of the tensor branch, gauging the flavor symmetry f introduces a
single curve, and a null eigenvalue to the Dirac pairing, turning the resulting theory
into an LST.

• Only vector multiplets are added to the spectrum of the tensor branch theory.

• The defect group is preserved, D(2)(T ) = D(2)(K).

In particular, this means that this procedure does not require additional matter to cancel
possible new gauge anomalies. Furthermore, the symmetry f could be part of a larger flavor
symmetry, as long as the resulting LST K satisfies the bound given in equation (2.46).

To give an example, let us consider the minimal affinization of the so-called Asuk
2 SCFT,

discussed in more detail below. It has a flavor symmetry suk ⊕ suk, which can be trivialized
by gauging the common diagonal subalgebra:

[suk]
suk

2
suk

2 [suk] −→
suk

2
suk

2 suk

2 = //
suk

2
suk

2
suk

2 // . (3.3)

Fusion has introduced a new curve, depicted in blue, and we remind the reader that the
symbols // indicate identification of the ends of the quiver, see equation (2.8). Anomaly
cancellation demands that the new curve has self-intersection (−2), and it is easy to check
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that the new pairing matrix now has a null eigenvalue. The resulting quiver is therefore an
LST, and the defect group of both theories is D(2) = Z3. Generalization of this example
to more complicated quivers will be discussed in section 3.1.

While there is a unique way to obtain an LST in the previous example, in general multiple
SCFTs can lead to the same LST through fusion. Minimal affinization therefore defines
a canonical way to introduce a null eigenvalue to the pairing matrix without modifying
the matter spectrum of the theory beyond the changes coming from the trivialisation of
the flavor symmetry.

Another by-product of minimal affinization is that it enables us to obtain the two-group
structure constants of an LST from the anomaly polynomial of the 6D SCFT. The anomaly
polynomial of an N = (1, 0) theory is generically14 of the form [65]

I8 = α

24c2(R)2 + β

24c2(R)p1(T ) +
γ

24p1(T )2 + δ

24p2(T )

+
∑

a

TrF 2
a

(
kac2(R) + µap1(T ) +

∑
b

ρab TrF 2
b

)
+
∑

a

νa TrF 4
a ,

(3.4)

where the traces are one-instanton normalized, and we use the same notation as around
equation (2.9). Given a six-dimensional quiver describing the tensor branch of the theory,
there is a simple procedure to extract the anomaly polynomial of the theory, see e.g. [63] for
a concise review of the algorithm. Via ’t Hooft anomaly matching, the anomaly coefficients
are preserved as we move in the tensor branch to reach the singular point.

When performing a minimal affinization, we only introduce a vector multiplet mediating
the gauge interactions, and since the new curve cannot participate in the Green-Schwarz-
West-Sagnotti mechanism [48, 49], the anomaly polynomial of an LST K obtained from
an SCFT T is simply given by

I8(K) = I8(T ) + Ivec
8 (f) , (3.5)

where Ivec
8 is the contribution of the vector multiplet, defined in appendix B.

This gives us an alternative way to find the two-group structure constants defined in
equation (2.11). Indeed, for an LST, they can also be read off directly from the anomaly
polynomial [25],

I8(K) =
(
−κR c2(R)−

κP

4 p1(T ) + κA
F c2(FA)

)
c2(F ) + . . . , (3.6)

where c2(F ) = 1
4 TrF 2 is the second Chern class of the background field strength of the

background symmetry of the U(1)(1) 1-form symmetry. In the case of minimal affinization,
this is simply that of the (now gauged) symmetry f.

Note that the above procedure is very much a feature of minimal affinization, and not
true in general: generic fusions might require the introduction of additional matter, change
the Green-Schwarz term, or c2(F ) might not be associated directly with that of the SCFT
flavor symmetry. As a result, the anomaly polynomial will not take the form given in
equations (3.5) and (3.6) in those cases.

14We ignore possible Abelian flavor symmetries for simplicity.
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Using the expression for the contribution of the vector multiplet, in the convention
defined in equation (3.4), we find

κG(K)=−16µf(T )+
1
3h

∨
f , κR(K)=−4kf(T )+h∨f , κA

F (K)= 16ρA,f(T ) . (3.7)

Beyond their usefulness as a cross-check for the two-group structure constants computed from
equation (2.11), these expressions will also enable us to explain some of the coincidences we
observe for numerical factors for certain T-dual dual pairs of LSTs. Indeed, for SCFTs with
a base that is part of an infinite series — so-called long quivers — closed-form expressions
have been found in [66], relying only on the rank N of the base and group-theoretic data
of g, possibly supplemented with nilpotent orbit data if the theory is reached through a
Higgs-branch Renormalization Group (RG) flow.

In the sequel, we exemplify minimal affinization by considering SCFTs with a base
associated to an ADE orbifold of C2 in F-theory, and then move on to other more general
types of theories and their duals.

3.1 LSTs from ADE orbifolds

Our goal is to study LSTs using SCFTs. In the F-theory picture, N = (1, 0) SCFTs are
obtained from compactification on an elliptically fibered Calabi-Yau with a non-compact
base B2. The possible bases have been classified, and are known to correspond to discrete
orbifolds of C2 [50, 51]:

B2 = C2/Λ , Λ ⊂ U(2) . (3.8)

The simplest cases, which we will focus on first, are those where we further restrict
Λ to be a discrete subgroup of SU(2) rather than U(2). These are well known to follow
an ADE classification:

Λ ⊂ SU(2) : AN−1 , DN , E6 , E7 , E8 . (3.9)

The first two infinite series are given by the cyclic (ZN ) and binary dihedral groups, while
the exceptional series correspond to the tetrahedral, octahedral and icosahedral finite groups,
in ascending order of rank. When the fibers are trivial, it is well known that 16 supercharges
are preserved and we find a collection of undecorated (−2)-curves intersecting in the same
pattern as the Dynkin diagram of the associated simple algebra: these are the celebrated
N = (2, 0) theories [1–3], see appendix C.

Generically, to preserve eight supercharges in the six-dimensional effective description,
the fiber over the curves can be singular. However, for a given choice of orbifold action Λ,
the possible fibers are severely constrained by demanding a well-defined elliptic fibration.
For instance, when Λ = AN−1, only fibers associated with a simply-laced algebra g =
suk, so2k, e6, e7, e8 are consistent. Except for g = suk, the resulting geometry contains non-
minimal singularities, and a series of blow-ups is necessary, leading to a repeating sequence
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of curves called rank-N (g, g) conformal matter, which we denote as Ag
N−1:

Asuk
N−1 : [suk]

suk

2
suk

2 . . .
suk

2
suk

2 [suk] ,

Aso2k
N−1 : [so2k]

spk−4
1

so2k

4
spk−4
1 . . .

spk−4
1

so2k

4
spk−4
1 [so2k] ,

Ae6
N−1 : [e6]1

su3
3 1

e6
61

su3
3 1

e6
6 . . . 1

su3
3 1

e6
61

su3
3 1[e6] ,

Ae7
N−1 : [e7]1

su2
2

so7
3

su2
2 1

e7
8 . . .

e7
81

su2
2

so7
3

su2
2 1[e7] ,

Ae8
N−1 : [e8]1 2

su2
2

g2
31

f4
51

g2
3
su2
2 2 1

e8
(12) . . .

e8
(12)1 2

su2
2

g2
31

f4
51

g2
3
su2
2 2 1[e8] .

(3.10)

In each case, the curve with the lowest self-intersection — that is −2 ,−4 ,−6 ,−8 ,−12 for
g = suk , so2k , e6 , e7 , e8, respectively — appears (N − 1) times and is often referred to as a
node of the quiver. With the links of minimal conformal matter, the theory Ag

0, this lends the
name to the notion of generalized quivers, where bifundamental hypermultiplets are replaced
by a generalization of matter with g ⊕ g flavor, glued together via fusion [67].

Up to a few outliers, the overwhelming majority of 6D SCFTs can be obtained from
deformations of a few so-called “parent” theories with a base associated with the discrete
ADE group Λ and a flavor symmetry dictated by an algebra g. We will follow the notation
used extensively in [66] and denote the parent theories by Λg. The rank N conformal matter
theories Ag

N−1 described above are an example of parent theories. If an SCFT is obtained
by moving onto the Higgs branch of the parent theory via a deformation encoded in e.g. a
nilpotent orbit O, we label it as Λg(O), see below for an example. The LST reached through
minimal affinization is then denoted as Λ̂g(O), in the obvious notation.

For conformal matter, minimal affinization is a generalization of the example given in
equation (3.3). In every case, we gauge the diagonal subalgebra of the g ⊕ g flavor, and
one needs to introduce a new node with the appropriate self-intersection, as given below
equation (3.10).

This can also be seen on the partial tensor branch, also called the endpoint of the
theory, which is the point where all (−1)-curves have been successively blown down. There,
we obtain a collection of (−2)-curves intersecting like the Dynkin diagram of the affine
simple algebra ÂN−1:

Ag
N−1 : [g]

g
2 · · ·

g
2︸ ︷︷ ︸

N−1

[g] −→ Âg
N−1 : //

g
2 · · ·

g
2︸ ︷︷ ︸

N−1

g
2// . (3.11)

Due to their loop configuration, these theories are sometimes referred to as necklace LSTs,
and we will denoted them as Âg

N−1, in the notation summarized above. At a generic point
in the tensor branch, or in geometric terms when enough blow-ups have been performed to
obtain a configuration with only non-minimal singularities, we have for each algebra

Âsuk
N−1 : //

suk

2
suk

2 . . .
suk

2
suk

2
suk

2 // ,

Âso2k
N−1 : //

spk−4
1

so2k

4
spk−4
1 . . .

spk−4
1

so2k

4
spk−4
1

so2k

4 // ,

Âe6
N−1 : //1

su3
3 1

e6
61

su3
3 1

e6
6 . . . 1

su3
3 1

e6
61

su3
3 1

e6
6// ,

Âe7
N−1 : //1

su2
2

so7
3

su2
2 1

e7
8 . . .

e7
81

su2
2

so7
3

su2
2 1

e7
8// ,

Âe8
N−1 : //1 2

su2
2

g2
31

f4
51

g2
3
su2
2 2 1

e8
(12) . . .

e8
(12)1 2

su2
2

g2
31

f4
51

g2
3
su2
2 2 1

e8
(12)// .

(3.12)
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A similar behavior occurs for the other types of SCFTs with ADE bases. For those of
exceptional types Λ = Er, each (−2)-curve can be decorated with an su(dik) algebra, where
di is the Kac label corresponding node of the base algebra, see table 3. The resulting theory
has a flavor symmetry suk which can be gauged in order to obtain a well-defined LST, where
the (−2)-curves now intersect like the Dynkin diagram of the corresponding affine algebra.
For instance, for an E6 base, we have:

E suk
6 :

suk

2
su2k

2

[suk]
su2k

2
su3k

2
su2k

2
suk

2 −→ Ê suk
6 :

suk

2
su2k

2

suk

2
su2k

2
su3k

2
su2k

2
suk

2 . (3.13)

The same can be done for the other two cases, giving rise to the following LST quivers:

Ê suk
7 :

suk

2
su2k

2
su3k

2

su2k

2
su4k

2
su3k

2
su2k

2
suk

2 Ê suk
8 :

su2k

2
su4k

2

su3k

2
su6k

2
su5k

2
su4k

2
su3k

2
su2k

2
suk

2 (3.14)

Finally, the case of D-type bases is slightly more subtle. With fibers of type suL, gauge-
anomaly-cancellation conditions demand that on the arbitrarily-long spine, L must be even:

Dsu2k
N :

suk

2

suk

2
su2k

2
su2k

2 · · ·
su2k

2︸ ︷︷ ︸
N−3

[su2k] . (3.15)

Simply gauging the su2k flavor of the Dsu2k
N theory does not give rise to an LST but rather

another SCFT, Dsu2k
N+1. We can, however, break the su2k flavor algebra to suk by moving

onto the Higgs branch of the SCFT. These types of deformations are classified by nilpotent
orbits [68], and for suL algebras, they can be labelled by partitions of L. We denote a partition
L =∑L

i=1 imi as [1m1 , 2m2 , . . . , LmL ], and we omit entries where mi = 0 for ease of reading.
Given a nilpotent orbit, the quiver configuration can be read off directly, and some of

the data of the resulting SCFT follows straightforwardly from the associated group theory
[66, 68, 69]. For the nilpotent orbit [2k] of su2k, the quiver is given by

Dsu2k
N ([2k]) :

suk

2

suk

2
su2k

2
su2k

2 · · ·
su2k

2︸ ︷︷ ︸
N−5

[suk]
su2k

2
suk

2 . (3.16)

The LST is then obtained via minimal affinization by gauging the flavor symmetry, which
is achieved without changing the defect group:

D̂su2k
N ([2k]) :

suk

2

suk

2
su2k

2
su2k

2 · · ·
su2k

2︸ ︷︷ ︸
N−5

suk

2
su2k

2
suk

2 . (3.17)

Note that as for the exceptional bases — and trivially for Asuk
N−1 — all fibers are now of the

form su(di · k) with di the Kac labels of so2N , see table 3.
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To summarize, in all ADE cases, we start with an SCFT Λg where Λ is a discrete ADE
group associated to a simple algebra gB that describes the singularity structure of the base
of the F-theory geometry (and thus, after resolution, the intersection properties of the base
divisors), and g describe both the generic fibers at the origin of the tensor branch and the
flavor of the parent theory. Up to additional possible deformations, the SCFT has flavor
symmetry f, and after the minimal affinization procedure we obtain an LST labelled uniquely
by the two algebras gF and gB. Pictorially, we have

SCFT: Λg(O) min. affinization−−−−−−−−−−−−−→ LST: KII(gF , gB) = Λ̂g(O) . (3.18)

The three LSTs with ADE base are given by

KII(gF , suN ) = ÂgF
N , KII(suk, so2N ) = D̂su2k

N ([2k]) KII(suk, eN ) = Êsuk
N . (3.19)

For all these theories, one can show by direct computation using equation (2.11) that the
two-group invariants are arrange neatly in terms of quantities related to gF and gB:

KII(gF , gB) : κR = ΓgF ΓgB , κP = 0 , dim(CB) = h∨gF
h∨gB
− 1 , (3.20)

where Γg is the order of the discrete ADE group associated with the algebra g. Their values
are given in table 10. The factorization of these quantities in terms of group-theoretic data
of the fiber and base makes the T-duality between the two classes of LSTs manifest:

KII(suN , g)
T-duality←→ KII(g, suN ) . (3.21)

It is quite instructive to see how these structure constants arise from the point of view
of minimal affinization and the anomaly polynomial of the associated SCFTs. One of the
corollaries of fusion is that the anomaly polynomial of the vast majority of SCFTs can be
obtained from that of minimal conformal matter, Ag

0 or a deformation thereof [65, 66, 70].
This can be used to write the anomaly polynomial of conformal matter in a compact form,
depending only on the rank N of the base and group-theoretic quantities related to the
algebra g [65]:

I8(Ag
N−1) =

N3

24 (c2(R)Γg)2 − 1
2(c2(R)Γ) (J(FL) + J(FR))−

1
2N [J(FL)− J(FR)]2

+ Ising − Itensor
8 − 1

2 [Ivec
8 (FL)− Ivec

8 (FR)] ,
(3.22)

where FL, FR refer to the background fields for the two flavor symmetries g. The contributions
Itensor

8 and Ivec
8 of the tensor and vector multiplets, together with Ising, are given in appendix B.

Furthermore, the four-form J(F ) is

J(F ) = χ

48 (4c2(R) + p1(T )) + c2(F ) , χ = rk(g) + 1− 1
Γg

. (3.23)

Since the Bianchi identity of the associated two-form is dHCM
3 ∼ J(F ), it can be understood

as the charge of the BPS string associated with conformal matter at the conformal fixed point.
This means that the first line of equation (3.22) is generated entirely by the Green-Schwarz
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term. Furthermore, this equation makes it clear that minimal affinization for conformal
matter sets FL = FR, and adds the contribution of the vector multiplet introduced through
the gauging of the flavor, as explained around equation (3.5). Doing so automatically removes
all quartic contributions (TrF 2)2 and TrF 4, which would otherwise lead to gauge anomalies,
and the two-group constants are readily found to be given by equation (3.20).

As a consequence of ’t Hooft anomaly matching, the anomaly polynomial does not change
as we move in the tensor branch by successively blowing down all (−1)-curves. We can
therefore work directly on the partial tensor branch: even though the quiver consists of
multiple tensor, hyper- and vector multiplets, we can treat each of the fused N minimal
conformal matter links Ag

0 as a single entity. By the argument above, there are no quartic
gauge anomalies, and by carefully tracking the changes in the different quantities, as explained
in appendix B, one finds that the Green-Schwarz contribution of the SCFT on the partial
tensor branch takes the form

IGS
8 = 1

2AijI
iIj , I i = −Aijc2(Fi) +BiaJ(Fa) + di Γgc2(R) . (3.24)

Here, Aij is the pairing matrix at the conformal fixed point and Aij is its inverse. This
pairing matrix is simply given by the Cartan matrix of AN−1, and should be distinguished
from the pairing matrix at a generic point, which we have denoted by η. Moreover, we have
di = 1 for all i, and the flavor pairing matrix can be written as

Bia = (Aijdj) δia , A · d = (1, 0, . . . , 0, 1) . (3.25)

While writing the pairing matrix in this form might seem ad hoc, if we interpret di as the Kac
labels of the base AN−1, the factorization of the structure constants shown in equation (3.20)
becomes apparent. Indeed, using that for a simply-laced algebra g, we have the relation

Γg = 1 +
rk(g)∑
i=1

(di)2 , (3.26)

and the Green-Schwarz term of the SCFT can be found to be

IGS
8 = −1

2Γsuk
Γgc2(R)

(
J(FL) + J(FR)

)
+ . . . (3.27)

This generalizes to all three families of SCFTs with an ADE base discussed above. The
Green-Schwarz term in equation (3.24) is given in terms of the Kac labels di of the algebra
of base, in the convention of table 3.15 The flavor pairing matrix is again given in terms of
(A · d), and a similar reasoning explains the numerical coincidences observed in the structure
constants.16 The Kac labels will similarly play an important role in the geometric engineering
of the Type II LSTs in section 4.

15Note that here, the coefficients di are Kac labels of the simple algebra g, and not its affine version. For
simply-laced algebras, they also correspond to the highest root of g in the Serre-Chevalley basis. Moreover,
they are sometimes also referred to as Dynkin multiplicities in the literature.

16In the case of D
su2k
N ([2k]), Γsu2k must be substituted for that of the flavor symmetry suk.
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We find that not only the structure constants, but the complete anomaly polynomial,
can be described purely in terms of group-theoretic data of the base and fiber algebras,

I8 (K(gF , gB)) =
rk(gB) + 1

24 (ΓgBΓgF c2(R))2 − ΓgBΓgF c2(R)c2(F ) + (rk(gB) + 1)Ising
8

− 1
48
[
ΓgBΓ2

gF
− (rk(gB) + 1)

]
c2(R)(4c2(R) + p1(T ))− Itensor

8 .

(3.28)
This generalizes the minimal affinization of the anomaly polynomial of necklace quivers given
in equation (3.22) to the dual LSTs, and can be checked explicitly for Êsuk

N and D̂su2k
N ([2k])

by using the algorithm to determine the anomaly polynomial on the tensor branch.
A similar analysis can be performed for the dimension of the Coulomb branch. It is

easy to check that for minimal conformal matter, the dimension can be written similarly
compactly in terms of group-theory data of the fiber algebra:

dim(CBAg
0
) = h∨g − rk(g)− 1 . (3.29)

On the partial tensor branch, the ith curve of the base is decorated with an algebra gi of
rank rk(gi) = di rk(gF ). Taking into account the vector multiplets associated with each node,
we then recover the expected result given in equation (3.20).

We can therefore explain the numerical coincidences behind T-duality at the level of
the anomaly polynomial from group theory, and in particular by looking on the partial
tensor branch directly. In equation (3.28), the duality is realized easily by simply exchanging
the two algebras gF ↔ gB.

Note that while we mainly used the language of the F-theory construction throughout
this section, every step has an interpretation in the field-theory description. Fusion is a
well-defined six-dimensional operation for the gauge theories even at the non-perturbative
level, and blowing down curves corresponds to moving to a specific point of the tensor branch.
The expressions we have used are then guaranteed to be correct by ’t Hooft anomaly matching.
This remains true for other types of LSTs as well: we can always start by computing the
anomaly polynomial at a generic, weakly-coupled point of the tensor branch, and track
how quantities change at the conformal fixed point. Minimal affinization then simply adds
a contribution from a single vector multiplet to the anomaly polynomial from which the
two-group structure constants can be extracted.

Before moving on to LSTs beyond necklace quivers and their T-dual theories, let us
comment on the possibility of minimal affinization for theories of type Λ̂suk , but where the
rank of every su-type algebra over any curve is not fixed by the value of the Kac labels of
the base algebra. In other words, can we pick any choice of fibers for ADE bases? The
possibilities are of course severely constrained by anomaly-cancellation conditions: allowing
for different gauge algebras sukI

, quartic traces TrF 4
I must be cancelled. This imposes that

there must be 2kI hypermultiplets in the fundamental representation of sukI
. Taking into

account bifundamental hypermultiplets (kI , k̄J) arising at the intersection of two curves,
there generically remains f I hypermultiplets, which are rotated by an sufI flavor symmetry.
It is easy to check that the constraints on the possible values for f I is given in terms of the
Cartan matrix of ÂIJ associated with the base Λ̂:

f I = ÂIJkJ . (3.30)
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While there are non-trivial integer solutions to this equation for SCFTs, the only consistent
choice of kI for LSTs are null vectors of ÂIJ , so that f I = 0. This forces the kI to be a
multiple of the Kac labels of the affine algebra of the base, and the consistent choices reduce
to the cases discussed above. For ÂN−1 bases, the generalization to fiber algebras of type DE
is straightforward, and we conclude that there cannot be any necklace LST with non-trivial
flavor symmetry, and similarly for their T-duals. Here, we have considered only non-Abelian
algebras associated with a particular curve I as we have relied on cancellation of quartic
traces, and there is therefore still a possibility for Abelian symmetries, or flavor factors
“delocalized” along the quiver rotating composite gauge-invariant operators. The possibilities
are, however, severely constrained by the worldsheet bound.

3.2 Beyond necklace quivers

We have seen that for ADE orbifolds, minimal affinization simply corresponds to considering
the affine extension of the Dynkin diagram of the discrete group Λ ⊂ SU(2), which is obtained
by gauging the flavor symmetry. All the relevant quantities can then be directly computed
on the partial tensor branch.

SCFTs whose bases are associated with discrete groups Λ ⊂ U(2) that are not of
ADE type are usually referred to as generalized orbifolds. In the M-theory picture, these
SCFTs are — up to a few outliers — associated with fractional M5-branes probing frozen
singularities [38, 70–74]. However, these non-ADE bases cannot be affinized minimally.

Let us give an example. The affinization of the base

Λ : 3 2 2 . . . 2 2︸ ︷︷ ︸
N−2

3 −→ Λ̂ : //3 2 2 . . . 2 2︸ ︷︷ ︸
N−2

31// (3.31)

does not preserve the defect group. Indeed, when blowing down the new (−1)-curve, we get
Λ̂ ≃ ÂN−2, and the resulting LST has a defect group D(2)(Λ̂) = ZN−1. However, the SCFT
has D(2)(Λ) = Z4N , and this violates one of the defining conditions of minimal affinization.

It is a straightforward exercise to show that only ADE bases can be affinized minimally.
One of course recovers the original geometric classification [8]: on the partial tensor branch,
the pairing matrix of all LSTs corresponds the Dynkin diagram of an affine ADE algebra, see
table 3. There are two exceptions, associated with the affinization of an (endpoint) (−1)-curve:

11→ 0 , 1||4→ 0· . (3.32)

The former corresponds to the endpoint of Heterotic LSTs I0, while the latter gives rise to a
Type II LST with a base associated with a Kodaira singularity of Type II. We differentiate
these two bases by including an additional dot in the latter case, and write 0· , as in
equation (3.32). In two further cases corresponding to Type III and IV singularities in the
Kodaira classification, the bases of the LST have the same pairing matrix as those of A1 and
A2, respectively, but the geometry of the base is different. They correspond to a tangential
intersection of two curves or a triple intersection point,

III : 2||2 , IV : 2
2
∆2 . (3.33)
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Kodaira G Endpoint D(2) Affine Dynkin diagram
P1 ∅ 11 → 0 ∅ •

1

I0 ∅ 0 ∅ •
1

I3 A2 //222// = 2
2
2 Z3 −

•
1−

◦
1
− ◦

1

IN AN−1 // 22 · · · 22︸ ︷︷ ︸
N−1

2// Zn −−−
•
1
−−−

◦
1
− ◦

1
− · · · − ◦

1

I∗0 D4 2
2
2
2
2 Z2 ×Z2 ◦

1
−
•1
|
◦
2
|
◦ 1

− ◦
1

I∗N−4 DN 2
2
2 22 . . . 22︸ ︷︷ ︸

N−5

2
22 Z2 ×Z2 or Z4 ◦

1
−
◦ 1
|
◦
2
− ◦

2
− · · · −

•1
|
◦
2
− ◦

1

II H1 ≃ A0 1||4 → 0· ∅ •
1

III H2 ≃ A1 2||2 Z2 ◦
1
= •

1

IV H3 ≃ A2 2
2
∆2 Z3 −

•
1−

◦
1
− ◦

1

IV∗ E6 22
2
2
222 Z3 ◦

1
− ◦

2
−

•1
|
◦ 2
|
◦
3
− ◦

2
− ◦

1

III∗ E7 222
2
2222 Z2 •

1
− ◦

2
− ◦

3
−
◦ 2
|
◦
4
− ◦

3
− ◦

2
− ◦

1

II∗ E8 22
2
222222 ∅ ◦

2
− ◦

4
−
◦ 3
|
◦
6
− ◦

5
− ◦

4
− ◦

3
− ◦

2
− •

1

Table 3. Possible (endpoint) bases associated with LSTs obeying the tensor-decoupling condition and
preserving the defect groups of the associated SCFTs. We show those of the Heterotic LSTS in the
first line for completeness. The algebras for the Kodaira singularities of type II, III, IV are sometimes
denoted Hi to differentiate them from those of the In series. Each node of the Dynkin diagram is
denoted by its Kac label di. The curve defined by minimal affinization and the corresponding affine
node in the Dynkin diagram are colored blue.
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Given a Type II LST base, there are very few choices of compatible algebras. From the
minimal affinization point of view, this is partly explained from the discussion above. AN -type
bases only give rise to conformal matter, and we have seen that their nilpotent deformations
cannot lead to a gauge-anomaly free LST, and similarly for the three exceptional classes Êsuk

N .
Leaving out the special bases given in equations (3.32) and (3.33) for a moment, we are then
left with DN bases. The trivalent pattern severely constrains the possible SCFT [75, 76], which
in addition to the su2k treated above, can only have g ∈ {su3, so8, e6}. As with K(suk, so2L),
the corresponding flavor must first be broken via a nilpotent deformation before minimal
affinization can be performed. This once again fixes the choice of nilpotent orbit, and there
is a unique possibility for each SCFT, leading to the following three infinite series of LSTs:

D̂su3
N ([31]) : 2

2
su2
2

su3
2

su3
2 · · ·

su3
2︸ ︷︷ ︸

N−5

2
su2
2 2 , D̂so8

N ([42]) :
su2
2

su2
2
so7
3 1

so8
4 1 · · · 1

so8
4 1︸ ︷︷ ︸

N−5

su2
2
so7
3

su2
2 ,

D̂e6
N (D4) :

su3
3 1

su3
3
1
e6
6 1

su3
3 1

e6
6 · · ·

e6
61

su3
3 1︸ ︷︷ ︸

N−5

su3
3
1
e6
6 1

su3
3 .

(3.34)
Note that in the case of De6

N , the breaking is done with the so-called D4 nilpotent orbit in
the Bala-Carter notation [77, 78]. More information about these three families of SCFTs
and their nilpotent breaking can be found in [66].

For the case of D̂su3
N ([31]), we see that the minimal affinization does not involve any

flavor. Indeed, the nilpotent orbit associated with the partition [31] breaks the original
su3 flavor completely. The new curve, however, has a fiber with a singularity of Type II,
which we will explore in more detail in section 4. The other two series of LSTs also have
special singularities of Type III and IV rather than their ADE counterparts. Their 2-group
invariants are straightforwardly found to be

K(II, so2N ) = D̂su3
N ([31]) : κR = 6(N − 3) , dim(CB) = 3(N − 2)− 2 ,

K(III, so2N ) = D̂so8
N ([42]) : κR = 16(N − 3) , dim(CB) = 6(N − 2)− 2 ,

K(IV, so2N ) = D̂e6
N (D4) : κR = 48(N − 3) , dim(CB) = 12(N − 2)− 2 .

(3.35)

We see that minimal affinization gives us precious information about the dual theory.
Since the SCFTs have a flavor algebra su3, so8, or e6, as can be seen from the spine, one
might naively expect that we should look for LSTs with such bases. However, the correct
bases are of Kodaira type II, III, IV. This will become clear when we consider the geometric
engineering of these theory in section 4. Moreover, knowing that the affine curve should have
an algebra g = so2N is helpful to find the correct T-dual theories,

K(so2N , II) :
so2N

0· −→
su2(N−4)

1 ||
so2N

4

K(so2N , III) :
so2N

2 ||
so2N

2 −→
so2N

4

su2(N−4)
2

sp2(N−4)
1

so2N

4
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K(so2N , IV) :
so2N

2
so2N

2
∆

so2N

2 −→
so2N

4
sp2(N−4)

1

so2N

4
sp2(N−4)

1
so6N−16

4
sp2(N−4)

1
so2N+8
4 (3.36)

We have chosen N > 4 as there are certain special enhancements for so8 ≃ D4 bases which
do not fit the patterns above. We will treat those cases in more detail in the next section.

The LST KII(III, so2N ) and its dual exhibit an additional peculiar feature. The LST is
reached from the Dso8

N SCFT via the nilpotent orbit associated with the very-even partition
[42]. However, there are two nilpotent orbits related to this partition, usually denoted [42]I
and [42]II . While the resulting quiver is the same, the Nambu-Goldstone modes that decouple
along the RG flow are different, and this leads to two inequivalent SCFTs. The difference
stems from the fact that the SCFT

spm−4
1 [so4m] has a Higgs-branch operator in its spectrum

transforming in one of the two spin representations of the so4m flavor symmetry [79, 80]. This
choice of spin representation selects one of the two theories. When that curve configuration is
part of a larger quiver there can also be physically different theories, which is revealed after
a careful analysis of certain gauge-invariant operators. This was shown to be the case for
nilpotent deformations of D-type conformal matter associated with very-even partitions [80].
Similarly, since the SCFT associated with the LST KII(so2N , III) also has a single (−1)-curve
decorated with an spm algebra, we again have two different theories. Performing minimal
affinization, it is natural to expect two different LSTs as well, giving a nice additional
cross-check of T-duality.

Let us comment on the possible flavor symmetries arising in Type II LSTs, which we
know to be constrained from the bound given equation (2.49). We find that there is single
pair of T-dual LSTs with a flavor symmetry. They have an su2 symmetry, and are given
by the two quivers

K(e6, II) : [su2] 2
e6
6
1

su3
3 , K(II, E6) :

2
su2
2

2
su2
2

g2
2

[su2]
su2
2 2

. (3.37)

The first LST K(e6, II) has a trival defect group and a one-form symmetry D(1) = Z(1)
3 ,

converted into the defect group D(2) = Z
(2)
3 associated with the center of the affine e6 base

under the duality. Moreover, the pair has the following duality invariants:

κG = 0 , κR = 27 , rk(f) = rk(su2) = 1 , dim(CB) = 11 . (3.38)

In addition, we find that in both cases, κsu2
f = 3.

Minimal affinization therefore gives us the correct information to find the T-dual theory.
Indeed, we can systematically scan over all possible SCFT bases and affinize them to LSTs.
Demanding minimal affinization then greatly simplifies the search for dual pairs. All Type
II LSTs and their two-group invariants are collected in appendix A, which we will now
construct geometrically.
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4 The geometry of Type II LSTs

In this section, we first review the geometric construction of Type II LSTs, and illustrate
the procedure using F-theory on elliptic Calabi-Yau threefolds with multiple fibrations. For
a givem choice of algebras associated with fiber and base singularities, this will allow us to
construct the corresponding LST and to identify T-dual pairs.

4.1 LSTs and double fibrations

We first take a more general perspective on the F-theory geometry X3 and discuss which
type of LSTs can be obtained on general grounds. Our starting point will be compact
threefolds X3 and their possible elliptic fibration structures. By taking a decompactification
limit of X3 which keeps a curve of self-intersection 0 in the base compact, we can decouple
gravity and obtain an LST. Note that there are infinite classes of LSTs that cannot be
coupled consistently to gravity, and therefore cannot be obtained via a decompactification
limit of a supergravity theory.

Indeed, we want to argue that only Heterotic and Type II LSTs can be obtained by
decoupling gravity. We start by imposing two conditions on X3 that are necessary to give
rise to an LST via F-theory:

1. F-theory condition: X3 needs to have a torus fibration with base B2.

2. Little String condition: B2 has to have a curve Db of self-intersection D2
b = 0.

Both conditions have appeared in works by Kollár, Oguiso, and Wilson [81–83] in their
general study of the possible fibration structures of Calabi-Yau threefolds. For each linear
independent nef divisor DF that satisfies D3

F = 0 but D2
F ̸= 0, there exists an inequivalent

torus fibration.17 Intuitively, one may view DF as a vertical divisor DB ∈ B2. Such divisors
identify a fibration structure and have vanishing triple self-intersection in the full threefold.

In his proof of Kollár’s conjecture for threefolds [82], Oguiso classified the general fibration
structures X3 can have, employing only the two following intersection properties of an ample
nef divisor DB:

Dν+1
B = 0 , DB · c2(X3) = δ , (4.1)

with c2(X2) the second Chern class of the tangent bundle of X3. Depending on the values of ν
and δ, X3 admits a fibration structure with π(X3) = B2 and with general fibers π−1(B2) = F ,
as summarized in table 4.

Oguiso Type II corresponds to the F-theory condition, i.e., X3 has a torus fibration
with B = Σ2 a rational surface. The LST condition requires a curve C ∈ B2 with C2 = 0,
which, when pulled back to a surface S ∈ X3, satisfies S2 ·D = 0 for any divisor D ∈ X3.
This tells us that we have a divisor of Oguiso Type I. Thus, when combining these two
conditions, we require a divisor DF with D3

F = 0 and a divisor S with S2 = 0, compatible
with the double fibration structure. The two subtypes of Oguiso Type I divisors correspond
to different fibration structures and hence two different LSTs: Type I+ has a K3 fibration

17A divisor DF is nef if DF · C ≥ 0 for every algebraic curve C ∈ X3.
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Type ν δ Structure of B and F

I+ 1 δ > 0 B2 = P1 and F = K3
I0 1 δ = 0 B2 = P1 and F = T4

II+ 2 δ > 0 B2 = Σ2 and F = T2

Table 4. Fibration structures of a threefold X3 with a divisor DB satisfying (4.1). There are also
fibrations of Oguiso Type II0 and III, which we omitted since they are not relevant in this work.

and together with a compatible Oguiso Type II structure, it must be an elliptic K3, while
for the Type I0 case the fiber is T2 × T2. We conclude that there can be only two types
of LSTs that can be obtained by decoupling gravity in F-theory compactification, where
the possible bases B2 of the elliptic fibration are

Oguiso Type LST Type Base Topology
I+ Heterotic B2 ∼ P1 × C

I0 Type II B2 ∼ (T2 × C)/Λ
(4.2)

Note that we have added the possibility of a quotient Λ, as the fibration may have Kodaira
fibers. Typical examples of Oguiso Type I0 bases are rational elliptic surfaces, such as dP9.
These may have reducible Kodaira fibers at the origin of C.

4.2 Type II LSTs from gravity decoupling

To describe an elliptically fibered threefold with a base that is itself and elliptic fibration,
we can start with a compact geometry and subsequently decompactify it. A good starting
point for Type II LSTs with a double elliptic fibration structure is the Schoen manifold,18

which features prominently in string constructions. The simplest description for the Schoen
manifold is given by the split bi-cubic P

2 3 0
P2 0 3
P1 1 1

 (4.3)

We can then define two hypersurfaces PF and PB which are cubics in either of the two
ambient P2, and linear in their common P1. Via a change of coordinates, this can be mapped
into a Tate model given by the GSLM matrix

X Y Z X̂ Ŷ Ẑ t0 t1 PB PF

2 3 1 0 0 0 0 0 0 6
0 0 0 2 3 1 0 0 6 0
0 0 −1 0 0 −1 1 1 0 0

(4.4)

18In fact, in [84] it was shown that there exists an infinite family of elliptic fibration structures for the
Schoen manifold.
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The two hypersurface equations are simply the following two polynomials in Tate form:

PF = Y 2 +X3 +XY Za1 +X2Z2a2 + Y Z3a3 +XZ4a4 + Z6a6 ,

PB = Ŷ 2 + X̂3 + X̂Ŷ Ẑb1 + X̂2Ẑ2b2 + Ŷ Ẑ3b3 + X̂Ẑ4b4 + Ẑ6b6 ,
(4.5)

with ai and bi generic polynomials in the P1 coordinates [t0 : t1] of degree i. The split
bi-cubic and the double Tate model differ slightly in their singularity structures. However,
this difference will disappear upon decompactification. The description makes the double
fibration over P1 manifest: we can treat either {pF = 0} or {pB = 0} as the F-theory
torus. In either case, the discriminant of the base is of degree deg(∆b) = 12 and hence
a rational elliptic surface.

For concreteness, we take {pB = 0} to be the base of the fibration. There are two divisors
in the base B2 that are of main interest: first, {Ẑ = 0} is the section of the rational elliptic
surface and hence a copy of the base P1

t0,t1 . Secondly, the two linear equivalent divisors
{ti = 0} are points in the base P1 and thus a copy of the torus fiber, which in the full
threefold is T2 ×T2. Before engineering various singularities in the fiber and the base, we
need to decompactify the theory to a Type II LST. We can perform this decompactification
at the level of the ambient space by taking the volume of the P1

t factor to infinity, replacing

P1
[t0,t1] → Ct0 . (4.6)

We can therefore simply focus on the patch t1 = 1, where we rename t0 = t. We can then
factorize ai and bi in t to obtain singularities in either F-theory fiber or base.

4.3 Fiber and base singularity structure

A Type II LST KII(gF , gB) is specified by a fiber and base with a singularity in the Kodaira
classification. To reduce notational burden and increase readability, we will use the name of
Kodaira singularities in the text, but otherwise refer to them in terms of their ADE algebra
g, as in table 3, unless they are of special type II, III and IV.

We can engineer those singularities using the Tate classification (see e.g. [85]), which
amounts to specifying the vanishing orders of the Tate coefficients ai of the fiber and bi of
the base. We collect this data in Tate vectors n⃗ and ⃗̂n for the fiber and the base,

ai → tni âi , and bi → tn̂i b̂i . (4.7)

This allows for a compact notation, and to easily read off the resolution of the fiber and base
singularities in terms of toric tops [86] and possible gauge enhancements.

Let us assume we engineered a fiber a singularity gF and base singularity gB with Tate
vectors given in equation (4.7). We start by discussing the singularity structure in the base at
t = 0. The elliptic fiber T2

B needs to be resolved first by replacing it with a set of gB ∈ ADE
resolution divisors Dfi

with i = 0, . . . , r, with r = rk(gb) such that

[T2
B] ∼

r∑
i=0

di[Dfi
] (4.8)
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with Dfi
·Dfj

= Âi,j
G the affine (negative) Cartan matrix and di the Kac labels.19 The latter

are collected in table 3 for the reader’s convenience. At the same time, we need to replace t by

t→ t̂ =
r∏

i=0
fdi

i . (4.9)

This is required to ensure t̂ stays invariant under C∗ scalings of the respective resolution
divisors Dfi

. Since the fiber {pF = 0} is a section in the new variable t̂, it is invariant
under those scalings as well.

Note that {t̂ = 0} is a reducible divisor with components fi of vanishing order di. This is
relevant when considering additional fiber singularities gF in {pF = 0} ∩ {t̂ = 0}, engineered
with the Tate vector n⃗. First, note that the singularity gF splits into r components over {t̂ = 0}.
Since t̂ vanishes to order di over {fi = 0}, the original Tate vector is modified to n⃗→ di · n⃗
over each resolution divisor Dfi

, which enhances the singularity type. This construction is
very useful in the study of the more exotic singularities of Kodaira Type II, III, IV.

We are furthermore required to choose two non-trivial singularities for fiber and base to
obtain a threefold with full SU(3) holonomy. If one of the singularities is chosen to be trivial,
the geometry becomes a direct product X3 = T2 × (T2 ×C)/Λ and supersymmetry enhances
to N = 2 in 5D. The two different F-theory lifts yield N = (2, 0) or N = (1, 1) LSTs, which
we review in more detail in appendix C. Note that there exist non-simply laced N = (1, 1)
LSTs that were argued to be T-dual to N = (2, 0) LSTs with an (affine) outer automorphism
twist [26]. The geometry and T-duality structure of such theories has been discussed in [33].

The above structure readily explains our notation of the two singularities defining a Type
II LST: the singularity gB denotes the (affine) Dynkin diagram characterising the shape of
the quiver at the endpoint configuration. The fibral singularity gF then encodes the gauge
algebra factor over Dynkin multiplicity 1 nodes over the affine quiver base, which is also
the flavor symmetry gauged during minimal affinization. This is the geometric avatar of the
partial tensor branch description discussed in section 3.1.

4.4 ADE singularities

In the following, we show how to construct LSTs of type KII(gF , gB). The strategy is to
first tune a singularity gB in the base, resolve it, and then discuss the possible choices for
gF . We engineer all models discussed in section 3 and lay the grounds for the more exotic
Kodaira singularities of Type II, III, IV.

As a warm-up, let us start with a simple I3 singularity, i.e., gB = su3 in the base,
with Tate vector

n⃗ = {0, 1, 1, 2, 3} . (4.10)

The resolution requires three divisors, which replace the central fiber with

t̂→ f0f1f2, (4.11)

19As the base itself is complex one-dimensional, there is no monodromy that could act on the T2
B fibers,

which means they are all split and of ADE type.
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and the resolved hypersurface for the base takes the form

pB = Y 2 + f2
1 f2X

3 +X2Z2c2 + f2
0 f2XZ

4c4 +XY Zc1 + f4
0 f

2
2Z

6c6 + f2
0 f2Y Z

3a3 , (4.12)

where the ci are generic polynomials in t̂. We can easily compute the various reducible
components of the fiber P1’s at {pB = 0} upon replacing t by t̂ = f0f1f2. Next we engineer
an ADE singularity gF in the F-theory fiber over t = 0. We choose to take a Type IV∗

Kodaira singularity — that is gF = e6 — with Tate vector

⃗̂n = (1, 2, 2, 3, 5) . (4.13)

Recall that upon resolving the base, we have to replace t → t̂ = f0f1f2, leading to three
copies of e6 in the F-theory fiber in which each singularity intersects the other two. This
leads to non-minimal singularities that can be resolved as chains of minimal conformal matter
Ae6

0 [67], and we obtain the necklace quiver Âe6
2 discussed around equation (3.12):

KII(e6, su3) : //1
su3
3 1

e6
6 1

su3
3 1

e6
6 1

su3
3 1

e6
6// . (4.14)

In section 3, we have seen that the curve denoted in blue is the one involved in minimal
affinization. In this section, the fiber singularity of such curves define gF . As mentioned
above, in the geometric construction this is the algebra associated with the affine Kac label
of multiplicity one.

Next, we exchange the role of the fiber and base T2 prior to resolution. We then resolve
the e6 singularity in the base by replacing

t→ t̂ = f0f1f2g
2
1g

2
2g

2
3h

3
1 , (4.15)

which leads to the base hypersurface equation

pB = f1f
2
2 g3X

3 + f2
0 f1f

2
2 g1g

2
2g

2
3h

2
1X

2Z2a2 + f3
0 f2g

2
2g3h1XZ

4a4

+ f0f1f2g1g2g3h1XY Za1 + f5
0 f2g1g

4
2g

2
3h

3
1Z

6a6 + f2
0 g2Y Z

3a3 + f1g1Y
2 . (4.16)

Having resolved the central Type IV∗ fiber in the base, we turn to the F-theory fiber. For
simplicity, we only discuss the Weierstrass model corresponding to the Tate model of the
fiber. Since we have an I3 singularity, f and g do not vanish but the discriminant vanishes to
order 3 over {t = 0}. Replacing t by t̂, we thus obtain the reducible discriminant locus

∆ = (t̂)3∆̂ = (f0f1f2g
2
1g

2
2g

2
3h

3
1)3∆̂ . (4.17)

The I3 singularity over {t = 0} is hence enhanced to (I3)3 × (I6)3 × I9, resulting in the quiver

KII(su3, e6) :
su3
2

su6
2

su3
2
su6
2
su9
2

su6
2

su3
2 . (4.18)

It is straightforward to generalize this procedure to an Ik singularity in the fiber, which
is then enhanced to an Idik singularity where di are the Dynkin multiplicities of the base
singularity. For the e6 case, those are the Êsuk

6 theories given in (3.13).

– 33 –



J
H
E
P
1
1
(
2
0
2
4
)
1
4
9

The above construction proves T-duality explicitly for the LSTs KII(suk, e6) andKII(e6, suk)
as they are engineered from the very same singular threefold. After full resolution of fibers
and base, both would be birational phases of the same (extended) Kähler moduli space. It is
straightforward to engineer all KII(gF , gB) type of LSTs and their T-duals KII(gF , gB) when
choosing gB = suK and gF ∈ ADE. This reproduces the list given in section 3.1 and table 6.20

From this geometric perspective, it becomes clear why there are no theories KII(gF , gB)
where gF , gB are both singularities of type I∗0 or higher: consider an I∗n singularity, which
engineers a gF = so2n+8 gauge algebra with Weierstrass coefficients

f = t2f̂ , g = t3ĝ . (4.19)

When combining this with another singularity of type I∗0 or higher, the reducible locus {t̂ = 0}
is given by a set of irreducible divisors, at least one of which has di > 1. This leads to a
non-minimal singularity of vanishing orders (4, 6) or higher in the fiber. Such a singularity
has no crepant resolution and does not lead to a 6D supersymmetric theory.

4.5 Type II, III, IV fibers

The above procedure is very useful to discuss the exotic Kodaira singularities of Type II,
III, IV. These singularities correspond to strong coupling versions of the ordinary I1, I2
and I3 singularities. For a given fiber singularity of Type II, III, IV, we can enumerate
all compatible base singularities by identifying the highest integer d that still leads to a
crepantly resolvable threefold, see table 5. Hence, we can get the following combinations
of fiber and base singularities:

Fiber Base
II AM−1, DN , E6, E7
III AM−1, DN , E6
IV AM−1, DN

(4.20)

We have left out the possible Kodaira Type II, III and IV base singularities, which we
will discuss separately in the next section. We will also omit a separate discussion of the
exotic singularities over AM−1 bases, as those are indistinguishable from their Ik counterparts
for k = 1, 2, 3. Our main interest here lies in the D and E type singularities, and their
gauge enhancements upon resolution. We can read off the final (enhanced) gauge algebra
from table 5.

Note that a Kodaira Type II singularity over a base singularity I∗N with a DN+4 ≃ so2N+8
algebra enhances the fiber singularity to Type IV on multiplicity 2 nodes. The two endpoints
of the multiplicity-two chain (i.e., those with multiplicity-one neighbors), have a non-split
fiber of singularity Type IVns and the gauge algebra is reduced to su2. In the other cases,
the fiber singularities are split and hence host an su3 algebra:

KII(II, so2N+10) : 2
2
su2
2

su3
2

su3
2 . . .

su3
2︸ ︷︷ ︸

×N

2
su2
2 2 , (CB, κR) = (3N + 7, 6N + 12) . (4.21)

20For a similar recent LST construction via brane webs, see [87].
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n⃗ d Fiber Algebra
(0, 0, 1, 1, 1) d Id sud

(1, 1, 1, 1, 1) 1 II −
2 IVs/ns sp1/su3

3 I∗,s/ss/ns
0 so8/so7/g2

4 IV∗,s/ns e6/f4
5 II∗ e8
6 non-minimal −

(1, 1, 1, 1, 2) 1 III sp1
2 I∗,s/ss/ns

0 so8/so7/g2
3 III∗ e7
≥ 4 non-minimal −

(1, 1, 1, 2, 3) 1 IVs su3
2 IV∗ e6
≥ 3 non-minimal −

Table 5. Singularity and gauge algebra structure for Type I1, II, III, IV singularities and possible
enhancements by a factor d.

The matter above originates from intersections of Type II−IVns and IVs/ns−IV fiber singular-
ities that have been partially computed in [88, 89]. The Type IV−IV gives a bifundamental
hypermultiplet of su2

3, while the II−IVns collision gives a fundamental of su2.
For generic N , the above theory has a U(1) flavor symmetry [45, 90], necessitated by the

small “ramp” under which the first and last su3 fundamental multiplets are charged. The D4
and D5 case are special since they have only su2 gauge algebra factors over the middle curves.

Moving on to e6 singularities in the base, we get the quiver

KII(II, e6) : 2
su2
2

2
su2
2
g2
2

[su2]

su2
2 2 with (CB, κR) = (11, 27) (4.22)

The g2 gauge algebra requires an sp4 flavor symmetry which upon gauging of an (su2)3

subalgebra leads to a residual su2 flavor algebra. Since the LST charge ℓLST
I of the curve

with a g2 algebra is 3, the induced su2 flavor current on the LST curve lies within the
unitarity bound,

c3,sp1 = 9
5 < 2 . (4.23)

Geometrically, this is the only type of model we can obtain, as the I∗0 singularity in the
middle must always be non-split.

For an e7 base we find

KII(II, e7) : 2
su2
2

g2
3 1

su3
3
1
f4
5 1

g2
3

su2
2 2 , with (CB, κR) = (22, 96) (4.24)
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The resolved geometry above has fixed the singularity on the upper (−3)-curve to be a IVs

singularity,21 i.e., an su3 algebra as can be seen in table 5. This is also consistent with the
considerations made in [76] for SCFTs.

We move on to Type III singular fibers with I∗n+1 base singularities. The cases I∗0 and I∗1
are special and we will discuss them momentarily. The generic quiver is

KII(III, so2N+10) :
su2
2

su2
2
so7
3 1

so8
4 1 . . . 1

so8
4 1

su2
2
so7
3

su2
2 , (CB, κR) = (6N + 16, 16N + 32) ,

(4.25)

where N is the number of so8 factors. Again, the geometry requires the first and last I∗0
singularity to be semi-split, i.e., an so7. Field theoretically, one can again wonder whether
they could be enhanced to so8. However, this would violate the worldsheet unitarity bound,
since so8 would come with an extra su2 flavor symmetry at level two, which induces an
cl = 3 left-moving current on the LST worldsheet, and is thus inconsistent with the bound
derived in section 2.

Turning to the special case I∗1 in the base, we do not get an so8 algebra but only

KII(III, so10) :
su2
2

su2
2
so7
3 1

su2
2
so7
3

su2
2 , with (CB, κR) = (16, 32) . (4.26)

Similarly, for a base singularity of type I∗0, we get

KII(III, so8) :

su2
2

su2
2

so7
2

su2
2

su2
2

with (CB, κR) = (11, 18) . (4.27)

The so7 algebra requires an additional hypermultiplet in the vector representation 7, and
therefore has an su2 flavor symmetry. This flavor symmetry has ksu2 = 2, and is consistent
with unitarity of the LST worldsheet. Field-theoretically, we could also further enhance the
middle algebra to so8, but this would-be quiver has an su2 flavor symmetry that violate the
unitarity bound. We could also try to replace so7 algebra by g2. This quiver looks promising,
since its invariants would be the N = −1 case of KII(III, so2N+10) in equation (4.25). There
is, however, no candidate T-dual theory; the invariants of the KII(so8, III) LST also exhibit a
jump as compared to the rest of the infinite series, as we will see below. In either cases, these
algebras cannot be constructed with our methods, where consistency of the geometry forces
us to have an so7 algebra on that curve. A possibility that is allowed for the quiver (4.27) is
to break its flavor symmetry so7 → so6 ≃ su4 via a Higgs mechanism. Geometrically, this
corresponds to a deformation of the Type III Kodaira singularity to I2.

21Field theory may have suggested an [f4, e8] = g2 subalgebra, due to the attached E-string. The enhanced
su2 flavor symmetry of this g2 algebra would in principle be consistent with the LST unitarity bound. However,
there is no T-dual model of type KII(e7, II) with consistent flavor rank and 2-group structure data.
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The final base consistent with a Type III fiber singularity is of Type IV∗. After blowing
up the base, we first end up with the seemingly consistent configuration:

su2
2

g2
31

su2
2
g2
3
1
f4
5 1

g2
3
su2
2

? (4.28)

However, it was shown in [76] that three (−3)-curves with g2 algebras cannot be linked to a
(−5)-curve in a trivalent pattern. We are therefore forced to perform additional blow-ups,
which leads to the quiver

KII(III, e6) :
su2
2

so7
3

su2
2 1

su2
2
so7
3
su2
2
1
e7
8 1

su2
2

so7
3

su2
2 with (CB, κR) = (34, 144) . (4.29)

Finally, for Type IV fiber singularities, we can only have I∗N base singularities, which
results in the quiver

KII(IV, so2N+8) :
su3
3 1

su3
3
1
e6
6 1

su3
3 1

e6
6 · · ·

e6
61

su3
3 1

su3
3
1
e6
6 1

su3
3 with (CB, κR) = (12N + 22, 48N + 48),

(4.30)

with N + 1 corresponding to the number of e6 gauge algebra factors.

4.6 Type II, III, IV bases

While the typical ADE bases are straightforward to discuss and to resolve, the bases of
Kodaira Type II, III and IV need special treatment since we need to blow up double- or
triple-point singularities. The Tate model for Type II singularities is given in table 5, but
we repeat it here for convenience:

pB = Y 2 +X3 + c1tXY Z + c2tX
2Z2 + c3tY Z

3 + c4tXZ
4 + c6tZ

6 . (4.31)

At t = 0, the above model has a double-point singularity at X = Y = 0. In order to
distinguish the quiver from the regular the regular torus, we recall that we write it as 0·.
We can then perform a blow-up, which can be done locally by replacing Y → Xe1. The
curve over {t = 0} is reducible and splits into

X2(e2
1 +X) = 0 (4.32)

with a double intersection at e1 = X = 0. In terms of curves, we write the above configuration
over {t̂ = 0} as

4||1 with ℓ⃗LST = (1, 2) , (4.33)
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where || denotes the double intersection. Setting the stage for more general cases, we can
also perform another blow-up of the double intersection by taking X → Xe2 and e1 → e1e2.
Upon taking the proper transform, we end up with the equation

X2(e2
1e2 +X) = 0 . (4.34)

All three components meet at a single point, which we write as the quiver

5
1
∆2 . (4.35)

These blow-ups are necessary in all cases except for fiber singularities of type In. We expect
them to work out similar to the In base case. An interesting case appears in KII(sun, II)
theories, i.e., for In fibers over Type II bases: it was proposed in [8] that at the cusp, the
adjoint is split into a symmetric and an antisymmetric representation of the sun gauge algebra.
This matter breaks the 1-form symmetry group Zn to either Z2 if n is even or to nothing if n
is odd. This is, however, at odds with the Zn defect group in the T-dual theory KII(II, sun).
It would be interesting to return to this puzzle in the future.

Next, we want to give a simple example of an I∗0 fiber singularity for quivers with exotic
bases. For simplicity, we only discuss the Weierstrass model here, which has vanishing
orders (f, g,∆) = (2, 3, 6) in the F-theory fiber over {t = 0}. Since the cusp in the base is
a self-intersection of a curve, the singularity is enhanced to (4, 6, 12), which requires one
blow-up in the base, resulting in the quiver

KII(so8, II) :
so8
4 ||1 with (CB, κR) = (5, 8) . (4.36)

Notably, this theory has no flavor symmetry, since the E-string sees two so8 factors due
to the double intersection.

For an I∗N singularity, the F-theory Weierstrass model has vanishing orders (2, 3, N + 6).
Blowing up the self-intersection point and taking the proper transform, the singularity on the
exceptional divisor becomes (0, 0, 2N). The gauge algebra is fixed by the local monodromy,
which is only affected by the I∗N singularity. In other cases, we have the monodromy cover
equation

ψ2 + g

f
= 0 (4.37)

which does not split if f and g are (locally) quadratic and cubic monomials, respectively.
However, due to the double intersections with the exceptional divisor, the order of f and g is
(locally) twice as large and hence g/f is a perfect square. The I2n singularity is therefore
split, and the quiver is

KII(so2N+8, II) :
so2N+8
4 ||

su2N

1
[Λ2=1]

with (CB, κR) = (3N + 4, 6N + 6) . (4.38)

Note that there is an extra anti-symmetric representation of su2N for N > 2 leading to an
su2 flavor symmetry consistent with the worldsheet unitarity bound.

For a IV∗ singularity, we have to perform additional blow-ups: the first blow-up yields
a Type IV fiber over the exceptional divisor, resulting in yet another (4, 6, 12) singularity
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at the double intersection with the e6. This requires two blow-ups to be fully removed,
resulting in the quiver

KII(e6, II) :
e6
4 ||

su3
1 →

e6
6

[su2]
2
1

su3
3 with (CB, κR) = (11, 27) . (4.39)

Note that the empty (−2)-curve is endowed with an enhanced su2 flavor symmetry, as that
curve is part of a rank two E-string. As with the T-dual theory, this flavor has level 3
and is consistent with unitarity.

For singularities of Type II∗, we also find a non-minimal singularity at the self-intersection
point. Upon blow-up, this yields a Type I∗0 singularity where the double intersection removes
the monodromy and hence results in an so8 gauge algebra, as in the KII(so2N+8, II) case.
Performing the next blow-up of the double intersection results in the quiver (4.35), with
a Type III fiber on the (−1)-curve. At the triple intersection point, we obtain another I∗0
singularity, which is now semi-split, i.e., an so7. Performing the residual blow-ups then
results in the quiver

KII(e7, II) :
e7
4 ||

so8
1 →

e7
81

su2
2

su2
2
so7
3 1

so8
4 with (CB, κR) = (22, 96) , (4.40)

which is T-dual to the KII(II, e7) theory discussed in the previous section.
Finally, one might consider the case of an II∗, that is an e8 singularity, which after

the first blow-up gives the quiver
e8
4 ||

e6
1 . However, upon further blowing up this quiver, we

end up with a (−13)-curve, and hence an inconsistent geometry. This was to be expected,
since we also encountered a non-crepant singularity when interchanging fiber and base in the
putative KII(II, e8) theory discussed in the previous section. All other types of quivers such as
KII(III, II) and KII(IV, II) have an su2 and su3 gauge algebra with a symmetric representation.

Moving on to the Type III base, we are required to perform a first resolution over t = 0
and replace it by t̂ = f0f1. The resulting Tate Model is

pB = Y 2 + f1X
3 + c1f0f1XY Z + c2f

2
0 f

2
1X

2Z2 + c3f
3
0 f

2
1Y Z

3 + c4f0XZ
4 + c6f

3
0 f1Z

6 ,

(4.41)
with the two resolution divisors f0, f1 having components

pB = f0 = 0 : Y 2 + f1X
3 .

pB = f1 = 0 : Y 2 + c4f0XZ
4 .

(4.42)

Both components have a double intersection at Y = 0 which we write as

2||2 . (4.43)

In the following we want to resolve the tangential intersection at f0 = f1 = Y = 0 by taking

{f0 → f0e1, f1 → f1e1 , Y → Y e1} . (4.44)

Upon resolving pB and taking the proper transform, we obtain

pB = f1X
3 + e1Y

2 + c1e
2
1f0f1XY Z + c2e

3
1f

2
0 f

2
1X

2Z2 + c3e
5
1f

3
0 f

2
1Y Z

3+
c4f0XZ

4 + c6e
3
1f

3
0 f1Z

6 . (4.45)
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The divisors Df0 , Df1 and De1 all intersect in a single point. Hence, we write the result-
ing base as

3
1
∆3 . (4.46)

We may perform a second resolution at f0 = f1 = e1 = 0 and take the proper transform,
which yields

pB =f1X
3 + e1Y

2 + c1e
2
1e

3
2f0f1XY Z + c2e

3
1e

6
2f

2
0 f

2
1X

2Z2

+ c3e
5
1e

9
2f

3
0 f

2
1Y Z

3 + c4f0XZ
4 + c6e

3
1e

6
2f

3
0 f1Z

6 . (4.47)

The resulting quiver is

4
2
1 4 . (4.48)

It can be checked that the above quivers are LSTs with base singularities of Type III, which
have a defect group Z2.

We start by considering an I∗k fiber singularity, which yields the following quivers

KII(so2k+8, III) :
so2k+8
2 ||

so2k+8
2 →

so2k+8
4

su2k

2
sp2k

1
so2k+8
4 with (CB, κR) = (6k + 10, 16k + 16) , (4.49)

whose Coulomb branch dimension and 2-group structure data matches those of equation (4.25).
Note that the N = 0 case is again special,

KII(so8, III) :
so8
4

[su2]
2
1

so8
4 with (CB, κR) = (11, 18) . (4.50)

The data as well as the su2 flavor symmetry on the (−2)-curve matches that of the KII(III, so8)
theory. Note that the empty (−2)-curve has LST charge 2 and hence the su2 worldsheet
current contribution is given by c2,su2 = 3/2, which is within the unitarity bounds.

Moving on to a IV∗ singularity, we find a vanishing order (f, g,∆) = (6, 8, 16) for the
associated Weierstrass model. After the first blow-up, this gives a Type IV fiber over the
exceptional divisor. At the triple intersection point, there is a singularity with vanishing order
(8, 10, 20), see equation (4.46), which results after another blow-up and proper transform
in a (4, 4, 8) singularity, i.e another e6. Performing all other residual blow-ups, we find
the base quiver as

KII(e6, III) :
e6
2 ||

e6
2 →

e6
6 1

su3
3 1

su3
3
1
e6
6 1

su3
3 1

e6
6 (CB, κR) = (34, 144) . (4.51)

One may proceed in a similar fashion for type III∗ and II∗ singularities. However, in
both cases we find non-crepantly resolvable singularities at codimension two with vanishing
orders (f, g,∆) ≥ (8, 12, 24) after the first blow-up. This is consistent with the non-crepant
singularities we encountered when exchanging the fiber and base.

Finally, there are two exotic cases, given by (III,III) and (IV,III), neither of which require
additional blow-ups of the base. The first case is self-T-dual and is given by

(III, III) :
su2
2 ||

su2
2 , (CB, κR) = (3, 4) , (4.52)
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with two bifundamental matters, respecting the Z2 1-form symmetry. The second case is

KII(IV, III) :
su3
2 ||

su3
2 , (CB, κR) = (5, 6) , (4.53)

which also admits (3,3) bifundamental hypermultiplets respecting the diagonal Z3 1-form
symmetry. The fact that we have two bifundamental hypermultiplets suggests that we
an su2 flavor symmetry. This is consistent with the expected su2 flavor symmetry in the
T-dual KII(III, IV) theory.

Finally, we discuss the structure of a IV base. The Tate vector is given in table 5
and the model requires two more resolution divisors, which replace t̂ = f0f1f2 and result
in the Tate-Model

pb = f2X
3+f1Y

2+c1f0f1f2XY Z+c2f
2
0 f1f

2
2X

2Z2+c3f0Y Z
3+c4f

2
0 f2XZ

4+c6f
3
0 f2Z

6 .

(4.54)
The three curves {fi = 0} all meet in a single point, which we write as the quiver

2
2
∆2 . (4.55)

In the following we want to blow up this point by letting ei → eis with s the resolution
divisor. After taking the proper transform, the hypersurface equation becomes

p = f2X
3 + f1Y

2 + f0f1f2e
2
1XY Z + f2

0 f1f
2
2 e

4
1X

2Z2 + f0Y Z
3 + f2

0 f2e
2
1XZ

4 + f3
0 f2e

3
1Z

6 .

(4.56)
The three curves are given by

f0 = 0 : f2X
3 + f1Y

2

f1 = 0 : f2X
3 + f0Y Z

3 + f2
0 f2e

2
1XZ

4 + f3
0 f2e

3
1Z

6

e2 = 0 : f1 + f0Z
3

e1 = 0 : f2X
3 + f1Y

2 + f0Y Z
3 .

(4.57)

All curves intersect the exceptional divisor, but not each other. The resulting quiver is given by

3
3
13 . (4.58)

Having discussed the minimal bases and their blow-ups, we engineer a I∗N singularity in
the F-theory fiber pF . For simplicity, we take the minimal Weierstrass model with coefficients

f = t̂2f̂ g = t̂3ĝ ∆ = t̂N+6∆̂ (4.59)

Since t̂ = f0f1f2, and all three fi collide in a single point, the singularity is enhanced to
vanishing order (6, 9, 3k + 18). Blowing up the singular point in the base and taking the
proper transform lowers the vanishing order over the exceptional locus to (2, 3, 3k+6), which
corresponds to an so6k+8 gauge algebra. Performing three more resolutions at the three
collisions, we obtain the quiver

KII(so2k+8, IV) :
so2k+8
2

so2k+8
2
∆

so2k+8
2 →

so2k+8
4

sp2k

1

so2k+8
4

sp2k

1
so6k+8
4

sp2k

1
so2k+8
4 (4.60)

with the Coulomb branch dimension and structure constant given by

dim(CB) = 12k + 22 , κR = 48k + 48 . (4.61)
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The above data matches that of the T-dual KII(IV, so2N+8) theory shown in equation (4.30).
From this perspective, it is also clear that we can have no exceptional gauge algebra for this
base. For example, with an e6 algebra we have a vanishing order enhancement (3, 4, 8) →
(9, 12, 24) in the fiber, which does not admit a crepant resolution. This is consistent with
the fact that we could not construct a crepant KII(IV, en) model.

Two more exotic cases come from the theories KII(III, IV) and KII(IV, IV). The quiver
of the former is given by

KII(III, IV) :
su2
2

su2
2
∆

su2
2 with (CB, κR) = (5, 6) . (4.62)

Due to the triple intersection, we expect that the matter content of the theory are two
half-hypermultiplets in the tri-fundamental representation (2,2,2). We therefore expect an
su2 flavor symmetry, which is compatible with the T-dual theory. The above model is T-dual
to the KII(IV, III) theory shown in equation (4.53).

Finally, The KII(IV, IV) theory has a (6, 6, 12) singularity at the triple intersections,
which requires a single blow-up. The resulting self-T-dual theory is

KII(IV, IV) :
su3
3

su3
3
1

su3
3 with (CB, κR) = (9, 12) . (4.63)

A remark on the flavor symmetry of the above theory is in order: due to the undecorated
(−1)-curve, we expect to find an additional su3 flavor factor attached to that curve due to the
maximal breaking e8 → su4

3. As the LST charge of the curve is ℓLST
I = 3, the contribution

of the induced worldsheet current to the central charge is

cF = 3 · 8
3 + 3 = 4 . (4.64)

This does not satisfy the unitarity bound cF ≤ 2. A possible explanation could be that the
flavor symmetry is in fact broken to a smaller sub-algebra. Furthermore, the associated SCFT
has an su2

3 flavor symmetry. To perform minimal affinization, we need to gauge a subalgebra
of the full flavor symmetry, but since the two simple factors are the same, it is not clear
which subalgebra must be gauged. At the level of the anomaly polynomial, adding a vector
multiplet transforming in the adjoint representation of either su3 factors leads to consistent
results. But so does the choice of having the vector multiplet transform in a combination
of the two. Since the worldsheet bounds seem to indicate a smaller flavor symmetry, it is
tempting to conjecture that the correct gauging is a subalgebra of su2

3 with an su2 commutant,
so that the KII(IV, IV) LST is a consistent theory with an su2 flavor symmetry.

4.7 Higgs branches

Although most Type II LSTs do not have a flavor algebra, some do admit non-trivial Higgs
branches. In particular, the cases involving exotic Kodaira Type II, III and IV singularities
discussed in the previous sections have flavor symmetry factors. From a geometric perspective,
these singularities arise from deformations of classical In Kodaira fibers,

I1 → II , I2 → III , I3 → IV , (4.65)
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where the complex structure modulus τ of the F-theory torus is tuned to a special point.
Having discussed the LSTs of type KII(g, suN ), as well as their duals and enhancements, we
now turn to their (partial) Higgs branches in cases where a flavor symmetry exists.

For instance, the theory KII(II, so2k+10), whose quiver is given in equation (4.21), has
a U(1) flavor symmetry [45, 90] under which the (3,3) hypermultiplets are non-trivially
charged. The Higgsing breaks the su3 factors to su2, resulting in the LST KII(I1, so2k+10).
Its T-dual, on the other hand, is more interesting: here we have a U(1) flavor symmetry
under which the bifundamentals and anti-symmetric representations are charged. “Higgsing”
the singularity of the base from II → I1 gives an expectation value (vev) to these fields,
splitting the double intersection:

so2k+10
4 ||

su2n+2
1

[Λ2=1]

Higgs
⇝ //

so2k+10
4

spn+1
1 // . (4.66)

The KII(II, E6) theory and its duals work similarly:

2
su2
2

2
su2
2
g2
2

[su2]

su2
2 2 Higgs

⇝ 2
su2
2

2
su2
2
su3
2

su2
2 2 (4.67)

The theory has an sp1 ≃ su2 flavor symmetry under which the g2 fundamental represen-
tations are charged. Giving them a vev breaks g2 → su3, preserving the Coulomb branch
dimension of the LST while reducing the 2-group structure constant κR. The same transition
is again more exotic in the T-dual. There we have an su2 flavor symmetry on the unpaired
(−2)-curve which, under the same transition as above, gives rise to the quiver

e6
6

[su2]
2
1

su3
3 Higgs

⇝ //
e6
6 1

su3
3 1// . (4.68)

We close by recalling an important point concerning the Higgs branches of LSTs. An LST
is also defined by a point in its tensor-branch moduli space. In particular, a tensor-branch
quiver of an LST comes with the choice of a “contraction map” [56] determining a maximal
set of curves that can be collapsed. While this choice is unique for SCFTs, it is not for
LSTs due to the presence of the curve of self-intersection zero, and there are nT such choices.
Each choice leads to a different theory although the tensor-branch geometry is the same.
Furthermore, the invariants we have discussed in this work are the same, as they are computed
on the tensor branch, but the structure of their Higgs branch can change from one choice to
the other. Being associated with the volumes of the curves, different choices for the curve
that remains of finite size at the contracted point will have an impact on the Higgs branch of
the theory. This feature was explored in [32] for a variety of Heterotic LSTs. From the fusion
perspective, this correspond to the different ways of fusing SCFTs together to obtain an LST,
and minimal affinization defines a particular choice of such a contraction map.

The structure of Higgs branches can be probed using the technology of magnetic quivers.
While the precise map between 3D magnetic quivers and 6D generalized quivers is not fully
understood, in particular in the presence of exceptional algebras, they offer a very potent
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apparatus to extract information about the Higgs branch of 6D N = (1, 0) theories. In
the context of Heterotic LSTs, they have been used recently in [30–32, 91], and for Type
II LSTs in the upcoming work [92].

4.8 Outlier theories

So far, we have geometrically engineered LSTs from a given base and fiber algebra by using
the double fibration structure described in section 4.2. There are a few quivers that look
consistent, but have fibers that cannot be reproduced geometrically. In addition, there
are a few more quivers that cannot be thought of as deformations of other LSTs, some of
which have already appeared in the literature [8, 93]. These outliers all elude the geometric
construction and do not admit a candidate T-dual theory with the same two-group invariants.
They satisfy all known field-theoretic constraints, such as anomaly cancellation and the
worldsheet bound given in equation (2.46).

For instance, consider the following quiver, with (gF , gB) = (so2N+8, III):

so2N+8
2 ||

so2N+8
2 →

so2N+8
4

so2N+8
4

sp2N

1
so4N

4
sp2N−8

1
so4N−16

4 . . .
sp2N−8k

1

spN−4k−4
1

so4N−16k

4
spN−4k−4

1 . (4.69)

From the minimal affinization point of view, this quiver can be reached from an so2N+8
orbi-instanton with an so2N+8 ⊕ e8 symmetry, albeit through a few modifications. The
so2N+8 flavor can first be gauged, leading to another SCFT, the so-called 1

2 -fractional D-
type orbi-instanton [66, 69, 72]. The e8 symmetry is then broken by moving to the Higgs
branch. The effect of the breaking propagates through the spine to the other side of the
quiver, and the resulting remnant flavor symmetry can then be gauged to obtain the LST.
Both the rank of so2N+8 and the breaking pattern set the length of the quiver. We are not
aware of a T-dual theory for this LST, but it exhibits peculiar features. For instance, from
the M-theory perspective, one would expect it to be constructed via M5-branes probing a
C2/DN+4 singularity, with a single M9-brane giving rise the e8 symmetry. However, the
partial tensor branch description of this quiver is that of a Type II LST with κP = 0, where
no M9-brane is expected.

Furthermore, while the quiver above has a Type III base, there are two further outliers
theories with D-type fibers:

so2N+8
0· −→

so2N+8
4 ||

spN

1 ,
so4(p+4)

2

so4(p+4)
2
∆

so4(p+4)
2 −→

spp

1
so4(p+4)

4

spp

1
so4(p+4)

4
sp3p+8
1

so4(p+4)
4

spp

1 .

(4.70)
We have not found T-duals for these LSTs. It is, however, quite intriguing that these three
quivers all have D-type fibers with a base of Kodaira Type II, III, or IV. While we constructed
the T-dual pairs for these singularity types, the quivers shown in equations (4.69) and (4.70)
are qualitatively different: their duality invariants do not match any of the KII(DN , gB) LSTs.
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Similarly, quivers with a Type II base also fall in this category, e.g.

[su2]1
e8
81

g2
3
su2
2 2 Higgs

⇝
e8
71

g2
3
su2
2 2 . (4.71)

These two theories seem to be on the same Higgs branch, as the second quiver is obtained by
shrinking the left-most (−1)-curve. One would expect such a transition to be described by
the closure of the minimal nilpotent orbit of the su2 flavor symmetry. Interestingly, only the
second quiver can be reached through minimal affinization. For the first one, sending any
curve to infinite volume will give rise to an SCFT with a different defect group.

Another LST for which we do not have a dual is a deformation of the KII(e6, III) theory
that we have realized geometrically in this section:

e6
6 1

su3
3 1

su3
3
1
e6
6 1

su3
3 1

e6
6 ?

⇝
f4
51

su2
2
g2
3 1

f4
5 . (4.72)

While this configuration does not have apparent gauge anomalies there are no simple de-
formation of the T-dual parent theory KII(e6, III) that can be obtained by further blowing
up or down curves, and we have not been able to engineer it geometrically. The quiver
furthermore contains exceptional algebras, and we are not aware of any magnetic quiver
realization that could shed light on the structure of the Higgs branch of these two theories.
We therefore do not know whether such a deformation is even allowed, or whether it is
obstructed either geometrically or in field theory.

We have collected the outliers presented here in table 9 along with their T-dual invariant
quantities for the reader’s convenience. We do not know whether these quivers are consistent.
For instance, certain SCFTs can be shown to be gauge anomalous due the presence of extra
matter arising at trivalent intersections [75, 76], and similar arguments might apply here.
Another possibility is that they are simply not captured by the construction above. Indeed,
we have assumed that the two hypersurface of the double fibrations can be written in Tate
form. It is then tempting to conjecture that, if the outliers exist at all and are consistent
quivers, their T-dual belong to the frozen phase of F-theory or arise from twisted T-dualities,
and are therefore not part of the analysis performed in this work.

5 Conclusion and outlook

Novel invariants, such as higher group symmetries, have initiated a recent exploration of
Heterotic LSTs via geometry and uncovered a very rich landscape connected via T-dualities [27–
29, 45]. In this work, we have considered another class of LSTs, so called Type II LSTs,
which are disconnected from their Heterotic cousins. From a higher-dimensional perspective,
the most direct consequence is the absence of flavor 9-branes that intersect the spacetime
boundary. While the absence of such branes severely restricts possible flavor symmetries,
it allows for non-trivial one-form symmetries and defect group structure, characterized by
the centers of two algebras (gF , gB) that define the theory. These higher symmetries are
exchanged under T-duality, and thus give rise to novel invariants of Type II LSTs that do
not exist in Heterotic models.
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We have furthermore studied the possible flavor symmetries of these theories from the
perspective of the fundamental 2D little string worldsheet theory through anomaly inflow.
The contributions of the induced worldsheet currents to the central charge are strongly
constrained by unitarity, which allowed us to derive universal bounds on the flavor symmetry
algebra. This results in a new set of consistency conditions for 6D LSTs, analogous to those
derived for SUGRA models [40, 41], to which they apply as well. The presence of these flavor
symmetries, together with the duality constraints of the higher form symmetries imply that
Type II LSTs are much more constrained than their Heterotic counterparts.

To further discuss these conditions, we contrast bottom-up and top-down constructions.
Field-theoretically, certain seed SCFTs can be turned into Type II LSTs by gauging (part of)
their flavor symmetry while preserving the defect group, and without changing its matter
spectrum at a generic point of the tensor branch. We have referred to this operation as
minimal affinization, and this enabled us to explain some of the factorization of the 2-group
invariants in terms of group-theoretical quantities for a class LSTs. In a top-down approach,
we have used F-theory to engineer Type II LSTs systematically, where we have provided
a simple geometric framework using a non-compact toric complete intersection Calabi-Yau
threefold with a double elliptic fibration structure. An LST is then fixed by specifying
two types of Kodaira singularities for the two elliptic fibers, from which the resulting 6D
quiver can be easily read off. Our results are consistent with the field-theory considerations
described above. By exploiting F/M-theory duality, the double elliptic fibration structures
also makes T-duality of theories manifest.

These two approaches therefore provide a framework to compare geometrically-realizable
LSTs with those that appear consistent in field theory. We have also computed the T-duality
invariants for all the theories we have encountered, such as the dimension of their Coulomb
branch, higher group symmetry structure constants, and higher symmetries. The are collated
in appendix A for convenience.

Note that our exploration of Type II LSTs only considers the unfrozen phase of F-
theory, as well as untwisted T-dualities. The frozen phase has recently been investigated
for Heterotic LSTs from a top-down perspective in [36, 39]. Similarly, twisted LSTs can
be engineered via genus-one fibrations [94] that have recently been investigated using toric
geometry methods [33–35], for upcoming work on twisted Heterotic LSTs. Both discussions
can be extended to Type II LSTs, which we will return to in the future.

Moreover, we have shown that there is a very small and exotic class Type II LSTs with
non-trivial flavor symmetries. More generally Type II LSTs are endowed with non-trivial Higgs
branches, albeit very restricted due to the constrains described above. Some of these theories
admit a description in terms of magnetic quivers [31, 92], and it would be interesting to study
the Higgs branch of Type II LSTs in more detail, both field-theoretically and via geometry.

Finally, the toolbox to compute all types of higher form symmetries directly in M-theory
have been fully developed in [16, 17, 95–97]. It would be an important cross-check to compute
all 1-form symmetries directly in M-theory and match them to their 6D origins. This approach
might also allows us to access all p-form symmetries (which might also be present in Heterotic
LSTs), and could result in yet additional duality constraints.
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A Tables of Type II Little String Theories

In this appendix, we collate an exhaustive list of the Type II LSTs discussed in the main text,
along with their 2-group structure constants κP and κR, their Coulomb branch dimension
dim(CB), and higher-form data D(1) ×D(2). We moreover group them in T-dual pairs. In
table 6, we give the necklace quivers KII(gF , suN ) and their duals; in table 7 those involving
D-type algebras; in table 8 those of exceptional types — along with Kodaira type II, III,
and IV. In addition, table 9 shows all outlier theories we could not construct, and who do
not have a known T-dual. Note that in all cases, the theories always satisfy the worldsheet
bound given in equation (2.46).

K(gF , bB) = Λ̂g Quiver D(1) ×D(2) κP κR dim(CB)

Âg
N //

g

2
g

2 . . .
g

2︸ ︷︷ ︸
N−1

g

2// Z(g)(1) ×Z
(2)
N 0 NΓg h∨gN − 1

D̂ su2k

N ([2k])
suk

2

suk

2
su2k

2
su2k

2 · · ·
su2k

2︸ ︷︷ ︸
N−5

suk

2
su2k

2
suk

2 Z
(1)
k × Z(DN )(2) 0 (4N − 8)k (2N − 2)k − 1

Ê suk
6

suk

2
su2k

2

suk

2
su2k

2
su3k

2
su2k

2
suk

2 Z
(1)
k ×Z

(2)
3 0 24k 12k − 1

Ê suk
7

suk

2
su2k

2
su3k

2

su2k

2
su4k

2
su3k

2
su2k

2
suk

2 Z
(1)
k ×Z

(2)
2 0 48k 18k − 1

Ê suk
8

su2k

2
su4k

2

su3k

2
su6k

2
su5k

2
su4k

2
su3k

2
su2k

2
suk

2 Z
(1)
k 0 120k 30k − 1

Table 6. Little String Theories associated with ADE orbifolds. The blue curve refers to the
node obtained through minimal affinization of the corresponding SCFT. For the necklace LSTs
K(g, suN ) = Âg

N−1 obtained from conformal matter, only the partial tensor branch description is
shown for brevity, the general quivers can be found in equation (3.12). Note that κR and the dimension
of the Coulomb branch can be written in a closed form, see equation (3.12).
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(gF , gB) Quiver D(1) ×D(2) κ̂P κ̂R dim(CB)

(II, so8) 2
2
su2
2
2
2 Z(D4)(1) 0 8 5

(so8, II)
so8
4 ||1 Z(D4)(2) 0 8 5

(II, so2k) 2
2
su2
2

su3
2

su3
2 . . .

su3
2︸ ︷︷ ︸

×(k−5)

2
su2
2 2 Z(Dk)(2) 0 6(k − 3) 3k − 8

(so2k, II)
so2k

4 ||
su2k−8
1 Z(Dk)(1) 0 6(k − 3) 3k − 8

(III, so8)

su2
2

su2
2

so7
2

su2
2

su2
2

Z(1)
2 × Z(D4)(2) 0 18 11

(so8, III) 2
so8
4
1

so8
4 Z(D4)(1) × Z(2)

2 0 18 11

(III, so2k)
su2
2

su2
2
so7
3 1

so8
4 1 . . . 1

so8
4 1

su2
2
so7
3︸ ︷︷ ︸

(k−5)×
so8
4

su2
2 Z(1)

2 × Z(Dk)(2) 0 16(k − 3) 6k − 14

(so2k, III)
su2k−8
2

so2k

4
sp2k−8
1

so2k

4 Z(Dk)(1) × Z(2)
2 0 16(k − 3) 6k − 14

(IV, so2k)
su3
3 1

su3
3
1
e6
6 1

su3
3 1

e6
6 · · ·

e6
61

su3
3 1︸ ︷︷ ︸

(k−5)×
e6
6

su3
3
1
e6
6 1

su3
3 Z(1)

3 × Z(Dk)(2) 0 48(k − 3) 12k − 26

(so2k, IV)
so2N+8
4

sp2N

1

so2N+8
4

sp2N

1
so6N+8
4

sp2N

1
so2N+8
4 Z(Dk)(1) × Z(1)

3 0 48(k − 3) 12k − 26

Table 7. Type II Little String Theories involving D-type algebras. The blue curve refers to the node
obtain through minimal affinization of the corresponding SCFT.

(gF , gB) Quiver D(1) ×D(2) κ̂P κ̂R dim(CB)
(II, II) 0· ∅ 0 0 0

(II, III) 2||2 Z(2)
2 0 2 1

(III, II)
su2
0· Z(1)

2 0 2 1

(II, IV) 2
2
∆2 Z(2)

2 0 3 2
(IV, II)

su3
0· Z(1)

2 0 3 2

Table 8. Type II Little String Theories involving only exceptional algebras, and the special Kodaira
fibers of type II, III, and IV. The blue curve refers to the node obtained through minimal affinization
of the corresponding SCFT (continues. . . ).
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(gF , gB) Quiver D(1) ×D(2) κ̂P κ̂R dim(CB)

(e6, II) [su2] 2
e6
6
1

su3
3 Z(1)

3 0 27 11

(II, e6)

2
su2
2

2
su2
2

g2
2

[su2]
su2
2 2

Z(2)
3 0 27 11

(II, e7)

su3
3
1

2
su2
2

g2
3 1

f4
5 1

g2
3

su2
2 2

Z(1)
2 0 96 22

(e7, II)
e7
81

su2
2

su2
2
so7
3 1

so8
4 Z(2)

2 0 96 22

(III, e6)

su2
2
so7
3
su2
2
1

su2
2

so7
3

su2
2 1

e7
8 1

su2
2

so7
3

su2
2

Z(1)
2 × Z(2)

3 0 144 34

(e6, III)
e6
6 1

su3
3 1

su3
3
1
e6
6 1

su3
3 1

e6
6 Z(1)

3 × Z(2)
2 0 144 34

(III, III)
su2
2 ||

su2
2 Z(1)

2 × Z(2)
3 0 4 3

(IV, III)
su3
2 ||

su3
2 Z(2)

2 × Z(1)
3 0 6 5

(III, IV)
su2
2

su2
2
∆

su2
2 Z(1)

2 × Z(2)
3 0 6 5

(IV, IV)
su3
3

su3
3
1

su3
3 Z(1)

3 × Z(2)
3 0 12 9

Table 8. Type II Little String Theories involving only exceptional algebras, and the special Kodaira
fibers of type II, III, and IV. The blue curve refers to the node obtained through minimal affinization
of the corresponding SCFT.
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B Anomalies in six dimensions

The anomaly of a D-dimensional theory is encoded in a formal (D + 2)-form, the anomaly
polynomial ID+2. In six dimensions with N = (1, 0) supersymmetry, it takes the form22

I8 = α

24c2(R)2 + β

24c2(R)p1(T ) +
γ

24p1(T )2 + δ

24p2(T )

+
∑

a

TrF 2
a

(
µap1(T ) + kac2(R) +

∑
b

ρab TrF 2
b

)
+
∑

a

νa TrF 4
a ,

(B.1)

where c2(F ) = 1
4 TrF 2 are one-instanton normalized traces, c2(R) is the second Chern

class associated with the su(2)R R-symmetry bundle, and p1(T ), p2(T ) are the first and
second Pontryagin classes of the spacetime tangent bundle, respectively. Given a generalized
quiver, the anomaly polynomial of an SCFT can be directly computed from its tensor branch
description [65], and one distinguishing two different types of contributions,

I8 = I1-loop
8 + IGS

8 . (B.2)

The first is obtained by summing the contributions of the various supermultiplets in the
spectrum. It is well known that in D spacetime dimensions, fermions appearing in the
various supermultiplets, possibly transforming in a representation R of the gauge and flavor
symmetries, lead to a contribution [98]:

I fermion
D+2 = Â(T ) chR(F )

∣∣∣
(d+2)-form

, chR(F ) = TrR eiF , (B.3)

where Â(T ) is the A-roof genus and chR(F ) is the Chern character of the field strength
of the associated symmetry, potentially also including the R-symmetry depending on the
supermultiplet. Similar anomalies are induced by self-dual two-forms, and one must also
consider contributions from more complicated objects such as E-strings. The anomaly
polynomial contributions for the supermultiplets that are relevant in this work are

Itensor
8 = 1

24c2(R)2 + 1
48c2(R)p1(T ) +

1
5760

(
23p1(T )2 − 116p2(T )

)
,

Ivec
8 (F ) =− 1

24
(
tradj F

4 + 6c2(R) tradj F
2 + dim(g)c2(R)2)

− 1
48p1(T )

(
tradj F

2 + dim(g)c2(R)
)
− dim(g)

5760
(
7p1(T )2 − 4p2(T )

)
.

(B.4)

Note that the traces trR Fn must be converted to one-instanton-normalized traces TrR Fn.
We follow the conventions of [66] which outlines general procedure. The conversion coefficients
for the most common representations appearing in the F-theory construction can be found in
appendix F of [47]. The other group-theoretic quantities appearing explicitly in the main
text are summarized in table 10. Another one-loop contribution that arises is in this work is

Ising = 1
24

(1
2p1(T )c2(R) +

1
8p1(T )2 − 1

2p2(T )
)
, (B.5)

which finds its origin in the M-theory construction of conformal matter, where it corresponds
to the modes localized on the orbifold singularity probed by M5-branes [65].

22We ignore possible Abelian symmetries in this work.
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g rk(g) dim(g) h∨g Γ
suk k − 1 k2 − 1 k k

so8 4 28 6 8
sop ̸=8 ⌊p

2⌋
1
2p(p− 1) p− 2 2p− 8

spk k k(2k + 1) k + 1 —
g2 2 14 4 —
f4 4 52 9 —
e6 6 78 12 24
e7 7 133 18 48
e8 8 248 30 120

Table 10. Relevant quantities of simple Lie algebras. Note that the order Γ of the discrete subgroups
of SU(2) are only defined for ADE algebra sun , so2k , e6,7,8.

The one-loop term will generically be gauge anomalous. Due to the presence of tensors
in the spectrum, there is a Green-Schwarz-West-Sagnotti mechanism [48, 49] that harnesses
the non-trivial Bianchi identities to cure anomalies via anomaly inflow. This contribution,
often referred to as the Green-Schwarz or GS term, takes the generic form

IGS
8 = 1

2AijI
iIj , I i = Aikc2(Fk) +Biac2(Fa)− aip1(T ) + hic2(R) . (B.6)

At a generic point of the tensor branch, Aij = ηij (we denote the inverse by Aij), Bia is the
flavor pairing matrix, ai = 2 − Aii, and hi = h∨gi . When the curve is undecorated, we set
hi = 1. However, the GS term is usually computed away from the tensor branch by blowing
down (−1)-curves. Since such a move does not break any of the symmetries of the theory,
the complete anomaly polynomial remains invariant by ’t Hooft anomaly matching, which
we can use to track the changes in the various quantities appearing in equation (B.6). One
finds that after blowing down a (−1)-curve

Quiver: · · · g1
m1

g2
1

g3
m3 · · · · · ·

g1
(m1 − 1)

g3

(m3 − 1) · · ·
ℓLST

I : · · · ℓ1 ℓ2 ℓ3 · · · −→ · · · ℓ1 ℓ3 · · ·
yI : · · · y1 y2 y3 · · · · · · (y1 + y2) (y2 + y3) · · ·

(B.7)

Additional details can be found in e.g. [26, 37, 63, 65].

B.1 Anomalies of strings in 6D N = (1, 0) theories

In six dimensions, self-dual tensor fields couple naturally to strings, giving rise to an N = (0, 4)
theory on their worldsheet, whose central charges and flavor levels are related to those of
the six-dimensional bulk theory. We review here how one can derive bounds using unitarity
and the central charges of the worldsheet theory, following [40, 41, 61].

From the worldsheet point of view, the strings have the flavor symmetry

so(4)N ⊕ su(2)R ⊕I g
I ⊕A fA , (B.8)
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corresponding to the directions normal to the string, as well as the R-symmetry, flavor
and gauge symmetries of the bulk theory. The latter appear as flavor symmetries on the
worldsheet. The indices I and A runs over the 6D gauge and flavor symmetries, respectively.
Furthermore, we decompose the normal directions as so(4)N = su(2)A ⊕ su(2)B.23 Ignoring
the flavor- and gauge-symmetry factors for a moment, we decompose the supercharges into
two-dimensional quantities,

so(6)⊕ su(2)R −→ u(1)⊕ su(2)A ⊕ su(2)B ⊕ su(2)R ,

(4,2) −→ (2,1,2)+ ⊕ (1,2,2)− ,
(B.9)

where the subscript refers to the chirality of the corresponding worldsheet fermions; the
R-symmetry of the N = (0, 4) theory is then identified with so(4)R,2D = su(2)B ⊕ su(2)R.

As for their six-dimensional counterparts, the levels of the flavor symmetries, as well as
the gravitational anomalies, are encoded in the anomaly polynomial of the theory. Given
a collection of strings with intersection pairing ηIJ associated with two-forms BI , it takes
the generic form [61]

I4 = 1
2QIη

IJQJχ(N) +QII
I ,

II = BIac2(Fa)− aIp1(T6) + hIc2(R) ,
(B.10)

where we defined aI = (2− ηII), and BIa is the 6D flavor pairing matrix. The coefficients
QI are the charges of the string and hI = h∨

gI the dual Coxeter number of the associated
algebra. Since the Euler density χ(N) of the so(4)N normal bundle, and the Pontryagin class
of the bulk tangent bundle of the bulk p1(T6) can be decomposed as

χ(N ) = c2(A)− c2(B) , p1(T6) = p1(T2) + p1(N ) = p1(T2)− 2c2(A)− 2c2(B) , (B.11)

we can rewrite (B.10) in terms of worldsheet quantities as

I4 =− 6QIa
I

24 p1(T2) +QIh
I c2(R) +QIB

Ia c2(Fa)

+ 1
2
(
QIa

I +QIη
IJQJ)c2(A) +

1
2(QIa

I −QIη
IJQJ)c2(B) ,

(B.12)

The levels can then be directly inferred from this expression. In particular, the level of the
su(2)r = su(2)B is easily found to be

kr = kB = 1
2
(
QIa

I −QIη
IJQJ

)
. (B.13)

In the deep IR, the worldsheet theory flows to a two-dimensional CFT. The coefficients of
the UV anomaly polynomial can be related to the central charges. These are the quantities
associated with the relevant poles of the OPE of the energy-momentum tensor (T , T ) and

23The normal directions are often denoted as su(2)L ⊕ su(2)R, while the six-dimensional R-symmetry
is denoted su(2)I . Our nomenclature differs slightly from that of [61], since we are mainly interested in
six-dimensional quantities in the main text. We therefore reserve uppercase letters for the 6D R-symmetry,
and use lowercase letters for the left-/right-handed modes on the worldsheet.
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the holomorphic currents J A of the non-Abelian symmetries, see e.g. appendix A of [99]
for a concise review:

T (z)T (0)∼ cl

2z+. . . , T (z)T (0)∼
cr

2z+. . . , J
A(z)J B(0)∼ k

AδAB

z2 +. . . , (B.14)

where (z, z) are the coordinates on the worldsheet. The central charges cl , cr are positive
by unitarity, and their difference is given by the gravitational anomaly,

cr − cl = kG , ICFT
4 ⊃ −kG

24 p1(T2) . (B.15)

Note that along the flow, some of the modes will decouple as they become massive, and those
must be taken into account when computing the anomaly polynomial of the worldsheet CFT,

I4 = ICFT
4 + Imas

4 , (B.16)

where I4 is given in equation (B.12). In the cases relevant in this work, the massive modes
are those associated with the center-of-mass of the string, and correspond to the contribution
of a universal hypermultiplet

Imas
4 = − 2

24p1(T2)− c2(A) . (B.17)

The gravitational anomaly of the IR SCFT is therefore given by

kG = 6QIa
I + 2 . (B.18)

Along the flow, the su(2)l ⊕ su(2)r R-symmetry might mix with the other su(2) factors.
However, in the cases relevant here, it was shown through direct computations as well
as holographic considerations that the su(2)r = su(2)B R-symmetry component survives
unchanged at the conformal fixed point [46, 100, 101]. We can therefore infer that the
right-handed central charges, related to the level of the corresponding factor, are given by

cr = 6 kIR
r = 6 kUV

B . (B.19)

Finally, the presence of the holomorphic current implies that the IR description is at least
that of a Wess-Zumino-Witten (WZW) model with a Kac-Moody algebra with flavor algebra
g = ⊕ag

a, each factor being at level ka. Here, the index a runs a priori over both bulk
flavor and gauge symmetries. The central charge of such a theory is fixed by the symmetry
data, and must be smaller than the actual value of cl, giving a constraint on the possible
flavor data from the left-handed central charge [40]:

cWZW =
∑

a

ka dim(ga)
ka + h∨ga

≤ cl . (B.20)

C LSTs with enhanced supersymmetry

When one of the singularities g that defines the LST is trivial, the number of unbroken SUSY
generators is doubled. There are two kinds of supersymmetry enhancement in six dimensions,
depending on which singularity is trivial. In terms of N = (1, 0) multiplets, we have
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1. N = (1, 0) → N = (1, 1): an adjoint-valued hypermultiplet and a vector multiplet
recombine into a N = (1, 1) vector multiplet.

2. N = (1, 0)→ N = (2, 0): singlet hypermultiplets and tensor multiplets recombine into
a N = (2, 0) tensor multiplet.

The two theories are related by T-duality [8, 26], which becomes evident when viewed from
the M-theory geometry perspective. There, the total space is given as

X3 = (T2
A × C)/Λ)×T2

B (C.1)

which is endowed with N = 2 supersymmetry in five dimensions since we do not have the
full SU(3) holonomy. The theory has two torus fibrations and thus two 6D lifts: when lifting
the theory by sending vol(T2

B) → ∞, we obtain the N = (2, 0) IIB limit, which is just
the constant F-theory torus over the LST base B2 = (T2

A × C)/ΛADE. When lifting to 6D
by sending vol(T2

A) → ∞, the resulting base is simply B2 = C × T2
B. From the F-theory

perspective, there is a 7-brane stack at the origin of C that wraps T2
B , which yields an extra

hypermultiplet in the adjoint representation. Combined with the vector multiplet of the
seven-brane, this enhances SUSY to N = (1, 1) in 6D.

The above structure can be deformed by deforming the base slightly when moving to
a Type I1 or Type II base [8]. In this picture, when the IIA base has a I1 degeneration,
the adjoint representation decomposes as

Adj→ S2 + A2 , (C.2)

modulo a singlet. Indeed, the degeneration locus of the F-theory elliptic fiber Im signals the
precence of a defect that breaks half of the supersymmetries. Similarly, when switching to
the IIB dual, we have an AN−1 LST, but with I1 fibers. From the IIB perspective, there is
a single D7 brane that breaks half of the supersymmetry. In field theory, this corresponds
again to an obstruction to enhance N = (1, 0) → N = (2, 0). Indeed, while there are m
copies of the I1 D7 brane over each tensor multiplet which do not carry a gauge group, there
are nevertheless some matter states. Due to the I2 enhanced singularity at each intersection
locus, a massless hypermultiplet charged under a massive U(1) trapped between each tensor
arises. These N = (1, 0) hypermultiplets cannot recombine with the N = (1, 0) tensors and
therefore obstructs any possibility of enhancement to N = (2, 0).

Data Availability Statement. This article has no associated data or the data will not
be deposited.

Code Availability Statement. This article has no associated code or the code will not
be deposited.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.

– 55 –

https://creativecommons.org/licenses/by/4.0/


J
H
E
P
1
1
(
2
0
2
4
)
1
4
9

References

[1] E. Witten, Some comments on string dynamics, in the proceedings of the STRINGS 95: Future
Perspectives in String Theory, Los Angeles, U.S.A., March 13–18 (1995) [hep-th/9507121]
[INSPIRE].

[2] A. Strominger and M. Dine, Open p-branes, Phys. Lett. B 383 (1996) 44 [hep-th/9512059]
[INSPIRE].

[3] N. Seiberg, Nontrivial fixed points of the renormalization group in six-dimensions, Phys. Lett. B
390 (1997) 169 [hep-th/9609161] [INSPIRE].

[4] O. Aharony, M. Berkooz, D. Kutasov and N. Seiberg, Linear dilatons, NS five-branes and
holography, JHEP 10 (1998) 004 [hep-th/9808149] [INSPIRE].

[5] Y. Hamada and G.J. Loges, Towards a complete classification of 6D supergravities, JHEP 02
(2024) 095 [arXiv:2311.00868] [INSPIRE].

[6] G.J. Loges, New infinite class of 6d, N = (1, 0) supergravities, Phys. Rev. D 109 (2024) 126006
[arXiv:2402.04371] [INSPIRE].

[7] Y. Hamada and G.J. Loges, Enumerating 6D supergravities with T ≤ 1, arXiv:2404.08845
[INSPIRE].

[8] L. Bhardwaj et al., F-theory and the Classification of Little Strings, Phys. Rev. D 93 (2016)
086002 [Erratum ibid. 100 (2019) 029901] [arXiv:1511.05565] [INSPIRE].

[9] L. Bhardwaj, Revisiting the classifications of 6d SCFTs and LSTs, JHEP 03 (2020) 171
[arXiv:1903.10503] [INSPIRE].

[10] D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, Generalized Global Symmetries, JHEP 02
(2015) 172 [arXiv:1412.5148] [INSPIRE].

[11] I. Bah et al., A Panorama Of Physical Mathematics c. 2022, arXiv:2211.04467 [INSPIRE].

[12] S. Schäfer-Nameki, ICTP lectures on (non-)invertible generalized symmetries, Phys. Rept. 1063
(2024) 1 [arXiv:2305.18296] [INSPIRE].

[13] L. Bhardwaj et al., Lectures on generalized symmetries, Phys. Rept. 1051 (2024) 1
[arXiv:2307.07547] [INSPIRE].

[14] L. Bhardwaj and S. Schäfer-Nameki, Higher-form symmetries of 6d and 5d theories, JHEP 02
(2021) 159 [arXiv:2008.09600] [INSPIRE].

[15] F. Apruzzi, L. Bhardwaj, D.S.W. Gould and S. Schäfer-Nameki, 2-Group symmetries and their
classification in 6d, SciPost Phys. 12 (2022) 098 [arXiv:2110.14647] [INSPIRE].

[16] M. Hübner, D.R. Morrison, S. Schäfer-Nameki and Y.-N. Wang, Generalized Symmetries in
F-theory and the Topology of Elliptic Fibrations, SciPost Phys. 13 (2022) 030
[arXiv:2203.10022] [INSPIRE].

[17] M. Cvetič, M. Dierigl, L. Lin and H.Y. Zhang, Higher-form symmetries and their anomalies in
M-/F-theory duality, Phys. Rev. D 104 (2021) 126019 [arXiv:2106.07654] [INSPIRE].

[18] F. Apruzzi, M. Dierigl and L. Lin, The fate of discrete 1-form symmetries in 6d, SciPost Phys.
12 (2022) 047 [arXiv:2008.09117] [INSPIRE].

[19] M. Dierigl, P.-K. Oehlmann and F. Ruehle, Non-Simply-Connected Symmetries in 6D SCFTs,
JHEP 10 (2020) 173 [arXiv:2005.12929] [INSPIRE].

[20] M. Dierigl, J.J. Heckman, M. Montero and E. Torres, R7-branes as charge conjugation
operators, Phys. Rev. D 109 (2024) 046004 [arXiv:2305.05689] [INSPIRE].

– 56 –

https://doi.org/10.48550/arXiv.hep-th/9507121
https://inspirehep.net/literature/397499
https://doi.org/10.1201/9781482268737-13
https://doi.org/10.48550/arXiv.hep-th/9512059
https://inspirehep.net/literature/403446
https://doi.org/10.1016/S0370-2693(96)01424-4
https://doi.org/10.1016/S0370-2693(96)01424-4
https://doi.org/10.48550/arXiv.hep-th/9609161
https://inspirehep.net/literature/423492
https://doi.org/10.1088/1126-6708/1998/10/004
https://doi.org/10.48550/arXiv.hep-th/9808149
https://inspirehep.net/literature/475206
https://doi.org/10.1007/JHEP02(2024)095
https://doi.org/10.1007/JHEP02(2024)095
https://doi.org/10.48550/arXiv.2311.00868
https://inspirehep.net/literature/2717908
https://doi.org/10.1103/PhysRevD.109.126006
https://doi.org/10.48550/arXiv.2402.04371
https://inspirehep.net/literature/2756293
https://doi.org/10.48550/arXiv.2404.08845
https://inspirehep.net/literature/2777284
https://doi.org/10.1103/PhysRevD.93.086002
https://doi.org/10.1103/PhysRevD.93.086002
https://doi.org/10.48550/arXiv.1511.05565
https://inspirehep.net/literature/1405319
https://doi.org/10.1007/JHEP03(2020)171
https://doi.org/10.48550/arXiv.1903.10503
https://inspirehep.net/literature/1726763
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.48550/arXiv.1412.5148
https://inspirehep.net/literature/1334564
https://doi.org/10.48550/arXiv.2211.04467
https://inspirehep.net/literature/2178153
https://doi.org/10.1016/j.physrep.2024.01.007
https://doi.org/10.1016/j.physrep.2024.01.007
https://doi.org/10.48550/arXiv.2305.18296
https://inspirehep.net/literature/2663314
https://doi.org/10.1016/j.physrep.2023.11.002
https://doi.org/10.48550/arXiv.2307.07547
https://inspirehep.net/literature/2677667
https://doi.org/10.1007/JHEP02(2021)159
https://doi.org/10.1007/JHEP02(2021)159
https://doi.org/10.48550/arXiv.2008.09600
https://inspirehep.net/literature/1812803
https://doi.org/10.21468/SciPostPhys.12.3.098
https://doi.org/10.48550/arXiv.2110.14647
https://inspirehep.net/literature/1954981
https://doi.org/10.21468/SciPostPhys.13.2.030
https://doi.org/10.48550/arXiv.2203.10022
https://inspirehep.net/literature/2054744
https://doi.org/10.1103/PhysRevD.104.126019
https://doi.org/10.48550/arXiv.2106.07654
https://inspirehep.net/literature/1868478
https://doi.org/10.21468/SciPostPhys.12.2.047
https://doi.org/10.21468/SciPostPhys.12.2.047
https://doi.org/10.48550/arXiv.2008.09117
https://inspirehep.net/literature/1812772
https://doi.org/10.1007/JHEP10(2020)173
https://doi.org/10.48550/arXiv.2005.12929
https://inspirehep.net/literature/1798059
https://doi.org/10.1103/PhysRevD.109.046004
https://doi.org/10.48550/arXiv.2305.05689
https://inspirehep.net/literature/2658411


J
H
E
P
1
1
(
2
0
2
4
)
1
4
9

[21] J.J. Heckman, M. Hübner, E. Torres and H.Y. Zhang, The Branes Behind Generalized
Symmetry Operators, Fortsch. Phys. 71 (2023) 2200180 [arXiv:2209.03343] [INSPIRE].

[22] J.J. Heckman et al., 6D SCFTs, center-flavor symmetries, and Stiefel-Whitney
compactifications, Phys. Rev. D 106 (2022) 066003 [arXiv:2205.03411] [INSPIRE].

[23] F. Apruzzi, Higher form symmetries TFT in 6d, JHEP 11 (2022) 050 [arXiv:2203.10063]
[INSPIRE].

[24] C. Córdova, T.T. Dumitrescu and K. Intriligator, Exploring 2-Group Global Symmetries, JHEP
02 (2019) 184 [arXiv:1802.04790] [INSPIRE].

[25] C. Córdova, T.T. Dumitrescu and K. Intriligator, 2-Group Global Symmetries and Anomalies in
Six-Dimensional Quantum Field Theories, JHEP 04 (2021) 252 [arXiv:2009.00138] [INSPIRE].

[26] M. Del Zotto and K. Ohmori, 2-Group Symmetries of 6D Little String Theories and T-Duality,
Annales Henri Poincare 22 (2021) 2451 [arXiv:2009.03489] [INSPIRE].

[27] M. Del Zotto, M. Liu and P.-K. Oehlmann, Back to heterotic strings on ALE spaces. Part I.
Instantons, 2-groups and T-duality, JHEP 01 (2023) 176 [arXiv:2209.10551] [INSPIRE].

[28] M. Del Zotto, M. Liu and P.-K. Oehlmann, Back to heterotic strings on ALE spaces. Part II.
Geometry of T-dual little strings, JHEP 01 (2024) 109 [arXiv:2212.05311] [INSPIRE].

[29] M. Del Zotto, M. Liu and P.-K. Oehlmann, 6D heterotic little string theories and F-theory
geometry: an introduction, Proc. Symp. Pure Math. 107 (2024) 179 [arXiv:2303.13502]
[INSPIRE].

[30] M. Del Zotto, M. Fazzi and S. Giri, The Higgs branch of heterotic ALE instantons, JHEP 01
(2024) 167 [arXiv:2307.11087] [INSPIRE].

[31] L. Mansi and M. Sperling, Unravelling T-Duality: Magnetic Quivers in Rank-zero Little String
Theories, arXiv:2312.12510 [INSPIRE].

[32] C. Lawrie and L. Mansi, Higgs branch of heterotic little string theories: Hasse diagrams and
generalized symmetries, Phys. Rev. D 110 (2024) 026016 [arXiv:2312.05306] [INSPIRE].

[33] L. Bhardwaj, Discovering T-dualities of little string theories, JHEP 02 (2024) 046
[arXiv:2209.10548] [INSPIRE].

[34] L.B. Anderson, J. Gray and P.-K. Oehlmann, Twisted Fibrations in M/F-theory, JHEP 01
(2024) 017 [arXiv:2308.07364] [INSPIRE].

[35] H. Ahmed, P.-K. Oehlmann and F. Ruehle, Twisted Dual Heterotic String Theories, in
preparation.

[36] P.-K. Oehlmann, F. Ruehle and B. Sung, The frozen phase of heterotic F-theory duality, JHEP
07 (2024) 295 [arXiv:2404.02191] [INSPIRE].

[37] M. Del Zotto, J.J. Heckman, D.S. Park and T. Rudelius, On the Defect Group of a 6D SCFT,
Lett. Math. Phys. 106 (2016) 765 [arXiv:1503.04806] [INSPIRE].

[38] E. Witten, Toroidal compactification without vector structure, JHEP 02 (1998) 006
[hep-th/9712028] [INSPIRE].

[39] D.R. Morrison and B. Sung, On the frozen F-theory landscape, JHEP 05 (2024) 126
[arXiv:2310.11432] [INSPIRE].

[40] H.-C. Kim, G. Shiu and C. Vafa, Branes and the Swampland, Phys. Rev. D 100 (2019) 066006
[arXiv:1905.08261] [INSPIRE].

– 57 –

https://doi.org/10.1002/prop.202200180
https://doi.org/10.48550/arXiv.2209.03343
https://inspirehep.net/literature/2148210
https://doi.org/10.1103/PhysRevD.106.066003
https://doi.org/10.48550/arXiv.2205.03411
https://inspirehep.net/literature/2078801
https://doi.org/10.1007/JHEP11(2022)050
https://doi.org/10.48550/arXiv.2203.10063
https://inspirehep.net/literature/2054748
https://doi.org/10.1007/JHEP02(2019)184
https://doi.org/10.1007/JHEP02(2019)184
https://doi.org/10.48550/arXiv.1802.04790
https://inspirehep.net/literature/1654854
https://doi.org/10.1007/JHEP04(2021)252
https://doi.org/10.48550/arXiv.2009.00138
https://inspirehep.net/literature/1814347
https://doi.org/10.1007/s00023-021-01018-3
https://doi.org/10.48550/arXiv.2009.03489
https://inspirehep.net/literature/1815645
https://doi.org/10.1007/JHEP01(2023)176
https://doi.org/10.48550/arXiv.2209.10551
https://inspirehep.net/literature/2155206
https://doi.org/10.1007/JHEP01(2024)109
https://doi.org/10.48550/arXiv.2212.05311
https://inspirehep.net/literature/2613315
https://doi.org/10.1090/pspum/107/01951
https://doi.org/10.48550/arXiv.2303.13502
https://inspirehep.net/literature/2645236
https://doi.org/10.1007/JHEP01(2024)167
https://doi.org/10.1007/JHEP01(2024)167
https://doi.org/10.48550/arXiv.2307.11087
https://inspirehep.net/literature/2678845
https://doi.org/10.48550/arXiv.2312.12510
https://inspirehep.net/literature/2739237
https://doi.org/10.1103/PhysRevD.110.026016
https://doi.org/10.48550/arXiv.2312.05306
https://inspirehep.net/literature/2734820
https://doi.org/10.1007/JHEP02(2024)046
https://doi.org/10.48550/arXiv.2209.10548
https://inspirehep.net/literature/2155183
https://doi.org/10.1007/JHEP01(2024)017
https://doi.org/10.1007/JHEP01(2024)017
https://doi.org/10.48550/arXiv.2308.07364
https://inspirehep.net/literature/2688279
https://doi.org/10.1007/JHEP07(2024)295
https://doi.org/10.1007/JHEP07(2024)295
https://doi.org/10.48550/arXiv.2404.02191
https://inspirehep.net/literature/2773792
https://doi.org/10.1007/s11005-016-0839-5
https://doi.org/10.48550/arXiv.1503.04806
https://inspirehep.net/literature/1353152
https://doi.org/10.1088/1126-6708/1998/02/006
https://doi.org/10.48550/arXiv.hep-th/9712028
https://inspirehep.net/literature/451874
https://doi.org/10.1007/JHEP05(2024)126
https://doi.org/10.48550/arXiv.2310.11432
https://inspirehep.net/literature/2711851
https://doi.org/10.1103/PhysRevD.100.066006
https://doi.org/10.48550/arXiv.1905.08261
https://inspirehep.net/literature/1735787


J
H
E
P
1
1
(
2
0
2
4
)
1
4
9

[41] S.-J. Lee and T. Weigand, Swampland Bounds on the Abelian Gauge Sector, Phys. Rev. D 100
(2019) 026015 [arXiv:1905.13213] [INSPIRE].

[42] H.-C. Tarazi and C. Vafa, On The Finiteness of 6d Supergravity Landscape, arXiv:2106.10839
[INSPIRE].

[43] M. Del Zotto and G. Lockhart, Universal Features of BPS Strings in Six-dimensional SCFTs,
JHEP 08 (2018) 173 [arXiv:1804.09694] [INSPIRE].

[44] H.Y. Zhang, K-theoretic Global Symmetry in String-constructed QFT and T-duality,
arXiv:2404.16097 [INSPIRE].

[45] H. Ahmed, P.-K. Oehlmann and F. Ruehle, T-duality and flavor symmetries in Little String
Theories, JHEP 08 (2024) 061 [arXiv:2311.02168] [INSPIRE].

[46] C. Lawrie, S. Schäfer-Nameki and T. Weigand, Chiral 2d theories from N = 4 SYM with
varying coupling, JHEP 04 (2017) 111 [arXiv:1612.05640] [INSPIRE].

[47] J.J. Heckman and T. Rudelius, Top Down Approach to 6D SCFTs, J. Phys. A 52 (2019) 093001
[arXiv:1805.06467] [INSPIRE].

[48] M.B. Green, J.H. Schwarz and P.C. West, Anomaly Free Chiral Theories in Six-Dimensions,
Nucl. Phys. B 254 (1985) 327 [INSPIRE].

[49] A. Sagnotti, A note on the Green-Schwarz mechanism in open string theories, Phys. Lett. B
294 (1992) 196 [hep-th/9210127] [INSPIRE].

[50] J.J. Heckman, D.R. Morrison and C. Vafa, On the Classification of 6D SCFTs and Generalized
ADE Orbifolds, JHEP 05 (2014) 028 [Erratum ibid. 06 (2015) 017] [arXiv:1312.5746]
[INSPIRE].

[51] J.J. Heckman, D.R. Morrison, T. Rudelius and C. Vafa, Atomic Classification of 6D SCFTs,
Fortsch. Phys. 63 (2015) 468 [arXiv:1502.05405] [INSPIRE].

[52] S. Gukov, P.-S. Hsin and D. Pei, Generalized global symmetries of T [M ] theories. Part I, JHEP
04 (2021) 232 [arXiv:2010.15890] [INSPIRE].

[53] D.R. Morrison, S. Schäfer-Nameki and B. Willett, Higher-Form Symmetries in 5d, JHEP 09
(2020) 024 [arXiv:2005.12296] [INSPIRE].

[54] C. Lawrie, X. Yu and H.Y. Zhang, Intermediate defect groups, polarization pairs, and
noninvertible duality defects, Phys. Rev. D 109 (2024) 026005 [arXiv:2306.11783] [INSPIRE].

[55] C. Córdova, D.S. Freed, H.T. Lam and N. Seiberg, Anomalies in the Space of Coupling
Constants and Their Dynamical Applications II, SciPost Phys. 8 (2020) 002
[arXiv:1905.13361] [INSPIRE].

[56] P.S. Aspinwall and D.R. Morrison, Point-like instantons on K3 orbifolds, Nucl. Phys. B 503
(1997) 533 [hep-th/9705104] [INSPIRE].

[57] P.S. Aspinwall and D.R. Morrison, Nonsimply connected gauge groups and rational points on
elliptic curves, JHEP 07 (1998) 012 [hep-th/9805206] [INSPIRE].

[58] S. Hohenegger, A. Iqbal and S.-J. Rey, Dual Little Strings from F-Theory and Flop Transitions,
JHEP 07 (2017) 112 [arXiv:1610.07916] [INSPIRE].

[59] B. Bastian, S. Hohenegger, A. Iqbal and S.-J. Rey, Dual little strings and their partition
functions, Phys. Rev. D 97 (2018) 106004 [arXiv:1710.02455] [INSPIRE].

[60] D.S. Berman and J.A. Harvey, The Self-dual string and anomalies in the M5-brane, JHEP 11
(2004) 015 [hep-th/0408198] [INSPIRE].

– 58 –

https://doi.org/10.1103/PhysRevD.100.026015
https://doi.org/10.1103/PhysRevD.100.026015
https://doi.org/10.48550/arXiv.1905.13213
https://inspirehep.net/literature/1737544
https://doi.org/10.48550/arXiv.2106.10839
https://inspirehep.net/literature/1869552
https://doi.org/10.1007/JHEP08(2018)173
https://doi.org/10.48550/arXiv.1804.09694
https://inspirehep.net/literature/1670063
https://doi.org/10.48550/arXiv.2404.16097
https://inspirehep.net/literature/2780771
https://doi.org/10.1007/JHEP08(2024)061
https://doi.org/10.48550/arXiv.2311.02168
https://inspirehep.net/literature/2719470
https://doi.org/10.1007/JHEP04(2017)111
https://doi.org/10.48550/arXiv.1612.05640
https://inspirehep.net/literature/1504996
https://doi.org/10.1088/1751-8121/aafc81
https://doi.org/10.48550/arXiv.1805.06467
https://inspirehep.net/literature/1673698
https://doi.org/10.1016/0550-3213(85)90222-6
https://inspirehep.net/literature/207821
https://doi.org/10.1016/0370-2693(92)90682-T
https://doi.org/10.1016/0370-2693(92)90682-T
https://doi.org/10.48550/arXiv.hep-th/9210127
https://inspirehep.net/literature/340008
https://doi.org/10.1007/JHEP05(2014)028
https://doi.org/10.48550/arXiv.1312.5746
https://inspirehep.net/literature/1273469
https://doi.org/10.1002/prop.201500024
https://doi.org/10.48550/arXiv.1502.05405
https://inspirehep.net/literature/1345371
https://doi.org/10.1007/JHEP04(2021)232
https://doi.org/10.1007/JHEP04(2021)232
https://doi.org/10.48550/arXiv.2010.15890
https://inspirehep.net/literature/1827339
https://doi.org/10.1007/JHEP09(2020)024
https://doi.org/10.1007/JHEP09(2020)024
https://doi.org/10.48550/arXiv.2005.12296
https://inspirehep.net/literature/1797873
https://doi.org/10.1103/PhysRevD.109.026005
https://doi.org/10.48550/arXiv.2306.11783
https://inspirehep.net/literature/2670505
https://doi.org/10.21468/SciPostPhys.8.1.002
https://doi.org/10.48550/arXiv.1905.13361
https://inspirehep.net/literature/1737648
https://doi.org/10.1016/S0550-3213(97)00516-6
https://doi.org/10.1016/S0550-3213(97)00516-6
https://doi.org/10.48550/arXiv.hep-th/9705104
https://inspirehep.net/literature/443078
https://doi.org/10.1088/1126-6708/1998/07/012
https://doi.org/10.48550/arXiv.hep-th/9805206
https://inspirehep.net/literature/471089
https://doi.org/10.1007/JHEP07(2017)112
https://doi.org/10.48550/arXiv.1610.07916
https://inspirehep.net/literature/1494442
https://doi.org/10.1103/PhysRevD.97.106004
https://doi.org/10.48550/arXiv.1710.02455
https://inspirehep.net/literature/1629003
https://doi.org/10.1088/1126-6708/2004/11/015
https://doi.org/10.1088/1126-6708/2004/11/015
https://doi.org/10.48550/arXiv.hep-th/0408198
https://inspirehep.net/literature/657482


J
H
E
P
1
1
(
2
0
2
4
)
1
4
9

[61] H. Shimizu and Y. Tachikawa, Anomaly of strings of 6d N = (1, 0) theories, JHEP 11 (2016)
165 [arXiv:1608.05894] [INSPIRE].

[62] H.-C. Kim, M. Kim and Y. Sugimoto, Blowup equations for little strings, JHEP 05 (2023) 029
[arXiv:2301.04151] [INSPIRE].

[63] F. Baume, M.J. Kang and C. Lawrie, Two 6D origins of 4D SCFTs: Class S and 6D (1, 0) on a
torus, Phys. Rev. D 106 (2022) 086003 [arXiv:2106.11990] [INSPIRE].

[64] J.J. Heckman, T. Rudelius and A. Tomasiello, Fission, Fusion, and 6D RG Flows, JHEP 02
(2019) 167 [arXiv:1807.10274] [INSPIRE].

[65] K. Ohmori, H. Shimizu, Y. Tachikawa and K. Yonekura, Anomaly polynomial of general 6d
SCFTs, PTEP 2014 (2014) 103B07 [arXiv:1408.5572] [INSPIRE].

[66] F. Baume and C. Lawrie, Bestiary of 6D (1, 0) SCFTs: Nilpotent orbits and anomalies, Phys.
Rev. D 110 (2024) 045021 [arXiv:2312.13347] [INSPIRE].

[67] M. Del Zotto, J.J. Heckman, A. Tomasiello and C. Vafa, 6d Conformal Matter, JHEP 02 (2015)
054 [arXiv:1407.6359] [INSPIRE].

[68] J.J. Heckman, T. Rudelius and A. Tomasiello, 6D RG Flows and Nilpotent Hierarchies, JHEP
07 (2016) 082 [arXiv:1601.04078] [INSPIRE].

[69] N. Mekareeya, T. Rudelius and A. Tomasiello, T-branes, Anomalies and Moduli Spaces in 6D
SCFTs, JHEP 10 (2017) 158 [arXiv:1612.06399] [INSPIRE].

[70] N. Mekareeya, K. Ohmori, H. Shimizu and A. Tomasiello, Small instanton transitions for M5
fractions, JHEP 10 (2017) 055 [arXiv:1707.05785] [INSPIRE].

[71] J. de Boer et al., Triples, fluxes, and strings, Adv. Theor. Math. Phys. 4 (2002) 995
[hep-th/0103170] [INSPIRE].

[72] Y. Tachikawa, Frozen singularities in M and F theory, JHEP 06 (2016) 128
[arXiv:1508.06679] [INSPIRE].

[73] K. Ohmori, H. Shimizu, Y. Tachikawa and K. Yonekura, 6d N = (1, 0) theories on T 2 and class
S theories: Part I, JHEP 07 (2015) 014 [arXiv:1503.06217] [INSPIRE].

[74] K. Ohmori, H. Shimizu, Y. Tachikawa and K. Yonekura, 6d N = (1, 0) theories on S1/T 2 and
class S theories: part II, JHEP 12 (2015) 131 [arXiv:1508.00915] [INSPIRE].

[75] D.R. Morrison and T. Rudelius, F-theory and Unpaired Tensors in 6D SCFTs and LSTs,
Fortsch. Phys. 64 (2016) 645 [arXiv:1605.08045] [INSPIRE].

[76] P.R. Merkx, Classifying Global Symmetries of 6D SCFTs, JHEP 03 (2018) 163
[arXiv:1711.05155] [INSPIRE].

[77] P. Bala and R.W. Carter, Classes of unipotent elements in simple algebraic groups. II, Math.
Proc. Cambridge Phil. Soc. 80 (1976) 1.

[78] P. Bala and R.W. Carter, Classes of unipotent elements in simple algebraic groups. I, Math.
Proc. Cambridge Phil. Soc. 79 (1976) 401.

[79] N. Mekareeya, K. Ohmori, Y. Tachikawa and G. Zafrir, E8 instantons on type-A ALE spaces
and supersymmetric field theories, JHEP 09 (2017) 144 [arXiv:1707.04370] [INSPIRE].

[80] J. Distler, M.J. Kang and C. Lawrie, Distinguishing 6D (1, 0) SCFTs: An extension to the
geometric construction, Phys. Rev. D 106 (2022) 066011 [arXiv:2203.08829] [INSPIRE].

[81] J. Kollár, Deformations of elliptic Calabi-Yau manifolds, arXiv:1206.5721 [INSPIRE].

– 59 –

https://doi.org/10.1007/JHEP11(2016)165
https://doi.org/10.1007/JHEP11(2016)165
https://doi.org/10.48550/arXiv.1608.05894
https://inspirehep.net/literature/1482778
https://doi.org/10.1007/JHEP05(2023)029
https://doi.org/10.48550/arXiv.2301.04151
https://inspirehep.net/literature/2622305
https://doi.org/10.1103/PhysRevD.106.086003
https://doi.org/10.48550/arXiv.2106.11990
https://inspirehep.net/literature/1869947
https://doi.org/10.1007/JHEP02(2019)167
https://doi.org/10.1007/JHEP02(2019)167
https://doi.org/10.48550/arXiv.1807.10274
https://inspirehep.net/literature/1684263
https://doi.org/10.1093/ptep/ptu140
https://doi.org/10.48550/arXiv.1408.5572
https://inspirehep.net/literature/1312204
https://doi.org/10.1103/PhysRevD.110.045021
https://doi.org/10.1103/PhysRevD.110.045021
https://doi.org/10.48550/arXiv.2312.13347
https://inspirehep.net/literature/2739915
https://doi.org/10.1007/JHEP02(2015)054
https://doi.org/10.1007/JHEP02(2015)054
https://doi.org/10.48550/arXiv.1407.6359
https://inspirehep.net/literature/1307781
https://doi.org/10.1007/JHEP07(2016)082
https://doi.org/10.1007/JHEP07(2016)082
https://doi.org/10.48550/arXiv.1601.04078
https://inspirehep.net/literature/1415799
https://doi.org/10.1007/JHEP10(2017)158
https://doi.org/10.48550/arXiv.1612.06399
https://inspirehep.net/literature/1505220
https://doi.org/10.1007/JHEP10(2017)055
https://doi.org/10.48550/arXiv.1707.05785
https://inspirehep.net/literature/1610640
https://doi.org/10.4310/ATMP.2000.v4.n5.a1
https://doi.org/10.48550/arXiv.hep-th/0103170
https://inspirehep.net/literature/554352
https://doi.org/10.1007/JHEP06(2016)128
https://doi.org/10.48550/arXiv.1508.06679
https://inspirehep.net/literature/1390138
https://doi.org/10.1007/JHEP07(2015)014
https://doi.org/10.48550/arXiv.1503.06217
https://inspirehep.net/literature/1355239
https://doi.org/10.1007/JHEP12(2015)131
https://doi.org/10.48550/arXiv.1508.00915
https://inspirehep.net/literature/1386699
https://doi.org/10.1002/prop.201600069
https://doi.org/10.48550/arXiv.1605.08045
https://inspirehep.net/literature/1465862
https://doi.org/10.1007/JHEP03(2018)163
https://doi.org/10.48550/arXiv.1711.05155
https://inspirehep.net/literature/1636267
https://doi.org/10.1017/S0305004100052610
https://doi.org/10.1017/S0305004100052610
https://doi.org/10.1017/S0305004100052403
https://doi.org/10.1017/S0305004100052403
https://doi.org/10.1007/JHEP09(2017)144
https://doi.org/10.48550/arXiv.1707.04370
https://inspirehep.net/literature/1610035
https://doi.org/10.1103/PhysRevD.106.066011
https://doi.org/10.48550/arXiv.2203.08829
https://inspirehep.net/literature/2054077
https://doi.org/10.48550/arXiv.1206.5721
https://inspirehep.net/literature/1119617


J
H
E
P
1
1
(
2
0
2
4
)
1
4
9

[82] K. Oguiso, On algebraic fiber space structures on a Calabi-Yau 3-fold, Int. J. Math. 04 (1993)
439.

[83] P.M.H. Wilson, The existence of elliptic fibre space structures on Calabi-Yau threefolds. II,
Math. Proc. Cambridge Phil. Soc. 123 (1998) 259.

[84] L.B. Anderson, X. Gao, J. Gray and S.-J. Lee, Fibrations in CICY Threefolds, JHEP 10 (2017)
077 [arXiv:1708.07907] [INSPIRE].

[85] S. Katz, D.R. Morrison, S. Schäfer-Nameki and J. Sully, Tate’s algorithm and F-theory, JHEP
08 (2011) 094 [arXiv:1106.3854] [INSPIRE].

[86] V. Bouchard and H. Skarke, Affine Kac-Moody algebras, CHL strings and the classification of
tops, Adv. Theor. Math. Phys. 7 (2003) 205 [hep-th/0303218] [INSPIRE].

[87] X.-Y. Wei, Y. Sugimoto, F. Yagi and S.-S. Kim, DE-type little strings from glued brane webs,
JHEP 05 (2023) 214 [arXiv:2212.07344] [INSPIRE].

[88] P. Arras, A. Grassi and T. Weigand, Terminal Singularities, Milnor Numbers, and Matter in
F-theory, J. Geom. Phys. 123 (2018) 71 [arXiv:1612.05646] [INSPIRE].

[89] A. Grassi et al., 6D anomaly-free matter spectrum in F-theory on singular spaces, JHEP 08
(2022) 182 [arXiv:2110.06943] [INSPIRE].

[90] F. Apruzzi et al., General prescription for global U(1)’s in 6D SCFTs, Phys. Rev. D 101 (2020)
086023 [arXiv:2001.10549] [INSPIRE].

[91] A. Bourget, M. Sperling and Z. Zhong, Higgs branch RG flows via decay and fission, Phys. Rev.
D 109 (2024) 126013 [arXiv:2401.08757] [INSPIRE].

[92] C. Lawrie and L. Mansi, The Higgs Branch of 6d (1, 0) SCFTs & LSTs with DE-type SUSY
Enhancement, in preparation.

[93] L. Bhardwaj, Classification of 6d N = (1, 0) gauge theories, JHEP 11 (2015) 002
[arXiv:1502.06594] [INSPIRE].

[94] L. Bhardwaj et al., Twisted Circle Compactifications of 6d SCFTs, JHEP 12 (2020) 151
[arXiv:1909.11666] [INSPIRE].

[95] F. Albertini, M. Del Zotto, I. García Etxebarria and S.S. Hosseini, Higher Form Symmetries
and M-theory, JHEP 12 (2020) 203 [arXiv:2005.12831] [INSPIRE].

[96] M. Del Zotto, I. García Etxebarria and S. Schäfer-Nameki, 2-Group Symmetries and M-Theory,
SciPost Phys. 13 (2022) 105 [arXiv:2203.10097] [INSPIRE].

[97] M. Cvetič, J.J. Heckman, M. Hübner and E. Torres, 0-form, 1-form, and 2-group symmetries
via cutting and gluing of orbifolds, Phys. Rev. D 106 (2022) 106003 [arXiv:2203.10102]
[INSPIRE].

[98] L. Alvarez-Gaume and E. Witten, Gravitational Anomalies, Nucl. Phys. B 234 (1984) 269
[INSPIRE].

[99] F. Benini and N. Bobev, Two-dimensional SCFTs from wrapped branes and c-extremization,
JHEP 06 (2013) 005 [arXiv:1302.4451] [INSPIRE].

[100] C. Couzens et al., F-theory and AdS3/CFT2, JHEP 08 (2017) 043 [arXiv:1705.04679]
[INSPIRE].

[101] C. Lawrie, D. Martelli and S. Schäfer-Nameki, Theories of Class F and Anomalies, JHEP 10
(2018) 090 [arXiv:1806.06066] [INSPIRE].

– 60 –

https://doi.org/10.1142/s0129167x93000248
https://doi.org/10.1142/s0129167x93000248
https://doi.org/10.1017/S030500419700220X
https://doi.org/10.1007/JHEP10(2017)077
https://doi.org/10.1007/JHEP10(2017)077
https://doi.org/10.48550/arXiv.1708.07907
https://inspirehep.net/literature/1620235
https://doi.org/10.1007/JHEP08(2011)094
https://doi.org/10.1007/JHEP08(2011)094
https://doi.org/10.48550/arXiv.1106.3854
https://inspirehep.net/literature/914234
https://doi.org/10.4310/ATMP.2003.v7.n2.a1
https://doi.org/10.48550/arXiv.hep-th/0303218
https://inspirehep.net/literature/615744
https://doi.org/10.1007/JHEP05(2023)214
https://doi.org/10.48550/arXiv.2212.07344
https://inspirehep.net/literature/2614271
https://doi.org/10.1016/j.geomphys.2017.09.001
https://doi.org/10.48550/arXiv.1612.05646
https://inspirehep.net/literature/1504997
https://doi.org/10.1007/JHEP08(2022)182
https://doi.org/10.1007/JHEP08(2022)182
https://doi.org/10.48550/arXiv.2110.06943
https://inspirehep.net/literature/1944928
https://doi.org/10.1103/PhysRevD.101.086023
https://doi.org/10.1103/PhysRevD.101.086023
https://doi.org/10.48550/arXiv.2001.10549
https://inspirehep.net/literature/1777779
https://doi.org/10.1103/PhysRevD.109.126013
https://doi.org/10.1103/PhysRevD.109.126013
https://doi.org/10.48550/arXiv.2401.08757
https://inspirehep.net/literature/2747778
https://doi.org/10.1007/JHEP11(2015)002
https://doi.org/10.48550/arXiv.1502.06594
https://inspirehep.net/literature/1345861
https://doi.org/10.1007/JHEP12(2020)151
https://doi.org/10.48550/arXiv.1909.11666
https://inspirehep.net/literature/1756265
https://doi.org/10.1007/JHEP12(2020)203
https://doi.org/10.48550/arXiv.2005.12831
https://inspirehep.net/literature/1797908
https://doi.org/10.21468/SciPostPhys.13.5.105
https://doi.org/10.48550/arXiv.2203.10097
https://inspirehep.net/literature/2055676
https://doi.org/10.1103/PhysRevD.106.106003
https://doi.org/10.48550/arXiv.2203.10102
https://inspirehep.net/literature/2055761
https://doi.org/10.1016/0550-3213(84)90066-X
https://inspirehep.net/literature/192309
https://doi.org/10.1007/JHEP06(2013)005
https://doi.org/10.48550/arXiv.1302.4451
https://inspirehep.net/literature/1220260
https://doi.org/10.1007/JHEP08(2017)043
https://doi.org/10.48550/arXiv.1705.04679
https://inspirehep.net/literature/1599417
https://doi.org/10.1007/JHEP10(2018)090
https://doi.org/10.1007/JHEP10(2018)090
https://doi.org/10.48550/arXiv.1806.06066
https://inspirehep.net/literature/1678118

	Introduction
	The symmetry structure of Little Strings
	Review
	Higher symmetry dualities in LSTs
	Flavor bounds from the LST worldsheet theory

	LSTs from minimal affinization of SCFTs
	LSTs from ADE orbifolds
	Beyond necklace quivers

	The geometry of Type II LSTs
	LSTs and double fibrations
	Type II LSTs from gravity decoupling
	Fiber and base singularity structure
	ADE singularities
	Type II, III, IV fibers
	Type II, III, IV bases
	Higgs branches
	Outlier theories

	Conclusion and outlook
	Tables of Type II Little String Theories
	Anomalies in six dimensions
	Anomalies of strings in 6D N=(1,0) theories

	LSTs with enhanced supersymmetry

