THE ASTROPHYSICAL JOURNAL, 978:64 (14pp), 2025 January 01
© 2024. The Author(s). Published by the American Astronomical Society.

OPEN ACCESS

https://doi.org/10.3847/1538-4357 /ad8bc3

CrossMark

Diffusion-HMC: Parameter Inference with Diffusion-model-driven Hamiltonian Monte
Carlo

Nayantara Mudur'

, Carolina Cuesta-Lazaro

2,34 1,2,3

, and Douglas P. Finkbeiner

! Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138, USA; nmudur@g.harvard.edu
2 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
3 The NSF AI Institute for Artificial Intelligence and Fundamental Interactions, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
4 Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Received 2024 June 10; revised 2024 October 21; accepted 2024 October 23; published 2024 December 24

Abstract

Diffusion generative models have excelled at diverse image generation and reconstruction tasks across fields. A
less explored avenue is their application to discriminative tasks involving regression or classification problems.
The cornerstone of modern cosmology is the ability to generate predictions for observed astrophysical fields from
theory and constrain physical models from observations using these predictions. This work uses a single diffusion
generative model to address these interlinked objectives—as a surrogate model or emulator for cold dark matter
density fields conditional on input cosmological parameters, and as a parameter inference model that solves the
inverse problem of constraining the cosmological parameters of an input field. The model is able to emulate fields
with summary statistics consistent with those of the simulated target distribution. We then leverage the
approximate likelihood of the diffusion generative model to derive tight constraints on cosmology by using the
Hamiltonian Monte Carlo method to sample the posterior on cosmological parameters for a given test image.
Finally, we demonstrate that this parameter inference approach is more robust to small perturbations of noise to the

field than baseline parameter inference networks.

Unified Astronomy Thesaurus concepts: Astrostatistics (1882); Cosmological parameters (339); Astronomical
simulations (1857); Cosmology (343); Dark matter (353); Neural networks (1933)

1. Introduction

Ongoing and upcoming missions, such as the Dark Energy
Spectroscopic Instrument (DESI),” the Vera C. Rubin Obser-
vatory’s Legacy Survey of Space and Time,® and the Nancy
Grace Roman Space Telescope’ will map the cosmos at
unprecedented resolution and volume. This has created a
proportionate demand for simulations that can generate
predictions from theory. Cosmological simulations, however,
are expensive to run, and can only be generated for a limited set
of initial conditions and points in parameter space.

The canonical summary statistic used for parameter
inference is the two-point correlation function, or the power
spectrum Pk at large, linear scales where perturbation theory
holds. At smaller scales, however, gravitational collapse
induces non-Gaussianity in the fields. This means the
information content of cosmological fields is not fully captured
by the power spectrum at the large scales alone. For example,
recent work (C. Hahn et al. 2023; N.-M. Nguyen et al. 2024)
derived much stronger constraints on og by going beyond the
two-point correlation function at linear scales and analyzing
nonlinear modes at smaller scales (k> 0.25hMpc ') or by
extracting information at the field level. A multitude of other
statistics—such as the marked power spectrum, the bispectrum,
the wavelet scattering transform, and void probability functions
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—have also been devised (N. Hamaus et al. 2016; B. Régald-
o-Saint Blancard et al. 2023; G. Valogiannis & C. Dvorkin
2022; E. Paillas et al. 2023) in an effort to capture higher-order
correlations in non-Gaussian fields. Previous work (K. Heitm-
ann et al. 2009; M. Mustafa et al. 2019; E. Paillas et al. 2023;
G. Valogiannis et al. 2024; D. Sharma et al. 2024b) has
addressed the prohibitive cost of simulations by creating
emulators or surrogate models that learn to interpolate between
predictions of a specific summary statistic between training
points using formalisms such as Gaussian processes. More
recently, simulation-based inference at the field level has also
been used, where a likelihood model parameterized by a neural
network is learned on the fields (C. Cuesta-Lazaro & S. Mish-
ra-Sharma 2024; B. Dai & U. Seljak 2024).

Generative models are a class of machine learning
approaches that enable one to simulate the ability to draw
samples from a complicated target probability density and
include variational autoencoders, normalizing flows, and
generative adversarial networks (GANs). Diffusion generative
models (J. Sohl-Dickstein et al. 2015; Y. Song et al. 2021)
involve a forward diffusion (noising) process that transforms
samples from the target distribution to those from the standard
normal. In the denoising diffusion probabilistic model (DDPM;
J. Ho et al. 2020), the noising process consists of a variance
schedule 3, over a fixed number of time steps, 7, that
determines the incremental noise added to the image. Since the
diffusion process can be formulated as a stochastic differential
equation (SDE), the DDPM variance schedule corresponds to
the discretization of this SDE. In the generative direction, a
neural network or score model is used to parameterize the
reverse transformation.

Diffusion models are alternatively referred to as score-based
generative models since parameterizing the reverse diffusion
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process is equivalent to learning the “score” or Vlogp, (x) of
the data (B. D. O. Anderson 1982; Y. Song et al. 2021). Since
in high dimensions the target distribution invariably lies on a
thin manifold, the incremental addition of the random noise
blurs the distribution and makes the score progressively easier
to learn. Diffusion models are the underlying mathematical
framework that have given rise to the photorealistic image
generation successes of DALL.E® and Stable Diffusion
(R. Rombach et al. 2021), and have been shown to mitigate
mode collapse, a phenomenon often encountered with GANs in
which a generative model fails to generate multiple modes in a
distribution. In scientific applications, they have been used for
problems involving protein folding and ligand prediction and
medical imaging reconstruction (Y. Song et al. 2022; G. Corso
et al. 2023). They have been applied in astrophysics to
reconstruction problems involving dust (N. Mudur &
D. P. Finkbeiner 2022; D. Heurtel-Depeiges et al. 2023),
cosmological simulations and initial conditions reconstruction
(C. Cuesta-Lazaro & S. Mishra-Sharma 2024; N. Mudur et al.
2023; A. Rouhiainen et al. 2024; R. Legin et al. 2024; V. Ono
et al. 2024), and strong lensing problems (Y. Jagvaral et al.
2022; B. Remy et al. 2022).

In this work, we apply diffusion generative models to
emulate cold dark matter density fields conditional on
cosmological parameters, and demonstrate that the trained
model can also be used to derive tight and robust constraints on
cosmological parameters. In Section 3, we examine the ability
of the model to appropriately capture the statistics of the
distribution of fields corresponding to different parameters, and
further compare the effect of modulating a single parameter at a
time on the statistics of the resulting fields in the true and the
generated set. We then quantify the ability of the model to
capture the full range of cosmic variance for a single parameter,
as a means to assess the extent of mode collapse. In Section 4,
we examine how the diffusion model’s approximate likelihood
can be used to solve the inverse problem of constraining the
cosmological parameters of a given input field. We then use the
Hamiltonian Monte Carlo (HMC; S. Duane et al. 1987,
R. M. Neal 2011; M. Betancourt 2017) method to draw
samples from the estimated posterior on the cosmological
parameters given an input field, and compare our estimates
with a power spectrum baseline. A novel contribution of this
work is our use of an HMC to sample a posterior consisting of
an approximation to the diffusion model conditional likelihood
to solve a downstream inference task. Finally, we demonstrate
that the Diffusion-HMC-based parameter inference estimates
are more robust to perturbations composed of uncorrelated
noise relative to the estimates from a discriminative neural
network directly trained to estimate parameters.

2. Data Sets, Architecture, and Training

Data sets. We work with cold dark matter density fields at
z =0 from the [lustrisTNG (A. Pillepich et al. 2018; D. Nelson
et al. 2019) suite from the CAMELS Multifield Dataset
(F. Villaescusa-Navarro et al. 2021a, 2022). The diffusion
model is trained to generate the minmax transform applied to
the log (base 10) of these dark matter fields. The minmax
transform is pegged to the minimum and maximum of the log
of the entire data set, [9.42, 15.44]. The data set contains 1000
simulations for 1000 different cosmologies with 15 two-
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dimensional fields per simulation. The ‘“cosmology” is
parameterized by a parameter vector with two cosmological
(€,, and og) and four astrophysical parameters. Each simulation
tracked the evolution of 256 dark matter particles and 256°
fluid elements and took around 6000 CPU hours to generate
(see F. Villaescusa-Navarro et al. 2021a, 2022 for more
details). The fields span 25 Mpc A~ on each side. We train on
70% of the parameters in the Latin hypercube (LH) set, i.e.,
700 parameters or 10,500 fields, and condition the model only
on the cosmological parameters €2,, and og. Since we use dark
matter density fields in this study, we do not expect them to
constrain or contain much information about the astrophysical
parameters. Example generated dark matter fields are shown in
Figure 2.

Diffusion model setup. We follow the DDPM formalism, in
which a target image x, is transformed to a sample from
x ~ N0, I) over the course of T=1000 time steps. The
forward diffusion process follows an incremental noise
schedule {(,}, and the noise is added in a variance-preserving
way:

Fort € [0, T — 1], g(xrp1lx,) = N(\jl — Byxy, B
and ¢ (x,11lxo) = M@, xo, (1 — @)I)

t
where @, = [[ 1 — 4, (1)
=0

a

The score/noise-predictor model is a U-Net (O. Ronneberger
et al. 2015) similar to that used in J. Ho et al. (2020). There are
four downsampling layers, with each layer consisting of two
ResNet blocks (S. Zagoruyko & N. Komodakis 2016), group
normalization (Y. Wu & K. He 2019), and attention (A. Vas-
wani et al. 2017; Z. Shen et al. 2021). We use circular
convolutions in the downsampling layers since the input fields
have periodic boundary conditions. Each parameter is normal-
ized to lie between [0, 1] with respect to its range, €2, € [0.1,
0.5], og € [0.6, 1.0]. A multilayer perceptron (MLP) transforms
the cosmology vector into a space with the same dimension as
the time embedding, and each ResNet block additionally has an
MLP conditional on cosmology. The variance schedule [, is
nonlinear with smaller steps at smaller ¢ and larger steps for
larger values of ¢ (see Figure 8). We train the model to generate
the log of the fields, and randomly rotate and flip the image to
account for these invariances. During training, for each batch of
images xo, a batch of time steps is sampled uniformly along
with a noise pattern ¢ ~ N(0, I). The loss function minimized

islle — 6@(\/;,)&'0 + 41 = &[e, t, )2 for each set of {xy, ¢,

0, €}, where 0 is the parameter vector. Our implementation
minimizes the Huber loss, which behaves as an L1 loss for
values of the loss greater than 1 and a mean squared error
(MSE) loss otherwise. From the training curves, the loss during
training is less than 1 throughout, so the loss being minimized
is in effect the MSE loss. We used the Weights and Biases
framework to track experiments.” The model has 31.2 million
parameters.

Training. We first downsample the images by a factor of 4
and train the conditional diffusion model on these 64 x 64
images for 60,000 iterations. Since the U-Net is formulated in
terms of relative downsampling, the same architecture can be
applied to images with different resolution. To train the model
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Figure 1. Generated fields at different cosmologies. Upper row: power spectrum of the unlogged fields for five different validation parameters. The lines depict the
mean power spectrum and the envelope indicates the 16th and 84th percentiles of the distribution. True simulations are shown in black, generated in blue. Lower row:

mean and standard deviation envelopes for the density histograms of the log fields.

to emulate 256 x 256 fields, we initialize the checkpoint with
the weights of the 64 x 64-trained model after 60,000 iterations
and trained for over 400,000 iterations. We found that
initializing the 256 x 256 model with the weights of the
64 x 64 model and then training the model led to faster
convergence.

The noise prediction loss does not fully capture sample
quality and convergence, and we need an alternative metric to
assess the quality of the generated samples (L. Theis et al.
2015). We sampled 500 fields (with 50 fields for 10 different
validation parameters) for the checkpoints after 200,000,
220,000, 240,000, 260,000, 280,000, 300,000, 320,000, and
340,000 iterations. Sampling a batch of 50 256 x 256 fields
from our model takes 310s (6.2 s per field). We computed the
reduced chi-squared statistic (Equation (B3)) of the power
spectrum of each generated field, s, with respect to the
reference distribution comprised of the 15 true fields for that
parameter. We then compute the mean and standard error of
these values across all parameters and sampled fields.

While the diffusion generative model is trained to generate
the fields in log space, the power spectra we compute here and
in Figures 1-3 correspond to the overdensity power spectra of
the “linear” (109eneraiedFicldsy folds. The checkpoint corresp-
onding to the 260,000th iteration had the lowest value for the
chi-squared statistic of the power spectra of the linear generated
fields relative to the distribution of true fields, corresponding to
2.29 £ 0.49 (Figure 12). To put this number in perspective, we
can examine the effect of cosmic variance on this metric using
a leave-one-out cross-validation approach, by computing the
reduced chi-squared statistic of each sample of a true field,
using the 14 other true fields corresponding to the same
parameter as the reference distribution. The mean of this value
across the 10 parameters is 1.70 & 0.36. We use the 260,000
checkpoint for our analysis. We plot these values, along with
the reduced chi-squared statistic of the power spectra of the log
fields and the p-values of the mean intensity in Appendix B.1.

3. Summary Statistics

In this section, we examine the consistency of our generated
fields relative to the true fields using three sets of simulations
under the IllustrisTNG CAMELS suite. The LH suite varies the
largest range of cosmological and astrophysical parameters but
has a limited number (15) of fields for each parameter, with all
parameters varying randomly. The one-parameter (1P) suite
consists of 15 fields with the same seed, and one-dimensional
variations of each parameter modulated systematically, while
the others are fixed to the fiducial value. The cosmic variance
(CV) set consists of 405 fields for the fiducial parameter value.

Varying cosmology in a LH. We examine the consistency of
the summary statistics of the distribution of true and generated
fields for a given validation parameter from the LH set in
Figure 1. We have 15 true fields and 50 generated fields for
each parameter. We derived the boundaries of the envelope
using the estimates of the 16th and 84th percentiles, while the
solid line demarcates the mean of the distribution of power
spectra in 35 log-spaced k bins. The lower panel depicts the
density histograms of the log fields. The envelopes are again
derived using the percentiles, while the solid lines indicate the
means of the histograms for the true and generated fields. The
distribution of the power spectra and the density histograms of
the true and the generated fields are in good agreement with
each other.

Varying cosmological parameters one at a time (IP). In
Figure 2, we generate “1P” sets and examine whether the effect
of modulating a single parameter, while keeping the others
constant, is the same as is observed in the 1P CAMELS suite.
We sample 15 fields corresponding to 15 different seeds for
each of the parameters. The fields corresponding to the same
seed across parameters have the same position and orientation
of their seeded structures as visible in Figure 2. For each seed,
we then compute the ratio of the power spectrum of a field at a
different parameter to the power spectrum of the fiducial
parameter value, and compute the average and the percentile-
based standard deviation envelopes across all seeds as depicted
in the right column of Figure 2. The dashed (solid) line and



THE ASTROPHYSICAL JOURNAL, 978:64 (14pp), 2025 January 01

Mudur, Cuesta-Lazaro, & Finkbeiner

05 =0.1,0.8

10!

=
R 0, = 0.1
— Q=018
ol T =03
— Q=042
— 0, =05

7y =06

7y =068

o5 =0.8

ag =0.92 / v S/ A

10!

100

Wavenumber k (h Mpe™")

5P T

Wavenumber k (h Mpc™)

Figure 2. Generated “1P” fields. Left column: generated fields corresponding to the extreme values of each parameter for a single seed, with the other value held fixed
at the fiducial value (0.3 for €2, and 0.8 for o). Middle column: power spectra of the generated fields for the same seed, for different values of each parameter, holding
the other fixed. Right column: mean and standard deviation for the ratio of the power spectra at the modified parameter value to the power spectra for the field at the
fiducial parameter value (black) for 15 slices from the CAMELS data set (solid) and 15 seeds for the generated fields from the diffusion model (dashed). The effect of
modulating a parameter on the generated fields’ power spectra is consistent with that of the true fields.
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Figure 3. Generated “CV” fields. Left: power spectra of the 405 true and generated fields, with the mean and 16th to 84th percentiles. Right: correlation matrix of the
power spectra of the true and generated fields. The lower triangular matrix corresponds to the correlation matrix of the true fields while the upper triangular matrix

corresponds to the correlation matrix of the generated fields.

envelope correspond to the generated (true) ratios. The ratios
for the generated “1P” set are in good agreement with those of
the true “1P” set, since the dashed lines are within the solid
envelopes.

Reproducing cosmic variance (CV). The CV set has 405
(27 x 15) fields for the fiducial parameter value of [0.3, 0.8]
and varying initial conditions, designed to quantify the effect of
cosmic variance. The CV set allows us to quantify the
consistency between the second moments of the true and the
generated distributions. In particular, it allows us to test the
ability of the model to generate a diverse set of samples for the

same cosmological parameters such that it reproduces the true
underlying distribution at fixed cosmology.

We generate 405 samples from our trained diffusion model,
compute their power spectra, and examine the standard deviation
and the correlation matrices of different ¥ modes of the power
spectrum in Figures 3 and 4. The correlation between the modes
of the power spectra is largely consistent between the true and
the generated samples, although the generated samples appear to
have a slight excess correlation around 5 Mpc ™.

The standard deviations of the distribution are also
consistent, although the standard deviations of the generated
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Figure 4. Generated “CV” fields. Upper: ratio of the standard deviations of the
generated fields to that of the true fields. Lower: standard deviations of the
power spectra in each k bin for the generated and true fields.

power spectra are slightly underpredicted relative to the true
power spectra at the largest length scales (k <5k Mpc™"). To
construct the standard deviation estimator, we use the jackknife
approach to generate a distribution of 405 estimates of the
standard deviation for each set, where the ith estimate
corresponds to the standard deviation computed using all
samples excluding that of the ith field. We then compute the
mean and the standard deviation for these sets in order to
capture the mean and the standard deviation on the estimate of
the standard deviation in the upper-right panel of Figure 3. We
use the ratios of the jackknife-estimated means and errors in the
lower-right panel.

The ability to capture the full diversity of £k modes for a
single parameter may be in tension with the ability to
distinguish between and appropriately modulate the power
spectrum for different parameters. This tension is enhanced for
our assessment of mode collapse in spectral space, compared to
canonical machine learning data sets involving discrete classes,
since the cosmological parameters that we condition the
diffusion generative model on lie on a continuum. Thus, for
a given conditioning parameter, a generated field with too
much or too little power on certain scales relative to the mean

Mudur, Cuesta-Lazaro, & Finkbeiner

of the statistic is more likely to wander into the typical set of a
field with a different cosmological parameter, since modulating
the parameters also modulates the power spectrum (as in
Figure 2). In the context of natural images, one often deals with
categorical descriptors, where the boundaries between whether
an object qualifies as one class or another are typically more
clearly delineated, and the ability to capture the full diversity of
cats is unlikely to cause the model to “wander” into islands of
image space corresponding to a dog or an airplane. Thus, the
slightly lower standard deviation can be partly attributed to the
possibility that the model chooses to compromise on the
diversity of samples for a single parameter, in order to be able
to accurately generate fields that look different for different
parameters.

We compute the covariance between the modes of the power
spectrum. With the full covariance, we can now statistically
quantify the consistency of the generated samples relative to
that of the true samples using the multidimensional reduced
chi-squared statistic. We use 350 samples of the true fields to
set up the reference distribution used to compute the
covariance. We compute the inverse covariance and adjust
for the Hartlap factor (Equation (B1); J. Hartlap et al. 2007).
We then compute the multidimensional reduced chi-squared
statistic of the entire sample of the true and generated fields,
and compute the means of the 405 chi-squared statistics for
each distribution following Equation (B2). For the true fields,
the mean of the chi-squared distribution is 33.4, while that of
the generated is 36.6. Since our power spectra consist of 35
log-spaced bins, this is consistent with the expected mean for a
chi-squared distribution with 35 degrees of freedom, i.e., 35.

4. Parameter Inference

A trained diffusion model can be used to estimate the
variational lower bound (VLB) of the log likelihood (C. Cuesta-
Lazaro & S. Mishra-Sharma 2024; D. P. Kingma &
R. Gao 2023). In the case of a conditional diffusion model,
this likelihood estimate is also conditional, i.e.,

Byl —logp, (xol0)] < B[ —logp, (xobu, 0)
+ > D lq(uilxir1, xo) 12, (erlxis 1, 0)]

>1
+ Dgrlq (xrlxo)[|p(er)]] = Lyis, )
Lvig=Lo+ Ly..Lr_1+ L7, 3)
Lvs= Y L, 4)
1<Tymax

where ¢ denotes the diffusion model architecture, 6 is the
conditioning cosmology (in our case, a vector with €2, and oy),
D4 are the reverse (learned) distributions, and ¢ are the forward
(analytical) distributions. During training, the diffusion model’s
noise prediction loss terms are equivalent to terms of the
reweighted VLB (D. P. Kingma & R. Gao 2023). Since the
predicted noise is conditional on cosmology, the terms of the
VLB thus encode dependencies on the cosmological para-
meters. The contrast between the VLB evaluated at one
parameter 6, relative to another parameter 6, for a fixed field x,
can thus be used to find the region of parameter space that
maximizes the conditional likelihood for the field.
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Figure 5. Investigating the contribution of the time steps used in the VLB sum. Left: 1o contours of each —2AlInL,’s individual contribution for different time steps.
The contours are all centered near the true parameter (black star) and become wider as ¢ increases. Right: mean and 1o predictions for a single field as a function of the
number of time steps used in the VLB sum optimized by the HMC. Reducing the number of time steps used to compute the VLB does not significantly affect the

diffusion model predictions.

4.1. Examining the Influence of Different Time Steps

Since using all the terms L, that contribute to the VLB is
computationally expensive, we first investigate how sensitive
each of the contributing terms L, is to changes in cosmological
parameters over a grid in Figure 5(a). For an input field x, and a
single seed, we evaluate each of the L,(x¢l@gyar) terms over a
50 x 50 grid in [£2,,, og], centered on the value of the true field
Orrue and extending to £0.06 about the true parameter. To
disentangle the individual contribution of each term, we
subtract the minimum value of each L,;(xyl@gyar) on the grid,

and multiply it by 2 to yield —2AInL,. We plot the contour
corresponding to 2.30, or the 1o contour for a chi-squared
distribution with 2 degrees of freedom. Two observations are
apparent: all contours are minimized in the vicinity of the true
parameter, and the curvature of the contours decreases with
increasing time. Increasing time involves increasing the amount
of noise added to the input image, which can explain the
increased uncertainty in the true value of the parameter. Thus,
dropping the terms corresponding to the higher time steps in
Equation (2) is unlikely to result in weaker constraints on
cosmology.

4.2. HMC-based Parameter Inference

To compute the parameter estimates for fields, we draw
samples from the posterior on the parameter using the HMC
method. The HMC, or hybrid Monte Carlo method (S. Duane
et al. 1987; R. M. Neal 2011; M. Betancourt 2017), is a
Markov Chain Monte Carlo approach that draws samples from
a probability distribution m(f) via the introduction of an
auxiliary momentum variable p and solves the equations of
Hamiltonian dynamics in order to update the momentum and
position (). HMC enables a more efficient exploration of high-
dimensional probability distributions. In our case, using an
HMC also helps us circumvent the problem of having to
redefine the extents and granularity of the parameter grid
depending on how confident the constraints for a given Tyiax
are. The Hamiltonian governing the dynamics in the HMC

chain is
g1
H=U + K where U = —log7(f) and K = pzﬁ’
(5)
log w(0) = log p; (x0l0) + 10g ppgior ()
~ —Lyip + log pprior
=— > L;+ logppgor- ©)

t<Tmax

We used the Hamiltorch (A. D. Cobb et al. 2019) package
for the HMC. We explain more details about the HMC
implementation in Appendix A. The prior is chosen to be a flat
prior over €,,€[0.1, 0.5] and og€[0.6, 1.0]. The initial
parameter value is always the fiducial value of [0.3, 0.8], and
we designate the first 100 samples as burn-in samples that are
discarded. We reduce the averages over random noise in each
L, term in Equation (2) to a single stochastic estimate of L, in
Equation (4).

We now examine the effect of truncating terms in
Equation (4) using the HMC-based parameter inference.
Truncating terms allows us to perform inference faster and
can allow us to explore the trade-off between dropping terms
for speed and higher precision with more time steps. In the
right column of Figure 5, for a single field we plot the mean
predictions and the 15.9th to 84.1st (10) percentiles computed
using 200 samples with the approximate —log p; (xo|6) using
Equation (4) as a function of Tyjax on the x-axis for the same
field. The true value of the cosmological parameter for this field
is demarcated by the solid black lines. For this field and
parameter, using more terms asymptotically removes the bias
on 2, while increasing the bias on og. However, using the first
20 time steps only changes the mean prediction for €2, and og
by —0.26% and —1.27% of the prediction using all 1000 time
steps, respectively.

We now turn our attention to the performance of our
parameter inference approach relative to a power spectrum
baseline. For subsequent HMC-based parameter inference in this
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Figure 6. Top: comparison of the parameter estimates for a single field with the power-spectrum-based estimator and with the diffusion model likelihood. The star
demarcates the true parameter corresponding to the input fields. The shaded contours demarcate the 68.27%, 95.45% and 99.73% confidence intervals. Lower panel:
predicted parameter and ground-truth parameter for 10 different fields. The error bars correspond to the 15.9th to 84.1st percentiles for the marginal probability

distributions for each parameter for each input field.

section, we use Equation (4) with Tyiax = 20 to approximate the
conditional negative log likelihood. Drawing 500 samples with
Tuax = 20 takes ~32 minutes for a single field.

To assess the constraining power of the power spectrum, we
use the neural posterior estimation approach and train a
normalizing flow to represent the posterior of png(6|Pk - Mean)
using the Lampe (F. Rozet et al. 2021) package. Since
computing the overdensity power spectrum involves dividing
by the mean of the field, we further concatenate the mean of the
log field as an additional feature, since the prediction for €2, for
a small box size of 25 Mpc i~ is very sensitive to the mean of
the fields. For a single field, we compare the posteriors
obtained by drawing 10,000 samples from the power-spectrum-
based estimator and 400 samples from the diffusion model
+HMC in Figure 6. Other details about our implementation are
given in the Appendix A.2.

The diffusion model has significantly narrower constraints
for the parameters relative to the power spectrum baseline.
Note that, as shown in Figure 2, the cosmological parameters
Q,, and og are strongly correlated at the level of the power
spectrum on the small scales probed by our simulations, since
they are both modulating the amplitude of the power spectrum.
This result is consistent with P. Villanueva-Domingo &
F. Villaescusa-Navarro (2022), who also found that the galaxy
power spectrum in conjunction with a MLP yielded weak
constraints on 2, and oyg.

In the second row, we plot the predicted cosmological
parameters relative to the truth for 10 different fields across
different parameters in the validation set. The dots annotate the
mean of the 400 samples and the error bars correspond to the
15.9th to 84.1st percentiles of the samples. The mean of the
samples is close to the true value of Otryg over a broad range



THE ASTROPHYSICAL JOURNAL, 978:64 (14pp), 2025 January 01

12 14 12 14

Perturbed Pk Ratio

Perturbed Pk Ratio

Mudur, Cuesta-Lazaro, & Finkbeiner

12 14

Perturbed Pk Ratio

1.050 5
1.04 1Lo6l
1.025¢ 1.03¢
1.04+
1.000 1.02¢
0.975} 1.01} 1.02}
0.950¢ ‘ . 1.00¢ ‘ ‘ 1.00t ‘ .
10t 102 10! 102 10! 102
k(h Mpc™1) k(h Mpc™1) k(h Mpc™1)
) zg + 0.01e,e ~ N(0,1) zg + 0.02¢,e ~ N(0,1)
0.5} ' ' ] ' ' 0.5} ‘ '
1 Diffusion-HMC I/
T 04} ¢ InfNet 0.4F
k3
;qa’ 0.3 0.3
5 A .
Soal / 1.0% 0.2 23.2% |
/ 2.5% 10.3%
0.1r ) ) 0.1t . .
0.2 0.4 0.2 0.4
Q. True Q. True QO True
1.0t
2 0.9¢
s
T 08}
A

/ 0.8%
0.6 1 0.6t

0.61

0.6 0.8 1.0 0.6

og: True

g: True

0.8 1.0 0.6 0.8 1.0

og: True

Figure 7. First row: an example field corresponding to €2, og = 0.33, 0.96 with its perturbed counterparts, along with the ratio of the perturbed linear field’s power
spectrum to that of the original field }ikNi"isy Second and third rows: mean and 15.8th to 84.1st percentile predictions using the Diffusion-HMC estimates (green) and

riginal

the mean and sigma predictions obtained from the parameter inference network in F. Villaescusa-Navarro et al. (2021a), denoted by InfNet. The mean absolute
percentage bias (of the true prediction) for each parameter is also indicated. The Diffusion-HMC constraints are more robust to perturbations to the input image.

of parameters. The €2, predictions are biased by —0.006 (2% of
the true prediction) on average over the range of parameters,
while the mean absolute bias for og is 0.01 (1.26% of the true
prediction). The og prediction uncertainties (mean z score
|z| = 1.14) are better calibrated relative to the uncertainties for
Q,, (z| = 2.75), but overall we find the error bars to be slightly
underpredicted. We attribute the miscalibration to the trunca-
tion of terms. It is possible that including more time steps,
averaging over more seeds, and examining alternate choices of
the variance schedule could yield better calibrated uncertain-
ties; we leave this exploration for future work.

4.3. Robustness

Although our constraints are much tighter than those derived
from the two-point correlation function, robustness to noise and
observational systematics is an important consideration guiding
the use of parameter inference methods on survey data. Since
the terms of the VLB (and the noise prediction loss terms)
include terms where the original image has been noised, we
hypothesize that the parameter estimates learned by the model
are naturally more robust to perturbations involving the
addition of scaled white noise to the field.
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To test this, we examine the extent to which our parameter
estimates change relative to the predictions of the parameter
inference network in F. Villaescusa-Navarro et al. (2021b). The
neural network in F. Villaescusa-Navarro et al. (2021b) is
trained to predict the mean and the standard deviation of the
parameters given an input dark matter field. In the leftmost
column of Figure 7, we compare sample predictions obtained
from the diffusion model (Diffusion-HMC) relative to those
obtained from the parameter inference network (InfNet) on five
fields (xp). In the next two columns, we add increasing levels of
N, o) noise with o € [0.01, 0.02], and examine the estimates
for both approaches. We perform this experiment in a noise-
agnostic setting, i.e., we assume that we do not know the level
of noise a priori and do not modify either the Diffusion-HMC-
based approach or the parameter-inference-network-based
approach. We use the same Tyjax = 20 and use 200 samples
for the Diffusion-HMC estimates for all fields. Although the
noise perturbations to the field are visually imperceptible, and
correspond to a change of less than ~4%—-6% to the power
spectrum at the smallest scales, the predictions of the parameter
inference network are significantly (~6%-23%) disturbed.
Indeed, we find that the Diffusion-HMC-based constraints are
perturbed far less than the InfNet-based constraints. The
Diffusion-HMC oy constraints are also more robust than its
,, constraints.

5. Conclusion

In this work, we used a diffusion generative model to
emulate dark matter density fields conditional on cosmological
parameters. The model learns to reproduce the modulation of
summary statistics, such as the power spectra, for changes in
cosmological parameters. We additionally assess the extent of
mode collapse through the lens of cosmic variance by
examining the diversity of the power spectra at the fiducial
cosmology.

We then directed our attention to the inverse problem of
parameter inference and disentangled the contribution of each
term L, in the expression for the VLB to constraints on
cosmological parameters. Our findings reveal that the strength
of the constraints decreases as ¢ increases. K. Clark & P. Jaini
(2024) and A. C. Li et al. (2023) explored this question in the
context of using the diffusion model’s conditional VLB terms
for classification. K. Clark & P. Jaini (2024) also found a
negative exponential weighting of the terms to be optimum,
while A. C. Li et al. (2023) found that intermediate time steps
had the highest accuracy when only a single time step is used.
The difference in which terms contain the most information
about the conditioning attribute (cosmology/class) is interest-
ing, and could be partly attributed to the difference in their
formulation and weighting of the VLB terms and in how
changes in the conditioning vector affect an image in different
settings. Modulating cosmology modifies global attributes of
the fields, such as their intensity and power spectra, as seen in
Figure 2, while the information that distinguishes different
breeds of pets from each other tends to be relatively localized in
the bounding box containing the animal.

If it is indeed always the case that the time steps nearest to
the image manifold contain most cosmological information,
one could in future swap out our discrete time architecture with
continuous time diffusion models (Y. Song et al. 2021), where ¢
is a continuous variable with 7 € [0, 1], and prioritize steps that
lie near the image manifold or r= 0.
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These insights motivated us to truncate the diffusion model
conditional VLB-based approximation for p,(xo|f) by sub-
sampling the terms to only use the first Tyax terms
(Equation (4)). This approximation allows us to backpropagate
its gradient and plug this estimate for p 4(xo|¢) into an HMC and
sample the posterior on p4(6|xo). The Diffusion-HMC approach
yields tight constraints on cosmological parameters, competi-
tive with a bespoke parameter inference network F. Villaescu-
sa-Navarro et al. (2021b) trained only to infer cosmology given
a field.

In our experiments, we use only a single seed in each HMC
step and a Tyjax = 20 to speed up inference. In our case, the
use of an HMC allowed us to circumvent the requirement of
choosing a grid with the appropriate resolution required to
resolve the constraints, and eliminates the dependence on the
number of points in the grid. However, the Diffusion-VLB
estimates could also be used in other settings that do not entail
the use of an HMC. While our approach scaled with the
number of time steps we use in the sum, in constrast A. C. Li
et al. (2023) scaled with the number of classes in the
classification data set.

Lastly, we demonstrate that the diffusion model likelihood
confers the Diffusion-HMC constraints with greater robustness
against the addition of small amounts of noise to the input image
relative to the behavior of a parameter inference network. This
echoes the behavior of diffusion models in other discriminative
tasks such as in A. C. Li et al. (2023), M. Prabhudesai et al.
(2023), and H. Chen et al. (2024), where diffusion-model-based
classifiers have been shown to possess higher robustness to
adversarial examples or perturbations. This is a pertinent finding
since B. Horowitz & P. Melchior (2022) showed that the
powerful constraints derived from neural-network-based para-
meter inference may often come at the cost of their susceptibility
to slight perturbations that the canonical two-point correlation
based analyses are impervious to. We find that our diffusion-
model-based parameter inference approach enables more noise-
robust field-level inference. It would be interesting to further
explore the differences in inductive biases learned by discrimi-
native networks (e.g., F. Villaescusa-Navarro et al. 2021b;
D. Sharma et al. 2024a) relative to generative models repurposed
for discriminative tasks.

The simulation volume of the data set we work with is still
much smaller than the scales mapped by astrophysical surveys.
Future work could focus on scaling up to more survey-realistic
scenarios involving larger simulation volumes and directly
observed tracers. C. Cuesta-Lazaro & S. Mishra-Sharma (2024)
also showed that diffusion generative models that work with
point clouds can allow one to emulate and perform cosmolo-
gical parameter inference with point cloud data. Our explora-
tion into robustness could inform applications to real data, and
future investigation could focus on conferring and quantifying
robustness against other survey-related and observational noise
effects. Alternative formulations of the generative process
(A. Bansal et al. 2024; J. Wildberger et al. 2024) could also be
relevant to this exercise.

In this work, we demonstrated that a diffusion model can be
trained not just to emulate fields, but that its likelihood estimate
can be adapted to work with the HMC framework to derive
tight constraints on cosmological parameters. This makes a step
toward advancing the use of diffusion-model-based priors for a
range of downstream tasks from image generation and
restoration to inference problems.
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6. Code

The checkpoint used for the results in this paper is available on
Zenodo: doi:10.5281 /zenodo. 13993010 The code for this project
is available at Diffusion-HMC,'” with a current copy uploaded to
the above Zenodo DOI. We acknowledge F. Villaescusa-Nav-
arro et al. (2021b), Improved-Diffusion (A. Q. Nichol &
P. Dhariwal 2021), "' The Annotated Diffusion,'> DDPM, "
VDM (D. Kingma et al. 2021),'* and Y. Song et al. (2021) for
code snippets.

Packages: Hamiltorch (A. D. Cobb et al. 2019), Lampe
(F. Rozet et al. 2021), GNU Parallel (O. Tange 2018).
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Appendix A
Parameter Inference

Figure 8 plots the standard deviations of the noised
distributions as well as the signal-to- n01se ratio as a function
of time step. In Equation (5), we set M~ ' to be diagonal with
[1, 5]. Setting the inverse mass matrix in an HMC to be close to
the covariance of the expected posterior distribution helps the
chain explore the space better. In this case, we choose a step
size of 5 x 107, because of the steep gradient of the posterior
distribution with respect to €2,,. For parameter inference on a
field whose true €2, value is 0.101, i.e., on the prior boundary,
we need to further reduce the step size to 1 x 10~* in order for
the parameters to be accepted. We modified the Hamiltorch
package in order to generate samples. For Tyax = 20, we
compute the contributions to the VLB loss in batches of 10
time steps and accumulate the gradient contribution for each
batch. This enables us to compute the gradients with 1000 time
steps. The choice of mass matrix accelerates the chain’s
convergence to the correct region of parameter space for og.
We approximate log P (xo|@) with the truncated VLB in
Equation (4). While we do not compute the expectation over
multiple seeds within a single evaluation of Equation (5), for
speed every evaluation uses a different seed and noise pattern.
The prior is chosen to be a flat prior over €2, € [0.1, 0.5] and
og €[0.6, 1.0]:

Lyw=Lo+ Ly..Lr_1+ Lt
= E[—logp, (xol®)] < Byl DizlgCerlxo)||p Ger)]

+ > Drrlg (il 1, x0) | py (uilxi 1, 6))

=1

— log p; (xolx1, 0)]. (A1)
NOTATION:

1. xo: Normalized input field.

1
1
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2. ¢: Noise model (neural network).
3. #: Conditioning cosmology, i.e., a vector with €2, and oy,
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= —In Mxol 1, Bo)
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_y B0 B0 4 6 51y
» Bo
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X0, =

A.1. HMC Convergence

For a single field, we examine the convergence of
parameters, when the chain starts from different initial
parameters, in Figure 9. The chains are indistinguishable
beyond around 50 samples. We thus choose a burn-in of 100
samples. The R for both parameters computed using the
samples in [100-300] is 0.997. A R of greater than 1.1 usually
indicates that the chains have not converged and still retain
some memory of their initialization. While the R is theoreti-
cally expected to be around 1 or slightly greater, some
numerical variation about this expected value can result in
values that are slightly less than 1. The R is a measure of the
variance between chains divided by the variance within chains.

A.2. Parameter Estimation Baselines

Power spectrum NPE baseline. We use a masked auto-
regressive flow (G. Papamakarios et al. 2017) to implement the
normalizing flow that predicts the two-dimensional parameter
vector given the 129-dimensional feature vector for a single
field (128 bins for the power spectrum +1 for the mean of the
log fields). The power spectrum is the log of the overdensity
power spectrum of the (unlogged) fields. In Figure 6, the power
spectrum sample contours are smoothed by convolving with a
Gaussian kernel with a scale of 0.8 and the Diffusion-HMC
samples are smoothed by a kernel of 0.2. The ellipses in the
inset figure are computed using the covariance of the 400
diffusion model samples and finding the ellipses corresponding
to the 68.3%, 99.4%, and 99.7% confidence intervals, using the
eigen decomposition of the covariance.

A.3. Additional Robustness Tests

Dropping the prior. In Figure 10, we explore robustness
without the prior in the HMC setting, for the noise levels in
Figure 7 as well as with the addition of more noise. For small
amounts of noise (o = 0.01, 0.02), removing the prior does not
affect the bias of the Diffusion-HMC-inferred parameters since
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mixed by the cutoff we designate as our burn-in (100 samples), denoted by the dashed line.

the numbers in Figure 10 are identical/close to those in
Figure 7. For noise with a scale of 0.05, the Diffusion-HMC
constraints are more perturbed for €2, but more robust for og
relative to the neural-network baseline. A standard deviation of
0.05 is equivalent to the diffusion noising time steps between
the 1st and the 2nd time steps, while {0.01, 0.02} are less than
the first time step. Note, we plot the power spectra of the “true”
(linear) mass density field in these figures, to be consistent with
the power spectra in Figures 1 and 2. However, the noise is
added to the log of the field. Thus, while the effect on the linear
power spectrum is mild (around 5% at the smallest scales), for
0 =0.05 the effect on the power spectrum of the log field is
around 35% at the smallest scales.

Dropping initial time steps. In the left panel of Figure 5, we
observed that the isolated effect of the smallest time steps also

11

had the strongest constraints. We thus ask the question: If we
perform parameter inference in a setting where there is some
knowledge of the amount of noise added, can dropping time
steps confer additional robustness? In Figure 11, we add a
comparison for the noising amounts corresponding to 0.02 and
0.05 and drop the first two time steps. The rest of the setting is
the same as in Figure 10, i.e., we also drop the prior. We find
that dropping these time steps confers greater robustness on the
estimates, without noticeably reducing confidence. While we
defer a more rigorous investigation to future work, the prospect
of using the knowledge of the amount of noise added to
strategically drop time steps could be of interest, reminiscent of
scale-dependent analyses and scale cuts in other cosmological
analysis methods (E. Krause et al. 2017; B. Dai &
U. Seljak 2024).



THE ASTROPHYSICAL JOURNAL, 978:64 (14pp), 2025 January 01

1.050

1.025

1.000

0.975

0.950

Predicted

0.3

Qp:

o
©

o
®

Predicted

og:
3

=
=)

12

14 12 1

Perturbed Pk Ratio

4

Perturbed Pk Ratio

12 14

Perturbed Pk Ratio

Mudur, Cuesta-Lazaro, & Finkbeiner

12 14

Perturbed Pk Ratio

1.04
1.04 1.06
1.03 1.02
1.04
1.02 1.00
1.01 1.02 0.98
1.00 1.00 0.96
10! 10% 10! 10? 10! 10% 10! 10?
k(h Mpc™t) k(h Mpc™t) k(h Mpc™!) k(h Mpc™t)
T 29+ 0.01e, e ~ N(0,1) 2+ 0.02¢,€ ~ N(0,1) 2 + 0.05¢, € ~ N(0,1)
1 Diffusion-HMC v

InfNet

1.0%
2.5% 0.0 -
0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4
Q: True Q. True Q. True Q. True
; 1.5%
0.8%
0.6 0.8 1.0 0.6 0.8 1.0 0.6 0.8 1.0 0.6 0.8 1.0
og: True og: True og: True og: True
Figure 10. Robustness comparison without a prior applied in the HMC case.
2o+ 0.02¢, ¢ ~ N(0,1) xo + 0.05¢, € ~ N(0,1)
0.5F ' ' ' 0.5F ' ' ‘
1 Diffusion-HMC 1 Diffusion-HMC
T 04 InfNet 104 InfNet
£ £
203 1203 =
A ~
- s 9
g 99 ¢ .
S 0.2 2.2 102
74
0.1 - ;
0.1f ) ) ) ] ) ' ) ) ) )
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
Q: True Q. True
1.0 1.2 -
o el .
5] Jif -
B kst i z
ks < 1.0
[} [}
208 14
& &0.38
0.6 . .1 06 . . , ]
0.6 0.7 0.8 0.9 1.0 0.6 0.7 0.8 0.9 1.0
og: True og: True

Figure 11. Robustness comparison with the first two noising time steps dropped and without a prior applied in the HMC case.

12



THE ASTROPHYSICAL JOURNAL, 978:64 (14pp), 2025 January 01

Appendix B
Summary Statistics

B.1. Reduced Chi-squared Statistics

For the CV fields, where we have 450 samples of the true
and generated fields for a single parameter, we compute the
reduced chi-squared statistic using an estimate of the
covariance between different k bins. The number of k bins
here is 35:

H= <PkRef>
C =Cov [PkRef]

C1:C_1N—p—2

Bl
N—1 (B1)
X2 (Phres) = 3 (Phrest — 1) - (C ' (Phrey — w7, (B2)
k

For the LH fields during model selection, since we just have
15 fields in the true data set we cannot reliably estimate a
covariance. We use the following formula instead. The number

Pk of the Linear Fields

PE of the Log Fields
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of k bins here is 128:
1

o

|kl %

(P (k) — (P(k)TRUE))*
o[P(k)rrueP

Xi(s) = (B3)

B.2. Across Checkpoints

For the eight checkpoints we generated 500 fields, with 50
fields for each of the 10 validation parameters. We then
examined the reduced chi-squared statistic of the power spectra
of the log fields, the linear fields, and the p-values of the means
of the distributions of true and generated fields in Figure 12. A
value of less than 0.05 would indicate that the two distributions
of the means are statistically different. The p-values are above
0.05 for all eight checkpoints. Since these comparisons are
limited by the number of samples in the true set for each
parameter (15), we additionally plot the reduced chi-squared
statistic derived by using each true field as the test and the other
14 fields as the reference. While there is some oscillation across
checkpoints for each of these three statistics, the variation
appears random.
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Figure 12. Mean and standard error on the mean for the reduced xf statistic of the power spectra of the 50 linear (left) and log (center) fields for each parameter
relative to the 15 true fields’ power spectra for that parameter, across 10 different parameters for each of eight checkpoints. The dashed line demarcates the mean
reduced Xf of the true fields using the other 14 true fields as the reference distribution (leave-one-out). Right: mean and standard error on the mean of the p-values of
the distribution of the means of the 50 generated log fields relative to the distribution of the means of the 15 true fields for the same parameter. The p-values are above

0.05 for all of the eight checkpoints.
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