
Citation: Michaud, E.J.; Liao, I.; Lad,

V.; Liu, Z.; Mudide, A.; Loughridge,

C.; Guo, Z.C.; Kheirkhah, T.R.;

Vukelić, M.; Tegmark, M. Opening the

AI Black Box: Distilling Machine-

Learned Algorithms into Code.

Entropy 2024, 26, 1046. https://

doi.org/10.3390/e26121046

Received: 7 September 2024

Revised: 2 November 2024

Accepted: 22 November 2024

Published: 2 December 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Opening the AI Black Box: Distilling Machine-Learned
Algorithms into Code
Eric J. Michaud 1,2,†, Isaac Liao 3,†, Vedang Lad 3,†, Ziming Liu 1,2,†, Anish Mudide 3, Chloe Loughridge 4,
Zifan Carl Guo 3, Tara Rezaei Kheirkhah 3, Mateja Vukelić 3 and Max Tegmark 1,2,*

1 Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
ericjm@mit.edu (E.J.M.); zmliu@mit.edu (Z.L.)

2 Institute for Artificial Intelligence and Fundamental Interactions, Cambridge, MA 02139, USA
3 Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology,

Cambridge, MA 02139, USA; iliao@mit.edu (I.L.); vedang@mit.edu (V.L.); amudide@mit.edu (A.M.);
carlguo@mit.edu (Z.C.G.); tarark@mit.edu (T.R.K.); mvukelic@mit.edu (M.V.)

4 Harvard College, Cambridge, MA 02138, USA; cloughridge@college.harvard.edu
* Correspondence: tegmark@mit.edu
† These authors contributed equally to this work.

Abstract: Can we turn AI black boxes into code? Although this mission sounds extremely challenging,
we show that it is not entirely impossible by presenting a proof-of-concept method, MIPS, that can
synthesize programs based on the automated mechanistic interpretability of neural networks trained
to perform the desired task, auto-distilling the learned algorithm into Python code. We test MIPS on a
benchmark of 62 algorithmic tasks that can be learned by an RNN and find it highly complementary
to GPT-4: MIPS solves 32 of them, including 13 that are not solved by GPT-4 (which also solves 30).
MIPS uses an integer autoencoder to convert the RNN into a finite state machine, then applies Boolean
or integer symbolic regression to capture the learned algorithm. As opposed to large language models,
this program synthesis technique makes no use of (and is therefore not limited by) human training
data such as algorithms and code from GitHub. We discuss opportunities and challenges for scaling
up this approach to make machine-learned models more interpretable and trustworthy.

Keywords: mechanistic interpretability; program synthesis

1. Introduction

Machine-learned algorithms now outperform traditional human-discovered algo-
rithms on many tasks, from translation to general-purpose verbal reasoning. These learned
algorithms tend to be black box neural networks, and we typically lack a full understanding
of how they work. This is part of the reason why many leading AI researchers and business
leaders have warned that the seemingly unstoppable race toward ever-more-powerful AI
could end badly for humanity [1]. Regardless of one’s views on this controversial matter,
there is broad agreement that improved reliability and trustworthiness are valuable as AI
becomes ever more capable [2,3].

Our research question is as follows: How can we ensure that AI models are truly
implementing their intended functions? Without formal proof, we can never be certain. We
propose transforming AI models into programs that can be formally verified. Yet formal
verification, the gold standard for reliability, is widely viewed as unattainable for powerful
AI systems because

1. Neural networks seem too messy to formally verify;
2. Mechanistic interpretability converting learned powerful neural network algorithms

into formally verifiable code seems too hard and labor-intensive.

Our paper aims to inject optimism into this field by taking a small but nontrivial step
toward showing that automatic mechanistic interpretability (AutoMI) is not impossible,

Entropy 2024, 26, 1046. https://doi.org/10.3390/e26121046 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e26121046
https://doi.org/10.3390/e26121046
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-7670-7190
https://doi.org/10.3390/e26121046
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e26121046?type=check_update&version=1

Entropy 2024, 26, 1046 2 of 32

where AutoMI means black box models can be turned into programs automatically without
human inspection. Specifically, we present a proof-of-concept method, MIPS (mechanistic-
interpretability-based program synthesis), which can distill simple learned algorithms from
neural networks into Python code, for small-scale algorithmic tasks. The main goal of this
paper is not to present a method that fully solves AutoMI, but to demonstrate progress
toward AutoMI with a simple proof of concept. The rest of this paper is organized as
follows. After reviewing prior work in Section 2, we present our method in Section 3, test it
on a benchmark in Section 4 and summarize our conclusions in Section 5.

2. Related Work

Program synthesis is a venerable field dating back to Alonzo Church in 1957; Zhou
and Ding [4] and Odena et al. [5] provide recent reviews of the field. Large language
models (LLMs) have become increasingly good at writing code based on verbal problem
descriptions or auto-complete. We instead study the common alternative problem setting
known as “programming by example” (PBE), where the desired program is specified by
giving examples of input–output pairs [6]. The aforementioned papers review a wide
variety of program synthesis methods, many of which involve some form of search over
a space of possible programs. LLMs that synthesize code directly have recently become
quite competitive with such search-based approaches [7]. Our work provides an alternative
search-free approach where the program learning happens during neural network training
rather than execution.

Our work builds on the recent progress in mechanistic interpretability (MI) of neural
networks [8–11]. Much MI work has tried to understand how neural networks represent
various types of information, e.g., geographic information [12–14], truth [15,16] and the
state of board games [17–19]. Another major MI thrust has been to understand how neural
networks perform algorithmic tasks, e.g., modular arithmetic [20–23] and other group
operations [24], greater than [25], and greatest common divisor [26]. The key step of
mechanistic interpretability is to look into discovering structures in hidden representations.
In this paper, we manage to discover bit representations, integer representations, and
clusters (finite state machines).

Whereas Lindner et al. [27] automatically convert traditional code into a neural net-
work, we aim to do the opposite, as was also recently demonstrated in Friedman et al. [28].
One direction in automating mechanistic interpretability uses LLMs to label internal
units of neural networks such as neurons [29] and features discovered by sparse autoen-
coders [30,31]. Another recent effort in automating MI involves automatically identifying
which internal units causally influence each other and the network output for a given set
of inputs, [32–34]. However, these methods do not automatically generate pseudocode
or give a description of how the states of downstream units are computed from upstream
units, which we aim to do in this work.

In this work, we focus on automating mechanistic interpretability for recurrent neural
networks (RNNs), building on the rich existing literature on interpreting RNN inter-
nals [35,36] and on extracting finite state machines from trained RNNs [36–41]. In our work,
we seek exceptionally simple descriptions of RNNs by factoring network hidden states into
discrete variables and representing state transitions with symbolic formulae.

3. MIPS, Our Program Synthesis Algorithm

As summarized in Figure 1, MIPS involves the following key steps.

1. Neural network training;
2. Neural network simplification;
3. Finite state machine extraction;
4. Symbolic regression.

Entropy 2024, 26, 1046 3 of 32

Figure 1. The pipeline of our program synthesis method. MIPS relies on discovering integer
representations and bit representations of hidden states, which enable regression methods to figure
out the exact symbolic relations between input, hidden, and output states.

Step 1 is to train a black box neural network to learn an algorithm that performs the
desired task. In this paper, we use a recurrent neural network (RNN) of the general form

hi = f (hi−1, xi), (1)

yi = g(hi), (2)

that maps input vectors xi into output vectors yi via hidden states hi. The RNN is defined
by the two functions f and g, which are implemented as feed-forward neural networks
(MLPs) to allow more model expressivity than a vanilla RNN. The techniques described
below can also be applied to more general neural network architectures.

Step 2 attempts to automatically simplify the learned neural network without reducing
its accuracy. Steps 3 and 4 automatically distill this simplified learned algorithm into Python
code. When the training data are discrete (consisting of, say, text tokens, integers, or pixel
colors), the neural network will be a finite state machine: the activation vectors for each of
its neuron layers define finite sets and the entire working of the network can be defined
by look-up tables specifying the update rules for each layer. For our RNN, this means
that the space of hidden states h is discrete, so the functions f and g can be defined by
lookup tables. As we will see below, the number of hidden states that MIPS needs to
keep track of can often be greatly reduced by clustering them, corresponding to learned
representations. After this, the geometry of the cluster centers in the hidden space often
reveals that they form either an incomplete multidimensional lattice whose points represent
integer tuples, or a set whose cardinality is a power of two, whose points represent Boolean
tuples. In both of these cases, the aforementioned lookup tables simply specify integer or
Boolean functions, which MIPS attempts to discover via symbolic regression. Below, we
present an integer autoencoder and a Boolean autoencoder to discover such integer/Boolean
representations from arbitrary point sets.

We will now describe each of the three steps of MIPS in greater detail.

Entropy 2024, 26, 1046 4 of 32

3.1. AutoML Optimizing for Simplicity

We wish to find the simplest RNN that can learn our task, to facilitate subsequent
discovery of the algorithm that it has learned. We therefore implement an AutoML-style
neural architecture search that tries to minimize network size while achieving perfect test
accuracy. This search space is defined by a vector p of five main architecture hyperparame-
ters: the five integers p = (n, w f , d f , wg, dg) corresponding to the dimensionality of hidden
state h, the width and depth of the f -network, and the width and depth of the g-network,
respectively. Both the f - and g-networks have a linear final layer and ReLU activation
functions for all previous layers. The hidden state h0 is initialized to zero.

To define the parameter search space, we define ranges for each parameter. For all
tasks, we use n ∈ {1, 2, . . . , 128}, w f ∈ {1, 2, . . . , 256}, d f ∈ {1, 2, 3}, wg ∈ {1, 2, . . . , 256}
and dg ∈ {1, 2, 3}, so the total search space consists of 128 × 256 × 3 × 256 × 3 = 75,497,472
hyperparameter vectors pi. We order this search space by imposing a strict ordering on
the importance of minimizing each hyperparameter –lower dg is strictly more important
than lower d f , which is strictly more important than lower n, which is strictly more
important than lower wg, which is strictly more important than lower w f . We aim to find
the hyperparameter vector (integer 5-tuple) pi in the search space that has the lowest rank i
under this ordering.

We search the space in the following simple manner. We first start at index i = 65,536,
which corresponds to parameters (1, 1, 2, 1, 1). For each parameter tuple, we train networks
using five different seeds. We use the loss function ℓ(x, y) = 1

2 log[1 + (x − y)2], finding
that it leads to more stable training than using vanilla MSE loss. We train for either 10,000
or 20,000 steps, depending on the task, using the Adam optimizer, a learning rate of 10−3,
and batch size 4096. The test accuracy is evaluated with a batch of 65536 samples. If no
networks achieve 100% test accuracy (on any test batch), we increase i by 21/4. We proceed
in this manner until we find a network where one of the seeds achieves perfect test accuracy
or until the full range is exhausted. If we find a working network on this upwards sweep,
we then perform a binary search using the interval halving method, starting from the
successful i, to find the lowest i where at least one seed achieves perfect test accuracy.

3.2. Auto-Simplification

After finding a minimal neural network architecture that can solve a task, the resulting
neural network weights typically seem random and un-interpretable. This is because there
exist symmetry transformations of the weights that leave the overall input–output behavior
of the neural network unchanged. The random initialization of the network has therefore
caused random symmetry transformations to be applied to the weights. In other words,
the learned network belongs to an equivalence class of neural networks with identical
behavior and performance, corresponding to a submanifold of the parameter space. We
exploit these symmetry transformations to simplify the neural network into a normal form,
which in a sense is the simplest member of its equivalence class. Conversion of objects into
a normal/standard form is a common concept in mathematics and physics (for example,
conjunctive normal form, wavefunction normalization, reduced row echelon form, and
gauge fixing).

Two of our simplification strategies below exploit a symmetry of the RNN hidden state
space h. We can always write the MLP g in the form g(h) = G(Uh+ c) for some function G.
So if f is affine, i.e., of the form f (h, x) = Wh + Vx + b, then the symmetry transformation

W′ ≡ AWA−1, V′ = AV, U′ = UA−1, h′ ≡ Ah, b′ = Ab keeps the RNN in the
same form:

h′
i = Ahi = AWA−1Ahi−1 + AVxi + Ab

= W′−1h′
i−1 + V′xi + b′, (3)

yi = G(Uhi + c) = G(UA−1h′
i + c)

= G(U′h′
i + c). (4)

Entropy 2024, 26, 1046 5 of 32

We think of neural networks as nails, which can be hit by various auto-normalization
hammers. Each hammer is an algorithm that applies transformations to the weights to
remove degrees of freedom caused by extra symmetries or cleans the neural network up
in some other way. In this section, we describe five normalizers we use to simplify our
trained networks, termed “Whitening”, “Jordan normal form”, “Toeplitz”, “De-bias”, and
“Quantization”. For every neural network, we always apply this sequence of normalizers in
that specific order, for consistency. We describe them below and provide additional details
about them in the Appendix D.

1. Whitening: Just as we normalize input data to use for training neural networks,
we would like activations in the hidden state space hi to be normalized. To ensure
normalization in all directions, we feed the training dataset into the RNN, collect all
the hidden states, compute the uncentered covariance matrix C, and then apply a
whitening transform h 7→ C−1/2h to the hidden state space so that its new covariance
becomes the identity matrix. This operation exists purely to provide better numerical
stability to the next step.

2. Jordan normal form: When the function g is affine, we can apply the aforementioned
symmetry transformation to try to diagonalize W, so that none of the hidden state
dimensions interact with one another. Unfortunately, not all matrices W can be
diagonalized, so we use a generalized alternative: the Jordan normal form, which
allows elements of the superdiagonal to be either zero or one. To eliminate complex
numbers, we also apply 2 × 2 unitary transformations to eigenvectors corresponding
to conjugate pairs of complex eigenvalues afterward. The aforementioned whiten-
ing is now ruined, but it helped make the Jordan normal form calculation more
numerically stable.

3. Toeplitz: Once W is in a Jordan normal form, we divide it up into Jordan blocks and
apply upper-triangular Toeplitz transformations to the dimensions belonging to each
Jordan block. There is now an additional symmetry, corresponding to multiplying
each Jordan block by an upper triangular Toeplitz matrix, and we exploit the Toeplitz
matrix that maximally simplifies the aforementioned V-matrix.

4. De-bias: Sometimes W is not full rank, and b has a component in the direction of the
nullspace. In this case, the component can be removed, and the bias c can be adjusted
to compensate.

5. Quantization: After applying all the previous normalizers, many of the weights may
have become close to integers, but not exactly due to machine precision and training
imperfections. Sometimes, depending on the task, all of the weights can become
integers. We therefore round any weights that are within ϵ ≡ 0.01 of an integer to
that integer.

3.3. Boolean and Integer Autoencoders

As mentioned, our goal is to convert a trained recurrent neural network (RNN) into a
maximally simple (Python) program that produces equivalent input–output behavior. This
means that if the RNN has 100% accuracy for a given dataset, so should the program, with
the added benefit of being more interpretable, precise, and verifiable.

Once trained/written, the greatest difference between a neural network and a program
implementing the same finite state machine is that the former is fuzzy and continuous,
while the latter is precise and discrete. To convert a neural network to a program, some
discretization (“defuzzification”) process is needed to extract precise information from
seemingly noisy representations. Fortunately, mechanistic interpretability research has
shown that neural networks tend to learn meaningful, structured knowledge represen-
tations for algorithmic tasks [20,21]. Previous interpretability efforts typically involved
case-by-case manual inspection and only gained algorithmic understanding at the level of
pseudocode at best. We tackle this more ambitious question: Can we create an automated
method that distills the learned representation and associated algorithms into an equivalent
(Python) program?

Entropy 2024, 26, 1046 6 of 32

Since the tasks in our benchmark involve bits and integers, which are already discrete,
the only non-discrete parts in a recurrent neural network are its hidden representations.
Here, we show two cases when hidden states can be discretized: they are (1) a bit represen-
tation or (2) a (typically incomplete) integer lattice. Generalizing to the mixed case of bits
and integers is straightforward. Figure 2 shows all hidden state activation vectors hi for
all steps with all training examples for two of our tasks. The left panel shows that the 104

points hi form 22 = 4 tight clusters, which we interpret as representing two bits. The right
panel reveals that the points hi form an incomplete 2D lattice that we interpret as secretly
representing a pair of integers.

0.6 0.4 0.2 0.0 0.2 0.4 0.6
First hidden dimension

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Se
co

nd
 h

id
de

n
di

m
en

sio
n

Bit representation (binary_addition)

50 45 40 35 30 25 20
First hidden dimension

70

75

80

85

90

95

100

Se
co

nd
 h

id
de

n
di

m
en

sio
n

Integer lattice (sum_last2)

Figure 2. These hidden structures can be turned into discrete representations. Left: bitstring
addition, corresponding to 2 bits: the output bit and the carry bit. Right: Sum_Last2 task, 2D
lattice corresponding to two integers.

3.3.1. Bit Representations

The hidden states for the two bits in Figure 2 are seen to form a parallelogram. More
generally, we find that hidden states encode b bits as 2b clusters, which in some cases form
b-dimensional parallelograms and in other cases look more random. Our algorithm tries
all (2b)! possible assignments of the 2b clusters to bitstrings of length b and selects the
assignment that minimizes the length of the resulting Python program.

3.3.2. Integer Lattice

As seen in Figure 2, the learned representation of an integer lattice tends to be both
non-square (deformed by a random affine transformation) and sparse (since not all integer
tuplets occur during training). We thus face the following problem: given (possibly sparse)
samples of points hi from an n-dimensional lattice, how can we reconstruct the integer
lattice in the sense that we figure out which integer tuple each lattice point represents?
We call the solution an integer autoencoder since it compresses any point set into a set of
integer tuples from which the original points can be at least approximately recovered as
hi = Aki + b, where A is a matrix and b is a vector that defines the affine transformation
and a set of integer vectors ki.

In the Appendix A, we present a solution that we call the GCD lattice finder. For
the special case n = 1, its core idea is to compute the greatest common denominator of
pairwise separations: for example, for the points {1.7, 3.2, 6.2, 7.7...}, all point separations
are divisible by A = 1.5, from which one infers that b = 0.2 and the lattice can be rewritten
as 1.5 × {1, 2, 4, 5} + 0.2. For multidimensional lattices, our algorithm uses the GCD of
ratios of generalized cell volumes to infer the directions and lengths of the lattice vectors
that form the columns of A.

Entropy 2024, 26, 1046 7 of 32

For the special case where the MLP defining the function f is affine or can be accurately
approximated as affine, we use a simpler method we term the Linear lattice finder, also
described in Appendix B. Here, the idea is to exploit the fact that the lattice is simply an
affine transformation of a regular integer lattice (the input data), so we can simply “read
off" the desired lattice basis vectors from this affine transformation.

3.3.3. Symbolic Regression

Once the hidden states hi have been successfully mapped to Boolean or integer tuples
as described above, the functions f and g that specify the learned RNN can be re-expressed
as lookup tables, showing their Boolean/integer output tuple for each Boolean/integer
input tuple. All that remains is now symbolic regression, i.e., discovering the simplest
possible symbolic formulae that define f and g.

3.3.4. Boolean Regression

In the case where a function maps bits to a bit, our algorithm determines the following
set of correct Boolean formulae and then returns the shortest one. The first candidate
formula is the function written in disjunctive normal form, which is always possible. If the
Boolean function is symmetric, i.e., invariant under all permutations of its arguments, then
we also write it as an integer function of its bit sum.

3.3.5. Integer Regression

In the case when a function maps integers to an integer, we try the following
two methods:

1. If the function is linear, then we perform simple linear regression, round the resulting
coefficients to integers, and simplify, e.g., multiplications by 0 and 1.

2. Otherwise, we use the brute force symbolic solver from AI Feynman [42], including
the six unary operations {>,<,∼, H, D, A} and four binary operations {+,−, ∗, %},
whose meanings are explained in Appendix C, then convert the simplest discovered
formula into Python format.

Once symbolic formulas have been separately discovered for each component of
the vector-valued functions f and g, we insert them into a template Python program
that implements the basic loop over inputs that are inherent in an RNN. We present
examples of our auto-generated programs in Figures 3 and 4 and in Appendix G. Most
hyperparameters are thresholds. For example, when a lattice has a reconstruction error
ϵ below some threshold θ, we claim an integer lattice has been detected. Since we define
the reconstruction errors to be dimensionless, it is clear that ϵ = 1 means no structure is
detected and ϵ = 0 means perfect integer lattices. We find our results to be fairly robust
with respect to θ; e.g., θ = 10−2 − 10−1 would yield the same results.

1

2 def f(s,t):
3 a = 0;b = 0;
4 ys = []
5 for i in range (10):
6 c = s[i]; d = t[i];
7 next_a = b ^ c ^ d
8 next_b = b+c+d>1
9 a = next_a;b = next_b;

10 y = a
11 ys.append(y)
12 return ys

Figure 3. The generated program for the addition of two binary numbers represented as bit sequences.
Note that MIPS rediscovers the “ripple adder”, where the variable b above is the carry bit.

Entropy 2024, 26, 1046 8 of 32

1 def f(s):
2 a = 198;b = -11;c = -3;d = 483;e = 0;
3 ys = []
4 for i in range (20):
5 x = s[i]
6 next_a = -b+c+190
7 next_b = b-c-d-e+x+480
8 next_c = b-e+8
9 next_d = -b+e-x+472

10 next_e = a+b-e-187
11 a = next_a;b = next_b;c = next_c;d = next_d;e = next_e;
12 y = -d+483
13 ys.append(y)
14 return ys

1 def f(s):
2 a = 0;b = 0;c = 0;d = 0;e = 0;
3 ys = []
4 for i in range (20):
5 x = s[i]
6 next_a = +x
7 next_b = a
8 next_c = b
9 next_d = c

10 next_e = d
11 a = next_a;b = next_b;c = next_c;d = next_d;e = next_e;
12 y = a+b+c+d+e
13 ys.append(y)
14 return ys

Figure 4. Comparison of code generated from an RNN trained on Sum_Last5, without (top) and with
(bottom) normalizers.

4. Results

We will now test the program synthesis abilities of our MIPS algorithm on a benchmark
of algorithmic tasks specified by numerical examples. For comparison, we try the same
benchmark on GPT-4 Turbo, which is currently (as of January 2024) described by OpenAI
as their latest generation model, with a 128k context window and more capable than the
original GPT-4.

4.1. Benchmark

Our benchmark consists of the 62 algorithmic tasks listed in Table 1. They each map
one or two integer lists of length 10 or 20 into a new integer list. We refer to integers
whose range is limited to {0, 1} as bits. We generated this task list manually, attempting to
produce a collection of diverse tasks that would in principle be solvable by an RNN. We
also focused on tasks whose known algorithms involved majority, minimum, maximum,
and absolute value functions because we believed they would be more easily learnable than
other nonlinear algorithms due to our choice of the ReLU activation for our RNNs. The
benchmark training data and project code are available at https://github.com/ejmichaud/
neural-verification (accessed on 26 November 2024). The tasks are described in Table 1,
with additional details in Appendix E. The benchmark aims to cover a diverse range of
algorithmic tasks. To balance between different families, when a group of tasks is similar
(e.g., summing up the last k bits), our convention is to keep (at most) six of them.

Since the focus of our paper is not on whether RNNs can learn algorithms, but on
whether learned algorithms can be auto-extracted into Python, we discarded from our
benchmark any generated tasks on which our RNN training failed to achieve 100% accuracy.

Our benchmark can never show that MIPS outperforms any large language model
(LLM). Because LLMs are typically trained on GitHub, many LLMs can produce Python
code for complicated programming tasks that fall outside of the class we study. Instead, the
question that our MIPS-LLM comparison addresses is whether MIPS complements LLMs
by being able to solve some tasks where an LLM fails.

https://github.com/ejmichaud/neural-verification
https://github.com/ejmichaud/neural-verification

Entropy 2024, 26, 1046 9 of 32

Table 1. Benchmark results. For tasks with the note “see text”, please refer to Appendix E. The last
column highlights the MIPS module responsible for each task. BR = boolean regression, LR = linear
regression, SR = symbolic regression, and NA means MIPS is not expected to solve this problem.
Green means success and red means failure.

Task
#

Input
Strings

Element
Type Task Description Task Name

Solved
by
GPT-4?

Solved
by
MIPS?

MIPS
Module

1 2 bit Binary addition of two bit strings Binary_Addition 0 1 BR
2 2 int Ternary addition of two digit strings Base_3_Addition 0 0 SR
3 2 int Base 4 addition of two digit strings Base_4_Addition 0 0 SR
4 2 int Base 5 addition of two digit strings Base_5_Addition 0 0 SR
5 2 int Base 6 addition of two digit strings Base_6_Addition 1 0 SR
6 2 int Base 7 addition of two digit strings Base_7_Addition 0 0 SR
7 2 bit Bitwise XOR Bitwise_Xor 1 1 BR
8 2 bit Bitwise OR Bitwise_Or 1 1 BR
9 2 bit Bitwise AND Bitwise_And 1 1 BR
10 1 bit Bitwise NOT Bitwise_Not 1 1 BR
11 1 bit Parity of last 2 bits Parity_Last2 1 1 BR
12 1 bit Parity of last 3 bits Parity_Last3 0 1 BR
13 1 bit Parity of last 4 bits Parity_Last4 0 0 BR
14 1 bit Parity of all bits seen so far Parity_All 0 1 BR
15 1 bit Parity of number of zeros seen so far Parity_Zeros 0 1 BR
16 1 int Cumulative number of even numbers Evens_Counter 0 0 BR
17 1 int Cumulative sum Sum_All 1 1 LR
18 1 int Sum of last 2 numbers Sum_Last2 0 1 LR
19 1 int Sum of last 3 numbers Sum_Last3 0 1 LR
20 1 int Sum of last 4 numbers Sum_Last4 1 1 LR
21 1 int Sum of last 5 numbers Sum_Last5 1 1 LR
22 1 int sum of last 6 numbers Sum_Last6 1 1 LR
23 1 int Sum of last 7 numbers Sum_Last7 1 1 LR
24 1 int Current number Current_Number 1 1 LR
25 1 int Number 1 step back Prev1 1 1 LR
26 1 int Number 2 steps back Prev2 1 1 LR
27 1 int Number 3 steps back Prev3 1 1 LR
28 1 int Number 4 steps back Prev4 1 1 LR
29 1 int Number 5 steps back Prev5 1 1 LR
30 1 int 1 if last two numbers are equal Previous_Equals_Current 0 1 SR
31 1 int current − previous Diff_Last2 0 1 SR
32 1 int |current − previous| Abs_Diff 0 1 SR
33 1 int |current| Abs_Current 1 1 SR
34 1 int |current| − |previous| Diff_Abs_Values 1 0 SR
35 1 int Minimum of numbers seen so far Min_Seen 1 0 SR
36 1 int Maximum of integers seen so far Max_Seen 1 0 SR
37 1 int integer in 0-1 with highest frequency Majority_0_1 1 0 SR
38 1 int Integer in 0-2 with highest frequency Majority_0_2 0 0 SR
39 1 int Integer in 0-3 with highest frequency Majority_0_3 0 0 SR
40 1 int 1 if even, otherwise 0 Evens_Detector 1 0 SR
41 1 int 1 if perfect square, otherwise 0 Perfect_Square_Detector 0 0 SR
42 1 bit 1 if bit string seen so far is a palindrome Bit_Palindrome 1 0 NA
43 1 bit 1 if parentheses balanced so far, else 0 Balanced_Parenthesis 0 0 SR
44 1 bit Number of bits seen so far mod 2 Parity_Bits_Mod2 1 0 BR
45 1 bit 1 if last 3 bits alternate Alternating_Last3 0 0 BR
46 1 bit 1 if last 4 bits alternate Alternating_Last4 1 0 BR
47 1 bit bit shift to right (same as prev1) Bit_Shift_Right 1 1 LR
48 2 bit Cumulative dot product of bits mod 2 Bit_Dot_Prod_Mod2 0 1 BR
49 1 bit Binary division by 3 (see text) Div_3 1 0 SR
50 1 bit Binary division by 5 (see text) Div_5 0 0 SR

Entropy 2024, 26, 1046 10 of 32

Table 1. Cont.

Task
#

Input
Strings

Element
Type Task Description Task Name

Solved
by
GPT-4?

Solved
by
MIPS?

MIPS
Module

51 1 bit Binary division by 7 (see text) Div_7 0 0 SR
52 1 int Cumulative addition modulo 3 Add_Mod_3 1 1 SR
53 1 int Cumulative addition modulo 4 Add_Mod_4 0 0 SR
54 1 int Cumulative addition modulo 5 Add_Mod_5 0 0 SR
55 1 int Cumulative addition modulo 6 Add_Mod_6 0 0 SR
56 1 int Cumulative addition modulo 7 Add_Mod_7 0 0 SR
57 1 int Cumulative addition modulo 8 Add_Mod_8 0 0 SR
58 1 int 1D dithering, 4-bit to 1-bit (see text) Dithering 1 0 NA
59 1 int Newton’s of - freebody (integer input) Newton_Freebody 0 1 LR
60 1 int Newton’s law of gravity (see text) Newton_Gravity 0 1 LR
61 1 int Newton’s law w. spring (see text) Newton_Spring 0 1 LR
62 2 int Newton’s law w. magnetic field (see text) Newton_Magnetic 0 0 LR

Total solved 30 32

4.2. Evaluation

For both our method and GPT-4 Turbo, a task is considered solved if and only if
a Python program is produced that solves the task with 100% accuracy. GPT-4 Turbo
is prompted using the “chain-of-thought” approach described below and illustrated
in Figure 5.

Conversation Start

User: "Each row
in the table below

contains two
lists...give me a
formula for ..."

GPT: [Response]

User: "Please
write a Python
program to ..."

GPT: [Response]

Extracted Code Block

Success or Failure?

Success Failure

Figure 5. We compare MIPS against program synthesis with the large language model GPT-4 Turbo,
prompted with a “chain-of-thought” approach. It begins with the user providing a task, followed by
the model’s response, and culminates in assessing the success or failure of the generated Python code
based on its accuracy in processing the provided lists.

For a given task, the LLM receives two lists of length 10 sourced from the respective
RNN training set. The model is instructed to generate a formula that transforms the
elements of list “x” (features) into the elements of list “y” (labels). Subsequently, the model
is instructed to translate this formula into Python code. The model is specifically asked
to use elements of the aforementioned lists as a test case and print “Success” or “Failure”

Entropy 2024, 26, 1046 11 of 32

if the generated function achieves full accuracy on the test case. An external program
extracts a fenced markdown codeblock from the output, which is saved to a separate file
and executed to determine if it successfully completes the task. To improve the chance of
success, this GPT-4 Turbo prompting process is repeated three times, requiring only at least
one of them to succeed. We run GPT using default temperature settings.

4.3. Performance

As seen in Table 1, MIPS is highly complementary to GPT-4 Turbo: MIPS solves 32 of
our tasks, including 13 that are not solved by ChatGPT-4 (which solves 30).

The AutoML process of Section 3.1 discovers networks of varying task-dependent
shape and size. Table A1 shows the parameters p discovered for each task. Across our
62 tasks, 16 tasks could be solved by a network with hidden dimensions n = 1, and the
largest n required was 81. For many tasks, there was an interpretable meaning to the shape
of the smallest network we discovered. For instance, on tasks where the output is the
element occurring k steps earlier in the list, we found n = k + 1, since the current element
and the previous k elements must be stored for later recall.

We found two main failure modes for MIPS:

1. Noise and non-linearity. The latent space is still close to being a finite state machine,
but the non-linearity and/or noise present in an RNN is so dominant that the integer
autoencoder fails, e.g., for Diff_Abs_Values. Humans can stare at the lookup table
and regress the symbolic function with their brains, but since the lookup table is not
perfect, i.e., it has the wrong integer in a few examples, MIPS fails to symbolically
regress the function. This can probably be mitigated by learning and generalizing
from a training subset with a smaller dynamic range.

2. Continuous computation. A key assumption of MIPS is that RNNs are finite-state ma-
chines. However, RNNs can also use continuous variables to represent information—the
Majority_0_X tasks fail for this reason. This can probably be mitigated by identifying
and implementing floating-point variables.

Figure 3 shows an example of a MIPS rediscovering the “ripple-carry adder” algorithm.
The normalizers significantly simplified some of the resulting programs, as illustrated
in Figure 4, and sometimes made the difference between MIPS failing and succeeding.
We found that applying a small L1 weight regularization sometimes facilitated integer
autoencoding by axis-aligning the lattice.

5. Discussion

We have presented MIPS, a novel method for program synthesis based on the au-
tomated mechanistic interpretability of neural networks trained to perform the desired
task, auto-distilling the learned algorithm into Python code. Its essence is to first train a
recurrent neural network to learn a clever finite state machine that performs the task and
then automatically figure out how this machine works.

5.1. Findings

We found MIPS to be highly complementary to LLM-based program synthesis with
GPT-4 Turbo, with each approach solving many tasks that stumped the other. Please note
that our motivation is not to outcompete other program synthesis methods, but instead to
provide a proof of principle that fully automated distillation of machine-learned algorithms
is not impossible.

Whereas LLM-based methods have the advantage of drawing upon a vast corpus
of human training data, MIPS has the advantage of discovering algorithms from scratch
without human hints, with the potential to discover entirely new algorithms. As opposed to
genetic programming approaches, MIPS leverages the power of deep learning by exploiting
gradient information.

Program synthesis aside, our results shed further light on mechanistic interpretabil-
ity, specifically on how neural networks represent bits and integers. We found that n

Entropy 2024, 26, 1046 12 of 32

integers tend to get encoded linearly in n dimensions, but generically in non-orthogonal
directions with an additive offset. This is presumably because there are many more such
messy encodings than simple ones, and the messiness can be easily (linearly) decoded.
We saw that n bits sometimes get encoded as an n-dimensional parallelogram, but not
always–––possibly because linear decodability is less helpful when the subsequent bit
operations to be performed are nonlinear anyway.

5.2. Outlook

Our work is merely a modest first attempt at mechanistic-interpretability-based pro-
gram synthesis, and there are many obvious generalizations worth trying in future work,
for example,

1. Improvements in training and integer autoencoding (since many of our failed exam-
ples failed only just barely);

2. Generalization from RNNs to other architectures such as transformers;
3. Generalization from bits and integers to more general extractable data types such as

floating-point numbers and various discrete mathematical structures and knowledge
representations;

4. Scaling to tasks requiring much larger neural networks;
5. Automated formal verification of synthesized programs (we perform such verification

with Dafny in Appendix G—Formal Verification to show that our MIPS-learned ripple
adder correctly adds any binary numbers, not merely those in the test set, but such
manual work should ideally be fully automated).

LLM-based coding co-pilots are already highly useful for program synthesis tasks
based on verbal problem descriptions or auto-complete and will only get better. MIPS
instead tackles program synthesis based on test cases alone. This makes it analogous
to symbolic regression [42,43], which has already proven useful for various science and
engineering applications [44,45] where one wishes to approximate data relationships with
symbolic formulae. The MIPS framework generalizes symbolic regression from feed-
forward formulae to programs with loops, which are in principle Turing-complete. If this
approach can be scaled up, it may enable promising opportunities for making machine-
learned algorithms more interpretable, verifiable, and trustworthy.

Author Contributions: Conceptualization M.T.; software E.J.M., I.L., V.L., Z.L., A.M., C.L., Z.C.G.,
T.R.K. and M.V.; writing: M.T., E.J.M., I.L., V.L., Z.L., A.M. and C.L.; investigation E.J.M., I.L., V.L.,
Z.L., A.M. and C.L.; supervision: M.T., E.J.M. and Z.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by Erik Otto, Jaan Tallinn, the Rothberg Family Fund for Cognitive
Science, the NSF Graduate Research Fellowship (Grant No. 2141064), and IAIFI through NSF grant
PHY-2019786.

Institutional Review Board Statement: Not applicable

Data Availability Statement: Code for reproducing our experiments can be found at https://github.
com/ejmichaud/neural-verification (accessed on 26 November 2024).

Acknowledgments: We thank Wes Gurnee, James Liu, and Armaun Sanayei for helpful conversations
and suggestions.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Lattice Finding Using a Generalized Greatest Common Divisor (Gcd)

Our method often encounters cases where hidden states secretly form an affine trans-
formation of an integer lattice. However, not all lattice points are observed in training
samples, so our goal is to recover the hidden integer lattice from sparse observations.

https://github.com/ejmichaud/neural-verification
https://github.com/ejmichaud/neural-verification

Entropy 2024, 26, 1046 13 of 32

Appendix A.1. Problem Formulation

Suppose we have a set of lattice points in RD spanned by D independent basis vectors,
bi (i = 1, 2, · · · , D). Each lattice point j has the position

xj =
D

∑
i=1

ajibi + c, (A1)

where c is a global translation vector, and the coefficients aji are integers.
Our problem: given N such data points (x1, x2, · · · , xN), how can we recover the

integer coefficients aji for each point data point as well as bi and c?
Note that even when the whole lattice is given, there are still degrees of freedom

for the solution. For example, {c 7→ c + bi, aji 7→ aji − 1} remains a solution, and
{bi → ∑D

j=1 Λijbj} remains a solution if Λ is an integer matrix whose determinant is
±1. So our success criteria are a s follows: (1) aji are integers; (2) the discovered bases and
the true bases have the same determinant (the volume of a unit cell). Once a set of bases is
found, we can simplify them by minimizing their total norms over valid transformations
(Λ ∈ ZD×D, det(Λ) = ±1).

Appendix A.2. Regular GCD

As a reminder, given a list of n numbers {y1, y2, · · · , yn}, a common divisor d is a
number such that for all i, yi

d is an integer. All common divisors are the set {d|yi/d ∈ Z,
and the greatest common divisor (GCD) is the largest number in this set. Because

GCD(y1, · · · , yn) = GCD(y1, GCD(y2, GCD(y3, ...))), (A2)

it, without loss of generality, suffices to consider the case n = 2. A common algorithm
to compute GCD of two numbers is the so-called Euclidean algorithm. We start with
two numbers r0, r1 and r0 > r1, which is step 0. For the kth step, we perform division-
with-remainder to find the quotient qk and the remainder rk so that rk−2 = qkrk−1 + rk
with |rk−1| > |rk| (We are considering a general case where r0 and r1 may be negative.
Otherwise rk can always be positive numbers, hence no need to use the absolute function).
The algorithm will eventually produce a zero remainder rN = 0, and the other non-zero
remainder rN−1 is the greatest common divisor. For example, GCD(55, 45) = 5, because

55 = 1 × 45 + 10,

45 = 4 × 10 + 5,

10 = 2 × 5 + 0.

(A3)

Appendix A.3. Generalized GCD in D Dimensions

Given a list of n vectors {y1, y2, · · · , yn} where yi ∈ RD, and assuming that these
vectors are in the lattice described by Equation (A1), we can, without loss of generality,
set c = 0, since we can always redefine the origin. In D dimensions, the primitive of
interest is the D-dimensional parallelogram: a line segment for D = 1 (one basis vector),
a parallelogram for D = 2 (two basis vectors), parallelepiped for D = 3 (three basis
vectors), etc.

One can construct an D-dimensional parallelogram by constructing its basis vectors
as a linear integer combination of yj, i.e.,

qi =
n

∑
j=1

mijyj, mij ∈ Z, i = 1, 2, · · · , D. (A4)

The goal of D-dimensional GCD is to find a “minimal” parallelogram, such that its volume
(which is det(q1, q2, · · · , qD)) is the GCD of volumes of other possible parallelograms.
Once the minimal parallelogram is found (There could be many minimal parallelograms,

Entropy 2024, 26, 1046 14 of 32

but finding one is sufficient), we can also determine bi in Equation (A1), since bi is exactly
qi! To find the minimal parallelogram, we need two steps: (1) figure out the unit volume;
(2) figure out qi(i = 1, 2, · · ·) whose volume is the unit volume.

Step 1: Compute unit volume V0. We first define representative parallelograms as one
where all i = 1, 2, · · · , D, mi ≡ (mi1, mi2, · · · , miD) are one-hot vectors, i.e., with only one
element being 1 and 0 otherwise. It is easy to show that the volume of any parallelogram is
a linear integer combination of volumes of representative parallelograms, so in WLOG, we
can focus on representative parallelograms. We compute the volumes of all representative
parallelograms, which gives a volume array. Since volumes are just scalars, we can obtain
the unit volume V0 by calling the regular GCD of the volume array.

Step 2: Find a minimal parallelogram (whose volume is the unit volume computed
in step 1). Recall that in regular GCD, we are dealing with two numbers (scalars). To
leverage this in the vector case, we need to create scalars out of vectors and make sure that
the vectors share the same linear structure as the scalars so that we can extend division and
remainder to vectors. A natural scalar is volume. Now consider two parallelograms P1 and
P2, which share D − 1 basis vectors (y3, . . . , yD+1), but the last basis vector is different: y1
for P1 and y2 for P2. Denote their volume as V1 and V2:

V1 = det(y1, y3, y4, . . . , yD)

V2 = det(y2, y3, y4, . . . , yD)
(A5)

Since
aV1 + bV2 = det(ay1 + by2, y3, y4, . . . , yD), (A6)

which shows that (V1, V2) and (y1, y2) share the same linear structure. We can simply apply
division and remainder to V1 and V2 as in regular GCD:

V′
1, V′

2 = GCD(V1, V2), (A7)

whose quotients in all iterations are saved and transferred to y1 and y2:

y′
1, y′

2 = GCD_with_predefined_quotients(y1, y2). (A8)

If V1 = V0 (which is the condition for minimal parallelogram), the algorithm terminates
and returns (y′

1, y3, y4, · · · , yD). If V1 > V0, we need to repeat step 2 with the new vector
list {y′

1, y3, · · · , yN}.
Why can we remove y′

2 for the next iteration? Note that although eventually, V′
1 > 0

and V′
2 = 0, typically, y2 ̸= 0. However, since

0 = V′
2 = det(y′

2, y3, y4, · · · , yD), (A9)

this means y′
2 is a linear combination of (y3, · · · , yD) and hence can be removed from the

vector list.
Step 3: Simplification of basis vectors. We want to further simplify basis vectors.

For example, the basis vectors obtained in step 2 may have large norms. For example,
D = 2, the standard integer lattice, has b1 = (1, 0) and b2 = (0, 1), but there are infinitely
many possibilities after step 2, as long as pt − sq = ±1 for b1 = (p, q) and b2 = (s, t),
e.g., b1 = (3, 5) and b2 = (4, 7).

To minimize ℓ2 norms, we choose a basis and project and subtract for other bases.
Note that (1) again, we are only allowed to subtract integer times of the chosen basis;
(2) the volume of the parallelogram does not change since the project-and-subtract matrix
has a determinant of 1 (suppose bi(i = 2, 3, · · · , D) are projected to b1 and subtracted by
multiples of b1 and p∗ represents projection integers):

Entropy 2024, 26, 1046 15 of 32


1 p2→1 p3→1 · · · pD→1
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1

 (A10)

We do this iteratively until no norm can become shorter via the project-and-subtract
procedure. Please see Figure A1 for an illustration of how simplification works for a
2D example.

Figure A1. Both red and blue bases form a minimal parallelogram (in terms of cell volume) but one
can further simplify red to blue by linear combination (simplicity in the sense of small ℓ2 norm).

Computation overhead is actually surprisingly small. In typical cases, we only need
to call O(1) times of GCD.

Dealing with noise: Usually, the integer lattice in the hidden space is not perfect, i.e.,
vulnerable to noise. How do we extract integer lattices in a robust way in the presence of
noise? Note that the terminating condition for the GCD algorithm is when the remainder is
exactly zero–we relax this condition such that the absolute value of the remainder to be
smaller than a threshold ϵgcd. Another issue regarding noise is that noise can accumulate
in the GCD iterations, so we hope that GCD can converge in a few steps. To achieve this,
we select hidden states in a small region with a data fraction p% of the whole data. Since
both ϵgcd and p depend on data and neural network training, which we do not know a
priori, we choose to grid sweep ϵgcd ∈ [10−3, 1] and p ∈ (0.1, 100); for each (ϵgcd, p), we
obtain an integer lattice and compute its description length. We select the (ϵgcd, p) that
gives the lattice with the smallest description length. The description length includes two
parts: integer descriptions of hidden states log(1 + |Z|2) and residual of reconstruction
log(1 + (AZ+b−X

ϵdl
)2) with ϵdl = 10−4.

Appendix B. Linear Lattice Finder

Although our RNN can represent general nonlinear functions, in the special case when
the RNN actually performs linear functions, program synthesis can be much easier. So
if the hidden MLP is linear, we would expect the hidden states to be an integer lattice,
because inputs are integer lattices and the mappings are linear. Effectively, the hidden MLP
works as a linear function: h(t) = Whh(t−1) + Wix(t) (we neglected the bias term since it is
not relevant to finding basis vectors of a lattice).

Suppose we have input series x(1), x(2), ..., x(t); then h(t) is

h(t) =
t

∑
j=1

Wt−j
h Wixj, (A11)

Since xj values themselves are integer lattices, we could then interpret the following as
basis vectors:

Wt−j
h Wi, j = 1, 2, · · · , t, (A12)

which are not necessarily independent. For example, for the task of summing up the
last two numbers, WhWi and Wi are non-zero vectors and are independent, while others

Entropy 2024, 26, 1046 16 of 32

Wn
h Wi ≈ 0, n ≥ 2. Then, WhWi and Wi are the two basis vectors for the lattice. In general,

we measure the norm of all the candidate basis vectors and select the first k vectors with
the highest norms, which are exactly basis vectors of the hidden lattice.

Appendix C. Symbolic Regression

The formulation of symbolic regression is that one has a data pair (xi, yi), i = 1, 2, . . . , N
with N data samples. The goal is to find a symbolic formula f such that yi = f (xi). A
function is expressed in reverse Polish notation (RPN); for example, |a| − c is expressed as
aAc- where A stands for the absolute value function. We have three types of variables:

• type-0 operator. We include input variables and constants.
• type-1 operator (takes in one type-0 to produce one type-0). We include operations

{>,<,∼, H, D, A}. > means +1; < means −1; ∼ means negating the number; D is
dirac delta which outputs 1 only when taking in 0; A is the absolute value function;

• type-2 operator (takes in two type-0 to produce on type-0). We include operations
{+, ∗,−, %}. + means the addition of two numbers; ∗ means the multiplication of
two numbers; − means the subtraction of two numbers; % is the remainder of one
number module the other.

There are only certain types of templates (a string of numbers consisting of 0, 1, 2)
that are syntactically correct. For example, 002 is correct while 02 is incorrect. We iterate
over all the templates not longer than six symbols, and for each template, we try all the
variable combinations. Each variable combination corresponds to a symbolic equation f ,
for which we can check whether f (xi) = yi for 100 data points. If successful, we terminate
the brute force program and return the successful formula. If a brute force search does not
find any correct symbolic formula within the computing budget, we will simply return the
formula a, to make sure that the program can still be synthesized but simply fail to make
correct predictions.

Appendix D. Neural Network Normalization Algorithms

It is well known that neural networks exhibit a large amount of symmetry. That is,
there are many transformations that can be applied to networks without affecting the map
y = f (x) that they compute. A classic example is to permute the neurons within layers.

In this section, we describe a suite of normalizers that we use to transform our net-
works into a standard form, such that the algorithms that they learn are easier to interpret.
We call our five normalizers “Whitening”, “Jordan normal form (JNF)”, “Toeplitz”, “De-
bias”, and “Quantization”.

The main symmetry that we focus on is a linear transformation of the hidden space
h 7→ Ah, which requires the following changes to f and g:

f (h, x) = Wh + Vx + b =⇒ f (h, x) = AWA−1h + AVx + Ab

g(h) = G(Uh + c) =⇒ f (h) = G(UA−1h + c)

and is implemented by changing the weights:

W =⇒ AWA−1

V =⇒ AV

b =⇒ Ab

U =⇒ UA−1

For this symmetry, we can apply an arbitrary invertible similarity transformation A
to W, which is the core idea underlying our normalizers, three of which have their own
unique ways of constructing A, as we describe in the sections below. Most importantly,
one of our normalizers exploits A to convert the hidden-to-hidden transformation W into
a Jordan normal form, in the case where f is linear. Recent work has shown that large

Entropy 2024, 26, 1046 17 of 32

recurrent networks with linear hidden-to-hidden transformations, such as state space
models [46], can perform just as well as transformer-based models in language modeling
on a large scale. A major advantage of using linear hidden-to-hidden transformations is
the possibility of expressing the hidden space in its eigenbasis. This causes the hidden-
to-hidden transformation to become diagonal so that it can be computed more efficiently.
In practice, modern state space models assume diagonality and go further to assume the
elements on the diagonal are real; they fix the architecture to be this way during training.

By carrying this out, we ignore the possibility of linear hidden-to-hidden transfor-
mations that cannot be transformed into a real diagonal matrix via diagonalization. Such
examples include rotation matrices (whose eigenvalues may be complex) and shift matrices
(whose eigenvalues are degenerate and whose eigenvectors are duplicated). A more general
form than the diagonal form is the Jordan normal form, which consists of Jordan blocks
along the diagonal, each of which has the form λI + S for an eigenvalue λ, and the shift
matrix S, with ones on the superdiagonal and zeros elsewhere. The diagonalization is a
special case of the Jordan normal form, and all matrices can be transformed to the Jordan
normal form. A simple transformation can also be applied to the Jordan normal forms that
contain pairs of complex generalized eigenvectors to convert them into real matrices.

For nonlinear hidden-to-hidden transformations, we compute W as though the non-
linearities have been removed.

Appendix D.1. Whitening Transformation

Similar to normalizing the means and variances of a dataset before feeding it into a
machine learning model, a good first preprocessing step is to normalize the distribution of
hidden states. We therefore choose to apply a whitening transformation to the hidden space.
To compute the transformation, we compute the covariance matrix of hidden activations
across the dataset and use the singular value decomposition (SVD) of this covariance matrix
to find the closest transformation to the identity that will bring this covariance matrix
to the identity. We ignore any directions with covariance less than ϵ = 0.1, which cause
more instability when normalized. We then post-apply this transformation to the last
linear layer of the hidden-to-hidden transformation and its biases and pre-apply its inverse
to the first layers of the hidden-to-hidden and hidden-to-output transformations. This
leaves the net behavior of the network unchanged. Other transformations that we use
in other normalizers operate in a similar manner by post-applying and pre-applying a
transformation and its inverse transformation to the first and last layers that interact with
the hidden space.

Appendix D.2. Jordan Normal Form Transformation

Critically, the hidden-to-hidden transformations that we would like to convert into
Jordan normal form are imperfect because they are learned. Eigenvectors belonging to
each Jordan block must be identical, whereas this will only be approximately true of the
learned transformation.

The Jordan normal form of a matrix is unstable; consider a matrix

W =

(
0 1
δ 0

)
which, when δ ̸= 0, can be transformed into a Jordan normal form by(

0 1
δ 0

)
=

(
1 1√
δ −

√
δ

)
︸ ︷︷ ︸

T

(√
δ 0

0 −
√

δ

)(
1 1√
δ −

√
δ

)−1

(A13)

Entropy 2024, 26, 1046 18 of 32

but when δ = 0, is transformed into a Jordan normal form by(
0 1
0 0

)
=

(
1 0
0 1

)
︸ ︷︷ ︸

T

(
0 1
0 0

)(
1 0
0 1

)−1

(A14)

As we can see, all of the matrices in the decomposition are unstable near δ = 0, so the issue
of error thresholding is not only numerical but is mathematical in nature as well.

We would like to construct an algorithm that computes the Jordan normal form with
an error threshold |δ| < ϵ = 0.7 within which the algorithm will pick the transformation T
from Equation (A14) instead of from Equation (A13).

Our algorithm first computes the eigenvalues λi and then iteratively solves for the
generalized eigenvectors that lie in ker((W − λI)k) for increasing k. The approximation
occurs whenever we compute the kernel (of unknown dimension) of a matrix X; we take
the SVD of X and treat any singular vectors as part of the nullspace if their singular values
are lower than the threshold ϵ, calling the result ϵ-ker(X).

Spaces are always stored in the form of a rectangular matrix F of orthonormal vec-
tors, and their dimension is always the width of the matrix. We build projections using
proj(F) = FFH , where FH denotes the conjugate transpose of F. We compute kernels ker(X)
of known dimension of matrices X by taking the SVD X = V1SVH

2 and taking the last
singular vectors in VH

2 . We compute column spaces of projectors of known dimension by
taking the top singular vectors of the SVD.

The steps in our algorithm are as follows:

1. Solve for the eigenvalues λi of W, and check that eigenvalues that are within ϵ of each
other form group, i.e., that |λi − λj| ≤ ϵ and |λj − λk| ≤ ϵ always imply |λk − λi| ≤ ϵ.
Compute the mean eigenvalue for every group.

2. Solve for the approximate kernels of W − λI for each mean eigenvalue λ. We will
denote this operation by ϵ-ker(W − λI). We represent these kernels by storing the sin-
gular vectors whose singular values are lower than ϵ. Also, we construct a “corrected
matrix” of W − λI for every λ by taking the SVD, discarding the low singular values,
and multiplying the pruned decomposition back together again.

3. Solve for successive spaces Fk of generalized eigenvectors at increasing depths k along
the set of Jordan chains with eigenvalue λ for all λ. In other words, find chains of
mutually orthogonal vectors that are mapped to zero after exactly k applications of the
map W − λI. We first solve for F0 = ker(W − λI). Then for k > 0, we first solve for
Jk = ϵ-ker((I − proj(Fk−1))(W − λI)) and deduce the number of chains which reach
depth k from the dimension of Jk, and then solve for Fk = col(proj(Jk)− proj(F0)).

4. Perform a consistency check to verify that the dimensions of Fk always stay the
same or decrease with k. Go through the spaces Fk in reverse order, and whenever
the dimension of Fk decreases, figure out which direction(s) are not mapped to by
applying W − λI to Fk+1. Carry this out by building a projector J from mapping
vectors representing Fk+1 through W − λI and taking col(proj(Fk)− J). Solve for the
Jordan chain by repeatedly applying proj(Fi)(Wi − λI) for i starting from k − 1 and
going all the way down to zero.

5. Concatenate all the Jordan chains together to form the transformation matrix T.

The transformation T consists of generalized eigenvectors that need not be com-
pletely real but may also include pairs of generalized eigenvectors that are complex
conjugates of each other. Since we do not want the weights of our normalized network
to be complex, we also apply a unitary transformation that changes any pair of complex
generalized eigenvectors into a pair of real vectors and the resulting block of W into a

Entropy 2024, 26, 1046 19 of 32

multiple of a rotation matrix. As an example, for a real 2-by-2 matrix W with complex
eigenvectors, we have

W = T
(

a + bi 0
0 a − bi

)
T−1

= TT′
(

a −b
b a

)
(TT′)−1, T′ =

1√
2

(
1 i
1 −i

)
Appendix D.3. Toeplitz Transformation

Once W is in Jordan-normal form, each Jordan block is an upper triangular Toeplitz
matrix. Upper-triangular Toeplitz matrices, including Jordan blocks, will always commute
with each other because they are all polynomials of the shift matrix (which has ones on
the superdiagonal and zeros elsewhere), and therefore, these transformations will leave W
unchanged but will still affect V. We split V up into parts operated on by each Jordan block
and use these Toeplitz transformations to reduce the most numerically stable columns
of each block of V to one-hot vectors. The numerical stability of a column vector is
determined by the absolute value of the bottom element of that column vector, since its
inverse will become the degenerate eigenvalues of the resulting Toeplitz matrix. If no
column has a numerical stability above ϵ = 0.0001, we pick the identity matrix for our
Toeplitz transformation.

Appendix D.4. De-Biasing Transformation

Oftentimes, W is not full-rank, and has a nontrivial nullspace. The bias b will have
some component in the direction of this nullspace, and eliminating this component only
affects the behavior of the output network g, and the perturbation cannot carry on to
the remainder of the sequence via f . Therefore, we eliminate any such component and
compensate accordingly by modifying the bias in the first affine layer of g. We identify the
nullspaces by taking an SVD and identifying components whose singular value is less than
ϵ = 0.1.

Appendix D.5. Quantization Transformation

After applying all of the previous transformations to the RNN, it is common for many
of the weights to become close to zero or some other small integer. Treating this as a sign
that the network is attempting to implement discrete operations using integers, we snap
any weights and biases that are within a threshold ϵ = 0.01 of an integer to that integer.
For certain simple tasks, this sometimes allows the entire network to become quantized.

Appendix E. Supplementary Training Data Details

Here, we present additional details on the benchmark tasks marked “see text” in
Table 1:

• Div_3/5/7: This is a long division task for binary numbers. The input is a binary
number, and the output is that binary number divided by 3, 5, or 7, respectively. The
remainder is discarded. For example, we have 1000011/11 = 0010110 (67/3 = 22). The
most significant bits occur first in the sequence.

• Dithering: This is a basic image color quantization task, for 1D images. We map 4-bit
images to 1-bit images such that the cumulative sum of pixel brightnesses of both the
original and dithered images remains as close as possible.

• Newton_Gravity: This is a Euler forward-propagation technique that follows the
equation F = input − 1, v 7→ v + F, x 7→ x + v.

• Newton_Spring: This is a Euler forward-propagation technique that follows the
equation F = input − x, v 7→ v + F, x 7→ x + v.

• Newton_Magnetic: This is a Euler forward-propagation technique that follows the
equation Fx = input1 − vy, Fy = input2 + vx, v 7→ v + F, x 7→ x + v.

Entropy 2024, 26, 1046 20 of 32

Appendix F. Architecture Search Results

Table A1 shows the parameters p discovered for each task by our architecture search.

Table A1. AutoML architecture search results. All networks achieved 100% accuracy on at least one
test batch.

Task # Task Name n w f d f wg dg Train Loss Test Loss

1 Binary_Addition 2 4 2 – 1 0 0
2 Base_3_Addition 2 5 2 – 1 0 0
3 Base_4_Addition 2 5 2 – 1 0 0
4 Base_5_Addition 2 5 2 – 1 0 0
5 Base_6_Addition 2 6 2 – 1 2.45 × 10−9 2.53 × 10−9

6 Base_7_Addition 2 10 2 – 1 2.32 × 10−6 2.31 × 10−6

7 Bitwise_Xor 1 2 2 – 1 0 0
8 Bitwise_Or 1 – 1 – 1 3.03 × 10−2 3.03 × 10−2

9 Bitwise_And 1 – 1 – 1 3.03 × 10−2 3.03 × 10−2

10 Bitwise_Not 1 – 1 – 1 0 0
11 Parity_Last2 1 229 2 – 1 1.68 × 10−2 1.69 × 10−2

12 Parity_Last3 2 5 2 – 1 1.62 × 10−4 1.64 × 10−4

13 Parity_Last4 3 29 2 – 1 3.07 × 10−7 2.99 × 10−7

14 Parity_All 1 2 2 – 1 0 0
15 Parity_Zeros 1 2 2 – 1 0 0
16 Evens_Counter 4 73 3 – 1 8.89 × 10−5 8.88 × 10−5

17 Sum_All 1 – 1 – 1 6.09 × 10−8 6.13 × 10−8

18 Sum_Last2 2 – 1 – 1 0 0
19 Sum_Last3 3 – 1 – 1 6.34 × 10−7 6.35 × 10−7

20 Sum_Last4 4 – 1 – 1 2.10 × 10−4 2.11 × 10−4

21 Sum_Last5 5 – 1 – 1 8.86 × 10−3 8.87 × 10−3

22 Sum_Last6 6 – 1 – 1 1.82 × 10−2 1.81 × 10−2

23 Sum_Last7 7 – 1 – 1 3.03 × 10−2 3.01 × 10−2

24 Current_Number 1 – 1 – 1 0 0
25 Prev1 2 – 1 – 1 0 0
26 Prev2 3 – 1 – 1 0 0
27 Prev3 4 – 1 – 1 0 0
28 Prev4 5 – 1 – 1 2.04 × 10−7 2.05 × 10−7

29 Prev5 6 – 1 – 1 6.00 × 10−5 5.96 × 10−5

30 Previous_Equals_Current 2 5 2 – 1 6.72 × 10−5 6.61 × 10−5

31 Diff_Last2 2 – 1 – 1 0 0
32 Abs_Diff 2 – 1 2 2 1.84 × 10−7 1.84 × 10−7

33 Abs_Current 1 2 2 – 1 4.51 × 10−8 5.71 × 10−8

34 Diff_Abs_Values 2 4 2 – 1 3.15 × 10−6 2.96 × 10−6

35 Min_Seen 1 2 2 – 1 0 0
36 Max_Seen 1 2 2 – 1 1.46 × 10−12 0
37 Majority_0_1 1 63 2 – 1 4.03 × 10−3 4.05 × 10−3

38 Majority_0_2 4 98 2 – 1 1.64 × 10−4 1.71 × 10−4

39 Majority_0_3 21 132 3 – 1 6.94 × 10−5 6.86 × 10−5

40 Evens_Detector 5 163 2 – 1 8.18 × 10−4 8.32 × 10−4

41 Perfect_Square_Detector 48 100 2 – 1 1.92 × 10−3 1.97 × 10−3

42 Bit_Palindrome 18 86 2 – 1 3.81 × 10−5 3.69 × 10−5

43 Balanced_Parenthesis 1 16 2 – 1 7.44 × 10−3 7.10 × 10−3

44 Parity_Bits_Mod2 1 – 1 – 1 0 0
45 Alternating_Last3 2 3 2 – 1 1.85 × 10−2 1.87 × 10−2

46 Alternating_Last4 2 3 2 – 1 8.24 × 10−6 8.09 × 10−6

47 Bit_Shift_Right 2 – 1 – 1 0 0
48 Bit_Dot_Prod_Mod2 1 3 2 – 1 0 0
49 Div_3 2 59 2 – 1 6.40 × 10−3 6.43 × 10−3

50 Div_5 4 76 2 – 1 1.50 × 10−4 1.55 × 10−4

51 Div_7 4 103 2 – 1 6.65 × 10−4 6.63 × 10−4

52 Add_Mod_3 1 149 2 – 1 1.02 × 10−3 1.04 × 10−3

53 Add_Mod_4 2 33 2 – 1 1.53 × 10−4 1.44 × 10−4

54 Add_Mod_5 3 43 2 – 1 1.02 × 10−3 1.03 × 10−3

55 Add_Mod_6 4 108 2 – 1 6.14 × 10−4 6.12 × 10−4

56 Add_Mod_7 4 199 2 – 1 3.96 × 10−4 4.07 × 10−4

57 Add_Mod_8 67 134 2 – 1 8.53 × 10−4 8.34 × 10−4

58 Dithering 81 166 2 – 1 7.72 × 10−4 7.75 × 10−4

59 Newton_Freebody 2 – 1 – 1 2.61 × 10−7 2.62 × 10−7

60 Newton_Gravity 2 – 1 – 1 1.81 × 10−7 1.87 × 10−7

61 Newton_Spring 2 – 1 – 1 0 0
62 Newton_Magnetic 4 – 1 – 1 8.59 × 10−5 8.60 × 10−5

Entropy 2024, 26, 1046 21 of 32

Appendix G. Generated Programs

This section includes all successfully generated Python programs.
Binary-Addition

1

2 def f(s,t):
3 a = 0;b = 0;
4 ys = []
5 for i in range (10):
6 c = s[i]; d = t[i];
7 next_a = b ^ c ^ d
8 next_b = b+c+d>1
9 a = next_a;b = next_b;

10 y = a
11 ys.append(y)
12 return ys

Bitwise-Xor

1

2 def f(s,t):
3 a = 0;
4 ys = []
5 for i in range (10):
6 b = s[i]; c = t[i];
7 next_a = b ^ c
8 a = next_a;
9 y = a

10 ys.append(y)
11 return ys

Bitwise-Or

1

2 def f(s,t):
3 a = 0;
4 ys = []
5 for i in range (10):
6 b = s[i]; c = t[i];
7 next_a = b+c>0
8 a = next_a;
9 y = a

10 ys.append(y)
11 return ys

Bitwise-And

1

2 def f(s,t):
3 a = 0;b = 1;
4 ys = []
5 for i in range (10):
6 c = s[i]; d = t[i];
7 next_a = (not a and not b and c and d) or (not a and b and not c

and d) or (not a and b and c and not d) or (not a and b and c and d) or
(a and not b and c and d) or (a and b and c and d)

8 next_b = c+d==0 or c+d==2
9 a = next_a;b = next_b;

10 y = a+b>1
11 ys.append(y)
12 return ys

Entropy 2024, 26, 1046 22 of 32

Bitwise-Not

1

2 def f(s):
3 a = 1;
4 ys = []
5 for i in range (10):
6 x = s[i]
7 next_a = x
8 a = next_a;
9 y = -a+1

10 ys.append(y)
11 return ys

Parity-Last2

1

2 def f(s):
3 a = 0;b = 0;
4 ys = []
5 for i in range (10):
6 c = s[i]
7 next_a = c
8 next_b = a ^ c
9 a = next_a;b = next_b;

10 y = b
11 ys.append(y)
12 return ys

Parity-Last3

1

2 def f(s):
3 a = 0;b = 0;c = 0;
4 ys = []
5 for i in range (10):
6 d = s[i]
7 next_a = d
8 next_b = c
9 next_c = a

10 a = next_a;b = next_b;c = next_c;
11 y = a ^ b ^ c
12 ys.append(y)
13 return ys

Parity-All

1

2 def f(s):
3 a = 0;
4 ys = []
5 for i in range (10):
6 b = s[i]
7 next_a = a ^ b
8 a = next_a;
9 y = a

10 ys.append(y)
11 return ys

Parity-Zeros

1

2 def f(s):
3 a = 0;
4 ys = []
5 for i in range (10):
6 b = s[i]
7 next_a = a+b==0 or a+b==2
8 a = next_a;
9 y = a

10 ys.append(y)
11 return ys

Entropy 2024, 26, 1046 23 of 32

Sum-All

1

2 def f(s):
3 a = 884;
4 ys = []
5 for i in range (10):
6 x = s[i]
7 next_a = a-x
8 a = next_a;
9 y = -a+884

10 ys.append(y)
11 return ys

Sum-Last2

1

2 def f(s):
3 a = 0;b = 99;
4 ys = []
5 for i in range (10):
6 x = s[i]
7 next_a = -b+x+99
8 next_b = -x+99
9 a = next_a;b = next_b;

10 y = a
11 ys.append(y)
12 return ys

Sum-Last3

1

2 def f(s):
3 a = 0;b = 198;c = 0;
4 ys = []
5 for i in range (10):
6 x = s[i]
7 next_a = x
8 next_b = -a-x+198
9 next_c = -b+198

10 a = next_a;b = next_b;c = next_c;
11 y = a+c
12 ys.append(y)
13 return ys

Sum-Last4

1

2 def f(s):
3 a = 0;b = 99;c = 0;d = 99;
4 ys = []
5 for i in range (10):
6 x = s[i]
7 next_a = c
8 next_b = -x+99
9 next_c = -b-d+198

10 next_d = b
11 a = next_a;b = next_b;c = next_c;d = next_d;
12 y = a-b-d+198
13 ys.append(y)
14 return ys

Entropy 2024, 26, 1046 24 of 32

Sum-Last5

1

2 def f(s):
3 a = 198;b = -10;c = -2;d = 482;e = 1;
4 ys = []
5 for i in range (20):
6 x = s[i]
7 next_a = -b+c+190
8 next_b = b-c-d-e+x+480
9 next_c = b-e+8

10 next_d = -b+e-x+472
11 next_e = a+b-e-187
12 a = next_a;b = next_b;c = next_c;d = next_d;e = next_e;
13 y = -d+483
14 ys.append(y)
15 return ys

Sum-Last6

1

2 def f(s):
3 a = 0;b = 295;c = 99;d = 0;e = 297;f = 99;
4 ys = []
5 for i in range (20):
6 x = s[i]
7 next_a = -b+295
8 next_b = b-c+f
9 next_c = b-c+d-97

10 next_d = -f+99
11 next_e = -a+297
12 next_f = -x+99
13 a = next_a;b = next_b;c = next_c;d = next_d;e = next_e;f = next_f;
14 y = -b+c-e-f+592
15 ys.append(y)
16 return ys

Sum-Last7

1

2 def f(s):
3 a = 297;b = 198;c = 0;d = 99;e = 0;f = -15;g = 0;
4 ys = []
5 for i in range (20):
6 x = s[i]
7 next_a = -a+d-f+g+480
8 next_b = a-d
9 next_c = d+e-99

10 next_d = -c+99
11 next_e = -b+198
12 next_f = -c+f+x
13 next_g = x
14 a = next_a;b = next_b;c = next_c;d = next_d;e = next_e;f = next_f;g

= next_g;
15 y = -d+f+114
16 ys.append(y)
17 return ys

Current-Number

1

2 def f(s):
3 a = 99;
4 ys = []
5 for i in range (10):
6 x = s[i]
7 next_a = -x+99
8 a = next_a;
9 y = -a+99

10 ys.append(y)
11 return ys

Entropy 2024, 26, 1046 25 of 32

Prev1

1

2 def f(s):
3 a = 0;b = 99;
4 ys = []
5 for i in range (10):
6 x = s[i]
7 next_a = -b+99
8 next_b = -x+99
9 a = next_a;b = next_b;

10 y = a
11 ys.append(y)
12 return ys

Prev2

1

2 def f(s):
3 a = 99;b = 0;c = 0;
4 ys = []
5 for i in range (10):
6 x = s[i]
7 next_a = -x+99
8 next_b = -a+99
9 next_c = b

10 a = next_a;b = next_b;c = next_c;
11 y = c
12 ys.append(y)
13 return ys

Prev3

1

2 def f(s):
3 a = 0;b = 0;c = 99;d = 99;
4 ys = []
5 for i in range (10):
6 x = s[i]
7 next_a = b
8 next_b = -c+99
9 next_c = d

10 next_d = -x+99
11 a = next_a;b = next_b;c = next_c;d = next_d;
12 y = a
13 ys.append(y)
14 return ys

Prev4

1

2 def f(s):
3 a = 0;b = 99;c = 0;d = 99;e = 0;
4 ys = []
5 for i in range (10):
6 x = s[i]
7 next_a = c
8 next_b = -a+99
9 next_c = -d+99

10 next_d = -e+99
11 next_e = x
12 a = next_a;b = next_b;c = next_c;d = next_d;e = next_e;
13 y = -b+99
14 ys.append(y)
15 return ys

Entropy 2024, 26, 1046 26 of 32

Prev5

1

2 def f(s):
3 a = 0;b = 0;c = 99;d = 99;e = 99;f = 99;
4 ys = []
5 for i in range (20):
6 x = s[i]
7 next_a = -c+99
8 next_b = -d+99
9 next_c = -b+99

10 next_d = e
11 next_e = f
12 next_f = -x+99
13 a = next_a;b = next_b;c = next_c;d = next_d;e = next_e;f = next_f;
14 y = a
15 ys.append(y)
16 return ys

Previous-Equals-Current

1

2 def f(s):
3 a = 0;b = 0;
4 ys = []
5 for i in range (10):
6 c = s[i]
7 next_a = delta(c-b)
8 next_b = c
9 a = next_a;b = next_b;

10 y = a
11 ys.append(y)
12 return ys

Diff-Last2

1

2 def f(s):
3 a = 199;b = 100;
4 ys = []
5 for i in range (10):
6 x = s[i]
7 next_a = -a-b+x+498
8 next_b = a+b-199
9 a = next_a;b = next_b;

10 y = a-199
11 ys.append(y)
12 return ys

Abs-Diff

1

2 def f(s):
3 a = 100;b = 100;
4 ys = []
5 for i in range (10):
6 c = s[i]
7 next_a = b
8 next_b = c+100
9 a = next_a;b = next_b;

10 y = abs(b-a)
11 ys.append(y)
12 return ys

Entropy 2024, 26, 1046 27 of 32

Abs-Current

1

2 def f(s):
3 a = 0;
4 ys = []
5 for i in range (10):
6 b = s[i]
7 next_a = abs(b)
8 a = next_a;
9 y = a

10 ys.append(y)
11 return ys

Bit-Shift-Right

1

2 def f(s):
3 a = 0;b = 1;
4 ys = []
5 for i in range (10):
6 x = s[i]
7 next_a = -b+1
8 next_b = -x+1
9 a = next_a;b = next_b;

10 y = a
11 ys.append(y)
12 return ys

Bit-Dot-Prod-Mod2

1

2 def f(s,t):
3 a = 0;
4 ys = []
5 for i in range (10):
6 b = s[i]; c = t[i];
7 next_a = (not a and b and c) or (a and not b and not c) or (a and

not b and c) or (a and b and not c)
8 a = next_a;
9 y = a

10 ys.append(y)
11 return ys

Add-Mod-3

1

2 def f(s):
3 a = 0;
4 ys = []
5 for i in range (10):
6 b = s[i]
7 next_a = (b+a)%3
8 a = next_a;
9 y = a

10 ys.append(y)
11 return ys

Entropy 2024, 26, 1046 28 of 32

Newton-Freebody

1

2 def f(s):
3 a = 82;b = 393;
4 ys = []
5 for i in range (10):
6 x = s[i]
7 next_a = a-x
8 next_b = -a+b+82
9 a = next_a;b = next_b;

10 y = -a+b-311
11 ys.append(y)
12 return ys

Newton-Gravity

1

2 def f(s):
3 a = 72;b = 513;
4 ys = []
5 for i in range (10):
6 x = s[i]
7 next_a = a-x+1
8 next_b = -a+b+x+71
9 a = next_a;b = next_b;

10 y = b-513
11 ys.append(y)
12 return ys

Newton-Spring

1

2 def f(s):
3 a = 64;b = 57;
4 ys = []
5 for i in range (10):
6 x = s[i]
7 next_a = a+b-x-57
8 next_b = -a+121
9 a = next_a;b = next_b;

10 y = -a+64
11 ys.append(y)
12 return ys

Formal Verification

The Dafny programming language is designed so that programs can be formally
verified for correctness. The desired behavior of a program can be explicitly specified via
preconditions, postconditions, and invariants, which are verified via automated theorem
proving. These capabilities make Dafny useful in fields where correctness and safety
are crucial.

We leverage Dafny’s robust verification capabilities to prove the correctness of the
bit addition Python program synthesized by MIPS. The bit addition Python program
was first converted to Dafny, then annotated with specific assertions, preconditions, and
postconditions that defined the expected behavior of the code. Each annotation in the code
was then formally verified by Dafny, ensuring that under all possible valid inputs, the
code’s output would be consistent with the expected behavior. On line 79, we show that
the algorithm found by MIPS is indeed equivalent to performing bit addition with length
10 bitvectors in Dafny.

Entropy 2024, 26, 1046 29 of 32

Dafny-Code

1

2 function ArrayToBv10(arr: array <bool >): bv10 // Converts boolean array to
bitvector

3 reads arr
4 requires arr.Length == 10
5 {
6 ArrayToBv10Helper(arr , arr.Length - 1)
7 }
8

9 function ArrayToBv10Helper(arr: array <bool >, index: nat): bv10
10 reads arr
11 requires arr.Length == 10
12 requires 0 <= index < arr.Length
13 decreases index
14 ensures forall i :: 0 <= i < index ==> ((ArrayToBv10Helper(arr , i) >> i)

& 1) == (if arr[i] then 1 else 0)
15 {
16 if index == 0 then
17 (if arr[0] then 1 else 0) as bv10
18 else
19 var bit: bv10 := if arr[index] then 1 as bv10 else 0 as bv10;
20 (bit << index) + ArrayToBv10Helper(arr , index - 1)
21 }
22

23 method ArrayToSequence(arr: array <bool >) returns (res: seq <bool >) //
Converts boolean array to boolean sequence

24 ensures |res| == arr.Length
25 ensures forall k :: 0 <= k < arr.Length ==> res[k] == arr[k]
26 {
27 res := [];
28 var i := 0;
29 while i < arr.Length
30 invariant 0 <= i <= arr.Length
31 invariant |res| == i
32 invariant forall k :: 0 <= k < i ==> res[k] == arr[k]
33 {
34 res := res + [arr[i]];
35 i := i + 1;
36 }
37 }
38

39 function isBitSet(x: bv10 , bitIndex: nat): bool
40 requires bitIndex < 10
41 ensures isBitSet(x, bitIndex) <==> (x & (1 << bitIndex)) != 0
42 {
43 (x & (1 << bitIndex)) != 0
44 }
45

46 function Bv10ToSeq(x: bv10): seq <bool > // Converts bitvector to boolean
sequence

47 ensures |Bv10ToSeq(x)| == 10
48 ensures forall i: nat :: 0 <= i < 10 ==> Bv10ToSeq(x)[i] == isBitSet(x, i

)
49 {
50 [isBitSet(x, 0), isBitSet(x, 1), isBitSet(x, 2), isBitSet(x, 3),
51 isBitSet(x, 4), isBitSet(x, 5), isBitSet(x, 6), isBitSet(x, 7),
52 isBitSet(x, 8), isBitSet(x, 9)]
53 }
54

55 function BoolToInt(a: bool): int {
56 if a then 1 else 0
57 }
58

59 function XOR(a: bool , b: bool): bool {
60 (a || b) && !(a && b)
61 }
62

Entropy 2024, 26, 1046 30 of 32

63 function BitAddition(s: array <bool >, t: array <bool >): seq <bool > // Performs
traditional bit addition

64 reads s
65 reads t
66 requires s.Length == 10 && t.Length == 10
67 {
68 var a: bv10 := ArrayToBv10(s);
69 var b: bv10 := ArrayToBv10(t);
70 var c: bv10 := a + b;
71

72 Bv10ToSeq(c)
73 }
74

75 method f(s: array <bool >, t: array <bool >) returns (sresult: seq <bool >) //
Generated program for bit addition

76 requires s.Length == 10 && t.Length == 10
77 ensures |sresult| == 10
78 ensures forall i :: 0 <= i && i < |sresult| ==> sresult[i] == ((s[i] != t

[i]) != (i > 0 && ((s[i-1] || t[i-1]) && !(sresult[i-1] && (s[i-1] != t
[i-1])))))

79 ensures BitAddition(s, t) == sresult // Verification of correctness
80 {
81 var a: bool := false;
82 var b: bool := false;
83 var result: array <bool > := new bool [10];
84 var i: int := 0;
85

86 while i < result.Length
87 invariant 0 <= i <= result.Length
88 invariant forall j :: 0 <= j < i ==> result[j] == false
89 {
90 result[i] := false;
91 i := i + 1;
92 }
93

94 i := 0;
95

96 assert forall j :: 0 <= j < result.Length ==> result[j] == false;
97

98 while i < result.Length
99 invariant 0 <= i <= result.Length

100 invariant b == (i > 0 && ((s[i-1] || t[i-1]) && !(result[i-1] && (s[i
-1] != t[i-1]))))

101 invariant forall j :: 0 <= j < i ==> result[j] == ((s[j] != t[j]) != (j
> 0 && ((s[j-1] || t[j-1]) && !(result[j-1] && (s[j-1] != t[j-1])))))

102 {
103 assert b == (i > 0 && ((s[i-1] || t[i-1]) && !(result[i-1] && (s[i-1]

!= t[i-1]))));
104

105 result[i] := XOR(b, XOR(s[i], t[i]));
106 b := BoolToInt(b) + BoolToInt(s[i]) + BoolToInt(t[i]) > 1;
107 assert b == ((s[i] || t[i]) && !(result[i] && (s[i] != t[i])));
108

109 i := i + 1;
110 }
111

112 sresult := ArrayToSequence(result);
113 }

Entropy 2024, 26, 1046 31 of 32

References
1. Center for AI Safety. Statement on AI Risk. 2023. Available online: https://www.safe.ai/work/statement-on-ai-risk (accessed

on 4 September 2024).
2. Tegmark, M.; Omohundro, S. Provably safe systems: The only path to controllable agi. arXiv 2023, arXiv:2309.01933.
3. Dalrymple, D.; Skalse, J.; Bengio, Y.; Russell, S.; Tegmark, M.; Seshia, S.; Omohundro, S.; Szegedy, C.; Goldhaber, B.; Ammann, N.;

et al. Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems. arXiv 2024, arXiv:2405.06624.
4. Zhou, B.; Ding, G. Survey of intelligent program synthesis techniques. In Proceedings of the International Conference on

Algorithms, High Performance Computing, and Artificial Intelligence (AHPCAI 2023), Yinchuan, China, 18–19 August 2023 ;
SPIE; Springer: Bellingham, WA, USA, 2023; Volume 12941, pp. 1122–1136.

5. Odena, A.; Shi, K.; Bieber, D.; Singh, R.; Sutton, C.; Dai, H. BUSTLE: Bottom-Up program synthesis through learning-guided
exploration. arXiv 2020, arXiv:2007.14381.

6. Wu, J.; Wei, L.; Jiang, Y.; Cheung, S.C.; Ren, L.; Xu, C. Programming by Example Made Easy. ACM Trans. Softw. Eng. Methodol.
2023, 33, 1–36. [CrossRef]

7. Sobania, D.; Briesch, M.; Rothlauf, F. Choose your programming copilot: A comparison of the program synthesis performance of
github copilot and genetic programming. In Proceedings of the Genetic and Evolutionary Computation Conference, Boston, MA,
USA, 9–13 July 2022; pp. 1019–1027.

8. Olah, C.; Cammarata, N.; Schubert, L.; Goh, G.; Petrov, M.; Carter, S. Zoom in: An introduction to circuits. Distill 2020,
5, e00024-001. [CrossRef]

9. Cammarata, N.; Goh, G.; Carter, S.; Schubert, L.; Petrov, M.; Olah, C. Curve Detectors. Distill 2020. Available online:
https://distill.pub/2020/circuits/curve-detectors (accessed on 26 November 2024). [CrossRef]

10. Wang, K.; Variengien, A.; Conmy, A.; Shlegeris, B.; Steinhardt, J. Interpretability in the wild: A circuit for indirect object
identification in gpt-2 small. arXiv 2022, arXiv:2211.00593.

11. Olsson, C.; Elhage, N.; Nanda, N.; Joseph, N.; DasSarma, N.; Henighan, T.; Mann, B.; Askell, A.; Bai, Y.; Chen, A.; et al. In-context
Learning and Induction Heads. Transform. Circuits Thread 2022. Available online: https://transformer-circuits.pub/2022/in-
context-learning-and-induction-heads/index.html (accessed on 26 November 2024).

12. Goh, G.; Cammarata, N.; Voss, C.; Carter, S.; Petrov, M.; Schubert, L.; Radford, A.; Olah, C. Multimodal Neurons in Artificial
Neural Networks. Distill 2021. Available online: https://distill.pub/2021/multimodal-neurons (accessed on 26 November 2024).
[CrossRef]

13. Gurnee, W.; Tegmark, M. Language models represent space and time. arXiv 2023, arXiv:2310.02207.
14. Vafa, K.; Chen, J.Y.; Kleinberg, J.; Mullainathan, S.; Rambachan, A. Evaluating the World Model Implicit in a Generative Model.

arXiv 2024, arXiv:2406.03689.
15. Burns, C.; Ye, H.; Klein, D.; Steinhardt, J. Discovering latent knowledge in language models without supervision. arXiv 2022,

arXiv:2212.03827.
16. Marks, S.; Tegmark, M. The geometry of truth: Emergent linear structure in large language model representations of true/false

datasets. arXiv 2023, arXiv:2310.06824.
17. McGrath, T.; Kapishnikov, A.; Tomavsev, N.; Pearce, A.; Wattenberg, M.; Hassabis, D.; Kim, B.; Paquet, U.; Kramnik, V. Acquisition

of chess knowledge in alphazero. Proc. Natl. Acad. Sci. USA 2022, 119, e2206625119. [CrossRef] [PubMed]
18. Toshniwal, S.; Wiseman, S.; Livescu, K.; Gimpel, K. Chess as a testbed for language model state tracking. In Proceedings of the

AAAI Conference on Artificial Intelligence, Virtually, 22 February–1 March 2022; Volume 36, pp. 11385–11393.
19. Li, K.; Hopkins, A.K.; Bau, D.; Viégas, F.; Pfister, H.; Wattenberg, M. Emergent world representations: Exploring a sequence

model trained on a synthetic task. arXiv 2022, arXiv:2210.13382.
20. Nanda, N.; Chan, L.; Liberum, T.; Smith, J.; Steinhardt, J. Progress measures for grokking via mechanistic interpretability. arXiv

2023, arXiv:2301.05217.
21. Liu, Z.; Kitouni, O.; Nolte, N.; Michaud, E.J.; Tegmark, M.; Williams, M. Towards Understanding Grokking: An Effective

Theory of Representation Learning. In Proceedings of the Thirty-Sixth Conference on Neural Information Processing Systems,
New Orleans, LA, USA, 28 November 2022.

22. Zhong, Z.; Liu, Z.; Tegmark, M.; Andreas, J. The clock and the pizza: Two stories in mechanistic explanation of neural networks.
In Advances in Neural Information Processing Systems: 37th Conference on Neural Information Processing Systems (NeurIPS 2023), New
Orleans, LA, USA, 10–16 December 2023; Volume 36.

23. Quirke, P.; Barez, F. Understanding Addition in Transformers. arXiv 2023, arXiv:2310.13121.
24. Chughtai, B.; Chan, L.; Nanda, N. A Toy Model of Universality: Reverse Engineering how Networks Learn Group Operations. In

Proceedings of the 40th International Conference on Machine Learning, Honolulu, HI, USA, 23–29 July 2023; Krause, A., Brunskill,
E., Cho, K., Engelhardt, B., Sabato, S., Scarlett, J., Eds.; PMLR (Proceedings of Machine Learning Research) 2023; Volume 202,
pp. 6243–6267.

25. Hanna, M.; Liu, O.; Variengien, A. How does GPT-2 compute greater-than?: Interpreting mathematical abilities in a pre-trained
language model. arXiv 2023, arXiv:2305.00586.

26. Charton, F. Can transformers learn the greatest common divisor? arXiv 2023, arXiv:2308.15594.
27. Lindner, D.; Kramár, J.; Farquhar, S.; Rahtz, M.; McGrath, T.; Mikulik, V. Tracr: Compiled transformers as a laboratory for

interpretability. arXiv 2023, arXiv:2301.05062.

https://www.safe.ai/work/statement-on-ai-risk
http://doi.org/10.1145/3607185
http://dx.doi.org/10.23915/distill.00024.001
https://distill.pub/2020/circuits/curve-detectors
http://dx.doi.org/10.23915/distill.00024.003
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html
https://distill.pub/2021/multimodal-neurons
http://dx.doi.org/10.23915/distill.00030
http://dx.doi.org/10.1073/pnas.2206625119
http://www.ncbi.nlm.nih.gov/pubmed/36375061

Entropy 2024, 26, 1046 32 of 32

28. Friedman, D.; Wettig, A.; Chen, D. Learning transformer programs. Adv. Neural Inf. Process. Syst. 2023, 36, 49044–49067.
29. Bills, S.; Cammarata, N.; Mossing, D.; Tillman, H.; Gao, L.; Goh, G.; Sutskever, I.; Leike, J.; Wu, J.; Saunders, W. Language

Models Can Explain Neurons in Language Models. 2023. Available online: https://openaipublic.blob.core.windows.net/neuron-
explainer/paper/index.html (accessed on 26 November 2024).

30. Cunningham, H.; Ewart, A.; Riggs, L.; Huben, R.; Sharkey, L. Sparse autoencoders find highly interpretable features in language
models. arXiv 2023, arXiv:2309.08600.

31. Bricken, T.; Templeton, A.; Batson, J.; Chen, B.; Jermyn, A.; Conerly, T.; Turner, N.; Anil, C.; Denison, C.; Askell, A.; et al. Towards
Monosemanticity: Decomposing Language Models with Dictionary Learning. Transform. Circuits Thread 2023. Available online:
https://transformer-circuits.pub/2023/monosemantic-features/index.html (accessed on 26 November 2024).

32. Conmy, A.; Mavor-Parker, A.N.; Lynch, A.; Heimersheim, S.; Garriga-Alonso, A. Towards automated circuit discovery for
mechanistic interpretability. arXiv 2023, arXiv:2304.14997.

33. Syed, A.; Rager, C.; Conmy, A. Attribution Patching Outperforms Automated Circuit Discovery. arXiv 2023, arXiv:2310.10348.
34. Marks, S.; Rager, C.; Michaud, E.J.; Belinkov, Y.; Bau, D.; Mueller, A. Sparse feature circuits: Discovering and editing interpretable

causal graphs in language models. arXiv 2024, arXiv:2403.19647.
35. Karpathy, A.; Johnson, J.; Fei-Fei, L. Visualizing and understanding recurrent networks. arXiv 2015, arXiv:1506.02078.
36. Strobelt, H.; Gehrmann, S.; Pfister, H.; Rush, A.M. LSTMVis: A Tool for Visual Analysis of Hidden State Dynamics in Recurrent

Neural Networks. IEEE Trans. Vis. Comput. Graph. 2018, 24, 667–676. [CrossRef]
37. Giles, C.L.; Horne, B.G.; Lin, T. Learning a class of large finite state machines with a recurrent neural network. Neural Netw. 1995,

8, 1359–1365. [CrossRef]
38. Wang, Q.; Zhang, K.; Ororbia II, A.G.; Xing, X.; Liu, X.; Giles, C.L. An empirical evaluation of rule extraction from recurrent

neural networks. arXiv 2017, arXiv:1709.10380. [CrossRef] [PubMed]
39. Weiss, G.; Goldberg, Y.; Yahav, E. Extracting automata from recurrent neural networks using queries and counterexamples. In

Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 5247–5256.
40. Oliva, C.; Lago-Fernández, L.F. On the interpretation of recurrent neural networks as finite state machines. In Proceedings of the

Artificial Neural Networks and Machine Learning–ICANN 2019: Theoretical Neural Computation: 28th International Conference
on Artificial Neural Networks, Munich, Germany, 17–19 September 2019; Proceedings, Part I 28; Springer: Berlin, Germany, 2019;
pp. 312–323.

41. Muvskardin, E.; Aichernig, B.K.; Pill, I.; Tappler, M. Learning finite state models from recurrent neural networks. In Proceedings
of the International Conference on Integrated Formal Methods, Lugano, Switzerland, 7–10 June 2022; Springer: Berlin, Germany,
2022; pp. 229–248.

42. Udrescu, S.M.; Tan, A.; Feng, J.; Neto, O.; Wu, T.; Tegmark, M. AI Feynman 2.0: Pareto-optimal symbolic regression exploiting
graph modularity. Adv. Neural Inf. Process. Syst. 2020, 33, 4860–4871.

43. Cranmer, M. Interpretable machine learning for science with PySR and SymbolicRegression. jl. arXiv 2023, arXiv:2305.01582.
44. Cranmer, M.; Sanchez Gonzalez, A.; Battaglia, P.; Xu, R.; Cranmer, K.; Spergel, D.; Ho, S. Discovering symbolic models from deep

learning with inductive biases. Adv. Neural Inf. Process. Syst. 2020, 33, 17429–17442.
45. Ma, H.; Narayanaswamy, A.; Riley, P.; Li, L. Evolving symbolic density functionals. Sci. Adv. 2022, 8, eabq0279. [CrossRef]
46. Gu, A.; Dao, T. Mamba: Linear-time sequence modeling with selective state spaces. arXiv 2023, arXiv:2312.00752.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://transformer-circuits.pub/2023/monosemantic-features/index.html
http://dx.doi.org/10.1109/TVCG.2017.2744158
http://dx.doi.org/10.1016/0893-6080(95)00041-0
http://dx.doi.org/10.1162/neco_a_01111
http://www.ncbi.nlm.nih.gov/pubmed/30021081
http://dx.doi.org/10.1126/sciadv.abq0279

	Introduction
	Related Work
	MIPS, Our Program Synthesis Algorithm
	AutoML Optimizing for Simplicity
	Auto-Simplification
	Boolean and Integer Autoencoders
	Bit Representations
	Integer Lattice
	Symbolic Regression
	Boolean Regression
	Integer Regression

	Results
	Benchmark
	Evaluation
	Performance

	Discussion
	Findings
	Outlook

	Lattice Finding Using a Generalized Greatest Common Divisor (Gcd)
	Problem Formulation
	Regular GCD
	Generalized GCD in D Dimensions

	Linear Lattice Finder
	Symbolic Regression
	Neural Network Normalization Algorithms
	Whitening Transformation
	Jordan Normal Form Transformation
	Toeplitz Transformation
	De-Biasing Transformation
	Quantization Transformation

	Supplementary Training Data Details
	Architecture Search Results
	Generated Programs
	References

