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Abstract
A common setting in astronomy is the availability of a small number of high-quality observations,
and larger amounts of either lower-quality observations or synthetic data from simplified models.
Time-domain astrophysics is a canonical example of this imbalance, with the number of
supernovae observed photometrically outpacing the number observed spectroscopically by
multiple orders of magnitude. At the same time, no data-driven models exist to understand these
photometric and spectroscopic observables in a common context. Contrastive learning objectives,
which have grown in popularity for aligning distinct data modalities in a shared embedding space,
provide a potential solution to extract information from these modalities. We present Maven, the
first foundation model for supernova science. To construct Maven, we first pre-train our model to
align photometry and spectroscopy from 0.5M synthetic supernovae using a contrastive objective.
We then fine-tune the model on 4702 observed supernovae from the Zwicky transient facility.
Maven reaches state-of-the-art performance on both classification and redshift estimation, despite
the embeddings not being explicitly optimized for these tasks. Through ablation studies, we show
that pre-training with synthetic data improves overall performance. In the upcoming era of the
Vera C. Rubin observatory, Maven will serve as a valuable tool for leveraging large, unlabeled and
multimodal time-domain datasets.

1. Introduction

The discovery rate of supernovae (SNe) has grown exponentially over the past four decades, thanks in large
part to wide-field, untargeted optical surveys (e.g. All Sky Automated Survey for SuperNovae (ASAS-SN;
Shappee et al 2014), ATLAS (Tonry et al 2018), the Zwicky transient facility (ZTF; Bellm et al 2018) and the
young supernova experiment (YSE; Jones et al 2021). Today, well over ten-thousand SNe are discovered
annually. The upcoming legacy survey of space and time (LSST; Ivezíc et al 2019), conducted by the Vera C.
Rubin Observatory, is expected to commence in 2025 and will continue for ten years. LSST will enable the
photometric discovery of over one million SNe annually, in addition to millions of other non-SN variable
phenomena (including flaring stars and active galactic nuclei). We expect a small fraction of LSST SNe–no
more than 1%–to be observed spectroscopically.

SNe can be characterized by a spectral energy distribution (SED), the energy emitted by the event over
wavelength and time. Data from this SED at a fixed time is observed as spectroscopy, and for a fixed
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Figure 1. Illustration of the mutual information between modalities considered in this work. Supernovae are characterized by a
spectral energy distribution (SED) varying in wavelength and time. Photons are collected through broad-band filters (ZTF-g and
ZTF-r with transmission curves shown in the top left) at multiple epochs during explosion to construct multi-band light curves
(bottom right). At a single epoch, supernova light can also dispersed with a spectrograph (SEDM in this work) to obtain a
spectrum (top right). Both modalities offer a complementary, but limited, view of an SN’s underlying SED.

wavelength range is observed as photometry. This photometry is collected over time to construct a SN’s light
curve (see figure 1). While photometry is easily obtained, spectroscopy is significantly more time-consuming
to acquire (long integration times are needed to build up sufficient signal across a spectrograph). This
challenge has catalyzed research into techniques to infer the underlying physics of an explosion directly from
photometric observations, including the classification of SN types (e.g. Villar et al 2019, Muthukrishna et al
2019a, Möller and de Boissière 2020, Boone 2021, Gagliano et al 2023, Rehemtulla et al 2024, de Soto et al
2024) and inference of SN redshifts (Mitra et al 2023, Qu and Sako 2023). In this context, supervised
machine learning has dominated the training of models for the classification of SN types and the estimation
of SN redshift. The labels used in the supervised training scenario must be first extracted from spectra,
demanding large spectroscopic datasets for sufficient model performance. To overcome this issue, researchers
have begun to explore self-supervised learning to leverage the structure of unlabeled photometric datasets, by
training a feature extraction network and generating a low-dimensional latent space (Richards et al 2012,
Villar et al 2020). The learned latent space can then be used to classify events using supervised methods.

Self-supervised representation learning for time-domain astrophysics is appealing for multiple reasons.
Pre-trained models have been shown to produce latent data representations that are more robust against
distribution shifts than their supervised counterparts (Goyal et al 2022, Shi et al 2022). Distribution shift is a
common obstacle when applying models trained on bright, spectroscopically-confirmed low-redshift
transients to fainter, more distant phenomena that are underrepresented in the training data. Self-supervised
learning may also be less sensitive to the class imbalances observed in transient science (Yang and Xu 2020):
labeled SN samples are dominated by type Ia SNe due to their high luminosities relative to other classes. The
generalizability of learned representations (Kim et al 2021, Ericsson et al 2022) also offers the potential for
using a pre-trained model for multiple inference tasks and across diverse time-domain surveys, with only
minimal fine-tuning.

Contrastive learning has emerged as an effective pre-training objective for combining multiple data
modalities. Radford et al (2021) present an embedding scheme called contrastive language-image
pre-training (CLIP) for aligning natural language and associated images in a shared latent space. Following
this example, domain-specific ‘foundation models’ are beginning to appear in the literature. Parker et al
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Figure 2. Overview of our training workflows. We first pre-train on a large simulated data set using contrastive methods (using
light curves and spectra). We follow up by training on the observational ZTF dataset and then use a simple model to translate
these embeddings to downstream tasks. Different colors indicate different first training steps and their subsequent arrows indicate
subsequent training steps.

(2024) recently introduced a cross-modal foundation model using galaxy spectroscopy and images. After
independently embedding galaxy images and spectra into low-dimensional latent spaces, they use contrastive
training to align the embeddings into a joint latent space. They find that such a model can achieve
state-of-the-art performance on the inference of various physical properties (including redshift, mass, and
age). Similarly, Slijepcevic et al (2024) leveraged contrastive learning with instance differentiation, and
created a foundational model for radio galaxies by augmenting and aligning unimodal data instances via
simple transforms such as rotations. Their resulting model is able to perform accurate morphological
classification with fewer labels than supervised methods.

Here, we present Maven, the first multimodal foundation model for SNe. In contrast to previous models
for SN classification and redshift inference, our model is constructed using spectroscopic and photometric
information simultaneously. Motivated by previous work in synthetic pre-training, we first train Maven by
aligning simulated light curve-spectrum pairs via contrastive learning, and fine-tune it on a small sample of
observed data using the same approach (see figure 2). Our final model achieves state-of-the-art performance
on multiple downstream tasks. We also train a model with only observed data, called Maven-lite, to quantify
the impact of synthetic pre-training. Though we limit our analysis to classification and redshift (two popular
inference tasks in SN science), the model is a milestone toward general-purpose training for a range of
downstream tasks.

Our paper is organized as follows. In section 2, we describe the simulated and observed data used in this
work. In section 3, we describe the architectures of our photometric and spectroscopic encoder models, the
contrastive learning objective used to pre-train and fine-tune Maven, and the downstream tasks we use to
evaluate Maven’s performance. We present our results in section 4, and compare our model to baseline
transformer models optimized explicitly for the explored tasks. We further compare our results to existing
transformer-based models from the literature. We conclude by discussing the value of contrastive
pre-training in astronomy and potential future research directions in sections 5 and 6.

2. Datasets and simulations

In this study, we utilize two datasets: a simulated dataset for pre-training and a dataset of observations for
subsequent fine-tuning and validation7. We describe the details of each below.

7 All data are available at https://huggingface.co/datasets/thelfer/multimodal_supernovae.
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2.1. Simulating supernovae with the SNANA simulation code
We generate synthetic SN samples using the SNANA simulation code (Kessler et al 2009). SNANAmimics the
observing process beginning from a rest-frame SED of an astrophysical transient. A volumetric rate is chosen
and the sky is populated at random with transients. A survey strategy, detection efficiency, and the survey’s
estimated noise properties (zeropoint and sky noise) are provided to construct synthetic observations.

We simulate observations of the ZTF (Bellm et al 2018) using the framework described in Aleo et al
(2023), which approximately matches the redshift distribution of the SNe in our observed sample (described
in the following section 2.2). We simulate 500 000 total events evenly split between five different SN classes,
using SED models from the Photometric LSST Astronomical Time-Series Classification Challenge (Kessler
et al 2019): SNe Ia (using the SALT2 model; Guy et al 2007); SNe Ib/c (SNIbc-Templates; Kessler et al
2010); SLSNe-I (using the model SLSNI-MOSFIT; Villar et al 2017); and SNe II (SNII-Templates; Kessler
et al 2010), which includes both SNe IIP/IIL; and SNe IIn (SNIIn-MOSFIT; Villar et al 2017). We use the
same volumetric rates for SNE II, SNe IIn, and SNe Ib/c as in the PLAsTiCC challenge (Strolger et al 2015),
re-scaled to match the fractional rates presented in Shivvers et al (2017). The volumetric rate for SNe Ia is
taken from Hounsell et al (2018), and that for SLSNe-I traces the star-formation history parameterized in
Madau and Dickinson (2014). Our simulations mimic the ZTF survey strategy, filter transmissions, and
reported sky noise. This results in a similar selection function favoring low-redshift (z< 0.1) SNe as our
observed sample, although we do not explicitly define a brightness threshold for photometry as is done with
the BTS sample (Fremling et al 2020) and our sole quality cut is removing events with fewer than four total
photometric observations. As a result, our simulated events are intrinsically fainter and lower-quality than
our observed events.

In addition to the previously-developed simulations, we define a spectrograph object in SNANA with
wavelength bins corresponding to the wavelength coverage of the ZTF SED machine (Blagorodnova et al
2018), with which the vast majority of our observed SNe were classified. To mimic the stochasticity inherent
to SN classification in practice, we allow synthetic spectra to be obtained randomly from explosion to peak
light, and with sufficient exposure time to achieve S/N of 5 within an arbitrary wavelength window. Galactic
extinction is applied to both modalities at the simulated SN location following the extinction law from
Cardelli et al (1989).

We then pre-process all spectra in the same manner as in Muthukrishna et al (2019b): we apply low-pass
median filtering to remove high-frequency noise, re-bin the data to log-wavelength space, and estimate the
flux continuum using a polynomial fit and divide it out. While this continuum-division step removes color
information, it has been shown that it has a negligible impact on redshift estimation (Blondin and Tonry
2007). The spectra are kept in the observer frame (not redshift-corrected).

2.2. The ZTF bright transient survey
Since 2019, the ZTF (Bellm et al 2018) has conducted a wide-field public survey consisting of photometry
obtained with the Palomar 48-inch Schmidt telescope at a cadence of roughly two nights. The telescope
observes in three photometric filters: ZTF-g, ZTF-r, and ZTF-i. Photometry is promptly reduced and
streamed to alert brokers including ANTARES (the Arizona-NOIRLab Temporal Analysis and Response to
Events System; Matheson et al 2021). For non-Galactic transients observed at or expected to peak brighter
than an apparent magnitude of∼18.5, a classification spectrum is automatically obtained using the SED
machine (SEDM; Ben-Ami et al 2012, Blagorodnova et al 2018, Rigault et al 2019), a low-resolution
spectrograph mounted on the Palomar 60-inch telescope (Cenko et al 2006). SEDM spectra are then
uploaded to the transient name server and the Weizmann interactive supernova data repository (WISeREP;
Yaron and Gal-Yam 2012). 5377 SNe have been spectroscopically confirmed at the time of writing as part of
this bright transient survey.

We obtain metadata for 4702 spectroscopically-classified SNe on June 18th, 2024 from the ZTF bright
transient survey (Fremling et al 2020) after applying all quality and purity cuts available on the ZTF BTS
webpage8 (described in detail in Perley et al 2020). The subsequent SNe have photometric coverage before
and after peak light, good visibility throughout the photospheric phase, an uncontaminated reference image,
and occurred in low extinction fields. We consolidate our resulting sample to only include events
spectroscopically classified as ‘normal’ SN Ia, SN Ib/c, SN II, SLSN-I, and SN IIn.

Next, we use the Python client of the antares alert broker (Matheson et al 2021) to consolidate
difference photometry for all SNe in ZTF-g and ZTF-r (ZTF-i observations are mainly private, comprising
∼10% of all observations; Aleo et al 2023), and download their associated SEDM spectra from the transient

8 https://sites.astro.caltech.edu/ztf/bts/bts.php.
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name server9 and WISEReP10, 11. We pre-process the observed spectra following the same procedure as our
synthetic ones.

Next, we augment our observational data with noise. In each training iteration, we apply Gaussian noise
to the photometric and spectroscopic observations with mean zero and standard deviation equal to the
magnitude of the reported observational errors. This acts to both increase our training set and to make our
model more robust to typical observational noise.

3. Methodology

3.1. Contrastive representation learning
Contrastive learning is a type of self-supervised learning based on the existence of associations between data
samples. It encourages corresponding data pairs to develop similar representations while separating
unassociated pairs in representation space. For multimodal datasets, contrastive learning has been a common
approach for aligning data pairs across modalities. Here, our goal is to build a shared representation space
using photometric and spectroscopic data from the same event, and to explore the predictive properties of
these representations for downstream tasks.

For both pre-training and fine-tuning, we use the standard softmax-based bidirectional variant of the
InfoNCE (Oord et al 2018) contrastive loss function introduced for training . Given a minibatch B of |B|
associated pairs {(Xi,Yi)}|B|

i=1(in this work, the Xi ∈ I represents the light curve and Yi ∈ T represents
spectrum of a single SN), the goal is to align the learned representations of corresponding (positive) pairs
(Xi,Yi) while repelling the representations of unaligned (negative) pairs (Xi,Yj̸=i):

L(B) =− 1

2|B|

|B|∑
i=1

(
log

exi ·yi /τ∑|B|
j=1 e

xi ·yj/τ
+ log

exi ·yi /τ∑|B|
j=1 e

xj·yi /τ

)
(1)

where xi = f(Xi)/∥f(Xi)∥ and yi = g(Yi)/∥g(Yi)∥ are the normalized representations of the ith data pairs
associated with each other, and τ is a learnable hyperparameter. Encoders f : I→ Rdemb and g : T→ Rdemb

map the two modalities to an embedding space of dimension demb. Transformer-based encoders are chosen
to capture and aggregate the temporal correlations of our light curve data and the wavelength correlations of
our spectroscopic data. We describe these encoders in more detail in the next section. This loss treats the two
representations symmetrically, thus ensuring that the two modalities are equally weighted.

3.2. Modality encoders
The encoders f : I→ Rdemb and g : T→ Rdemb are designed to efficiently extract information from
high-dimensional data for the two considered modalities. Both light curve and spectrum encoders are based
on the transformer architecture (Vaswani et al 2017). In this section, we describe the architecture and explore
how common representation / pre-training approaches impact downstream task performance (see figure 3
for an overview).

The transformer-based light curve encoder processes magnitude measurements and their corresponding
observation times. Given an input sequence of magnitude-time pairs Xi = ((m1, t1), . . .,(mn, tn)) ∈ I,
where tj is defined as the number of days from the first observation, the normalized magnitudes are
initially linearly projected to the dmodel-dimensional embedding space of the transformer. Each
transformer layer applies multi-head self-attention (with nheads heads acting separately). Here we define
Attention(Q,K,V) = softmax

(
QKT/

√
dk
)
V where Q, K, and V are linear projections of the input

representing queries, keys, and values, and dk = dmodel/nheads. A two-layer feedforward network,
FFN(x) =max(0,xW1 + b1)W2 + b2, is applied to each sequence element (a magnitude-time pair) separately.
Layer normalization and residual connections are applied after attention as well as the feedforward
layer.

To account for the temporal nature of light curves, we use sinusoidal time encodings to project the times
ti to a higher-dimensional space,

TE(ti, j) =

sin
(
ti/n

2j/dmodel
t

)
if i is even

cos
(
ti/n

2j/dmodel
t

)
if i is odd

, (2)

9 www.wis-tns.org/.
10 www.wiserep.org/.
11 Despite spectroscopic classifications being available on the ZTF website for all listed SNe, SEDM spectra could not be found for a
few objects. When an SEDM spectrum is not available, we instead use the first reported spectrum. A positional encoding is used for the
wavelengths of each spectrum, so in principle our spectrum encoder has the capacity to generalize to multiple spectrographs.
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Figure 3. Overview over model architecture. We start by using a linear layer to increase the dimensionality of the features from
one to the chosen embedding dimension. Next, we encode both time and wavelength using sinusoidal embeddings. For light
curves specifically, we additionally include embeddings to represent the band information. These combined tokens are then
processed through a series of transformer blocks. To reduce the output to a single token, we use a simple mean or self-attention
mechanism. Finally, we project this token to match the desired length of the embedding space.

where j is the time embedding index, ti are the input times, and nt is a hyperparameter governing the
periodicity of the time encodings. This encoding allows the model to capture both absolute and relative
timing of observations across a wide range of timescales.

To incorporate light curve measurements from multiple photometric filters, we concatenate all
measurements for each SN and add an additional band encoding. Different bands are one-hot encoded with
integers and then added to light curve magnitude embeddings before being passed into the transformer
encoder.

In contrast, the spectrum encoder processes flux measurements across multiple wavelengths. It utilizes a
similar transformer-based architecture to that of the light curve encoder, but interprets the input sequence as
(( f1,λ1), . . .,( fn,λn)), where fi represents the flux at observer-frame wavelength λi. The positional encoding
for wavelengths follows the same sinusoidal pattern as the light curve encoder, but with λ in place of t. This
approach allows the model to capture both local and global spectral correlations.

For both the light curve and spectrum encoders, in addition to deterministic aggregate e.g. mean or max
pooling, we consider attention-based learnable aggregation to convert the per-sequence representation to a
1-D representation vector. This enables the model to learn a data-dependent aggregation scheme, potentially
better capturing correlations in the data. We initialize a learnable query vector Qlearned ∈ Rdemb , where demb is
the embedding dimension. A projection of the encoded sequence after the final transformer layer,
Xfinal ∈ Rnseq×dseq gives the keys and values for the attention mechanism. We use a multi-head attention
architecture with two heads to then get xagg = Attention(Qlearned,Kfinal,Vfinal) ∈ Rdemb as desired. This
attention-based pooling allows the model to focus on the most relevant parts of the sequence when creating
the final embedding. We treat the aggregation method as a hyperparameter: in the hyperparameter tuning
process discussed in section 3.5, we consider both mean and attention-based aggregation.

3.3. Transfer learning and fine-tuning
After pre-training some of our models on the simulations discussed in section 2.1, we fine-tune all weights
on the small set of ZTF BTS measurements discussed in section 2.2. We define our best-performing
hyperparameter-optimized pre-trained model as ‘Maven’, and our best-performing hyperparameter-
optimized model without pre-training as ‘Maven-lite’ (see figure 2).

3.4. Stratified k-fold cross-validation
To quantify uncertainties for both end-to-end and fine-tuned models, we perform a five-fold
cross-validation, in which we split the ZTF dataset into five unique train-test splits. All five folds share the
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Table 1. Table of hyperparameters that were optimized in a random hyperparameter search. Parameters in the leftmost column were
optimized for end-to-end models while parameters in the rightmost column were optimized for all models (including end-to-end
training and finetuning).

Light curve / spectrum encoder Metadata encodera Optimizer and training

Number of transformer blocks Dimension of class label embedding Learning rate
Number of attention heads Number of layers in MLP Dropout rate
Normalization factor in time encoding
(nt)

MLP hidden layer dimension Weight decay

Aggregation method Logit temperature in loss function (τ )
Embedding vector dimension Batch size
a In addition to light curve and spectra, we explored using metadata as an additional modality. Details about the metadata encoder and

results are shown in appendix.

Table 2. Overview of model hyperparameters. The column starting with ‘sp’ refer to the spectral transformer parameters, while those
starting with ‘lc’ refer to the light curve transformer parameters. The term ‘blocks’ indicates the number of transformer blocks, ‘head’
refers to the number of attention heads, and ‘emb’ specifies the embedding dimension. The ‘agg’ column describes the aggregation
method of tokens at the end, where ‘mean’ denotes computing the mean over tokens and ‘attn’ indicates using self-attention. For full
reproducibility, the YAML files defining the models are available in the GitHub repository along with pre-trained models (https://
github.com/ThomasHelfer/multimodal-supernovae).

Model sp-blocks sp-head sp-emb sp-agg lc-blocks lc-head lc-emb lc-agg

Maven 13 2 32 mean 5 8 64 mean
Maven-lite 13 2 32 mean 5 8 64 attn
Baseline classification 9 2 32 mean
Baseline regression 9 2 32 mean

same distribution of SN classes. The results in subsequent sections are the mean and standard deviation from
these runs. To avoid added computational overhead, we do not perform cross-validation on the much larger
simulation-based pre-training dataset.

3.5. Hyperparameter optimization
To determine hyperparameter values for model architecture and training, we perform a hyperparameter
search for our end-to-end baseline and CLIP models using Weights & Biases (Biewald 2020). Table 1 provides
a summary of the hyperparameters tuned in this process. A list of parameter values in our search are
provided in configuration files in our public code repository12. An overview over some of the
hyperparameters can be found in table 2.

In each hyperparameter sweep, we choose the set of parameter values that result in the lowest validation
loss on our holdout dataset. Due to the high computational cost associated with hyperparameter tuning, we
employ a random train-test split on our dataset instead of carrying out k-fold cross-validation. In addition,
we reuse the optimal hyperparameters of the Maven-lite model for Maven instead of performing a separate
hyperparameter search. In the transfer learning stage of the pre-trained models discussed in section 3.3, we
only tune the hyperparameters shown in the optimizer and training column of table 1, while other
hyperparameters are fixed to their pre-train values.

3.6. Downstream tasks
We evaluate the performance of Maven and Maven-lite on two primary downstream tasks: classification and
regression.

Classification of SNe from photometry alone has been an area of active study due to the long integration
times required to build up sufficient signal-to-noise with spectroscopy and the subsequent rise of wide-field
photometric surveys. SN classes are highly imbalanced in observed samples, due to a combination of
different intrinsic volumetric rates and a steep selection function toward brighter classes (SNe Ia). We
separately consider both five-way (SN Ia, SN II, SN Ib/c, SLSN-I, SN IIn) and three-way classification (SN Ia,
SN II, SN Ib/c), considering in the latter case only the three most commonly-observed
classes.

In addition to classification, we attempt to predict the redshift of each SN (which we call our ‘regression’
task). Redshift estimation using spectroscopic and photometric SNe Ia is a fundamental tool for
cosmological analyses. Although non-Ia classes are significantly more observationally diverse (e.g. Modjaz

12 https://github.com/ThomasHelfer/multimodal-supernovae.
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Table 3. Classification performance for three classes by model configuration: This table presents the classification performance of
various models using light curve data from the ZTF dataset. The models are categorized based on whether they utilized simulation
pre-training (‘pre-trained’), the type of last layer added to embedding models (‘last-layer’). The modalities taken into account when
training on the real ZTF dataset are indicated in ‘real-pre’ (lc—light curve, sp—spectrum, m—metadata) as well as whether a SVC or
kNN. Performance metrics include macro-F1 (mac-f1), micro-F1 (mic-f1), macro-precision (mac-p), and macro-recall (mac-r). The
results are presented as mean± standard deviation, calculated over five folds. Baseline models, trained in an end-to-end supervised
fashion using only the ZTF data, are included for comparison.

pre-trained last-layer real-pre mac-f1 mac-p mac-r

No end-to-end baseline 0.7011± 0.0303 0.6934± 0.0360 0.7527± 0.0247
Yes kNN lc-m 0.6920± 0.0217 0.7286± 0.0377 0.6721± 0.0183
Yes kNN lc-sp 0.6874± 0.0342 0.8041± 0.0833 0.6516± 0.0216
Yes kNN lc-sp-m 0.6849± 0.0194 0.7280± 0.0334 0.6643± 0.0161
Yes SVC lc-m 0.6747± 0.0297 0.8026± 0.0257 0.6435± 0.0257
Yes SVC lc-sp-m 0.6522± 0.0237 0.7892± 0.0975 0.6247± 0.0215
No kNN lc-sp-m 0.6268± 0.0251 0.7204± 0.0701 0.6000± 0.0199
No kNN lc-sp 0.6265± 0.0231 0.6670± 0.0532 0.6119± 0.0121
No kNN lc-m 0.6249± 0.0228 0.7309± 0.0661 0.6035± 0.0184
Yes SVC lc-sp 0.6195± 0.0190 0.7753± 0.0994 0.6056± 0.0172
No SVC lc-m 0.5971± 0.0220 0.7871± 0.1858 0.5842± 0.0163
No SVC lc-sp-m 0.5938± 0.0156 0.7892± 0.1873 0.5802± 0.0077
No SVC lc-sp 0.5749± 0.0099 0.5857± 0.0126 0.5686± 0.0102

Table 4. Regression performance by model configuration: this table presents the regression performance of various models using light
curve data from the ZTF dataset. The models are categorized based on whether they utilized simulation pre-training (‘pre-trained’), the
type of last layer added to embedding models (‘last-layer’). The modalities taken into account when training on the real ZTF dataset is
indicated in ‘real-pre’ (lc—light curve, sp—spectrum, m—metadata) as well weather we use a linear or kNN layer to translate our
embedding to a redshift prediction (‘last-layer‘). Performance metrics include the coefficient of determination (R2), L1 loss, and L2 loss.
The results are presented as mean± standard deviation, calculated over five folds. Baseline models, trained in an end-to-end supervised
fashion using only the ZTF data, are included for comparison.

pre-trained last-layer real-pre R2 L1 L2

Yes kNN lc-m 0.6543± 0.0280 0.0094± 0.0005 0.0152± 0.0010
Yes Linear lc-sp-m 0.6513± 0.0440 0.0096± 0.0005 0.0152± 0.0016
Yes kNN lc-sp 0.6496± 0.0398 0.0095± 0.0004 0.0152± 0.0014
Yes kNN lc-sp-m 0.6470± 0.0422 0.0094± 0.0006 0.0152± 0.0012
Yes Linear lc-sp 0.6386± 0.0447 0.0099± 0.0003 0.0155± 0.0016
Yes Linear lc-m 0.6345± 0.0444 0.0100± 0.0006 0.0156± 0.0014
No kNN lc-m 0.6150± 0.0294 0.0103± 0.0003 0.0160± 0.0012
No end-to-end baseline 0.6129± 0.0245 0.0104± 0.0004 0.0160± 0.0010
No kNN lc-sp-m 0.6090± 0.0464 0.0102± 0.0005 0.0161± 0.0015
No kNN lc-sp 0.6078± 0.0408 0.0103± 0.0006 0.0161± 0.0014
No Linear lc-sp 0.5948± 0.0402 0.0107± 0.0007 0.0164± 0.0015
No Linear lc-sp-m 0.5938± 0.0450 0.0108± 0.0004 0.0164± 0.0016
No Linear lc-m 0.5927± 0.0399 0.0107± 0.0004 0.0165± 0.0015

et al 2019), estimating SN redshift remains critical for estimating the intrinsic properties of an explosion
(luminosity from photometry and chemical composition from spectroscopy).

To transform our contrastive-trained light curve embeddings into classification predictions, we explore
both support vector classification (SVC) and k-nearest neighbors classification (kNN). SVC works by finding
an optimal hyperplane to separate classes. Here, we use a linear kernel with scikit-learn default
parameters. kNN classification, in contrast, classifies SNe based on the similarity of their feature embedding
to other latent-space neighbors.

For redshift regression, we explore both linear regression and kNN regression. The former uses linear
transformation of the embeddings to estimate redshift, while the latter estimates redshift based on the
average (or median) redshift of closest training examples in the latent space.

In our comparison, we find kNN to be best-performing for both regression and classification. A more
comprehensive comparison over our experiments can be found in tables 3 and 4. In the following sections,
we mainly quote results from the best performing k value for brevity but note that we also experimented with
multiple kNN classifiers.

Lastly, we train transformer-based supervised models directly on the observational ZTF dataset as our
baseline models. For the classification baseline model, we optimize for the multi-class cross-entropy loss and
take the class with highest pseudo-probability score as the prediction for each event in the validation set. The
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regression baseline model outputs a single value and is optimized using the mean squared error (MSE) loss.
The hyperparameters of our baseline models are given in table 2.

4. Results

In this section, we present results fromMaven, Maven-lite, and our baseline models on the downstream tasks.

4.1. t-SNE visualization of latent spaces
To explore the impact of contrastive pre-training on the latent space of our Maven models, we visualize a
sample of embedded light curves. We compute Maven and Maven-lite embeddings of our five dominant
classes for both the synthetic and observed samples: SNe Ia, SNe II, SNe Ib/c, SLSNe I, and SNe IIn. Similar
to Slijepcevic et al (2024), we first reduce the dimensionality of our latent space using principal component
analysis from the encoder output of 128 features to 50 features. This allows us to explore the impact tSNE
perplexity on the observed latent structure while managing computational overhead. We have confirmed
that the 50 resultant principal components retain>99.999% of the variance in the original embeddings. We
then produce two-dimensional representations of these embeddings using the t-distributed stochastic
neighbor embedding tool (t-SNE; Van der Maaten and Hinton 2008). Our results are presented in figure 4
for Maven-lite (left column) and Maven (right column), where the embeddings are colored by class in the
top row and shaded by redshift in the bottom row.

Significant differences are visible between the two latent spaces. Considering the Maven-lite embeddings,
only the synthetic SLSN-I light curves (blue) are well-separated from the other classes; the core-collapse
(SN Ib/c, II, IIn) and thermonuclear (Ia) events show significant overlap. Observed Ia and II light curves
(outlined in black) show similar embeddings independent of class, and little consistency with the synthetic
embeddings: the majority of observed SN Ia and SN II lie at the boundary between synthetic SLSN-I and
SN II/SN IIn embeddings.

In our Maven embeddings, we observe both clear separation of classes and consistent redshift gradients
across our embedded light curves. The simulated SNe Ia appear best-organized by redshift, consistent with
their photometric homogeneity. The redshift gradient across observed SNe Ia is also well-aligned with that of
the synthetic sample, whereas a similar distribution is not observed in the Maven-lite embeddings. Synthetic
SNe Ib/c appear strongly mixed with both SNe Ia and SNe II, indicative of the photometric degeneracies
between these classes.

Interestingly, although observed SN Ia and SN II embeddings lie closest to the synthetic events of the
same class, the overlap between synthetic and observed data remains low. We attribute this to a distributional
shift between synthetic and observed data. Observed events are prioritized for spectroscopic confirmation if
they are brighter than (or expected to brighten above)m< 18.5th magnitude, and additional quality and
purity cuts are imposed (see section 3 for details). While a detailed comparison between synthetic and
observed events is beyond the scope of this work, this separation may also reflect the simplistic nature of our
simulations relative to reality, and emphasizes the need for significantly larger observed SN samples for
effective pre-training.

4.2. Classification performance
Our results are visualized using a set of confusion matrices for our three-way classification task in figure 5.
We show the confusion matrices for precision (normalized by predicted class) and recall (normalized by true
class) for our models. Precision is the proportion of true positives out of all positive predictions made by the
model, while recall is the proportion of true positive predictions out of all true positive instances. We note
higher recall by Maven on the two dominant classes in our sample: 0.79 for SNe II and 0.99 for SNe Ia,
compared to 0.74 for SNe II and 0.91 for SNe Ia with the baseline model. We observe poorer recall with the
minority SN Ib/c class, which comprises∼5% of the observed sample: 0.18 with simulated pre-training
compared to 0.61 for the baseline. We predict that the baseline model is better able to outline the decision
boundaries for this class.

We observe the opposite results on the minority class when considering class precision. Our Maven
model achieves comparable precision to the baseline for SNe II and SNe Ia but substantially higher precision
for SNe Ib/c, 0.58 compared to 0.28. We note that, with substantially higher discovery rates of rare classes
anticipated with the Vera C. Rubin observatory, classification precision is essential for obtaining
spectroscopic follow-up observations of relevant events. We have explored the misassociation rate as a
function of event peak brightness, but identify no obvious correlations.
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Figure 4. Visualization of synthetic and observed light curves embedded by Maven-lite (left column) and Maven (right column).
Points in top row are colored by SN class, and points in bottom row are shaded by spectroscopic redshift. Observed data are
outlined in black.

A common metric in classification tasks is the F1 score, which increases to 1 in the limit of perfect
classification. For a class C, F1 is defined as the harmonic mean between the class’s recall r and precision p:

F1,C := 2
pC × rC
pC + rC

. (3)

We calculate for each model both the micro-averaged F1 score, which averages performance across all
events irrespective of class; and the macro-averaged F1 score, which averages the F1 score computed
independently for each class. The macro-averaged F1 score is a valuable indicator for our use case given the
significant class imbalance, as the micro-F1 can approach unity when all events are labeled as the dominant
class. We present these results, along with the macro-averaged precision and recall (‘mac-p’ and ‘mac-r’) in
table 5. We further show the macro-F1 score of each model as a bar plot in figure 6.

We observe macro-F1 scores within 1-σ of the baseline model for the majority of the pre-trained kNN
classifiers that we experimented with (see section 3.6), from a score of 0.6874± 0.0342 for Maven compared
to a baseline of 0.7011± 0.0303. The scores for the pre-trained models are systematically higher than those
without pre-training: we found an average F1 score of 0.68 for all pre-trained kNN classifiers compared with
an average of 0.63 for the kNN classifiers trained with only observed data.

We have also calculated the performance of our models for the five-way classification task, which
additionally considers the rarer classes SN IIn and SLSN I. Here, we observe a marginally higher average F1
score for the synthetic pre-trained contrastive models than the baseline, though the results are consistent to
within one standard deviation (0.50± 0.03 for the best model compared to 0.49± 0.04). As with the
three-way classification results, the macro-averaged precision of our pre-trained models is on average higher
than the end-to-end baseline, with the best model achieving a score of 0.58± 0.03 compared to the baseline
of 0.50± 0.09.
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Figure 5. Normalized precision and recall confusion matrices for supernova classification across different models and modalities.
The models compared are: (a) contrastive learning with real data and pre-trained on simulated data (Maven), (b) baseline using a
supervised model approach, and (c) contrastive training with real data and no pre-training (Maven-lite). The classes included are
SN II, SN Ia, and SN Ib/c.

Table 5. Overview of classification model performance. We present three classification models: the baseline only trained on the ZTF
dataset, Maven-lite without synthetic pre-training, and Maven with synthetic pretraining and observed fine-tuning. A more
comprehensive overview over the runs performed in this paper can be found in table 3.

Name pre-trained kNN mac-F1 mic-F1 mac-p mac-r

Baseline No — 0.7011± 0.0303 0.8728± 0.0205 0.6934± 0.0360 0.7527± 0.0247
Maven Yes 8 0.6874± 0.0342 0.9247± 0.0070 0.8041± 0.0833 0.6516± 0.0216
Maven-lite No 3 0.6265± 0.0231 0.8943± 0.0110 0.6670± 0.0532 0.6119± 0.0121

Note: Bold indicates best performing model for each performance metric.

4.3. Comparison to three-way photometric classifiers on ZTF SNe
Next, we compare our multimodal model to photometric classifiers in the literature that have been validated
on ZTF light curves. de Soto et al (2024) developed a gradient-boosted machine trained on best-fit features
from a flexible piecewise parametric light curve model. The resulting classifier, Superphot+, was trained on
ZTF photometry for 6123 spectroscopically confirmed SNe. Variants of the classifier trained with and
without redshift information were considered. 66% of these events pass the ZTF-imposed quality cuts and
are also used in this work; the class breakdown of both samples are comparable for SNe Ia, II, and Ib/c. de
Soto et al (2024) report (from their figure 18, in the way of four-way classification including SLSNe I) mean
recall values of 0.77 for SNe II, 0.88 for SNe Ia, and 0.86 for SNe Ib/c when considering redshift information.
By comparison, Maven achieves mean recall values of 0.79, 0.99, and 0.18 for the same respective classes.
From our confusion matrices in figure 5, we observe that our lower recall on the minority class (SN Ib/c) is
due to a systematic misclassification of these events as SNe Ia. The explicit inclusion of redshift information
is likely to bring performance gains distinguishing these populations, as SNe Ia are∼2 magnitudes brighter
at peak Richardson et al (2014). de Soto et al (2024) further report mean precision values of 0.88 for SNe II,
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Figure 6. Final performance metrics for Maven, Maven-lite, and baseline models for on downstream classification and regression
tasks.

Table 6. Overview of regression model performance. We present three regression models: the baseline only trained on the ZTF dataset, a
contrastive model trained only on the ZTF dataset (Maven-lite) and a contrastive model pre-trained on simulated data (Maven) and
then subsequently trained on ZTF. A more comprehensive overview over the runs performed in this paper can be found in table 4.

Name pre-trained kNN R2 L1 L2 OLF

Maven Yes 9 0.6496± 0.0398 0.0095± 0.0004 0.0152± 0.0014 0.0002± 0.0005
Baseline No 0.6129± 0.0245 0.0104± 0.0004 0.0160± 0.0010 0.0002± 0.0005
Maven-lite No 9 0.6078± 0.0408 0.0103± 0.0006 0.0161± 0.0014 0.0002± 0.0005

Note: Bold indicates best performing model for each performance metric.

0.97 for SNe Ia, and 0.30 for SNe Ib/c; The classification precision for Maven is comparable for SNe II (0.89)
and marginally lower for SNe Ia (0.94), and twice as high for SNe Ib/c (0.58).

The results of Pimentel et al (2023) are more directly comparable to this work. Pimentel et al (2023)
present a transformer model for ZTF photometry in which the time of each observation is encoded as the
phase from first detection using a Fourier decomposition-based temporal modulation, with noise added to
the values in training to prevent overfitting. In a two-stage pre-training scheme with both synthetic and
observed events, the optimization problem is defined with reconstruction and cross-entropy regularization
terms to preserve class-specific information in the encoded light curves. The resulting ‘S-TimeModAttn’
model is trained and validated on g and r-band light curves from the ZTF, with presumably substantial
overlap with the observational dataset considered in this work. Though Pimentel et al (2023) is trained on
substantially fewer events (1978 compared to our 4702), we have confirmed that the population of ZTF SNe
discovered before 2023 as might have been used for training is indistinguishable from our larger sample in
the distribution of both redshift and photometric properties (rise time, peak apparent brightness, and
decline time). Pimentel et al (2023) report a macro-F1 of 0.614± 0.036 in the task of four-way classification
(Ia, II, Ib/c, and SLSN), compared to our 0.6874± 0.0342 for three-way classification; and a macro-precision
of 0.598± 0.030 compared to our 0.804± 0.083. A macro-recall (also referred to as completeness) score of
0.72 for three-way classification can be inferred from their confusion matrices, compared to our lower
0.6516± 0.0216 in figure 5. Class-specific F1 scores and precisions (also referred to as purity) are not
reported.

Cabrera-Vives et al (2024) apply a custom transformer model (ATAT) to synthetic photometry and
metadata from the extended LSST astronomical time-series classification challenge (ELAsTiCC13). The ATAT
model consists of separate transformers, one which encodes light curves with a temporal encoding based on
Fourier series and a quantile tokenizer for extracted photometric features (including the number and phases
of non-detections and the flux characteristics of detections). The dataset used to train ATAT is distinct from
the dataset considered here, preventing a direct comparison of classification performance.

4.4. Regression performance
We next consider the task of redshift estimation. We quantify the performance of our models with the
coefficient of determination R2, the L1 and L2 error, and the outlier fraction ‘OLF’, defined as
|zpred − ztrue|/(1+ ztrue)> 0.15. We report these values for contrastive pre-trained models in table 6.

13 https://portal.nersc.gov/cfs/lsst/DESC_TD_PUBLIC/ELASTICC/.
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Figure 7. Predicted versus true redshift for three different models: our pre-trained Maven (left), a baseline model using supervised
methods, and our Maven-lite model trained end-to-end on ZTF observations. The data is segregated into different SN classes.
The SN classes are displayed in separate columns, and the models are shown in separate rows for clear comparison.

We also present a bar plot of the R2 values in figure 6, and the predicted versus true redshifts for each
SN class in figure 7. As expected, we observe the highest correlation between observed and predicted
redshifts for SNe Ia, the most observationally homogeneous SN class considered. We calculate an R2

value of R2 = 0.6496± 0.0398 for Maven compared to the end-to-end baseline performance of
R2 = 0.6129± 0.0245. The L1 and L2 errors are also lower on average for Maven than for our regression
baseline, while the outlier fraction is comparable. We conclude that, on average, Maven outperforms the
baseline regression model. Maven-lite, our model without pre-training, achieves an R2 value of
0.6078± 0.0408, lower than both Maven and the baseline model.

Though a comparable photometric redshift model for low-redshift ZTF SNe does not exist in literature,
an outlier fraction of 0.004 is reported for 289 photometric SNe Ia in the supernova legacy survey (SNLS),
nearly an order of magnitude higher than our best model but with a substantially higher maximum redshift
z< 1.0 (Palanque-Delabrouille et al 2010). Another analytic photometric redshift estimator proposed by
Wang et al (2015) for SNe Ia discovered by LSST finds an outlier fraction of 0.0023 over z< 1.0, compared to
our 0.0002.

5. Discussion

We have explored the value of contrastive pre-training in constructing a foundational model for SN science.
By first training with synthetic events and fine-tuning with observed events, we have constructed a model,
Maven, whose performance on the downstream tasks of photometric classification and redshift is on par
with models optimized end-to-end for these tasks. Maven outperforms our classification baseline model,
with a micro-averaged-F1 score of 0.92. Similarly, Maven outperforms our baseline for redshift regression,
with an L2-loss of 0.015 and minimal outlier fraction. While we have limited our study to ZTF data, adapting
Maven to incorporate additional photometric filters and classes of astronomical transients would allow us to
repurpose it for diverse time-domain studies with the Vera C. Rubin observatory using fewer computational
resources than building multiple specialized models.

Contrastive pre-training has been proposed as a simple and effective mechanism for extracting
information from multiple modalities in a single model. The following conditions need to be met for
multimodal contrastive learning to be effective: that significant information content is shared across these
modalities; that the mutual information is relevant for the downstream tasks; and that the shared
information is the maximal information in each modality relevant for the downstream tasks. Recently, Liang
et al (2023) formalized this picture by defining ‘multi-view redundancy’ as a necessary condition for effective
pre-training using traditional contrastive learning. In our case, we know spectra to be highly informative for
both classification (the taxonomy is defined by spectra obtained early after a SN’s explosion, with the
temporal evolution of the explosion rarely considered) and redshift inference, which is achieved primarily
through the identification of spectral lines. Supernova photometry, although containing some spectral
information, is significantly more lossy: the collection of photons through a broadband photometric filter
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destroys valuable information about a supernova’s underlying SED that might otherwise be valuable for
these tasks (as seen in the diagram in figure 1). For these reasons, we can characterize supernova light curves
as an ‘information-poor’ modality and spectra as an ‘information-rich’ modality for our tasks. Contrastive
pre-training, in this case, is unable to bring significant performance gains beyond end-to-end optimized
models. This behavior persists despite aligning these modalities directly with the relevant downstream
information (metadata of an event’s spectroscopic classification and redshift, as discussed in appendix): the
least-informative modality sets an upper limit on the mutual information that can be extracted.

Seen from this perspective, it is surprising that we do not observe substantial drops in performance
relative to our baseline models. We attribute this to systematic hyperparameter tuning and synthetic
pre-training, through which we are able to mitigate the negative effects of contrastive alignment. We
therefore advise caution in the use of multimodal contrastive pre-training, which should be specialized for
the input modalities and the anticipated downstream tasks. In our case, additional improvements may be
possible with a pre-training scheme designed to preserve both mutual and unique information content
relevant for classification and redshift estimation (as is proposed in Liang et al 2023).

6. Conclusion

We conclude by summarizing our key findings:

1. We train Maven through self-supervised contrastive learning on SN spectra and light curves. Maven is
able to achieve state-of-the-art performance on both redshift estimation and SN classification.

2. We find that pre-training on a large simulated dataset significantly improves Maven’s performance on
downstream tasks over a contrastively-trained model on solely the observed data.

3. Maven does not dramatically outperform supervised models optimized directly for each downstream
task. We hypothesize that this is due to the light curve being an information-poor modality, which limits
the amount of information our unsupervised objective is able to extract.

Starting in 2025, the Vera C. Rubin observatory will initiate the 10-year legacy survey for space and time,
and detect∼1MSNe yr−1 in ugrizY filters. This consistently-calibrated photometric dataset will enable
self-supervised pre-training for time-domain foundation models (including variable stars, lensing events,
active galactic nuclei, and other non-SN phenomena) at an unprecedented scale. However, without
spectroscopy for the vast majority of detected events, the self-supervised tasks that can be applied with this
data will be limited to a single modality.

On the other hand, traditional multimodal models have considered distinct representations of a single
astronomical object (photometry and spectroscopy of a supernova). Where spectroscopic and photometric
information for a transient is sparse, however, broad physical properties can be inferred from the event’s host
galaxy (Hakobyan et al 2012, Kang et al 2020, Schulze et al 2021, Chakraborty et al 2024). Early efforts have
emphasized the value of these data for photometric classification (Gomez et al 2020, Carrasco-Davis et al
2021, Gagliano et al 2023, Sheng et al 2024). LSST data will contain photometry for tens of billions of
galaxies, millions of which will be spectroscopically-confirmed through the dark energy spectroscopic
instrument (DESI; Levi et al 2019) or 4MOST (Dumayne et al 2023). Additional work should be dedicated to
exploring the linking of modalities spanning distinct lengthscales, which would allow for both supernova
and host-galaxy data to be consolidated in a single pre-training scheme.
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Appendix. Metadata as modality in contrastive learning

In addition to SN spectrum and light curve measurements, we also considered SN metadata as an additional
modality for training a contrastive model. The metadata modality used in our training includes supernovae
redshifts and class labels. We encode each class label with a learnable embedding vector. The metadata
encoder consists of a multilayer perceptron (MLP) that takes in the concatenated vector of class embedding
and redshift and outputs the final embedding. The number of hidden layers and the hidden layer dimension
in the MLP were chosen from a hyperparameter search, as discussed in section 3.5.

The models which directly align event photometry with relevant metadata (redshift and class) in
pre-training do not significantly outperform the models in which photometry and spectroscopy alone are
aligned. Considering only pre-trained models for the task of classification, we observe comparable three-way
macro-F1 scores when aligning light curves with metadata (0.692± 0.022), light curves with spectra
(0.687± 0.034), and light curves with both spectra and metadata (0.685± 0.019). Each of our contrastive
objectives featured photometry as a modality, and we predict that this more information-poor modality is
driving the observed performance across each of these models, as we discuss in additional detail in section 6.
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