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Abstract: How do transformers model physics? Do transformers model systems with interpretable
analytical solutions or do they create an “alien physics” that is difficult for humans to decipher? We
have taken a step towards demystifying this larger puzzle by investigating the simple harmonic
oscillator (SHO), ẍ+ 2γẋ+ω2

0x = 0, one of the most fundamental systems in physics. Our goal was to
identify the methods transformers use to model the SHO, and to do so we hypothesized and evaluated
possible methods by analyzing the encoding of these methods’ intermediates. We developed four
criteria for the use of a method within the simple test bed of linear regression, where our method was
y = wx and our intermediate was w: (1) Can the intermediate be predicted from hidden states? (2) Is
the intermediate’s encoding quality correlated with the model performance? (3) Can the majority
of variance in hidden states be explained by the intermediate? (4) Can we intervene on hidden
states to produce predictable outcomes? Armed with these two correlational (1,2), weak causal (3),
and strong causal (4) criteria, we determined that transformers use known numerical methods to
model the trajectories of the simple harmonic oscillator, specifically, the matrix exponential method.
Our analysis framework can conveniently extend to high-dimensional linear systems and nonlinear
systems, which we hope will help reveal the “world model” hidden in transformers.

Keywords: mechanistic intepretability; AI for science; physics

1. Introduction

Transformers are state-of-the-art models for a range of tasks [1–4], but our under-
standing of how these models represent the world is limited. Recent work in mechanistic
interpretability [5–12] has shed light on how transformers represent mathematical tasks like
modular addition [7,13,14], yet little work has been done to understand how transformers
model physics. This question is crucial, as for transformers to build any sort of “world
model” they must have a grasp of the physical laws that govern the world [15].

Our key research question was the following: How do transformers model physics?
This question is intimidating, since even humans have many different ways of modeling
the same underlying physics [16]. In the spirit of hypothesis testing, we reformulated the
question as follows: Given a known modeling method g, does the transformer learn g?
If a transformer leverages g, its hidden states must encode information about important
intermediate quantities in g. We focused our study on the simple harmonic oscillator
ẍ + 2γẋ + ω2

0x = 0, where γ and ω0 are the damping and frequency of the system, re-
spectively. Given the trajectory points {(x0, v0), (x1, v1), . . . , (xn, vn)} at discrete times
{t0, t1, . . . , tn}, we tasked a transformer with predicting (xn+1, vn+1) at time tn+1, as shown
in Figure 1. In this setting, g could be a numerical simulation the transformer runs after
inferring γ, ω0 from past data points. We would then expect some form of γ and ω0 to be in-
termediates encoded in the transformer. How, we asked, could we show that intermediates
and the method g were being used?
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Figure 1. We aimed to understand how transformers model physics through the study of meaningful
intermediates. We trained transformers to model simple harmonic oscillator (SHO) trajectories, and
we used our developed criteria of intermediates to show that transformers use known numerical
methods to model the SHO.

We developed criteria to demonstrate that the transformer was using g by studying
intermediates in a simpler setting: in-context linear regression, y = wx. As correlational
evidence for the model’s internal use of w, we found that the intermediate w can be
encoded linearly, nonlinearly, or not at all. We also linked the performance of models
to their encoding of w, and we used this as an explanation for in-context learning. We
generated causal evidence for the use of w by analyzing how much of the hidden states’
variance was explained by w and by linearly intervening in the network, to predictably
change its behavior.

We used these developed criteria of intermediates to study how transformers model
the simple harmonic oscillator (SHO), a fundamental model in physics. We generated
multiple hypotheses for the method(s) that transformers use to model the trajectories of
SHOs, and we used our criteria from linear regression to show correlational and causal
evidence that transformers employ known numerical methods, specifically the matrix
exponential, to model trajectories of SHOs. Although our analysis was constrained to the
SHO in this paper, our framework naturally extends to some high-dimensional linear and
nonlinear systems.

The organization of this paper is as follows. In Section 2, we overview related work.
In Section 3, we define and investigate intermediates in the setting of linear regression,
and we use this to develop criteria for transformers’ use of a method g. In Section 4, we
hypothesize that transformers use numerical methods to model the SHO, and we use our
criteria of intermediates to provide causal and correlational evidence for transformers’ use
of the matrix exponential.

2. Related Work

Mechanistic interpretability. Mechanistic interpretability (MI), as a field, aims to
understand the specific computational procedures machine learning models use to process
inputs and produce outputs [5–13]. Some MI work focuses on decoding the purpose of
individual neurons [17], while other work focuses on ensembles of neurons [11,12]. Our
work is aligned with the latter.

Algorithmic behaviors in networks. A subset of MI attempts to discover the specific
algorithms that networks use to solve tasks by reverse engineering weights. For example,
it has been demonstrated that transformers use the discrete Fourier transform to model
modular addition [13]. Reverse engineering has been studied extensively for neural circuits,
which has, impressively, connected the behavior of neurons and brain areas [18,19]. We
focused on transformers, and, instead of reverse engineering weights, we made use of linear
probing [20] to discover byproducts of algorithms represented internally by transformers.
Studies have found that algorithms in models are potentially an “emergent” behavior that
manifests with size [21,22], which we also found.

AI and Physics. Many works design specialized machine learning architectures for
physics tasks [23–27], but less work has been undertaken to see how well transformers per-
form on physical data out of the box. Recently, it was shown that LLMs can in-context learn
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physics data [15], which inspired the research question of this paper: how do transformers
model physics?

3. Developing Criteria for Intermediates with Linear Regression

Our main goal was to determine which methods transformers use to model the simple
harmonic oscillator. We aimed to do this by generating criteria based on the encoding of
relevant intermediates. For this section, we developed our criteria of intermediates in a
simpler setting: linear regression. Notably, linear regression is identical to predicting the
acceleration from the position of an undamped harmonic oscillator (γ = 0), making this
setup physically relevant.

Setup. In our linear regression setup, we generated X and w between [−0.75, 0.75],
where X had size (5000,65) and w had size (5000). We generated Y = wX, and we trained
the transformers to predict yn+1 given {x1, y1, ..., xn, yn, xn+1}.

Since in-context linear regression is well studied for transformers [28,29], we used this
simple setting to ask and answer fundamental questions about intermediates, namely:

• What is an intermediate?
• How can intermediates be encoded and how can we robustly probe for them?
• When, or under what circumstances, are intermediates encoded?

All of these questions developed an understanding of intermediates that built up to the
key question: How can we use intermediates to demonstrate that a transformer is actually
using a method in its computations? By answering this question for linear regression, we
generated four correlational and causal criteria to demonstrate that a transformer is using
a method in its computations, which we could then apply to understanding the simple
harmonic oscillator, as shown in Figure 1.

3.1. What Is an Intermediate?

We define an intermediate as a quantity that a transformer uses during computation,
but which is not a direct input/output to/of the transformer. More formally, if the input
to the transformer is X and its output is Y , we can model the transformer’s computation
as Y = g(X, I), where g is the method used and I is the intermediate of that method. For
example, if we want to determine if the transformer is computing the linear regression task
using Y = wX then I = w, g(X, I) = g(X, w) = wX.

3.2. How Can Intermediates Be Encoded and How Can We Robustly Probe for Them?

We wanted to understand what form of the intermediate, f (I), is encoded in the net-
work’s hidden states. For example, while it may be obvious to humans to compute y = wx,
perhaps transformers prefer exp(log(w) + log(x)) or

√
w2x2. We wanted to develop a

robust probing methodology that captures these diverse possibilities. We identified three
ways an intermediate I can be represented: linearly encoded, nonlinearly encoded, and not
encoded at all. We used HS to mean hidden state.

Linearly encoded. We say I is linearly encoded in a hidden state HS if there is a linear
network that takes I = Linear(HS). We determine the strength of the linear encoding by
evaluating how much of the variance in I can be explained by HS, i.e., the R2 of the probe.

Nonlinearly encoded. To probe for an arbitrary f (I), we define a novel Taylor probe,
which finds coefficients ai, such that f (I) = a1 I + a2 I2 + ... + an In, and f (I) = Linear(HS).

To actually implement this probing style, we use Canonical Correlation Analysis
probes, which, given some multivariate data X and Y, find directions within X and Y that
are maximally correlated [30]. Here, X = [I, I2, I3, ..., In] and Y = HS. If I is of bounded
magnitude and n is sufficiently large, we are able to probe the transformer for any function
f (I). In practice, we used n ≤ 5.

Not encoded. If I fails to be linearly or nonlinearly encoded, we say that it is not
encoded within the network. For example, there are at least two ways to predict y2 from
{x1, y1, x2}, such that y2 = y1

x1
x2: (1) w = y1/x1 is encoded, and y2 = wx2; (2) w′ = x2/x1
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is encoded (so w = y1/x1 is not encoded) and y2 = w′y1. Thus, it is not guaranteed that w
is encoded.

3.3. When, or under What Circumstances, Are Intermediates Encoded?

We wanted to apply our probing techniques to better understanding what type of
models generate intermediates. Under the described setting of linear regression, we
trained GPT style transformers of size L = [1, 2, 3, 4, 5] and H = [2, 4, 8, 16, 32], where L
was the number of layers and H was the hidden size of the transformer. All the trans-
formers trained in this study used one attention head and no LayerNorm to aid inter-
pretability, and they were trained on a NVIDIA Volta GPU with the hyperparameters
epochs = 20, 000, lr = 10−3, batchsize = 64, using the Adam optimizer [31]. We did not
use a token embedding—instead, the inputs were raw numbers representing the position
of the SHO. We found that these models generalized to the out-of-distribution test data
(0.75 ≤ |w| ≤ 1) in Appendix A Figure A1, but we focused on investigating the intermedi-
ates on in-distribution training data.

Larger models have stronger encodings of intermediates. We found that the smaller
models often did not have w encoded, while the larger models encoded w linearly, as
evidenced by Figure 2. We formalized this further by defining max(R̄2) as the maximum
value taken over the depth positions of the mean R2 of the w probes taken over the context
length. As shown in Appendix A Figure A2, we observed a clear phase transition in
encoding across model size, and we also found that max(R̄2) did not significantly improve
if we extended the degree of the Taylor probes to n > 2. Thus, in the case of linear
regression, we found that the models represented w linearly, quadratically, or not at all.

We attributed the stronger encoding of w in the larger models to the “lottery ticket
hypothesis”—larger models have more “lottery tickets” in their increased capacity to find a
“winning” representation of w [32,33]. Interestingly, the intuitive understanding that larger
models have w better encoded led us to the counterintuitive conclusion that larger models
are actually more interpretable for our purposes.

Figure 2. We plotted the R2 of the Taylor probes for the intermediate w within the models trained on
the task Y = wX (linear regression). We saw that the larger models had w encoded, often linearly,
with little gain as we moved to higher-degree Taylor probes, while the smaller models did not have
w encoded.

Encoding quality is tied to model performance. As shown in Appendix A Figure A3,
we found that the better-performing models generally had stronger encodings of w. As
shown in Figure 3, we also found that the improvements in model prediction as a function
of context length, or in-context learning, were correlated to improvements in w’s encoding,
which we would expect if our models were using w in their computations.
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Figure 3. We tested the correlation between model performance and the encoding of w on 5 of our
25 linear regression models of evenly spaced performance quality. We plotted normalized values for
the error of the encoding (1 − R2

w) in red and the mean squared error of the model (MSEM) in blue.
We found that the ability of the best-performing models to in-context learn was highly correlated
with their encoding of w (R2(MSE, w).

3.4. Key Question: How Can We Use Intermediates to Demonstrate That a Transformer Is Actually
Using a Method in Its Computations?

So far, we had discovered that models encode w, either linearly or nonlinearly, and
we had found relationships between model size, performance, and encoding strength. But
how, we asked, could we ensure that the model was actually using w in its computations
and that the encoding of w was not just a meaningless byproduct [34]?

Reverse Probing. To ensure that w was not encoded in some insignificant part of the
residual stream, we set up probes going from [w, w2] → HS, as opposed to HS → f (w).
As shown in Figure 4, we often found that w could explain large amounts of variance in
model hidden states, implying that these hidden states were dedicated to representing w.
We took this as weak causal evidence that w was being used by the model—otherwise, it
was unclear why a part of the model would be dedicated to storing w.

Figure 4. Left: We plotted max(R̄2) of the reverse probe from [w, w2] → HS across all the linear
regression models, and we found that the intermediate w could explain significant amounts of
variance in the model hidden states. Right: We intervened, using reverse probes to make all the
models output w′ = 0.5. This intervention failed (16/25), it was partially successful nonlinearly
(2/25) or linearly (3/25), or it was successful (4/25). We noted the empirically observed w as ŵ
calculated by ŷ/x where ŷ was the output of the intervened transformer and x was the input.

Intervening. We could also use reverse probes to intervene in the models’ hidden
states and predictably change their output from w → w′. As shown in Figure 4, we
attempted to make w′ = 0.5 for all series and then measure the observed ŵ from the
models’ outputs (ŵ = ŷn/xn). For 4 out of 25 models the intervention worked, providing
strong causal evidence that the model uses its internal representation of w in computations.
For models where we identified a quadratic representation of w, we see that w = 0.5,−0.5
were both represented in the observed intervention.

Putting it all together. We were able to generalize our understanding of interme-
diates from linear regression, to create criteria for a transformer’s use of a method g in
its computations.
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Criteria for use of a method g with an associated unique intermediate I:

1. If a model uses a method g then its hidden states should encode I (shown in Figure 2).
2. If a model uses a method g then the model performance should improve if I is better

represented (shown in Figure 3).
3. If and only if the model uses g then we expect some hidden state’s variance to be

almost fully explained by I (shown in Figure 4).
4. If and only if the model uses g then we can intervene with hidden states, to change

I → I′ and predictably change the model output from g(X, I) → g(X, I′) (shown in
Figure 4).

The first two criteria for a transformer’s use of g are correlational, and the last two are
weak and strong causal. Using these criteria (summarized in Figure 1), we could then inves-
tigate how transformers model more complex systems like the simple harmonic oscillator.

4. Investigating the Simple Harmonic Oscillator

We next applied our developed criteria of intermediates to investigating how trans-
formers represent physics, specifically the methods they use to model the simple harmonic
oscillator (SHO). The simple harmonic oscillator is ubiquitous in physics: it is used to
describe phenomena as diverse as the swing of a pendulum, molecular vibrations, the
behavior of AC circuits, and quantum states of trapped particles. Given a series of position
and velocity data for a simple harmonic oscillator at a sequence of timesteps, we asked

1. Can a transformer successfully predict the position/velocity at the SHO’s next timestep?
2. Can we determine what computational method the transformer is using in this prediction?

4.1. Mathematical and Computational Setup

The simple harmonic oscillator is governed by the linear ordinary differential equa-
tion (ODE):

ẍ + 2γẋ + ω2
0x = 0. (1)

The two physical parameters of this equation are γ, the damping coefficient, and ω0, the
natural frequency of the system. An intuitive picture for the SHO is a mass on a spring
that is pulled from its equilibrium position by some amount x0 and let go, as visualized
in Figure 1; ω0 is related to how fast the system oscillates, and γ is related to how soon
the system decays to equilibrium from the internal resistance of the spring. We focused
on studying how a transformer modeled the undamped harmonic oscillator, where γ = 0.
Given some initial starting position (x0), velocity (v0), and timestep ∆t, the time evolution
of the undamped harmonic oscillator was

xk = x0 cos(kω0∆t) +
v0

ω0
sin(kω0∆t)

vk = v0 cos(kω0∆t)− ω0x0 sin(kω0∆t),
(2)

where v = dx
dt . We generated 5000 timeseries of 65 timesteps for various values of ω0, ∆t, x0,

and v0, described in Appendix C. Following the procedure for linear regression, we trained
transformers of size L = [1, 2, 3, 4, 5] and H = [2, 4, 8, 16, 32] to predict (xn+1, vn+1), given
{(x0, v0), (x1, v1), . . . (xn, vn)}. In Appendix C Figure A4, we see that our transformers were
able to accurately predict the next timestep in the timeseries of out-of-distribution test data,
and this prediction became more accurate with context length (i.e., in-context learning).
But how was the transformer modeling the simple harmonic oscillator internally?

4.2. What Methods Could the Transformer Use to Model the Simple Harmonic Oscillator?

Human physicists would model the simple harmonic oscillator with the analytical
solution to Equation (1), but it is unlikely that a transformer does so. Transformers are
numerical approximators that use statistical patterns in data to make predictions, and, in
that spirit, we hypothesize that transformers use numerical methods to model SHOs. There
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is a rich literature on numerical methods that approximate solutions to linear ordinary
differential equations [35–37], and we highlight three possible methods the transformer
could be using in our theory hub. For notation, we note that Equation (1) can be written as[

ẋ
v̇

]
=

[
0 1

−ω2
0 −2γ

][
x
v

]
= A

[
x
v

]
. (3)

Linear Multistep Method. Our model could have been using a linear multistep
method, which uses values of derivatives from several previous timesteps to estimate
the future timestep. We describe the kth order linear multistep method in Table 1 with
coefficients αj and β j.

Table 1. Our theory hub of numerical methods and relevant intermediates that transformers could be
using to model the simple harmonic oscillator.

Method g(X, I) I

Linear Multistep
[

xn+1
vn+1

]
=

k

∑
j=0

αj

[
xn−j
vn−j

]
+

k

∑
j=−1

β j A∆t
[

xn−j
vn−j

]
A∆t

Taylor Expansion
[

xn+1
vn+1

]
=

k

∑
j=0

Aj ∆tj

j!

[
xn
vn

]
(A∆t)j

Matrix Exponential
[

xn+1
vn+1

]
= eA∆t

[
xn
vn

]
eA∆t

Taylor Expansion Method. The model could also have been using higher-order
derivatives from the previous timestep to predict the next timestep (this is equivalent to the
nonlinear single-step Runge–Kutta method for a homogeneous linear ODE with constant
coefficients). We describe the kth order Taylor expansion in Table 1.

Matrix Exponential Method. While the two methods presented above are useful
approximations for small ∆t, the matrix exponential uses a 2× 2 matrix to exactly transform
the previous timestep to the next timestep. We describe this in Table 1. This method is the
limk→∞ of the Taylor expansion method.

In order to use the criteria described in Section 3 to figure out which method(s) our
model was using, we needed to define the relevant intermediates for each method g. Simi-
larly to the linear regression, the intermediates were the coefficients of the input, but were
now 2 × 2 matrices and not a single value. We summarize our methods and intermediates
in our theory hub in Table 1. Notably, these methods are viable for any homogeneous
linear ordinary differential equation with constant coefficients and potentially for nonlinear
differential equations as well (see Appendix B).

4.3. Evaluating Methods for the Undamped Harmonic Oscillator

We applied the four criteria established for linear regression (Figure 1) to evaluating
if transformers use the methods in Table 1. For the Taylor expansion intermediate, we
used j = 3 to distinguish it from the linear multistep method, although our results were
generally robust for j ≤ 5 (Appendix C Figure A6). We summarize our evaluations across
the methods and criteria in Table 2.

Criterion 1: Is the intermediate encoded? In Figure 5, we see that all three interme-
diates were well encoded in the model, with the matrix exponential method especially
prominent. This provides initial correlational evidence that the models were learning
numerical methods. The magnitude of the encodings was generally smaller than the linear
regression case, which we attribute to the increased difficulty of encoding 2 × 2 matrices
compared to a single weight value w. Notably, we only probed for linear encodings, given
that w was most often encoded linearly in the linear regression case study:
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Figure 5. We analyzed the intermediates of our undamped harmonic oscillator models, and we found
all three methods encoded, with the matrix exponential method best represented. This provided
initial correlational evidence for all three methods.

Criterion 2: Is the intermediate encoding correlated with the model performance?
In Figure 6, we see that for all three methods the better-performing models generally had
stronger encodings and the worse-performing models had weaker encodings. This correla-
tion was strongest for the matrix exponential method. This provided more correlational
evidence that our models were using the described methods.

Figure 6. We found that the better-performing undamped harmonic oscillator models had intermedi-
ates of all methods better encoded, but this correlation was strongest in magnitude and slope for the
matrix exponential method. This was additional correlational evidence for all three methods.

Criterion 3: Can the intermediates explain the models’ hidden states? As shown in
Figure 7, we reverse probed from the intermediates to the models’ hidden states, and we
found that all the methods explained non-trivial variance in the model hidden states, while
the matrix exponential method consistently explained the most variance by a sizable margin.
This provided a little weak causal evidence that the models were using the linear multistep
and Taylor expansion methods and stronger weak causal evidence that the models were
using the matrix exponential method.

Criterion 4: Can we predictably intervene on the the model? Criterion 4.1: To
intervene on the model, we used the reverse probes from Figure 7 to generate predicted
hidden states from each intermediate. As shown in Figure 8, we then inserted these
hidden states back into the model, to see if the model was still able to model the SHO.
The matrix exponential method had the most successful interventions by an order of
magnitude, and 18/25 of these intervened models performed better than guessing. This
implies that the information the transformer uses to model the SHO is stored in the matrix
exponential’s intermediate.
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Figure 7. We found that the intermediates from all three methods could explain some variance in the
undamped harmonic oscillator model hidden states, but that the matrix exponential method was the
most consistent and successful by a wide margin.

Figure 8. For each undamped harmonic oscillator model and method, we replaced the hidden
state in Figure 7 with the reverse probe of the intermediate. We can see that this intervention was
consistently the best performing for the matrix exponential method by an order of magnitude, and
that 18/25 models performed better than our baseline of guessing.

Criterion 4.2: We could also vary ∆t → ∆t′, ω0 → ω′
0, regenerate intermediates and

then hidden states, insert these modified hidden states into the model, and see if the model
made predictions as if it “believed” that the input SHO data used ∆t′, ω′. As shown in
Figure 9, we performed this intervention on ∆t, but our results were sufficiently robust to
intervene on ω0 as well (Appendix C Figure A7). Even for the model with the best reverse
probe quality for the linear multistep/Taylor expansion intermediates (L = 4, H = 4),
the intervention with the matrix exponential method was the most successful. Combined
with our previous intervention (4.1), we now had strong causal evidence for the matrix
exponential method.

The transformer likely uses the matrix exponential to model the undamped har-
monic oscillator. We now had correlational evidence that the model was using all three
methods in our theory hub, with little causal evidence for the linear multistep and Taylor
expansion methods, and strong causal evidence for the matrix exponential method. We
suspected the model was only using the matrix exponential method in its computations,
and that the evidence we had for the other two methods was a byproduct of the use of the
matrix exponential. In Appendix C Figure A8, we give correlational evidence for this claim
by generating synthetic hidden states from eA∆t and showing that in this synthetic setup
we retrieved values for criterions 1, 3 for linear multistep and Taylor expansion that were
close to those we observed in Table 2.
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Figure 9. We varied the value of ∆t used in the intermediates, and we used the reverse probes
from Figure 7 to generate hidden states from these intermediates. We performed this operation on
two undamped harmonic oscillator models, which had the best linear multistep/Taylor expansion
(L = 4, H = 4) and matrix exponential (L = 4, H = 8) reverse probes, respectively, and we found that
the matrix exponential was consistently most robust for interventions. The baseline was if our model
only predicted the mean of the dataset.

Table 2. We summarize the evaluation of the methods and criteria for the undamped/underdamped
models. For each criterion, we list a single quantity for readability: criterion 1 is the largest value
in Figure 5, criterion 2 is the correlation in Figure 6, criterion 3 is the largest value in Figure 7, and
criterion 4 is the ratio in the legend of Figure 8. We bold the best performing hypothesis for each
criteria. The matrix exponential performed best across the criteria.

Criterion Linear Multistep Taylor Expansion Matrix Exponential

1. Intermediate encoding 0.66/0.51 0.67/0.25 0.84/0.54

2. Performance, encoding
correlation 0.73/0.44 0.74/0.39 0.89/0.44

3. Intermediate’s explanatory
power 0.42/0.15 0.53/0.11 0.78/0.16

4. Intervention success 0.44/X 0.44/X 0.72/X

Thus, we concluded that the transformer was likely using the matrix exponential
method. This made sense, given the problem setting—both the linear multistep and Taylor
expansion methods were only accurate for small ∆t, while our bound of ∆t = U[0, 2π/ω0]
violated this assumption for some timeseries. On the other hand, the matrix exponential
makes no such assumptions for the timestep, and it is, thus, a more general method that the
transformer can employ to flexibly model a variety of situations. Still, it is remarkable that
transformers use a known numerical method to model the undamped harmonic oscillator,
and that we can provide evidence for its use, although our experiments do not rule out the
possibility of other methods being used in conjunction with the matrix exponential.

4.4. Extension to the Damped Harmonic Oscillator (γ ̸= 0)

We wanted to understand the generality of our finding by extending our problem space
to the damped harmonic oscillator, where γ ̸= 0. We have left the relevant details about
our procedure to Appendix D, but, as shown in Table 2, we found that our intermediate
analysis performed much more poorly on the underdamped case than on the undamped.
We describe possible explanations in Appendix D, but because of this we temper our
finding from the undamped harmonic oscillator with caution about its generality.

5. Discussion

After developing criteria for intermediates in the toy setting of linear regression,
we found that transformers use known numerical methods for modeling the simple har-
monic oscillator, specifically the matrix exponential method. We leave the door open
for researchers to better understand the methods transformers use to model the damped
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harmonic oscillator and to use the study of intermediates to understand how transformers
model other systems in physics.

Limitations. We analyzed relatively small transformers with only one attention head
and no LayerNorm. While we demonstrated strong results for the undamped harmonic
oscillator, our results for the underdamped harmonic oscillator were more mild. We only
used noiseless data.
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Appendix A. Additional Results for Linear Regression

As shown in Figure A1, we found that our transformers were able to generalize to
linear regression test examples with out-of-distribution data (0.75 ≤ |w| ≤ 1). In Figure A2,
we see that the smaller models did not have w encoded, while the larger models often had
w linearly encoded (with some quadratic encodings as well). In Figure A3, we see that
the better-performing models generally had better encodings, while the worse-performing
models generally had worse encodings.

Figure A1. We found that the linear regression models were able to generalize to out-of-distribution
test data with 0.75 ≤ |w| ≤ 1.

https://github.com/subhashk01/transformer-physics
https://github.com/subhashk01/transformer-physics
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Figure A2. We calculated the mean of the R2 of probes for f (w) across all layers of the transformer
and we annotated each model with its highest mean score, max(R̄2). When f (w) was linear (left)
and quadratic (middle), we observed a striking phase transition of encoding based on model size,
demarked by the red dashed line. If w was encoded, it was mostly encoded linearly, with the
(L, H) = (5, 2), (4, 32), (2, 8) models showing signs of a quadratic representation of w. We did not see
any meaningful gain in encoding when extending the Taylor probe to degree n > 2 (right). For the
models where f (w) was well represented, it often happened in the attention layer. This was possibly
because the attention layer aggregated all past estimates of f (w) into an updated estimate.

Figure A3. Better-performing models generally had better encodings of w, while worse-performing
models generally had worse encodings (other than one outlier in the top-right).

Appendix B. Undamped Harmonic Oscillator Appendices

We note that the theory hub we summarized in Table 1 is valid for all differential equa-
tions that can be written as ẋ = Ax if A is a constant matrix. This includes all homogeneous
linear differential equations with constant coefficients and potentially nonlinear differential
equations as well. The Koopman operator theory allows nonlinear differential equations to
be modeled as linear differential equations. Here is an example taken from [39]:

Here, we consider an example system with a single fixed point, given by:

ẋ1 = µx1 (A1a)

ẋ2 = λ(x2 − x2
1). (A1b)

For λ < µ < 0, the system exhibits a slow attracting manifold given by x2 = x2
1. It

is possible to augment the state x with the nonlinear measurement g = x2
1, to define

a three-dimensional Koopman invariant subspace. In these coordinates, the dynamics
become linear:
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d
dt

y1
y2
y3

 =

µ 0 0
0 λ −λ
0 0 2µ

y1
y2
y3

 for

y1
y2
y3

 =

x1
x2
x2

1

. (A2)

For this nonlinear system, our theory hub in Table 1 is still relevant, using

A =

µ 0 0
0 λ −λ
0 0 2µ

, x =

x1
x2
x2

1

.

Thus, it is possible that the methods we have determined a transformer uses to model the
simple harmonic oscillator extend to other, more complex systems.

Appendix C. Undamped Harmonic Oscillator Appendices

Data generation for the undamped harmonic oscillator. We generated 5000 se-
quences of 65 timesteps for various values of ω0, ∆t, x0, and v0. We ranged ω0 = U[π

4 , 5π
4 ],

∆t = U[0, 2π
ω0

], x0, v0 = U[−1, 1]. The undamped harmonic oscillator is periodic, so us-
ing a larger ∆t was not useful. We also generated an out-of-distribution test set with
ω0 = U[0, π

4 ] + U[ 5π
4 , 3π

2 ] with the same size as the training set.
Additional results for undamped harmonic oscillator. In Figure A4, we see that the

models were able to learn the undamped harmonic oscillator in-context, even for values of
ω0 out of the distribution that these models were trained on. We also plotted the evolution
of the encodings for our various methods on the best-performing undamped model in
Figure A5. We found that our choice of j for the Taylor expansion method was mostly
irrelevant for j ≤ 5 in Figure A6. We also generated synthetic hidden states from the
matrix exponential intermediate, and we found that the values for criterion 1,3 for the other
two methods were potentially byproducts of the matrix exponential in Figure A8, giving
additional correlational evidence that the matrix exponential was the dominant method of
the transformer.

Figure A4. An intuitive picture for a simple harmonic oscillator is a mass oscillating on a spring (left).
The trajectory of the SHO can be fully parameterized by the value of x, v at various timesteps (middle),
and we found that models trained to predict undamped SHO trajectories are able to generalize to
out-of-distribution test data with in-context examples (right).
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Figure A5. We visualize the evolution of encodings across all the methods, with context length for
the best-performing undamped model.

Figure A6. We found that our choice of j in the intermediate for the Taylor expansion method ((A∆t)j)
had little effect on our results or conclusions about the undamped harmonic oscillator (shown for
criterion 1).
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Figure A7. Regardless of which quantities we intervened on, our general results were robust for
criterion 4 for the undamped harmonic oscillator.

Figure A8. We generated synthetic hidden states from the matrix exponential intermediates and
found that this naturally resulted in values for criterion 1,3 for the linear multistep and Taylor
expansion methods that were close to those we observe in Table 2. This is correlational evidence that
the matrix exponential method was potentially solely used by the transformer, and that the values for
the other two methods were byproducts. These byproducts could arise because eA∆t = ∑j(A∆t)j/j.

Appendix D. Investigating the Damped Harmonic Oscillator (γ > 0)

Appendix D.1. Mathematical Setup

The damped harmonic oscillator has three well-studied modes: underdamped, over-
damped, and critically damped cases. The underdamped case occurs when γ < ω0, and it
represents a spring oscillating before coming to rest. The overdamped case occurs when
γ > ω0, and it represents a spring immediately returning to equilibrium without oscillating.
The analytical equations for both cases are



Entropy 2024, 26, 997 16 of 21

Underdamped (γ < ω0)

xk = e−kγ∆t
(

x0 cos(kω∆t)+

v0 + γx0
ω

sin(kω∆t)
)

vk = e−kγ∆t
(

v0 cos(kω∆t)−(
v0 + γx0

ω
γ + ωx0

)
sin(kω∆t)

)

Overdamped (γ > ω0)

xk =
e−kγ∆t

2

(
(x0 +

v0 + γx0
ω

)ekω∆t+

(x0 −
v0 + γx0

ω
)e−kω∆t

)
vk =

e−kγ∆t

2

(
(ω − γ)(x0 +

v0 + γx0
ω

)ekω∆t−

(ω + γ)(x0 −
v0 + γx0

ω
)e−kω∆t

)

where ω =
√
|γ2 − ω2

0 |. Note that the critically damped case (γ = ω0) is equivalent
to limγ→ω−

0
of the underdamped case and limγ→ω+

0
of the overdamped case. Thus, we

focused our study on the underdamped and overdamped cases, and we visualize sample
trajectories of both in Appendix Figure A9.

Appendix D.2. Computational Setup for the Damped Harmonic Oscillator

We used an analogous training setup for the undamped harmonic oscillator. We
generated 5000 sequences of 32 timesteps for various values of ω0, γ, ∆t, x0, and v0 for both
the underdamped and overdamped cases. For the underdamped and overdamped cases,
we ranged ω0 = U[0.25π, 1.25π] and ∆t = U[0, 2π

13ω0
]. We used this sequence length and

bound on ∆t to account for the periodic nature of the damped harmonic oscillator and also
to ensure that the system did not decay to 0 too fast. For the underdamped case, we took
γ = U[0, ω0], and for the overdamped case, γ = U[ω0, 1.5π]. We also generated an out-of-
distribution test set following a similar process but using ω0 = U[0, 0.25π] +U[1.25π, 1.5π].

In Figure A9, we find that a transformer trained on underdamped data was able to gen-
eralize to overdamped data with only in-context examples. This is a surprising discovery,
since a human physicist who is only exposed to underdamped data would model it with the
analytical function in Section D.1. But this method would not generalize: the underdamped
case uses exponential and trigonometric functions of γ∆t and ω∆t, respectively, while
the overdamped case consists solely of exponential functions. We propose that our “AI
Physicist” is able to generalize between underdamped and overdamped cases because it is
using numerical methods that model the underlying dynamics shared by both scenarios.

Appendix D.3. Criteria Are Less Aligned for the Underdamped Harmonic Oscillator

We evaluated all the methods for the underdamped harmonic oscillator, based on our
criteria, we summarized the evaluations in Table 2, and we show the relevant figures for
criteria 1, 2, and 3 in Figures A10–A12, respectively. While we see moderate correlational
and some causal evidence for our proposed methods, we note that there was a steep drop-
off across criteria between the undamped and underdamped cases. We have identified a
few possible explanations for this discrepancy:

The transformer was using a method outside of the hypothesis space. Because the
intermediates explained so little of the hidden states even when combined (Figure A12),
we hypothesize that the transformer discovered a novel numerical method or was using
another known method outside of our proposed hypothesis space. This was more likely
for the damped case, because we decreased the range on ∆t to avoid decay, which made
approximate numerical solutions more accurate. But why, we asked, would it be doing
this for the damped case and not for the undamped case? For our damped experiments,
we decreased the range on ∆t so that the trajectory did not decay to 0 too quickly, but this
also allowed for approximate numerical methods to be more accurate, as demonstrated by
the competitive performance of the linear multistep method with the matrix exponential
method in Table 2. So, it is possible that our transformer was relying on another numerical
method outside of our hypothesis space.
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Natural decay required less “understanding” by the transformer. As the context
length increased, damping forced the system to naturally decay to 0, so the transformer
could use less precise methods to predict the next timestep. In Appendix Figure A13, we see
that the intermediates’ encodings accordingly decayed with context length, which possibly
explains the underdamped case’s diminished metrics.

More data for the transformer to encode. With a non-zero damping factor γ, the
intermediates we investigated in Table 1 had more non-constant values in their 2 × 2
matrices in the damped/undamped case: the linear multistep method had 3/2 values, the
Taylor expansion method had 4/2 values, and the matrix exponential method had 4/3
unique values. The increased number of non-constant values could potentially make it
more difficult to properly encode intermediates.

Figure A9. We generated data for the underdamped and overdamped harmonic oscillators following
the procedure detailed in Section 3, and we visualize the sample curves in the left-most plot. From
both the analytical equations and the plotted curves, we see that the underdamped and the over-
damped data followed very different trajectories. Amazingly, on the right-most plot we find that the
transformers trained on the underdamped data generalized to overdamped data. This implies that
our transformer was using a similar method to calculate both, otherwise this generalization would be
impossible. We hypothesize that our “AI Physicist” was using one of the numerical methods from
the undamped case. Note that the “damped” oscillator was trained on equal parts underdamped and
overdamped data.

Figure A10. We observe that the intermediates for all three methods were encoded, but they were less
than the undamped case in Figure 5. The linear multistep was roughly as prominent as the matrix
exponential method, which was also a departure from the undamped case.
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Figure A11. We see that, generally, the better-performing models exhibited stronger encodings of
intermediates, while the worse-performing models exhibited weaker encodings. These trends were
not as strong as the undamped case, shown in Figure 6. Like criterion 1 in Figure A10, we see that the
linear multistep method was competitive with the matrix exponential method.

Figure A12. Multiple methods represented nontrivial amounts of variance in the hidden states,
but even all the methods combined (right) explained less than a quarter of the variance in the
hidden states.

Figure A13. Cont.
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Figure A13. We see that the encoding strength of the intermediates decayed across all the methods
with context length. This similarly matched the natural decay to 0 of the damped harmonic oscillator,
and it is one potential explanation for why our methods were not as prominent in the damped vs.
undamped cases, for which the encoding quality did not decay with context length (Figure A13).
While this is a general observation across the models, we visualize the L = 4, H = 32 model because
it had the strongest encoding of intermediates from Figure A10.

Figure A14. We found that our choice of j in the intermediate for the Taylor expansion method
((A∆t)j had a major effect on the encoding quality, unlike the undamped case visualized in Figure A6.
We see that j > 3 was very poorly represented in the transformer, which implies that if the transformer
was using the Taylor expansion for the underdamped spring, it would likely be of order k = 3 or less.

We leave the problem of understanding the damped harmonic oscillator to future
work with intermediates.
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