PHYSICAL REVIEW D 110, 076015 (2024)

Calibrating two jets at once

Rikab Gambhir®"*" and Benjamin Nachman

34.%

'Center for Theoretical Physics, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139, USA
*The NSF Al Institute for Artificial Intelligence and Fundamental Interactions, USA
3Physics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
4Berkeley Institute for Data Science, University of California, Berkeley, California 94720, USA

® (Received 11 March 2024; accepted 11 September 2024; published 15 October 2024)

Jet-energy calibration is an important aspect of many measurements and searches at the LHC. Currently,

these calibrations are performed on a per-jet basis, i.e., agnostic to the properties of other jets in the same

event. In this work, we propose taking advantage of the correlations induced by momentum conservation

between jets in order to improve their jet-energy calibration. By fitting the p; asymmetry of dijet events in

simulation, while remaining agnostic to the pr spectra themselves, we are able to obtain correlation-
improved maximum likelihood estimates. This approach is demonstrated with simulated jets from the CMS
detector, yielding a 3%-5% relative improvement in the jet-energy resolution, corresponding to a

quadrature improvement of approximately 35%.
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I. INTRODUCTION

Jet-energy calibration [1-6] is a crucial ingredient of
most measurements and searches at the Large Hadron
Collider (LHC). Given a spray of dozens to hundreds of
detected particles, the goal is to estimate the underlying
predetector total energy or pr of the jet, along with a
resolution on this estimate. This is a complex and high-
dimensional problem, and there have been a large number
of proposals, many using machine learning (ML), to
improve jet-energy calibration [7-27] and uncertainty
estimates [28—33]. Many of these approaches involve better
or more sophisticated modeling of detector interactions or
extracting more information from the high-dimensional
particle phase space. A majority of these proposals directly
regress the particle-level energy from detector-level quan-
tities, which is prior dependent [21]. Some approaches
achieve prior independence by avoiding direct regression
[14,16,20]. As prior independence is a desirable feature for a
universal calibration, we focus on this setting (in particular,
using maximum likelihood estimation [20]).

In this paper, we present an alternate method for improving
jet-energy calibrations and resolutions by considering
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information between jets, rather than correlations within jets.
In particular, we can obtain ‘“‘correlation-improved” maxi-
mum likelihood estimates (MLEs) and resolutions for jets in
dijet events by using the fact that their momenta add to
approximately zero in the c.m. frame. This can be done in a
pr spectrum prior-independent way, that is, without any
assumptions on the overall p; distribution of the individual
jets. We only assume that the momentum asymmetry
between the two is either a Gaussian or symmetrized
exponential of width A that can be extracted from simulation.
For jets with original resolution o, this leads to calibrations
with resolutions improved by an average of ﬁ~ 3-5%
(representing a 35% improvement in quadrature') as
estimated using simulations of the early Run 1 CMS detector
[34], all while remaining unbiased.

To apply this procedure, all one has to do is fit the
distribution of z; — z, (obtained, for example, via a truth-
level Monte Carlo simulation) to either a Gaussian or
exponential to extract A, then apply simple corrections to
the estimates given by Eq. (10) (for a Gaussian) or Eq. (14)
(for an exponential) to obtain the improved estimates. The
choice of functional form is not strongly important, and
either will result in an improvement.

While multijet information is not currently used to
constrain the detector response of individual jets,

"The “relative improvement” is simply the ratio of the new-to-
old resolutions (minus 1), while the quadrature improvement is
the relative difference between the new and old variances, as
given precisely by Eq. (24). This is a measure of the amount of
“new” information being used to constrain the resolutions.
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constraints from multijet systems do play a role in jet
calibrations. In particular, momentum conservation is used
to determine how well the jet calibration is modeled by
simulation, resulting in residual calibrations [1-6,35,36].
This information is the same as what we use in this paper,
only instead of constraining all jets at once, we constrain
each jet individually. For example, there are existing studies
to use dijet balances to fit a py- and rapidity-dependent
scale factor for the jet energy, but a given jet is not adjusted
based on the energy of the balancing jet.

In Sec. I we go over the statistical methodology of the
correlation-improved MLEs. In Sec. III we demonstrate our
method on a simplified toy model to show its expected
behavior. In Sec. IV we show how correlation-improved
MLEs may be used to improve the p7 calibration of dijet
events using simulated jets from the CMS detector. Finally,
in Sec. V we briefly discuss how this technique may be
applied to dijets sourced from boosted resonances. We
present our conclusions and outlook in Sec. VI.

II. CORRELATION-IMPROVED MAXIMUM
LIKELIHOOD ESTIMATES

In the following, x represents what we can measure and z
represents the true (“latent”) values that we are trying to
predict.2 Given a single measurement x € RY, we can
construct an MLE 2 of a latent parameter z € RV and its
resolution in the Gaussian approximation o as follows (see
Ref. [21] for a review):

2(x) = argfznaXL(x\Z% (1)
_(PL(x[2)\!
729l = < 02,0z, ) =2(x) @

where L(x|z) is shorthand for log(p(x|z)). For example,
z€R will be our truth-level jet p; and x € R~'% are the
measured detector-level particles. The log-likelihood L can
be estimated from data or simulation, using ML techniques
if either x or z is high dimensional. The prototypical
example is to think of L(x|z) as a detector model or noise
model, where noise or information loss is applied to a
“true” parameter z to produce the measured value x. These
estimates are manifestly independent of the true latent
parameter prior p(z) and produce independent estimates 2
for independent measurements x, which is a desirable
feature for calibration.

Now, suppose that we measure a set of measurements
all at once, with xj,...,x, (denoted X) corresponding to

To simplify notation, we use lowercase letters x and z to refer
to both the random variable and the realization of the random
variable.

215 -+, Zp (denoted 7). As a concrete example, we measure n
different sets of particles x; corresponding to n different
jets, and we wish to determine all n truth-level jet pr’s, z;.
When each of the n objects is isolated,” L(x;|z;) is
independent of i, i.e., the detector adds noise to each latent
parameter independently. If the z; are uncorrelated, then the
total likelihood for the entire measurement factorizes
and we can obtain independent MLEs and resolutions
for each z;. However, suppose we had prior knowledge of
correlations p(zj,...z,). Then, by Bayes’ rule,

L(Z|R) = L(x[Z) + L(Z) - L(X)
=Y Llxlz) + L)+ Norm,  (3)

where “Norm” is an unimportant constant to ensure that the
distribution is normalized. The left-hand side of Eq. (3) is
dependent on the prior, L(Z), which is undesirable for
calibration tasks. However, it is sufficient for the multi-
measurement calibrations we aim to perform that we are only
independent with respect to each individual L(z;), that is,
while we want to maintain our prior knowledge of the
correlations between each z; (e.g., “How is object 1 related
to object 27””), we do not want our inference to depend on the
distribution of z; (e.g. “How many of object 1 are there?”).

One way this can be accomplished is by decomposing
L(2)=L(zp|zp-1---21) +L(2Zpt|2n2---21) + -+ L(22]21)+
L(z;). The entire prior dependence is placed on L(z;), and
so we can isolate and remove it to construct a likelihood.

Having removed explicit per-parameter prior depend-
ence, we can construct a likelihood L'(X|Z) (ignoring
unimportant normalizations),

L'(%2) = ) (L(xvlz) + Lzlzir-2)). (4)

i

which can be thought of as the ordinary likelihood L(X|Z)
plus a constraint on the relationship between the z;’s. The
prime on L’(X|Z) is to indicate that this likelihood is not just
L(X|Z), as it contains additional information about the
constraints. We emphasize that this is not completely prior
independent: the likelihood L’ does depend on p(Z), but
only through the correlations between the z;’s and not
directly from any individual p(z;).

From Eq. (4), it is now possible to achieve a correlation-
improved MLE estimate and resolution using Egs. (1) and
(2). Typically, as in the case in jet physics applications, x is
very high dimensional [e.g., M ~ O(10°)], whereas z is
often relatively low dimensional (e.g., for only the jet
energy or pr, N =1). We can attempt to simplify the
calculation of Eq. (4) by recasting it in terms of the

The general calibration problem would allow for the dimen-
sionality of X to not necessarily equal that of Z. In that case, the
calibration is not universal and other approaches are required.
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low-dimensional Z(x), as calculated in Eq. (1) if Z(x) is a
(nearly) sufficient estimator of z, then we may write

L(2(x)[z) ~ L(xz), (5)
~log(N(z.02)). (6)

where N is the probability density corresponding to the
normal distribution with mean z and variance 62, and o, is
the resolution of the estimator z(x) (in most cases, o, is the
added Gaussian noise). Therefore, we can write

L'(F7) = Y (L(&(x)z) + Llzilzim--21), - (7)

1

which allows us to use our previously determined per-
object estimators as inputs to the correlation-improved
estimator.

A. The n=2 Gaussian case

We are primarily interested in the n = 2 case of Eq. (7),
where we have two correlated objects z; and z,. The
correlation is completely determined by L(z,|z; ), which we
assume takes the form

L(zi]z2) = L(z1 — 22)- (8)

We assume that z; — z, follows a Gaussian distribution
with mean 0, though much of what we say here qualita-
tively holds for most other nonpathological distributions.
In other words, z; equals z,, up to Gaussian noise A:

1

L(Zl - Zz) = _W

(Z] - Z2)2 + Norm. (9)
Then, given a set of measurements x; and x,, we can find
correlation-improved estimates of the latent parameters z;
and z, [which we denote 2| (x) and 25(x)] in terms of the
original MLEs and resolutions (unprimed) by applying
Eq. (1) to Eq. (7) and taking the maximum likelihood with
respect to z; and zj:

. L, .
21 (x1.x0) = 6—2(11(/\2 +03) + 207,
A

. [P .

2 (x1, %) :6—2@2(/\2‘“7%[) +210%2)v (10)
A

where for convenience we have defined 6% =A2 —l—o'%l —l—a%z.

We have also suppressed the dependence of Z; and o

on x;, and the dependence of Z, and o, on x, for notational

cleanliness.

Ay - - . . .

This is not guaranteed; prior independence is necessary, but
not sufficient to be unbiased, as discussed in Ref. [21]. However,
if the noise model L(x|z) is Gaussian, 2 will indeed be unbiased.

These improved estimates are completely unbiased, as
long as x, and x, are unordered. More precisely, as long as
we are agnostic to whether or not x; > x,, then the bias

b(z) is

b(z12) = Ep, [212(x1, %) = 212]s

~0, (11)

where pr. is any test set such that p(z,|z;) is correlated
with the same Gaussian A.> This is no longer true if we
know which x is “leading” and “subleading”; the estimates
7’ will tend towards the resolution-weighted average of x;
and x,, so the leading estimate always decreases and the
subleading estimate always increases.

We can also compute the corresponding resolutions
of each estimator using Eq. (2), ¢% (x) and ¢} (x), as the
diagonal elements of the following covariance matrix:

2 (52 _ 2 2 2
- 1 o: (o3 —0%) 0: 0%
2(x1’x2)_6_2 2 2 2 (62 —62)
A 0z,02 030N ~ 03,
2
2
c
o2 (x1, %) = 03 T 2/
! o3 toz, +A
2
o2 (x1,xy) = 0% (1 - %) (12)
! 2 o; to;, +A

In the case that z; or z, are multidimensional, this
covariance matrix should be thought of as block diagonal
in z;-z, space.

For any A > 0, Eq. (12) always improves the resolutions
of both measurements. In the limit A — oo, we expect the
correlation structure of L(z, — z,) to vanish, and indeed we
see there is no improvement to the resolution and the off
diagonals of the covariance matrix disappear. In this case,
the improved estimates 2’ are completely unchanged from
the original estimates Z. On the other hand, in the limit that
A — 0, weexpectthat z; = z; exactly, andindeed 2| = Z} in
this limit. Both estimates converge to the resolution-
weighted average of 2 and 2,, with the improved resolution
approaching the usual inverse-quadrature sum of 6 and o, .
In this limit, the two estimates become perfectly correlated
with a Pearson correlation coefficient of p = 1. In the case
where o; ~ o0, this leads to improved resolutions of

o.~os/ /2, an improvement of nearly 30%.

If we relax the assumption that L(z; — z,) is a Gaussian
and instead consider generic unimodal and smooth distri-
butions, it is still possible to obtain calibration-improved
estimates. So long as L(z; — z,) has a sufficiently simple

>This is not strictly necessary; many other choices of the
distribution of |z; — z,|, including Gaussians and symmetrized
exponentials for any width A, also lead to zero bias.
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parametric form (which can be obtained from a simple fit)
and is convex, it is still straightforward to calculate the
correlation-improved MLEs and improved Gaussian reso-
lutions, albeit only numerically.

B. The n =2 exponential case

The case where L(z; — z,) is a symmetrized exponential
is pathological and qualitatively different than the Gaussian
case. If we take z; to be equal to z, up to exponential noise
A, of the form

1
L(z1—2) = —A—|Z1 — Z»| + Norm, (13)

then the singular behavior of the distribution at z; = z,
causes our MLEs to be nonanalytic. Indeed, we find that
there are three possible critical values, corresponding to
being to the left of (Case 1), to the right of (Case 2), or
directly on (Case 3) the critical point z; = z5:

sl 2 1 6%, (xl)
Casesland2: Z|(x;,x;) = 2;(x1) F5 o
g(xz)
Z2(x|,x2) = 22()62) :l:; ZQI\ ’
e
O-g 22 —'—0’2 21
Case3: 2/ (x1, %)) = 2, (x,x,) = — %
1(xr1.x2) = 25 (x1, x2) P
(14)

The only way to disambiguate the three cases is to evaluate
the full likelihood [Eq. (7)], and then determine which of
the three gives the maximum likelihood, which in general
depends on the values of 2, Z,, 63, 0;,, and A,. However,
we can glean some insight by considering the simpler case
where o; = 6;, = 0, in which case the full likelihoods
become, up to unimportant normalization factors,

21 —22 262 02
Li,=— —| -, 15
1,2 A, + Ag Ag ( )
(21 = 2)?

If % < X—zz, then Case 3 is preferred; otherwise, Case 1
or 2 is preferred, depending on the sign of x; — x,. This can
be understood as the estimators “snapping” to the reso-
lution-weighted average if the measured values are suffi-
ciently close, as controlled by A,. This behavior is
reminiscent of the similar “snapping” or “lasso” behavior
of L1 regulators [37].6 Otherwise, the improved estimators

®In fact, it is exactly the same: L1 regulators can be thought of
as placing a symmetrized exponential prior on parameters.

102 E T T T T I T T T T I T T T T I T T T T E
; Exponential MLE Phase Space ;
[ L(z — z2) = —|z1 — 22|/ A i
where 0 =1
10

Case 3

10°

Relative Resolution o /A,
2

10 ) 0 5 10
Measurement Difference z(z1) — z(x2)

102

FIG. 1. Phase-space plot showing which of the three solutions
presented in Eq. (14) is preferred as a function of x; — x, and
o/A,, where 0;, = 03, = o in this plot. Cases 1, 2, and 3 are
shown in red, blue, and purple, respectively.

are just a slight shift of the original estimators. If the
difference between x; and x, is large compared to the
difference between z; and z, (given by A,), there is a large
correction; otherwise, there is only a small correction, and
the jump is discontinuous. In Fig. 1, we show which of
the three solutions is preferred as a function of x; — x;
and o/A,.

Cases 1 and 2 merely shift the estimators, and thus the
resolution is unchanged.” Like the Gaussian case, as long
as the measurements are unordered, these shifts do not
produce bias since the sign of the shift will average to zero.
On the other hand, Case 3 produces the ordinary resolution-
weighted average of the two measurements and thus the
improved resolution is the ordinary inverse-quadrature sum
of the original resolutions. That is,

o2 Cases 1 and 2,
o2 = “ 17
“ (637 +037)7" Case3. (17)

Note that, while it appears that Case 3 of Eq. (14) and all
of Eq. (17) are explicitly independent of A,, there is still a
strong implicit dependence on A, through the selection of
the three cases. In the limits A, - oo and A, — 0, these
estimates and resolutions agree exactly with the Gaussian
version. This is to be expected as the former limit represents
the no-information case and the latter limit represents the
perfect-correlation case. However, unlike the Gaussian
case, where Eq. (12) does not depend directly on Z; or

"There is a slight change due to the dependence of o: on X,
making the shift not entirely constant, but we assume that ¢ varies
slowly with x and ignore it.
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Z,, Eq. (17) does depend on Z; and Z, through the case
choice. In the case where o; = o, = o for simplicity, we
can use the exponential prior on |z; — z,| to directly obtain
the average improvement in resolution:

1 1
G;zvg =0’ |:§ + 5 6_202/A§:|

2
z52<1 —%) (18)

Note that this lines up with Eq. (12) in the limit that A > o¢.
That is, even though the Gaussian and exponential priors
have very different behavior, we expect that they should
both have the same average correlation-improved resolu-
tion when A = A, > o.

III. EXAMPLE 1: TOY MODEL DECAY

We begin with an example of applying the correlation-
improved MLE using known distributions where we have
full analytic and numeric control of the analysis.

Suppose we have a simplistic toy model where events
have a “final state” consisting of three (distinguishable)
particles, two of which are visible and one invisible.
Focusing only on the x component of momentum, we
measure the momenta of the first two particles to be ky e,
and kj .o, With unknown true values k; and k, that we
would like to estimate. Assume that our detector adds a
known amount of Gaussian noise o, and o, to each of the
two measured particles, and that we cannot measure the
third particle. We also assume that we know that the true

Gaussian
19,5 FT T T

[ r ]
Z(x) Correlation-improved MLE ]

T T T T

T T ] 12.5

25(x) estimates for measured z1 10 o

10.0 r measured T,
R r * and various xo 1
Q: 7.5 :— * T2 o1 =1.0,00=0.1 _: 75
£ 1 2
g 5.0 Measured (z1,22) = (2,5) *15.0 g
5 f ] £
= asf J25
2 F =%k Z
E 0.0 F Measured (z;,29) = (2,0) *,_: 0.0 Ew
A= g 1

—25F q4-25

N . — (2. -5 ]

_50 ?IIV194511red Iml,zg) (2; 5) I k- _50
1072 107! 10° 10 102
Momentum Asymmetry A
(a)

momentum k3 follows a Gaussian with mean 0 and
variance A”. This cartoon model resembles a 7 — 7~ 7%,
decay in the rest frame of the 7, where 6_ # o), and enables
us to demonstrate the features of the correlation-improved
MLE. We will revisit the assumption of knowing that the
parent particle is perfectly at rest in Sec. V in the case of
boosted resonance decays.

We can independently apply maximum likelihood esti-
mation to obtain estimates for the values and resolutions of
each measurement:

kl = kl,reco’

122 = k2,recov &2 = 03. (19)

Momentum conservation will induce correlations
between k; and k,, via k3. To match the sign conventions
of Sec. II, we choose k, to be in the negative direction.
Since k; — ky + k3 = 0, these correlations take the form

plki —ky) = N(0,A%), (20)

which is precisely the setup required to apply Egs. (10)
and (12) to improve the estimates and resolutions obtained
in Eq. (19), with k., corresponding to the measurement
x and k corresponding to the parameter z.

In Fig. 2, we show the results of the correlation-improved
MLE procedure [Egs. (10) and (12)] for various choices of
missing momentum scale A, resolutions o, ,, and mea-
surements x; ,. We pick two regimes: o, > o, (Fig. 2a) and
o1 ~ o, (Fig. 2b); between these two plots, and the varying

Gaussian
D] B B B B p PP
[ 2l (2) L ]
[ X Correlation-improved MLE ]
10.0 2h(z) estimates for measured z; 10
N * 2 and various xo ]
o5k Kk m o1 =10,00 =10 475
Q r ] 8
It
3 r 1 3
g% 5.0 = Measured (21, 22) =(2,5) *-{5.0 qé
ZE I ] 5]
a5k Jo5 Z
— 2} Measured (z1,22) = (2,0) 177 &
D N ] o]
= F ] =
- =
& OO0F Measured (21,15) = (2,75) %00
= N ]
[ — ]
—2.5F -1-25
50k {-5.0
Lol ol ol Ll ool
1072 1071 10° 10! 102
Momentum Asymmetry A
(b)

FIG. 2. Gaussian correlation-improved MLE parameters 2’ and 0’2 as functions of A, for 6y = 1.0 and 6, = 0.1 (a), and o; = 0.1 and
0, = 1.0 (b). A single x; measurement is shown with a red star (x; = 2), and several possible corresponding x, measurements are shown
with black stars (x, = =5, 0, or 5). The bands correspond to the inferred Z; (red) and Z, (black), and the widths of the bands correspond
to 03, and o;,. As A decreases, going from right to left, the inferred estimates go from matching x; and x, with large bands on the right to
matching the resolution-weighted average of x; and x, with smaller bands on the left.
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Exponential
T B B B p= B
[ 21 (x) L ]
[ A Correlation-improved MLE ]
10.0 2h(x) estimates for measured z1 10 o
R E * and various xo E
Q: 75 r * x9 o1 =1.0,00 =0.1 ] 75
Q [ ] 8
5] F 1 -
% 5.0 F Measured (zy,22) = (2,5) *15.0 é
= u ] 5}
~ a5k Jo5 2
'8 N ] <
[ ] 5
E 0.0 b Measured (1, 22) =2 0) * 0.0 =
= [ ]
is N ]
—25F q4-25
_50 F Measured (zq,z2) = (2,—5) ] _50
I T T BT R TR TIT BT i R
10-2 107! 10° 10! 102
Momentum Asymmetry A,
(a)
FIG. 3.

A on the x axis, all possible regimes in the (A, oy, 0,)
parameter are represented. We pick one specific value for
the x; measurement (red) and several values of a possible x,
measurement (black), where the values of the measure-
ments are represented by stars. Then, for each (xy, x,) pair,
we draw bands corresponding to 2’ (xy, x,) & 0} (xy, x;) as a
function of A. We can see that as A — 0, the estimates
converge to the same resolution-weighted average of the
two measurements. On the other hand, as A — oo, the
improved resolutions are no different than those expected
by Eq. (19).

Similarly, we can also analyze the case of an exponential
prior for k; — ky,

(ki — k) = e (1)
P Ky 2_2Ae€ e,

using Eqgs. (14) and (17). In this scenario, the momentum of
our cartoon v particle is exponentially close to zero. The
results of this calibration are shown in Fig. 3. Note that,
while the limiting behaviors of these curves are similar to
the Gaussian in Fig. 2, we can observe the characteristic
“snapping” behavior of the exponential as A — O(o).

IV. EXAMPLE 2: QCD DIJETS

We now apply our technique to a more realistic scenario:
the calibration of jet energies at the LHC, using the CMS
detector [38] as an example. Our approach is deployed
on simulated dijet events from CMS using early Run 1
conditions. In particular, in dijet events we expect the
momentum of the two jets to be correlated due to
momentum conservation, which is precisely the scenario
in which we can apply correlation-improved calibration.

Exponential
12,5 [T T T T T I g
[ 2l (2) L ]
[ X Correlation-improved MLE ]
10.0 2h(z) estimates for measured z; 1
N * 2 and various xo ]
PEEEIS o1=10,00 =10 475
Q r ] 8
et
3 r 1 5
civ} 5.0 - Measured (z1, z2) = (2,5) *_: 5.0 qé
o 1. Z
~ 25F Measured (21, 22) = (250) 25 %
L N ] )
5t " E B
- =
L‘g 0.0 b Measured (1, 22) = (2, —5) *'_: 0.0
i= N ]
re— ]

—2.5F -1-25
—5.0 :_I I | | *Ih: —5.0
102 107! 10° 101 102
Momentum Asymmetry A,

(b)

The same as Fig. 2, but with an exponential prior rather than a Gaussian prior. Note the nonsmooth “snapping” behavior.

A. Data set

We use the same CMS Open Simulation [34,38] data set
as described in Ref. [20], namely, the CMS2011AJets
simulation data set. This data set consists of simulated
dijets generated using Pythia 6 [39] with a Geant4-based [40]
simulation of the CMS detector. This data set is formatted
in the MIT Open Data format; more details about this
format and data set can be found in Ref. [41].

The data consists of both detector-level “measured” jets,
SIM, and corresponding generator-level “truth” jets, GEN.
Each SIM event consists of a list of particle flow candidates
(PFCs) [42], which are the reconstructed four-momentum
and particle identification for each measured particle. The
PFCs are clustered into anti-k, jets with a radius parameter
of R = 0.5 [43-45]. The data set has an implicit SIM py cut
of 375 GeV on all jets, which was applied to avoid trigger
turn-on affects. We additionally require that all jets are
within || < 2.4 and that the jets are of at least “medium”
quality [46]. Within this data set, almost all (99.4%) jets are
paired up into dijet events. The remaining nonpaired jets
are discarded. For each dijet event, we keep track of which
is the leading and subleading jet at the SIM level. This
information is only used to bin the jets and to differentiate
the jets in the forthcoming plots; this is important for our
calibrations to remain unbiased.

To mitigate the effect of the global 375 GeV trigger cut
on all jets within this data set, we only look at events whose
leading jet py is greater than 600 GeV. In Fig. 4 we show
the distribution of the leading and subleading p;’s for each
dijet event satisfying our cuts at both the SIM and GEN
levels. For the following studies, the latent variable of
interest z is the GEN jet p;, while the corresponding
measured quantities x are either the SIM jet p; or the SIM
PFCs. We bin the dijet events according to their leading
SIM pr. The bins we consider are [600, 700] GeV,
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FIG. 4. Distribution of the (a) GEN p and (b) SIM p7 of the leading and subleading jets (as determined by the SIM p7) of each event

in the data set.

[700, 800] GeV, [800, 900] GeV, and [900, 1000] GeV. We
perform our analysis separately on each bin, as well as one
additional time on the entire inclusive [600, 1000] GeV set.

B. Momentum asymmetry fits

Due to momentum conservation, the py’s of dijets are
correlated. In particular, at the truth level, pr; = pra;
however, a variety of factors make this inexact, such as
initial-/final-state radiation, the underlying event, neutrinos/
electroweak radiation, and inherent transverse momentum

Expontential CMS2011AJets SIM

— T T

0-01217 8 siv Leading Jet pr bins [GeV] -

Ll =3 [900,1000], A, = 131.2 GeV ]

0010FI == [800,900], A, = 110.9 GeV
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wn
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[ B ]
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0.002 |- .

[e]
[N~}
(e
[e]
I
(]
[e]

GEN |pT,1 — pT,2| [GEV]

(a)

FIG. 5.

imbalances (see transverse-momentum-dependent effects
in [47]).

As in the case of the toy example presented in Sec. III, as
long as the distribution L(pr; — pr,) is known, it is
possible to use Egs. (10)—(12) to obtain improved calibra-
tions beyond what is possible in the single-jet case.

We perform two different fits and two independent
analyses: one assuming an exponential fit with width A,
with the same functional form as Eq. (21), and one
assuming a Gaussian fit with width A with the same
functional form as Eq. (20). We find that the exponential

Gaussian CMS2011A Jets SIM

— T T

0-01217 8 siv Leading Jet pr bins [GeV] -

i 1 [900,1000], A = 147.7 GeV 1

OO010FI =1 [200,900], A = 124.3 GeV ]

. 1 [700,800], A = 153.9 GeV ]

0.008 -l = [600,700], A = 117.6 GevV ]

£ F L O Al dijets, A = 1258 Gev ]
w0

g 0.006 - ]

A i i

0.004 - .

0.002 |- .

[a]
[
(e
o
I
[aw]
[a]

GEN |pT,1 — pT,2| [GQV]

(b)

Distribution of the difference in GEN p; between the leading and subleading jets in each event, for several leading p7 bins.

The absolute value is taken for plotting convenience; the labels 1 and 2 are random and the curves are symmetrized about the vertical
axis. An (a) exponential and a (b) Gaussian distribution is fit to each distribution, and the parameters A, and A (respectively) are
extracted to describe the extent to which momentum is conserved. The different p; bins are shown in blue through red in increasing p,

and the pg-inclusive sample is shown in black.
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TABLE I. Mean squared errors and fitted A values for the exponential and Gaussian fits to the |pr | — prs|
distributions for different leading jet ps bins.

Bin [GeV] MSE (exponential) A, [GeV] A,/Central p, MSE (Gaussian) A [GeV] A/Central py
[600, 700] 2.8 x 1077 105.1 0.162 6.7 x 1077 117.6 0.181
[700, 800] 2.8 x 1077 137.0 0.183 8.7 x 1077 153.9 0.205
[800, 900] 2.9 x 1077 110.9 0.130 5.6 x 1077 124.3 0.146
[900, 1000] 2.2 %1077 131.2 0.138 7.2 x 1077 147.7 0.155
Inclusive 2.7 x 1077 111.9 0.140 7.5 x 1077 125.8 0.157

fits more closely match the distribution, but since exponen-
tials have pathological behavior (as discussed in Sec. II B),
we do the analysis a second time with Gaussian fits.
Consistent improvements in the resolution are still possible
even if the particle-level fit is not exact.

In Fig. 5 we show the distribution of |py; — pr,| in
dijets at the GEN level, with the absolute value taken for
plotting convenience. Note that the labels 1 and 2 do not
correspond to leading or subleading, but rather are ran-
domly assigned so that the distribution L(p7; — pr,) is
symmetric and we apply the same initial calibration to both
jets agnostic to whether it was the leading or subleading jet.
We emphasize that this is crucial to avoid introducing bias.
We show both distributions binned in the leading SIM pr
value (blue through red) and the total inclusive distribution
(black). For each distribution, we fit an exponential (Fig. 5)
and a Gaussian (Fig. 5) to extract the momentum asym-
metry parameters A, and A, respectively, which are shown
in the respective plots. The fits are accomplished by
minimizing the mean-squared error (MSE) loss of the
distribution. We also summarize the results of these fits
in Table I, where we show the extracted momentum

Exponential CMS2011A Jets SIM

i I 1 17T I 1 17T I T 1T I 1 17T I T 1T I f

0.7 CMS Jet Energy Calibrations -

- SIM Leading Jet pr bins 1

06F = [600,700] =1 Al dijets |
o5E == [700,800] CMS JER ]

. F (800, 900] Corr. Imp. ]
= 04F [900, 1000] =
= 1
3] . ]
A 0.3 —
0.2F .
0.1F —j
0.0k .

25 30 35 40 4 50
Leading Jet pr Resolution [GeV]

(a)

asymmetry values, fractional asymmetry, and fit MSE
for the exponential and Gaussian.

Both by eye and by looking at the MSEs in Table I, we
can see that the exponential is a much better fit than the
Gaussian, but we consider both approaches to highlight
their similarities and differences. The extracted A, and A
values range from ~100-150 GeV across the different
pr bins.

C. Correlation-improved jet calibration

We now show how Egs. (10)—(12) can be used to
improve jet-energy resolutions. As a baseline, we use
CMS-prescribed resolutions, as computed in Ref. [2]:

Pr Pr Pr

(22)

where N ~ 30 GeV, S ~0.81 GeV'/2, and C ~ 0.04. This
leads to a jet-energy resolution of approximately 3%—5%
for jets in the pr ranges we consider.

900, 1000]

0.30 Exponential CMS2011A Jets SIM
E CMSI Jet Ehergy ICalibraltions E
0.95 & SIM Leading Jet pr bins
- 1 [600,700] =1 All dijets
0.20 £ 1 [700, 800] CMS JER
r [800, 900] Corr. Imp.
- [

o e b b b by

25 30 35 40 45 50
Subeading Jet pr Resolution [GeV]

(b)

FIG. 6. Distributions of (a) leading and (b) subleading jet resolutions for each p; bin, with the original CMS resolution (solid) and the
correlation-improved (Corr. Imp.) resolution (points), for the exponential fits. The different p; bins are shown in blue through red in

increasing pr, and the pr-inclusive sample is shown in black.
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FIG. 7. Distributions of (a) leading and (b) subleading jet resolutions for each p; bin, with the original CMS resolution (solid) and the
correlation-improved (Corr. Imp.) resolution (points), for the Gaussian fits. The different p; bins are shown in blue through red in

increasing pr, and the pr-inclusive sample is shown in black.

In Figs. 6 and 7 we show both the original CMS jet-
energy resolution [Eq. (22)] and the correlation-improved
resolutions [Eqgs. (17) and (12), respectively] for both
leading and subleading jets. We show the correlation-
improved resolutions for both the exponential fit in
Fig. 6 and the Gaussian fit in Fig. 7. As with Fig. 5, events
are split into bins by their leading SIM p7, and we also
include the inclusive distribution. In all cases, the

CM5201 1A Jets SIM

CMS Jet Energy Cahbratlons
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E‘
£
| §
#
i
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"
7
7
.

|
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154
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I
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e
BN

| I |
000
900 ~*

Resolution Improvement: oyey/00o1a

00 200 200~ 900

SIM Leading Jet pr [GeV]
(a)

600 ~

correlation-improved resolution distributions are shifted to
the left of the original resolution distributions by a few GeV,
indicating that the resolutions are indeed slightly improved.
However, in the exponential case (Fig. 6), the correlation-
improved distribution is highly bimodal; a majority of events
have an unchanged resolution, whereas a small number of
events (those close to the zero of the exponential, controlled
by A,) “snap” to the improved resolution. On the other hand,

- Gaussian CM5201 1A Jets SIM
< — T —— —
L Look CMS Jet Energy Cahbratlons ]
uz "7} MM Leading Subleading
N S - i
Zomsfk 7 : ﬂ i
St 1 v / |
5] - ’ ¢ -
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= P 2 _|_\<(. :
= i i
= I i b
3 094 -FQ .
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= i |
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\) \) \} \}
600~ T 700 = B g0 = I g0 -0
SIM Leading Jet pr [GeV]
(b)

FIG. 8. Violin plots showing the distribution of ratios of the correlation-improved resolution to the CMS-based resolution for each pr
bin, for (a) the exponential fit and (b) the Gaussian fit. The leading jet ratio is shown with solid shading, and the subleading jet ratio is
shown with lighter hatched shading. Note that the vertical axis scale is much larger for the exponential than the Gaussian, though the
means of all distributions (indicated by the horizontal lines) are roughly the same at about 0.95. The different p; bins are shown in blue

through red in increasing pr.
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FIG. 9. Distribution of the reconstructed (Reco.) jet py for jets with a true (GEN) pr €[695,705] GeV, using CMS jet-energy
corrections (solid, corresponding to Z) and the correlation-improved (Corr. Imp.) MLE (points, corresponding to 2') for the
(a) exponential and (b) Gaussian fits using Eqs. (14) and (10), respectively. Jets are included regardless of their leading or subleading
label. For each distribution, we write its mean and standard deviation, the latter of which should correspond to the average resolution.

in the Gaussian case, the correlation-improved distribution is
aslight shift of the original distribution, reflecting the smooth
behavior of the estimates in A.

Next, in Fig. 8 we quantify this improvement by plotting
the distribution of ratios of the new-to-old resolution
distributions. We can see that the resolution is improved
by an average of about 3%-5% for both subleading and
leading jets in the exponential and Gaussian fits, though the
distribution of improvements around the average is wildly
different between the two fits. The exponential fit consists
of many events with no improvement at all and few events
with drastic improvement, consistent with the bimodal
picture. In contrast, the Gaussian fit is far more consistent,
improving most events by about the same amount. This is
in accordance with the discussion in Sec. II A, where the
improvement in the resolution can be approximated using
Egs. (12) and (18) for large A:

o’ ~ agi

2A?

~0.95 foro; =05, =35GeV, A=100GeV, (23)

2i

02[,

where the factor of % comes from taking the square root
of ¢°.

It is also common to report the quadrature improvement,
which is given by

(24)

O'fi

For large A, this reduces to —
same information as Eq. (23).

Finally, to check whether these estimates indeed reflect
better resolutions for the pr estimators, in Fig. 9 we plot the
original CMS-estimated and correlation-improved recon-
structed jet py (corresponding to Z and ', respectively) for
a narrow window of true py € [695,705]. For both the
exponential and Gaussian fits, we see that the correlation-
improved MLE does not induce any significant extra bias
over the original estimates. We also see that the average
resolution improves from 40.1 GeV to approximately
37.5 GeV, an improvement of approximately 6% of exactly
the type expected by Eq. (23). Note that the highly bimodal
snapping behavior of the exponential has been washed out
when looking at the full distribution of jets and on average
behaves qualitatively similar to the Gaussian.

We end this analysis by noting that, while the exponen-
tial is a better fit to the momentum asymmetry than the
Gaussians in Fig. 5, both fits lead to consistent improved
calibrations, as validated by Fig. 9. Moreover, both
methods give similar final average resolutions, in spite
of the very different way 7’ is calculated. As discussed in
Sec. I B, this is expected; both fits give the same average
resolution improvement for A x A, > o.

~ 35%, which contains the

V. DISCUSSION: BOOSTED RESONANCES

The above discussions all revolved around the fact that
the momenta of the two jets add to zero up to noise.
However, this is only true in the c.m. frame of the jets,
which we always assumed we were in. If the frame is
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known, one can always boost to the c.m. frame, where the
same analysis can be performed. However, many analyses
involve the production of dijets from a boosted narrow
resonance, such as a top, a Higgs boson, a Z, a W*, or a
new particle. In this case, the sum of the two jet momenta is
no longer zero, but rather the momentum of the resonance,
which is largely unconstrained.

If we know that the two jets originated from a boosted
source of mass M. then it is still possible to partially
constrain the momenta of the two jets. Rather than
summing to zero, the components of the two momenta
are constrained such that

M? =m?} +m3
+ 2pripra(cosh(n —n,) —cos(¢y — ¢2)).  (25)

This information can be used to improve the calibration
on the pr and m of both jets, assuming # and ¢ are well
known. For simplicity, suppose that we are only interested
in improving just the pr calibration and absorb the original
resolution of m? and m3 into M. Define, for convenience,
the quantity

_ M? — m% — m%
H= 2(cosh(ny = 1) — cos(pr — )

which is approximately the mass squared over 2, for heavy
resonances. Then, the product p;;pr, is approximately
given by

(26)

L(pripr2) =1og(N (1. AD)). (27)

where A, is the resolution on g, including any effects due to
resolutions on M2, m$ ,, ¢, », and 77, ». Note that, unlike the
cases considered previously, this is a constraint on the
product of the pz’s, not the sum of the py’s. It is also
possible, as before, to consider exponentials rather than
Gaussians here.

We can now take derivatives of Eq. (7) to solve for the
correlation-improved estimates and resolutions for z; =
pry and z; = pr,. In general, this requires solving a
system of coupled nonlinear equations and lacks a closed-
form solution. We perform this numerically and present the
resolution improvement, o"21 /o, in Fig. 10 for example
parameter choices. We see that the resolution indeed
improves; the improvement is more pronounced if /A,

is small, with the typical 1/4/2 improvement factor that
occurs whenever o; ~ o;, > A,. Note that the results in
Fig. 10 are just purely numeric for example parameter
choices, and there are no jets (real or simulated) here.
We leave the study of these results in the setting of actual or
simulated jets to potential future work.

$This is possible if the resonances are produced in pairs and the
partner is independently tagged, e.g., a semileptonic #7 decay.
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< . — . —_
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FIG. 10. Ratio of the correlation-improved resolution to the
original resolution for one of the two jets, as a function of the
measured pr, x;/\/4, and the dijet mass parameter u/A, as
defined in Eq. (26). We fix the original jet energy resolutions o,
and o; to be 10% of the nominal energy, and we also fix
xp//i =1 and A, for simplicity.

As an aside, constraining the jet p; using momentum
conservation, as we have done in Sec. IV, does not help to
improve the dijet resolution. This is because the dijet mass
is calculated using the sum of the jet momenta, which
already contains all of the information about momentum
conservation.

VI. CONCLUSION

In this paper, we have shown how one can take
advantage of correlations between jets, namely, those
induced by momentum conservation in dijet events, to
obtain jet-by-jet correlation-improved MLEs and resolu-
tions. Using this, we were able to achieve improvements in
resolution over the baseline of 3%—5% (35% quadrature
improvement) for simulated dijet events from the CMS
detector. This is possible by only making assumptions on
the relative momenta between the jets, without making
assumptions on the overall prior of jet production, and does
not introduce any bias as long as the jets remain unordered.
This is in contrast to other proposals for improving jet-
energy calibrations, which focus on the high-dimensional
substructure and detector interactions of individual jets, or
proposals that use momentum conservation to constrain the
statistical properties of jets.

While we primarily focused on the application of
correlation-improved MLE to dijet events in the c.m.
frame, the procedure of applying Egs. (1) and (2) to
Eq. (7) can be expanded. For instance, we briefly discussed
how one can loosen the constraint of momentum con-
servation in the c.m. frame to simply knowing the dijet
mass in Sec. V. Other types of correlations between jets,
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such as those induced by color connections [48—52], can
also be used here. Additionally, we used CMS-prescribed jet
energy resolutions and calibrations as our baseline, though in
principle one could use any (especially machine-learned)
unbiased calibration for L(x;|z;) to source Z(x) and o+ (x) for
the correlation-improved MLE, such as the Gaussian ansatz
of Ref. [20]. Since we are only using out-of-jet information,
correlation-improved MLE can be used on top of any type
of single-jet calibration method. There is also no reason to
restrict to jets; this general procedure can apply to any
multiobject final state. We focused on jets because of the
largest potential gains from their complex structure and
relatively poor resolution; however, a similar analysis could
apply, e.g., to Z/hy = yy, e"e™, yTu~, and hy, h3, for
identified hadrons 4;.

An important aspect of this technique is fitting the
distribution of the momentum asymmetry z; — z, at the
truth level. This requires that the simulation of the relevant
effects causing the momentum asymmetry is reliable.
However, because of the way prior dependence enters
Eq. (7), only the momentum asymmetry needs to be
reliable; the distribution of z; or z, themselves are not
important, which is a desirable feature of calibration.
Moreover, as we have shown with the Gaussian fit, it is
possible to still get a consistent and valid improvement,
even if the fit is suboptimal. Global event features are

therefore a robust way to add calibration information, and
in the future these features can offer an approach comple-
mentary to modern ML methods to continue improving jet-
energy calibrations.

The CMS Open Data used in Sec. IV was accessed in the
MIT Open Data format and can be found at [53-57]. The
code used for the analyses presented in this paper is located
at [58], from which all of the results and plots shown here
may be reproduced.
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