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Abstract

Photometric classifications of supernova (SN) light curves have become necessary to utilize the full potential of
large samples of observations obtained from wide-field photometric surveys, such as the Zwicky Transient Facility
(ZTF) and the Vera C. Rubin Observatory. Here, we present a photometric classifier for SN light curves that does
not rely on redshift information and still maintains comparable accuracy to redshift-dependent classifiers. Our new
package, Superphot+, uses a parametric model to extract meaningful features from multiband SN light curves. We
train a gradient-boosted machine with fit parameters from 6061 ZTF SNe that pass data quality cuts and are
spectroscopically classified as one of five classes: SN Ia, SN II, SN Ib/c, SN IIn, and SLSN-I. Without redshift
information, our classifier yields a class-averaged F-score of 0.61 £ 0.02 and a total accuracy of 0.83 £ 0.01.
Including redshift information improves these metrics to 0.71 £ 0.02 and 0.88 = 0.01, respectively. We assign new
class probabilities to 3558 ZTF transients that show SN-like characteristics (based on the ALeRCE Broker light-
curve and stamp classifiers) but lack spectroscopic classifications. Finally, we compare our predicted SN labels
with those generated by the ALeRCE light-curve classifier, finding that the two classifiers agree on photometric
labels for 82% 4 2% of light curves with spectroscopic labels and 72% =+ 0% of light curves without spectroscopic
labels. Superphot+ is currently classifying ZTF SNe in real time via the ANTARES Broker, and is designed for
simple adaptation to six-band Rubin light curves in the future.

Unified Astronomy Thesaurus concepts: Supernovae (1668); Nested sampling (1894); Light curve classification

(1954); Transient detection (1957)

Materials only available in the online version of record: machine-readable table

1. Introduction

Currently, ~10,000 supernova-like (SN-like) transients are
photometrically detected every year by the Zwicky Transient
Facility (ZTF; Bellm et al. 2019), the Panoramic Survey
Telescope and Rapid Response System (Pan-STARRS;
Chambers et al. 2016), and the Asteroid Terrestrial-impact
Last Alert System (Tonry et al. 2018), among other facilities.
Global resources can spectroscopically follow up on ~10% of
these transients. Wide-field surveys planned for this decade,
including the Vera C. Rubin Observatory’s Legacy Survey of
Space and Time (LSST; Tyson 2002) and the Nancy Grace
Roman Space Telescope High Latitude Time Domain Survey
(Rose et al. 2021), are expected to increase annual SN
detections by a factor of ~100. With spectroscopic resources
not expected to increase exponentially in the same time frame,
99.9% of new SNe light curves will lack traditional spectro-
scopic classifications (see, e.g., Filippenko 1997 for review).

In response to this limitation, several works have imple-
mented algorithms that classify SNe using only photometric
information (Muthukrishna et al. 2019; Villar et al. 2019, 2020;
Hosseinzadeh et al. 2020; Boone 2021; Sanchez-Sdez et al.
2021), or a combination of photometry and host galaxy
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information (Gomez et al. 2020a, 2023a, 2023b; Gagliano et al.
2023; Kisley et al. 2023; Sheng et al. 2024). Many of these
classifiers show successful performance with simulated light
curves (e.g., RAPID. Muthukrishna et al. 2019; ParSNIP,
Boone 2021). However, simulated light curves typically lack
the observed population diversity in real data sets; it is
therefore challenging to predict classifier performance on real
data (Aleo et al. 2023). Boone (2021) highlights a particular
failure mode, in which a classifier is able to distinguish
between SNe II simulated from discrete models. Among
classifiers that do train on real data (e.g., Superphot, Villar et al.
2019; Hosseinzadeh et al. 2020 on Pan-STARRS data;
SuperRAENN, Villar et al. 2020, on Pan-STARRS data;
FLEET, Gomez et al. 2020a, 2023a, 2023b, on ZTF and Open
Supernova Catalog data; GHOST, Gagliano et al. 2023, on
SDSS-II, ESSENCE, and SNLS data; Kisley et al. 2023, on
THEx data), only the Automatic Learning for the Rapid
Classification of Events (ALeRCE; Sanchez-Séez et al. 2021)
pipeline, Fink (Leoni et al. 2022), and the NEural Engine for
Discovering Luminous Events (NEEDLE; Sheng et al. 2024),
all trained on ZTF data, are currently being run in real time
with publicly accessible predictions. Furthermore, the latter two
are tuned to isolate specific classes of interest (SNe Ia for Fink,
tidal disruption events, hereafter TDEs, and superluminous
SNe for NEEDLE).

Thus, we aim to design a publicly available, multiclass
classifier that is trained on real data. This pipeline should be
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designed for easy adaptation to Rubin light curves in the
future. Of particular concern is the current requirement for
spectroscopic redshift information for the vast majority of
photometric classifiers (with the exception of FLEET,
NEEDLE, and both of ALeRCE’s classifiers). Even with
new spectroscopic surveys (e.g., 4MOST; De Jong et al.
2019), which will obtain spectroscopic redshifts for millions
of galaxies, only a small fraction of the ~10'" galaxies
detected by LSST (LSST Science Collaboration et al. 2009)
will have associated spectroscopic redshift information.
Additionally, according to the LSST Science Requirements
Document (Ivezi¢ & LSST Science Collaboration 2018),
Rubin is not expected to meet its minimum target criteria for
accurate photometric redshifts within its first 3 yr of
operation (Graham et al. 2018; Kessler et al. 2019). This
lack of reliable redshifts for early Rubin observations, along
with a preference for very dim host galaxies among exotic
SNe (e.g., Type I SLSNe; Hsu et al. 2024), necessitates an
SN classifier that does not use redshift information. Instead,
we rely only on the light-curve shape and color to
differentiate between SN classes.

Here, we present the SN classification pipeline Superphot
+, which (1) empirically fits SN light curves to a parametric
model and (2) trains a gradient-boosted machine (GBM)
classifier on the best-fit model parameters. Superphot+
improves on the Superphot (Villar et al. 2019; Hosseinzadeh
et al. 2020) pipeline by accelerating fitting for real-time light-
curve processing, improving class reweighting, and enabling
classification without redshift information. In this work, we
train and apply Superphot+ to ZTF light curves observed
through 2023 October, although we emphasize Superphot+’s
adaptability for other photometric data sets. This paper is
organized as follows. In Section 2, we describe the selection
and pruning of our training and test data sets. We describe the
details of the light-curve fitting and choice of sampling
algorithm in Section 3. In Section 4, we describe feature
selection (including and excluding redshift information),
optimization of the classifier architecture, and oversampling
of the training data set. In Section 5, we summarize
multiclass and binary classifier performance with and without
redshift information, emphasizing accuracy as a function of
classification confidence. We also consider performance on
partial light curves for real-time classification through the
ANTARES Broker (Narayan et al. 2018; Matheson et al.
2021). In Section 6, we compare Superphot+’s performance
without redshift information to that of the ALeRCE
(Sanchez-Séez et al. 2021) light-curve classifier, one of the
only comparable redshift-independent classifiers currently
available in the literature. We also compare our training
results using redshifts with those from previous pipelines that
require redshift. In Section 7, we use our trained classifier to
assign photometric labels to 3558 ZTF SN-like transients,
which lack spectroscopic classification but were labeled
likely SNe by ALeRCE’s light-curve and stamp classifiers.
We compare our photometric predictions with those from
ALeRCE. Finally, we discuss conclusions and avenues for
future work in Section 8. Our code is publicly available on
GitHub’ and the Python Package Index as superphot-
plus. All data sets are available on Zenodo (DOI:10.5281/
zenodo.12519870; de Soto et al. 2024).

7 https: //github.com/VTDA-Group /superphot-plus

de Soto et al.

2. Data Set Generation
2.1. Photometric Data from the Zwicky Transient Facility

This work uses light-curve data from ZTF (Bellm et al.
2019), a wide-field survey conducted with a 48 inch telescope
located at Palomar Observatory. ZTF photometrically identifies
~5000-10,000 new (likely) extragalactic transients every year,
~20% with spectroscopic classifications. Both ZTF public
surveys (the Northern Sky Survey and the Galactic Plane
Survey) image a combined ~25,000 deg” of the northern sky at
a high cadence of ~2 days, in both the g and r bands.

To train our photometric classifier, we first collate SNe that
(1) have associated ZTF light curves of sufficient quality
(according to metrics detailed in Section 2.3) and (2) are
spectroscopically labeled as one of the output classes listed in
Section 2.4. We refer to this set as the training or “spectro-
scopic” data set interchangeably throughout the paper. To
create this training set, we first query the Transient Name
Server (TNS; Gal-Yam 2021) for all spectroscopically
classified transients with ZTF internal names and photometry.®
This query yields 9526 events that were registered between
2013 March 19 and 2023 October 11. While most of this set are
SNe, there are also non-SN transients, like active galactic
nuclei (AGN) and TDEs, which are pruned as described in
Section 2.4. We keep all TNS classes in our data set for the
time being to determine the classes (both SN and non-SN) that
are not used directly for training but have sufficient “high-
quality” light curves to merit further analysis in Section 5.4.
We then download the g- and r-band light curves for these
events through a Python API maintained by ALeRCE (Forster
et al. 2021)’s LSST (currently ZTF) alert broker.

2.2. Data Preprocessing

Superphot+’s parametric function captures light curves in
flux (rather than magnitudes). We thus convert our photometry
from magnitudes to fluxes using f= 10~"*"""*P and a constant
zero-point of zp = 26.3, which is halfway between the r-band
and g-band median zero-points as stated by the ZTF
collaboration (Masci et al. 2018, 2020). We correct all resulting
light curves for Milky Way extinction. To do so, we adopt E
(B — V) from the dust maps provided by Schlegel et al. (1998)
and Schlafly & Finkbeiner (2011), and use a Fitzpatrick &
Massa (2007) extinction model with Ry, = 3.1. We neglect host
galaxy extinction, which is difficult to calculate from light-
curve data alone.

ZTF alert data are calculated from difference imaging and
point-spread function photometry to measure the time-variable
flux of transients. However, poor template subtraction can lead
to a complex background, causing light curves to asymptote
well above zero flux and creating spurious detections after the
transient events (and potentially before, if forced photometry is
included). Our ZTF light curves do not include forced
photometry, so we only see false detections at the tail end of
the light curves. While we could add a constant term to our
parametric model to account for a flux offset, we find that
including such an offset leads to oversubtraction among SNe
with long plateaus. Therefore, we instead filter these spurious
data points before fitting. Following the procedure described in

8 We note that some spectroscopic classifications may differ between TNS

and subsequent analysis papers; for simplicity, we only use the primary label
from TNS.
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Appendix A, we clip the tail ends of 4324 (45%) light curves to
some extent.

Because we do not utilize redshift in the primary version of
Superphot+, we do not convert light curves into rest frame.
When incorporating redshift information into our classifier in
Section 5.5, we add redshifts and k-corrected peak absolute
magnitudes as additional input features rather than altering the
light curves or their derived fit parameters.

2.3. Data Set Pruning

To refine our spectroscopic data set before model fitting and
training, we exclude light curves that fail to satisfy certain
criteria. First, we keep only light curves with at least five points
of signal-to-noise ratio (SNR) greater than 3 in each of the g
and r bands (after clipping light-curve tails). This number is
selected so all light curves have either (1) somewhat
constrained fit parameters across the entire light curve or (2)
strongly constrained fits in at least one portion of the light
curve, depending on the sampling cadence. This cut on the
number of observations removes 2488 (26%) light curves from
the data set, leaving 7038 events. Additionally, we include only
light curves whose brightness variability in both bands cannot
solely be attributed to measurement error. Quantitatively, we
remove transients whose maximum amplitude in either band is
less than 3 times that band’s mean flux uncertainty. We also
remove transients in which the standard deviation of all fluxes
in a single band is less than that band’s mean flux uncertainty.
These two cuts eliminate 486 (7%) light curves from the
remaining spectroscopic set. This is a smaller fraction than is
removed by the observational cut, consistent with ZTF
registering an event as a transient only after sufficient
brightening relative to the template flux.

A summary of our data quality cuts on all TNS classes in our
data set is shown in Table 1. We are left with 6552 transients
from all spectroscopic classes. We note that longer-duration
transients (such as SLSNe and TDEs) have much smaller
fractions of their total sample pruned, as there is more time for
ZTF to sufficiently sample each light curve before they fade in
brightness. In contrast, very rapid transients such as M dwarf
stellar flares or cooler transients such as SNe Ib/c are more
heavily pruned.

2.4. Class Selection for Training

After pruning poor-quality light curves from our data set, we
filter the remaining sample to only include SNe spectro-
scopically classified as either SN Ia, SN Ib/c, SN II, SN IIn, or
SLSN-I (following Hosseinzadeh et al. 2020; Villar et al.
2020), including rarer subtypes as detailed below:

1. Type la SNe (SNe Ia). SNe Ia have distinct Si spectro-
scopic features (while lacking those of H/He) near peak.
They often exhibit secondary peaks in the near-infrared
(which can appear in the r band; Kasen 2006). Their
progenitors are usually white dwarfs that experience
thermonuclear runaway as they exceed the Chandrase-
khar limit, although diversity in progenitor scenarios
exists (Blondin et al. 2012). Due to their high intrinsic
rates and bright peak magnitudes (Mg~ —19.3 mag),
which make them observable at higher redshifts for a
fixed magnitude limit, Type Ia SNe dominate our data set.
In addition to Branch normal SNe Ia (Branch et al. 1993),
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we have included SNe Ia-91T-like, SNe Ia-CSM, and
SNe Ia-91bg-like in this category.

2. Type Ib/c SNe (SNe Ib/c). Type Ib/c SNe are core-
collapse (CC) SNe without H spectroscopic features. SNe
Ic additionally lack He lines. SNe Ib/c tend to be
optically redder at peak compared to SNe Ia. The
progenitor stars of SNe Ib/c have likely been stripped
of their H/He envelopes, potentially by a binary
companion (Filippenko 2005) or strong stellar winds
(Conti & Niemeld 1976). The optical light curves are
predominantly powered by the radioactive decay of *°Ni
and >°Co. We include broad-lined SNe Ic (SNe Ic-BL)
and calcium-rich SNe Ib (SNe Ib-Ca-rich) in this
category. We do not include the one calcium-rich SN Ic
event in this data set.

3. Type I SNe (SNe 1I). SNe Il are CC SNe with H
spectroscopic features. They are primarily powered by H
recombination following collapse of a red supergiant (or
potentially a blue supergiant), creating a postpeak plateau
in their light curves. We include both SNe IIL and SNe
IIP subtypes in this category, as the distinction is based
on solely photometric features, and there is debate
whether these subclasses are truly distinct (Anderson
et al. 2014; Sanders et al. 2015; Rubin et al. 2016).

4. Type IIn SNe (SNe IIn). SNe IIn are primarily
characterized by narrow H emission lines during the
photospheric phase (Smith 2014). Their light curves are
extremely heterogeneous, in overall brightness, duration,
and shape (see Nyholm et al. 2020 for a recent sample).
They are primarily powered by shocks arising from the
interaction of the SN ejecta and preexisting circumstellar
material (CSM), which was likely deposited by luminous
blue variable (LBV) progenitors. Because Type II
superluminous SNe (SLSNe-II) are not numerous enough
to form their own output class, we include them as a
subset of SNe IIn. Their hydrogen emission lines can
strongly resemble those of SNe IIn, although a fraction of
our SLSNe-II more closely resemble SNe II in their
emission (Kangas et al. 2022) or are potential TDE/AGN
misclassifications (Stein et al. 2023; Ridley et al. 2024). It
is uncertain whether IIn-like SLSNe-II are part of the IIn
continuum or a distinct class (e.g., see Gal-Yam 2012;
and Pessi et al. 2023). We choose not to group SLSNe-II
with SLSNe-I because the latter group generally lacks H
emission. While both types are exceptionally bright, we
avoid using absolute magnitudes to inform our output
classes, keeping in line with our goal of redshift-
independent classification.

5. Type I superluminous SNe (SLSNe-I). SLSNe-I are
exceptionally bright SNe (Mg < —20mag) that lack
signatures of H/He/Si in their near-peak spectra. Their
light curves tend to be bluer and longer in duration
compared to SNe Ia. Their exact progenitor channel is
uncertain. Some evidence (Nicholl et al. 2017) suggests
that they are powered by the rapid spindown of a newly
born magnetar (Metzger et al. 2013); other works propose
large amounts of *°Ni decay (Kasen et al. 2011; Gal-
Yam 2019). Potential signs of CSM interaction have also
been noted (Hosseinzadeh et al. 2022).

We remove 429 objects that do not belong to these five
spectroscopic classes, 38 of which arguably belong to the
above classes but are marked as peculiar (“pec”). This selection
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Table 1
Data Pruning Summary

Object Type Original Num. N -Obs Cut Variability Cut Num. Remaining Percent Removed by Cuts
% % % % %
Used in Training
SLSN-I 101 5 13 83 17.8
SLSN-II 55 3 4 48 12.7
SN I 1326 283 136 907 31.6
SN IIL 2 1 0 1 50.0
SN IIP 126 22 34 70 44.4
SN IIn 265 35 21 209 21.1
SN Ia 6128 1585 198 4345 29.1
SN Ia-91T-like 219 50 9 160 26.9
SN Ia-91bg-like 59 34 2 23 61.0
SN Ia-CSM 20 2 0 18 10.0
SN Ib 157 59 8 90 42.7
SN Ib-Ca-rich 6 5 1 0 100.0
SN Ib/c 40 19 4 17 575
SN Ic 170 59 9 102 40.0
SN Ic-BL 82 23 9 50 39.0
Excluded from Training, Analyzed in Section 5
AGN 57 6 4 47 17.5
LBV 10 3 0 7 30.0
SN IIb 121 53 8 60 50.4
SN Iax 18 5 1 12 333
SN Ibn 33 13 0 20 39.4
TDE 64 4 5 55 14.1
Excluded from Training
CvV 215 106 3 106 50.7
Galaxy 19 17 0 2 89.5
ILRT 3 2 0 1 66.7
LRN 3 1 0 2 333
M dwart 6 5 0 1 83.3
Nova 36 20 0 16 55.6
QSO 5 0 1 4 20.0
SN 28 14 1 13 53.6
SN I 29 12 2 15 48.3
SN II-pec 10 3 2 5 50.0
SN IIn-pec 2 0 1 1 50.0
SN Ia-Ca-rich 1 1 0 0 100.0
SN Ia-SC 5 1 0 4 20.0
SN Ia-pec 46 12 6 28 39.1
SN Ib-pec 5 1 1 3 40.0
SN Ibn/Icn 2 0 0 2 0.0
SN Ic-Ca-rich 1 0 0 1 0.0
SN Ic-pec 1 0 0 1 0.0
SN Icn 5 3 0 2 60.0
Varstar 19 11 0 8 57.9
Other 26 10 3 13 50.0

Note. Results of data quality cuts on each transient type from our original spectroscopic TNS sample. The first cut (“N-Obs Cut”) requires at least five data points of
SNR > 3 in each band, while the second cut (“variability cut”) ensures the amplitude and flux variations in each band sufficiently exceed the average flux uncertainty.

leaves a training sample of 6123 SNe. From Table 1, 201
pruned events not used in training are AGN, LBVs, SNe IIb,
SNe Ibn, SNe Iax, or TDEs. We apply Superphot+ to these
events in Section 5.4, as they are not prevalent enough to
justify separate output labels, but can still impact the purity of
Superphot+’s output predictions. We exclude cataclysmic
variables (CVs) from this subsequent analysis, as we assume
they will be separated from our SN-like data set by a more
general classifier (e.g., the ALeRCE light-curve classifier).

2.5. Photometric Data Set

In addition to a “spectroscopic” training data set, we also
collate a “photometric” data set. This consists of ZTF light
curves that are high quality and SN-like in behavior, but do not
have a spectroscopic classification. Our photometric set will
serve as our test set and be classified by Superphot+.

To collate this data set, we use ALeRCE’s (Sanchez-Sédez
et al. 2021) two “top-level” classifiers. One of these classifiers
uses two-band light curves to distinguish between SNe,
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stochastic phenomena (e.g., AGN, CVs), and periodic variables
(the “light-curve” classifier; Sanchez-Sdez et al. 2021).
Sanchez-Sédez et al. (2021) find that ALeRCE’s light-curve
classifier is highly successful, with an F-score of 0.97 and SN
completeness of 100% (these metrics are defined in
Section 4.2). The other classifier uses image cutouts (the
“stamp” classifier; Carrasco-Davis et al. 2021) to potentially
label objects as asteroids or bogus in addition to SNe,
stochastic variables, or periodic variables. Carrasco-Davis
et al. (2021) report 87% SN completeness for the stamp
classifier at the time of training, with a ~5% false-positive rate.

First, we gather 21,781 light curves that are photometrically
classified as an SN-like transient by ALeRCE’s light-curve
classifier with 50% or greater confidence but do not have
associated spectroscopic labels (as of 2023 October). We then
clip spurious light-curve tails as described in Appendix A,
followed by the same observational and variability cuts that we
applied to the spectroscopic data set. These cuts prune 5805
and 5854 light curves, respectively, leaving 10,122 high-
quality light curves without spectroscopic labels.

Through visual inspection, we find that these cuts do not
sufficiently eliminate non-SNe transients from our photometric
set. Non-SNe sources include bogus detections, AGN-like
variables, and very noisy or low-amplitude variable stars.
Therefore, we also remove any light curve not marked as an SN
by the ALeRCE stamp classifier. This leaves 3973 events,
which means that less than 50% of the events labeled “SN-like”
by ALeRCE’s light-curve classifier are also labeled as SN-like
by the stamp classifier. This result is surprising and suggests
either a much higher false-positive rate than reported for
ALeRCE’s light-curve classifier or a much lower SN
completeness than reported for the stamp classifier. Invest-
igation into the performance of top-level classifiers is left to
other work.

2.6. Properties of the Reduced Data Sets

After pruning our data sets, we are left with 6123 light
curves in the spectroscopic training set, and 3973 light curves
in the photometric test set. The breakdown of the spectroscopic
set is as follows:

1. SN Ia, 4546 (75.0%);
2. SN II, 978 (16.1%);
3. SN Ib/c, 259 (4.3%);
4. SN IIn, 257 (4.2%);
5. SLSN-I, 83 (1.4%).

We find that 66% of these light curves are also in the ZTF
Bright Transient Survey (ZTF BTS; Fremling et al. 2020)
catalog, which aims to spectroscopically classify all light
curves brighter than 19 mag at peak that pass certain quality
cuts.” Of our light curves not in ZTF BTS’s catalog, 91% are
brighter than 19 mag but do not pass ZTF BTS’s quality cuts.
Our class fractions approximately match those from the entire
ZTF BTS data set (Perley et al. 2020), with the exception of
SLSNe-I. Our cuts yield an SLSN-I fraction (1.4%) almost
double that of ZTF BTS (0.75%). This is not unexpected, as (1)
programs targeting SLSNe-I (e.g., FLEET, Gomez et al. 2023a)
increase their prevalence in TNS, and (2) SLSNe-I have longer

° ZTF BTS requires light curves (1) have two constraining measurements

within 7.5 days of the brightness peak, and (2) do not set within a month after
maximum light.
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Figure 1. The distribution of spectroscopically classified SNe in our data set as
a function of the number of data points above a given SNR. Any light curves
with fewer than 10 SNR > 3 data points are removed during our pruning
process. Most light curves that pass our quality cuts (69%) have at least 20
SNR > 3 data points, and most SNR > 3 points (93%) also have SNRs > 5.
This highlights the high quality of our remaining light curves.

timescales that allow for more observations at a fixed cadence;
they therefore pass our first quality cut more frequently than the
other SN classes.

The distribution of the number of observations (in either
band) per light curve above various SNRs is shown in Figure 1.
Because we require at least five points of SNR > 3 per band,
there are no events in our pruned data set with fewer than 10
combined observations above this SNR. Most light curves in
our pruned data set (69%) have >20 data points with SNR > 3,
and most points with SNR > 3 (93%) also have SNR > 5. This
demonstrates that the quality of the average light curve in our
training set is significantly higher than our minimum quality
cuts, and our cuts only remove events that are of significantly
lower quality than the rest of the data set.

The final peak r-band apparent magnitude distribution of
both the spectroscopic and photometric data set is shown in
Figure 2. The distribution of spectroscopically classified SNe
matches our expectations, as it exhibits a single peak at
approximately 18.5 mag, where ZTF BTS attempts to enforce
high spectroscopic completeness. The photometric data set
includes a tail of events much brighter than any spectro-
scopically classified light curve; these events are likely remnant
bogus objects or non-SNe. After fitting our pruned data sets, we
only classify light curves with sufficiently good quality fits
(determined by a reduced chi-squared metric). This cut is
further detailed in Section 3.1, and removes most of the very
bright outliers within the photometric data set. The remaining
photometric events share a similar distribution to the spectro-
scopic data set, except that the distribution peaks around
19 mag. The number of events in both data sets dimmer than
19.75 mag falls off rapidly, consistent with the ZTF limiting
magnitude of ~20.5 and our signal-to-noise and amplitude
constraints.

We note that no constraints are imposed on the temporal
coverage of the light curve, so our final spectroscopic sample
includes 91 light curves (1.5%) with only prepeak observa-
tions, and 503 light curves (8.3%) with only postpeak
observations. These partial light curves, while less informative,
will be common in real-time classification and are thus crucial
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Figure 2. The distribution of peak r-band apparent magnitude (m,) of the
spectroscopic (blue and pink) and photometric (green and yellow) data sets.
The spectroscopic and photometric data sets are preprocessed identically. The
pink and yellow histograms (62 and 415 objects) correspond to poorly fitted
light curves that are cut from the final sample, whereas the blue and green light
curves pass the fit quality cuts. Extremely bright sources within the photometric
set (m, < 10 mag) and other probable false detections are successfully excluded
by the reduced chi-squared cut. The remaining photometric set has a similarly
shaped apparent magnitude distribution to the spectroscopic set but shifted
toward fainter magnitudes, which reflects ZTF BTS’s (and therefore our
spectroscopic sample’s) brighter limiting magnitude compared to ZTF’s (and
thus the photometric sample’s) limiting magnitude.

to keep in our training set. Similarly, our photometric data set
includes 135 (3.4%) prepeak and 267 (6.7%) postpeak light
curves. We explore partial light curves more thoroughly in
Section 5.2.

3. Parametric Model and Fitting Procedure

After each light curve is preprocessed, we fit the SN flux in
each band to a piecewise parametric model introduced by Villar
et al. (2019) and Hosseinzadeh et al. (2020):

A
Fi= 1 [—(f—fo)]
+ exp T_
1 — 3@t — 1), if t—1<7vy
1 — Bvy)exp [ = (= f) ], otherwise
Ttall

ey

This model has seven fit parameters and describes a rise in
brightness followed by an approximately linear plateau, which
then switches to an exponential decline ~ days after #,. This
general form captures the main characteristics of both CC SNe
and SNela. The effect of each parameter on the model is
illustrated in Figure 2 of Villar et al. (2019). A is the amplitude
of the model, 7y is roughly the phase of peak brightness, and
Tise and Tgy are the exponential timescales for the rise and
decline of the light curve, respectively. 8 and -~y represent the
slope (relative to the amplitude) and duration of the plateau
following peak, respectively. There are two versions of each
parameter, as shown in Table 2, corresponding to the fits
separately derived from the set of g-band observations and the
set of r-band observations. Finally, each band has an associated
Oexra Parameter, which serves as an extra uncertainty added in
quadrature to each of the flux uncertainties. This extra
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uncertainty accounts for the limitations in the empirical model
itself.

We expect the g- and r-band light curves for a given event to
be correlated. Previous works correlate modeled fluxes across
filters using 2D Gaussian processes (Boone 2019; Kornilov
et al. 2023) or blackbody approximations (Russeil et al. 2024).
Within our Bayesian framework, we introduce correlations by
expressing the g-band priors relative to the r-band priors for
each parameter. We designate the r band as the “reference”
band since most light curves have better coverage in the » band.
Sampled g-band parameters, denoted by the “g” subscript, are
assumed to be the log of the ratio between the actual g- and r-
band fit parameters. We choose to sample all of our parameter
ratios in log space because an equal shift in either direction of
the log parameter corresponds to an equal but inverse
multiplicative scaling of the g- over r-band parameter ratio.
The only exception is 7 o, which is expressed as the difference
(time delay) between the g- and r-band #;, parameters. All
sampled g-band ratios are then combined with the sampled r-
band parameters before being used in our parametric model.
This formulation correlates fit parameters across bands and
constrains multiband fits in regions sampled in only one band.
It also leads to very narrow and informative priors, as we find
that g- to r-band parameter ratios are quite similar across SN-
like light curves. Our choice of parameterization could bias fits
for parameters where interband correlations are less physically
justified. Examples include the amplitude ratio of SNe affected
by extreme host reddening, parameters affected by higher-order
features our model cannot capture (such as secondary r-band
peaks in SNe Ia), or parameters derived from partial light
curves (which would just reflect our fitting priors). We note that
the latter issue would only arise among the 594 partial light
curves (9.8%) in our spectroscopic sample.

The above choice of priors necessitates that we fit g and r
bands simultaneously in a 14-dimensional parameter space.
This differs from the method used in Villar et al. (2019) and
Hosseinzadeh et al. (2020), where each band is fit indepen-
dently twice, and the second iteration’s prior distribution is the
average of each band’s posterior distribution from the first
iteration. While both strategies encourage similar fits across
bands of the same light curve, ours allows us to define the
expected variation between bands a priori. Furthermore, the
final fits are less likely to be skewed by bands with fewer data
points. However, fitting 14 parameters simultaneously is more
difficult and computationally expensive than fitting seven
parameters.

To efficiently explore this combined high-dimensional
space, we turn to a variety of modern sampling techniques as
discussed in Appendix B. We ultimately use nested sampling to
fit the archival light curves used in this work, and stochastic
variational inference (SVI) for real-time light-curve fitting. The
efficiency of both of these samplers at early iterations relies
heavily on the size of the prior volume; therefore, we spend
significant effort refining the fit priors to best mirror the
expected best-fit parameters of ZTF SNe. To achieve this, we
start with broad, uniform priors, and then iteratively alternate
between fitting our data set and replacing our priors with the
marginal posterior distributions combined from all our light
curves.'” This process continues until the priors and popula-
tion-level posteriors are sufficiently similar. All final priors are

19 Note that, before combining posteriors, we oversample our fits to balance
class prevalence, as described in Section 4.1.
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Table 2
Model Fit Priors
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Parameter Distribution Mean Standard Deviation Truncated Min Truncated Max
A Log-Gaussian 0.096 0.058 -0.3 0.5

Jij Gaussian 83x 1073 3.9 x 1073 0 0.03

04 Log-Gaussian 1.43 0.31 0 35

to Gaussian t(Fnax) — 17.9 9.9 t (Fax) — 100 t (Fnax) + 30
Trise Log-Gaussian 0.67 0.43 -2 4

Ttall Log-Gaussian 1.53 0.30 0 4
Oextra Log-Gaussian —1.66 0.34 -3 —-0.8

A, Log-Gaussian —0.08 0.11 -1 1

Be Log-Gaussian —0.21 0.27 -2 1

Ve Log-Gaussian —0.05 0.17 -1.5 1.5
fog— 1 Log-Gaussian —34 44 —50 30
Trise,g Log-Gaussian —0.15 0.19 —1.5 1.5
Tfall,g Log-Gaussian —0.15 0.26 —1.5 1.5
Oextra,g Log-Gaussian —0.15 0.25 —-1.5 1.0

Note. The prior distributions for each fit parameter, which are sampled to explore the posterior probability space during nested sampling. For the log-Gaussian
distributions, the provided mean, standard deviation, and truncated limits are of the underlying Gaussian distribution before exponentiation.

truncated Gaussians or truncated log-Gaussians, as detailed in
Table 2. The priors for A, and ey - are expressed relative to
the maximum r-band flux value of each light curve. We can see
that our final priors mirror the data set’s combined marginal
posterior distributions in Figure 3.

For each light curve, our nested sampler returns a set of
several hundred posterior samples (the exact number varying
per light curve). The resulting fits for six representative SNe are
shown in Figure 4. Note that our fits are tightly constrained for
very well-sampled light curves, while the fits from poorly
sampled light curves (e.g., those with only rise or decline
information) are more likely to be prior dominated. We will use
our posteriors to estimate uncertainties in our final
classifications.

We note that the same parametric model (that of Villar et al.
2019) is used as part of a larger feature set in Sdnchez-Saez
et al. (2021), although Sanchez-Séez et al. (2021) fit each band
independently and do not use the 0y, parameters. Sanchez-
Séez et al. (2021) find that the resulting best-fit parameters are
more effective than other extracted light-curve features in
differentiating between SN classes. However, ALeRCE uses
the Levenberg—Marquardt fitting algorithm, implemented in the
Python package scipy (Virtanen et al. 2020) as curve fit.
As we explore in Appendix B, gradient-descent based
minimization algorithms like Levenberg—Marquardt can often
lead to poor optimal model fits.

3.1. Fit Quality Metrics

To evaluate the quality of our model fits, we calculate a
modified reduced chi-squared value for each fit per light curve:

2 1 !f(l)bs — fmodel I
red NZ Ugff > (2)
where N is the number of data points, and o2 = 62 + 02,,,.
This differs slightly from the traditional reduced chi-squared
definition in that we do not augment the denominator to reflect
the number of fit parameters (degrees of freedom). We opt for
our modified metric as opposed to the traditional reduced chi-
squared value because the latter breaks down for light curves

with fewer than eight data points per band; the influence of
priors would prevent the best fit from perfectly passing through
the data points even for these sparser light curves, yielding
infinite reduced chi-squared values.

We calculate the median reduced chi-squared values across
all fits per light curve, and we find that 6061 (~99%) light
curves in our spectroscopic data set are fit with a median
reduced chi-squared value less than 1.2. We then apply a chi-
squared cut to remove the remaining 62 light curves. This set
includes 44 SNe Ia, 12 SNe II, 3 SNe IIn, and 3 SNe Ib/c.
From these events, we see that 48 cannot be fit adequately by
our empirical model as a result of either poor template
subtraction, extreme outlier points, or extreme secondary
peaks either before or after the primary peak.'' An additional
four light curves could have been fit better to lower the chi-
squared value, leaving about 10 well-fit light curves that are
unnecessarily removed. However, not applying a chi-squared
cut or using a more lenient threshold lets significantly more
bogus fits through, degrading the quality of our training set.
We also apply a X%e 4 S 1.2 cut to our photometric data set,
which removes 415 light curves. From both Figure 2 and visual
inspection, we see that this cut successfully removes both
abnormally bright light curves that are likely bogus, and light
curves that are clearly not from SNe. We are left with a final
photometric data set of 3558 (89.6%) light curves.

We see the effect of our fit quality cut in Figure 5, where
we also overlay classification accuracy as a function of fit
Xfe 4+ This accuracy is calculated from the final training results
in Section 5. We see in this plot that a cutoff value of 1.2
preserves most of our spectroscopic data set and prevents
accuracy from dropping at high X?e 4 values due to poorly
estimated fit parameters. Among the photometric data set, the
peak of the X?e 4 distribution is also well below the cutoff
value.

1 The samples with poor template subtraction pass the data pruning process
due to the estimated flux baseline dramatically changing over time, causing the
rise of the light curve to end up dimmer than the decline region in the
subtracted light curve. This mode of incorrect subtraction mainly appears
among pre-2019 light curves.
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Figure 3. Marginal distributions of each fit parameter in the oversampled (equal contribution from each class) data set. We exclude the r-band A and #, parameters as
they are not used as inputs for our classifier without redshift information; the g-band versions of these parameters are log ratios between the two bands. Some
parameters (€.g., Bg, Vg» Trise,¢) are distributed similarly for each SN type, whereas others (e.g., ¥, Tra) are clearly more distinguishing. Final priors, shown in purple,

are set as the Gaussians or log-Gaussians that most closely match the combined population distributions.

4. Classifier Details
4.1. Balancing the Training Set

As detailed in Section 2.6, our spectroscopic data set is
heavily imbalanced across classes, with there being over 50
times as many SN Ia (our majority class) as SLSN-I events
(smallest class). Machine learning algorithms perform less

efficiently on imbalanced training sets, preferring to over-
classify the majority class. Therefore, we need to (1) make the
most of every light curve in our minority classes and (2)
rebalance the training set as part of our training process.

To accomplish the former, we use stratified K-fold cross-
validation to calculate performance metrics from every sample
in our spectroscopic set. In this work, we use K= 10 folds,



THE ASTROPHYSICAL JOURNAL, 974:169 (32pp), 2024 October 20

ZTF21labbkefe (SN la)

5000 . I . g
4000 ty ** : °f
C
S $ ;

23000 o

= )

Ezooo $ *:i**ﬂ %

5 1000/ .“'«H» e

i é ™00
OA

-10 0 10 20 30 40
Phase (days)
ZTF2laajgdeu (SN II)

e g

Bsoo| 4 o
£ 1000 t * ++ +++++ *+
E pp it +++++
?32 500 tt #
[ ¢

i 0 20 40 60 80

Phase (days)
ZTF20acpyldh (SLSN-I)

__ 1000 ° S
§ 800
g 600
: (i
" 500/ *+

-100  -50 0 50
Phase (days)

de Soto et al.

ZTF23aacxofz (SN la)

e g
E2500~1 .
=
5 20001 t
e
£ 15001
o]
£ 10001 ) +
3 My
T 5001 " ¢
¢
0 10 20 30 40
Phase (days)
ZTF20aadtarr (SN IIn)
3000
e g
% 2500 r
2 +
izooo~
© + %
£ 1500/ f A #
2
1000 )
X +w
= 500 | o,
OA
0 100 200 300
Phase (days)
ZTF2labpwtde (SN Ibc)

1750 o g
7 15001 o T
< 1250, +
>
© 1000 b ++ + }
£ f . s,
< 500 ++ ¢ $ + i }

T 2501 +¢ 4t
OA
-20 0 20 40

Phase (days)

Figure 4. Representative model fits for six classified SN light curves. We show two SNe Ia (top row), an SN II (middle left), an SN IIn (middle right), an SLSN-I
(bottom left), and an SN Ib/c (bottom right). Thirty posterior draws are shown for each light curve, capturing the uncertainties and scatter in our model fits.

meaning the data set is split into 10 groups, with equal class
fractions in each group, and each group is used as the test set
for a separately trained classifier. We find that, while fewer
folds degrades classifier performance, more folds increases
performance variation across folds. The remaining 90% of each
fold not used in the test set is further split 90-10 into a training
and validation set. These two sets are oversampled indepen-
dently for class balancing and then used to train the
corresponding classifier.

We rebalance our training and validation sets by over-
sampling multiple model fits per minority-class light curve; the
classifier treats each fit as a separate input. This procedure is
discussed in detail, and compared to traditional oversampling
techniques, in Appendix C.

4.2. Classification Metrics

Before exploring classifier architectures, we define four
metrics to evaluate classification performance. The per-class
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Figure 5. The distributions of reduced chi-squared values from the light-curve
model fits for the spectroscopically and photometrically classified samples.
Because a very small fraction of the spectroscopic set has a reduced chi-
squared above 1.2, we can reasonably assume that most light curves with
values above 1.2 are either not SNe or SNe of much lower data quality. We
therefore exclude them from our final data sets. The right axis shows
classification accuracy as a function of reduced chi-squared for the pruned
spectroscopic set, which further supports our choice of cutoff.

completeness is the fraction of samples that belong to one class
that are correctly classified as that class. The accuracy is the
microaveraged completeness, or the fraction of light curves in
the entire data set that are classified correctly. The per-class
purity is the fraction of light curves classified as one class that
are actually of that class. The F;-score is the harmonic mean of
the completeness and purity. Purity, completeness, and
Fi-score are calculated separately for each SN class. Each
performance metric is calculated as follows:

TP
Accuracy = — 3
y N (3)
Completeness = TP 4)
TP + FN
Purity = —TP ®)
TP + FP
2 x Purity x Completeness
F= y P 6)

Purity + Completeness

where N is the total number of light curves in the data set. TP is
the true-positive count, which is the number of light curves
within one class that are correctly predicted as that class.
Likewise, FP is the false-positive count (the number of samples
classified as one type that are not actually that type), and FN is
the false-negative count (the number of samples of one class
that are misclassified). All metrics are expressed in our results
as 80% confidence intervals, or the median value bounded by
the second-highest and second-lowest value among our 10 K-
folds.

Because our data set is highly imbalanced, quantifying
classifier performance by accuracy will bias it toward correctly
classifying SNe Ia at the expense of the rarer SN types. On the
other hand, macroaveraged (i.e., class-averaged) statistics
equally penalize low performance within any SN type. Because
we value both per-class completeness and purity, as each has its
respective science cases, we optimize our parameters by
maximizing the macroaveraged F)-score; this gives equal
importance to all SN classes and balances completeness and
purity values.
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Figure 6. Cumulative distributions of the redshifts and corresponding absolute
peak r-band magnitudes of our spectroscopic subset with redshift information.
As expected, some SLSNe-I have brighter absolute magnitudes and therefore
can be detected at farther redshifts. The bulk of our data set is low-redshift light
curves (z < 0.2) with absolute magnitudes between —16 and —20.

4.3. Classifier Feature Selection and Architecture

Photometric redshift estimates (“photo-zs”) are notably more
common than spectroscopic estimates in current and future
(e.g., LSST) SN data sets. Each photo-z is calculated from the
broadband spectral energy distribution of the SN’s host galaxy,
and associating SNe with the correct host galaxy is not a trivial
task. Sources highly offset from their closest galaxy, sources at
high redshift, or sources near more than one galaxy can be
attributed no or incorrect photometric redshift (see, e.g.,
Gagliano et al. 2021). Therefore, we first train our classifier
on features that do not require redshift estimates. This is
straightforward since we do not use redshifts during the
preprocessing or fitting steps of Superphot+. We construct our
redshift-independent classifier inputs from 12 out of the 14 fit
parameters, excluding both A, and #,. Neither A, nor 7, are
intrinsic SN properties; the former is dependent on the phases
in which each SN is observed (and associated apparent fluxes),
while the latter is dependent on the absolute MJD of each SN.

ZTF has more complete and reliable redshift estimates
compared to what we expect from the first few years of Rubin
(as detailed in Section 1). Therefore, we present a second
version of our classifier that does use redshift information and
is only trained on light curves with associated host galaxy
redshifts. From our spectroscopic data set, 16 light curves are
missing redshift estimates on TNS. We exclude these light
curves when training the redshift-inclusive classifier.

We also readd the r-band amplitude (4,) as an input feature
for the redshift-inclusive classifier. Additionally, we include the
redshift z and the (cosmological k-corrected) r-band absolute
magnitude M,, calculated from the brightest measured r-band
flux. The cumulative distributions of these two new inputs are
plotted in Figure 6. We see that most events in our training set
are at z < 0.2, with the exception of some SLSNe-I that have
brighter absolute magnitudes. Because A, is the amplitude of
the modeled peak relative to the brightest measured flux (which
can be significantly offset for partial light curves), combining it
with M, quantifies the absolute magnitude of the modeled light
curve at peak.

The shape parameters 3, 7, Tyise, and 7,y all have a first-order
(1 + z) redshift dependence resulting from time dilation. When
using redshifts as input features, we assume our classifier can
learn to correct for this dilation. However, for our redshift-
independent classifier, not correcting for this effect could skew
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fit parameters for farther SNe (such as many SLSNe-I) and in
turn affect classifier performance. For our ZTF SN data set, the
majority of redshifts are less than 0.2, and less than 0.6 among
SLSNe-I, which would not shift fit parameters enough to mimic
other SN classes (as supported by Figure 3 and our use of log-
normal priors). Therefore, we do not consider this a significant
source of classification error within our redshift-independent
classifier. However, for surveys that can observe SNe at farther
redshifts (e.g., Rubin), time dilation can stretch light curves by
much larger factors, potentially impacting classification. For
these surveys, one can alternatively replace the four aforemen-
tioned input features with 6 = O7yse, 02 = Trise/Tean, and
03 = Tyise/7, Which would reduce our input vector’s length by
1 and cancel out the (1 + z) multiplicative factors. We find that
this alternate feature set reduces the F;-score by ~10% for our
ZTF data set, but may improve performance for deeper surveys.

The output of each classifier is a vector of five values
representing the “pseudoprobability” of the input event
belonging to each SN class. These are not true probabilities
because, while the vector elements sum to unity, they are not
calibrated (i.e., confidence values do not match the fraction of
true samples within events assigned that confidence). For our
multiclass problem, the assigned label for each light curve is
the class with the highest output pseudoprobability. The
classification “confidence” is this highest probability. For
single-class variants, we instead assign positive labels to an
event if the positive pseudoprobability exceeds a prespecified
confidence threshold. We provide a more detailed discussion
on the calibration of these pseudoprobabilities and confidence
thresholds in Section 5.3.

We explore two different classifier architectures, neural
networks and GBMs, in Appendix D. We find that GBMs,
constructed with the LightGBM package, yield optimal
classifier performance across K-folds. We train separate GBMs
to classify events with and without redshift information.

5. Classification Results

In this section, we test multiple variants of our classifier and
quantify the efficacy of our pipeline. These variations include
multiclass classification, single-class classification, and training
with and without redshift information.

5.1. Multiclass Classification without Redshift Information

First, we study the results of our five-way GBM. This
classifier does not use any redshift information and is the
“default” classification mode in Superphot+. Our trained
model classifies the spectroscopic data set with a F-score of
0.61 +0.02 and an accuracy of 0.83 +0.01. The associated
confusion matrices are shown in Figure 7. The class-averaged
completeness is 0.73 £0.08. SNe Ia unsurprisingly have the
highest completeness at 0.87 =0.01 due to their high
prevalence in the spectroscopic data set. On the other hand,
SNe IIn are prone to the highest fraction of misclassifications,
with a completeness of 0.52 £ 0.07. This may be because SNe
IIn are a highly diverse class of SNe in terms of observational
properties (see, e.g., Nyholm et al. 2020, for a recent sample
from the Palomar Transient Factory).

The class-averaged purity is 0.58 4= 0.04, with SNe II and
SNe Ia having the highest purities at 0.84 £0.03 and
0.97 + 0.01, respectively. In contrast, SLSNe-I and SNe Ib/c
have notably lower purities (both ~0.25-0.30). This is likely
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reflective of the imbalances in our training set; even a small
fraction of true SNe Ia or SNe II can heavily contaminate the
small samples of predicted SLSNe-I or SNe Ib/c. For example,
only 9% of SNe Ia are misclassified as SNe Ib/c, but this small
fraction still translates to 420 SNe la. These contaminants
account for over half of the 713 total predicted SNe Ib/c. We
note that this difficulty is also observed in Hosseinzadeh et al.
(2020), again due to a significant class imbalance (albeit less
extreme than our data set’s imbalance).

Feature importance analysis shows that Superphot+ relies
most on fall timescales, followed by plateau durations, peak
band ratios (a proxy for color), and rise timescales. It is then no
surprise that Superphot+ most commonly misclassifies light
curves of similar timescales. SNe Ia are most likely to be
misclassified as SNe Ib/c (and vice versa), and SLSNe-I are
most likely to be misclassified as SNe IIn (and vice versa). SNe
II are misclassified about equally across other classes. We also
find that very long-lived light curves, such as those of SNe IIn
and SLSNe-I, are sometimes wrongly attributed long plateaus
(causing SN II misclassifications), or SNe II without post-
plateau sampling are fitted with no plateaus and slow fall
timescales (causing SLSN-I misclassifications). We can clearly
see overlaps in fitting parameters between classes in Figure 3,
each potentially impacting classifier performance.

Examples of misclassified light curves, along with their
classification probabilities, are shown in Figure 8. By manual
inspection, the main confounding factors among misclassified
light curves of each type are as follows:

1. SNe Ia. Most SNe Ia misclassified as SNe II, SNe IIn, or
SLSNe-I have partial light curves and thus some
unconstrained fit parameters. Many SNe Ia that are
wrongly labeled as SNe Ib/c have secondary r-band
peaks that cannot be fit by our model, or g — r colors
similar to those of SNe Ib/c (i.e., redder than typical SNe
Ia). We note that, since we only correct for Milky Way
extinction, SNe Ia belonging to host galaxies with
exceptionally high extinction will appear redder and
more like SNe Ib/c.

2. SNe II. SNe II with missing observations that prevent
plateau constraints are more likely to be misclassified.
This is especially problematic for long-lived events,
which are often misclassified as SNe IIn.

3. SNe Iln. The SN IIn class, in general, is particularly
heterogeneous. Misclassified events are most often
classified as SLSNe-I (similar timescales) or SNe II (fit
with a plateau).

4. SLSNe-1. Misclassified SLSNe-I often have slow
declines, which are best fit as plateaus in our empirical
model, meaning that most misclassified SLSNe-I are
assigned high SN IIn and SN II probabilities.

5. SNe Ib/c. Misclassified SN Ib/c light curves are often
sparse or noisy. Some events are particularly blue around
peak and thus misclassified as SNe Ia.

We next investigate light-curve properties associated with
especially poor classifier performance. First, we explore the
impact of number of observations and light-curve SNR on
classification accuracy. We calculate the latter using the top
90th percentile of all the data points’ SNRs within the light
curve. Both metrics show weak positive correlations with
classification accuracy, as evident in Figure 9. More data points
correlate more strongly with SN II and SN IIn accuracy. This
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Figure 7. The confusion matrices of the trained classifier on the training set,
using K-fold cross-validation. Here, we set K = 10 folds. The completeness
matrix is normalized to sum to one across each true class, while the purity
matrix is normalized along each predicted class. Our classifier achieves high
completeness across the five classes. Note that the most populous classes leak
into the rarer predicted sample sets, reducing the associated purities.

makes sense, as light curves with many high-SNR observations
are more likely to have well-sampled plateaus. Interestingly,
SLSN-I and SN Ib/c classification worsens beyond ~30 data
points, as does SLSN-I and SN IIn classification at a 90th
percentile SNR above ~20. Most of the incorrectly classified
light curves with over 30 observations are exceptionally long
lived and/or have secondary behavior beyond what our
empirical model can capture, such as additional peaks, high
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variance within the fall region, or preexplosion variations that
are unable to be removed through template subtraction. The
best way the model can capture this anomalous behavior is with
extended rise times (resembling SLSNe-I and SNe IIn) or
longer plateaus (resembling SNe II and SNe IIn). A small
fraction (<10 objects) of SNe Ib/c with >50 observations
show dramatically inconsistent template subtraction across the
light curve, preventing clean light-curve tail clipping, but this is
not the main culprit of SNe Ib/c misclassification. Among
SLSNe-I of SNR above 20, we find either (1) shorter, Ia-like
evolution timescales, or (2) exceptionally long-lived light
curves with II-like plateaus. Most misclassified, SNR > 20 SNe
IIn have incomplete light curves and are classified with lower
confidence, with the remainder exhibiting either shorter (la-
like) or longer (SLSN-like) timescales than expected.

We additionally consider our classifier’s performance within
its most confident predictions. We regenerate our confusion
matrices in Figure 10 including only the 3200 (52.7%) events
classified with confidence greater than 0.7 (a cutoff chosen to
match that from Hosseinzadeh et al. 2020; and Villar et al.
2020). Our performance metrics improve substantially, with a
new Fj-score, class-averaged purity, and class-averaged
completeness of 0.86 +0.05, 0.81 £0.12, and 0.92 £+0.10,
respectively. Completeness increases most substantially for
SLSNe-I (from 0.75 £ 0.17 to 1.00 4= 0.20) and SNe IIn (from
0.52+0.07 to 0.80 £0.13). These classes also significantly
improve in purity, with SLSN-I’s increasing from 0.27 £ 0.06
to 0.83 £0.28 and SN IIn’s increasing from 0.51 £ 0.09 to
0.76 = 0.19. However, 75% of both classes are removed by the
high-confidence cut (compared to 43% of SNe Ia), leaving only
a handful of very confidently labeled events. We note that SNe
Ib/c are, again, labeled with the lowest purity at 0.50 £+ 0.13
(with many labeled SNe Ib/c being true SNe Ia).

5.2. Classification of Partial Light Curves

Next, we explore the efficacy of Superphot+ as a real-time
classifier by analyzing its performance on partial light curves.
This is important to explore, as one major benefit of Superphot
+ is computationally efficient fitting that can keep up with both
ZTF and expected LSST alert streams, enabling real-time
classification.

First, we consider that not all fit parameters will be
informative for early-phase light curves. If the light curve’s
final observation is before the end of a plateau or peak, then the
to >~y function of our piecewise model will be completely
unconstrained, and the best-fit values for v and 7¢,; (for both
bands) will reflect their priors. These features may skew our
classifier toward incorrect labels for these partial light curves.
Therefore, we train an alternate version of our GBM classifier
without ~y, gy, or the corresponding g-/r-band ratios, calling
this our “early-phase” classifier. We compare this classifier’s
performance to our “full-phase” classifier described in the
previous section.

To compare the real-time performance of our early-phase
and full-phase classifiers (both without redshift information),
we randomly select up to 20 SNe per K-fold per class, and then
truncate these selected light curves at a series of increasing
phases, where phase is defined as the time after peak r-band
brightness. Each truncated light curve, if it has data points, is fit
and classified, and the completeness, purity, and Fj-score are
calculated at each phase for each SN type for each fold. These
macroaveraged metrics for both the early-phase (dashed) and
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Figure 8. Examples of light curves that are misclassified by Superphot+, where the spectroscopic labels are specified in the titles, and the probabilities output by
Superphot+ are in green. Probable causes of misclassification include redder color (top left), unsampled rises (top right and bottom left), and unusual timescales (long-

duration tail for bottom left, short plateau for bottom right).

full-phase (solid) classifiers are shown in Figure 11, with
uncertainty margins representing the full-phase 1o uncertainties
across 10 K-folds. We find that the early-phase classifier
outperforms the full-phase classifier for cutoff phases before
~20 days, after which the full-phase classifier performs better.
Note that metrics for very early phases have high variance from
small number statistics; few events in the data set are observed
at such early phases, most being SLSNe-I. Trends for
individual SN classes are detailed in Appendix E.

Both the early-phase and full-phase classifiers are currently
integrated into an ANTARES (Saha et al. 2014) filter, labeling
events from the ZTF Alert Stream in real time.'” The early-
phase classifier is applied to light curves with last observation
earlier than 15 days after peak, while the full-phase classifier is
applied to light curves with later observed phases.

5.3. Single-class Performance and Calibration

High-purity samples of a singular SN class are often required
for population-specific studies (e.g., increasing the sample of
spectroscopically classified SLSNe), at the cost of complete-
ness. Here, we consider the performance of Superphot+ when

12 https:/ /antares.noirlab.edu/

13

optimized for binary (single-class) classification problems. We
can reuse our trained multiclass GBM by selecting a target
class and compressing all probabilities outside of the target
class into a single “negative” probability. The problem
simplifies from assigning an object one of five class labels to
assigning one of two: positive and negative. In the multiclass
problem, the assigned label is determined by the highest
probability, which differs for every event. Setting a minimum
confidence threshold would result in some objects receiving no
assigned label, which we do not allow in our multiclass
framework. For binary classification, we can adjust the
confidence threshold required for a positive label; this choice
inversely impacts purity and completeness of the target class.
For example, requiring a very high classification confidence
before assigning a positive label will lead to a smaller predicted
data set of that class but also fewer contaminants from other
spectroscopic classes.

Before considering different confidence thresholds, we first
consider whether the pseudoprobabilities from our classifier are
well calibrated. The calibration curve, shown in Figure 12,
examines whether the pseudoprobabilities assigned by the
classifier for a specific class is an overestimate or underestimate
of the true probability. Pseudoprobabilities are “well cali-
brated” if the reported classifier probability matches the
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Figure 9. The spectroscopic set’s binned classification accuracies as a function
of 90th percentile signal-to-noise ratio (top) and number of data points with
SNR > 3 (bottom). The bin widths are chosen to contain an equal number of
events per bin within each class. There is a weak increase in accuracy as a
function of 90th-percentile SNR that plateaus around 20. The exception is
SLSN-I, whose highest SNR light curves are longer lived and therefore
misclassified as SNe II or SNe IIn. For SNe II and SNe IIn, more data points
correlate with higher classification accuracies, likely due to better sampled
plateaus, which make them easier to classify. SLSNe-I and SNe Ib/c both show
decreased classifier performance with excessive number of data points.

fraction of events correctly classified at that confidence. An
ideal calibration curve perfectly follows a y=x line for all
classes. For Superphot+, the classifier assigns overconfident
SN Ib/c pseudoprobabilities, but underconfident SN Ia values.
This likely reflects the classifier’s balance between SN Ib/c
purity and SN Ia completeness. The other three class
probabilities do not show strong biases.

Keeping in mind that our classifier is uncalibrated, we can
now explore the effect of single-class confidence thresholds on
the performance metrics detailed in Section 4.2. While receiver
operator characteristic curves (Bradley 1997) are commonly
generated to summarize a classifier’s performance, they tend to
be overly optimistic for highly imbalanced data sets, such as
our SN data set. Therefore, we instead rely on purity—
completeness curves (i.e., precision—recall curves in machine
learning literature) to explore binary classifier performance
(Davis & Goadrich 2006; Saito & Rehmsmeier 2015). The
purity—completeness curve for each class in our data set is
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Figure 10. Same as Figure 7, but only including light curves classified with
confidence greater than or equal to 0.7. This includes 3200 of the 6061 total
events, and both the completeness and purity confusion matrices show
significant improvement. The F;-score increases from 0.61 +0.02 to
0.86 £ 0.05, and accuracy increases from 0.83 + 0.01 to 0.95 £ 0.02. These
plots especially highlight the difficulty with discerning SNe IIn from SLSNe-I
and SNe II without redshift information (much fewer events included), and in
maintaining a high-purity set of Type Ib/c SNe with our imbalanced data set.

shown in Figure 13, with 1o uncertainties calculated across K-
folds. A perfect classifier for an SN type follows the top right
corner, where both the purity and completeness are 1.0. A
completely random classifier follows a horizontal line aligned
with the target class’s prevalence in the data set. The diamonds
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Figure 11. Classification completeness, purity, and F-score as a function of
light-curve phase, macroaveraged across SN types. The dashed line
corresponds to the early-phase classifier, whereas the full-phase classifier is
represented by the solid line and associated 1o K-fold uncertainty margins.
Here, phase is relative to peak magnitude in r band. The purities and F-scores
are estimated from class prevalences and completeness values. Twenty light
curves of each type per fold are randomly sampled to generate this data, so final
accuracies differ slightly from those of the entire spectroscopic set. The early-
phase classifier outperforms the full-phase classifier before phase ~20 days.
Similar plots are shown for each SN class separately in Appendix E.

correspond to a confidence cutoff of 0.5, where the assigned
label corresponds to the highest (binary) pseudoprobability.
The area under the purity—completeness curve (AUPC)
quantifies binary classifier performance. It benefits from not
relying on choice of confidence threshold, unlike the binary
F-score. We use Figure 13 to directly compare Superphot+’s
classification of SLSNe-I with that of FLEET (Gomez et al.
2020a, 2023a), a binary classifier designed to isolate a high-
purity SLSN-I (or TDE) data set. FLEET’s AUPC value is
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Figure 12. The calibration curve for each SN class, treating Superphot+ as a
binary classifier. A calibration curve plots the fraction of events correctly
classified at different confidence levels. A well-calibrated classifier would
follow the y=x diagonal for each class. We see that Superphot+ is
overconfident about SN Ib/c probabilities and underconfident about SN Ia
probabilities, while fairly well calibrated for all other classes.
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Figure 13. The purity—completeness curve for each SN class, treating
Superphot+ as a binary classifier. We calculate single-class metrics by
compressing all probabilities from classes other than the target class into a
single probability. Each point along the curve corresponds to a different
confidence threshold for classification. A “perfect” classifier (i.e., one with
100% confidence and accuracy) would follow the top right corner of the axes,
and a completely random classifier follows a horizontal line scaled to the target
class’s prevalence.
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0.49 +0.03, with the uncertainty resulting from different
random seed initializations. Superphot+’s SLSN-I AUPC
value is 0.52 £0.19, where the larger uncertainty propagates
from variance across K-folds. These overlapping AUPC values
are promising, as it shows that Superphot+, which must
balance the performance of multiple classes, boasts comparable
binary performance to pipelines optimized for binary
classification.

We can then choose a confidence threshold to optimize
F-score for each target class. As an example, we retrain our
GBM to output either SN Ia or SN-Other labels, the latter of
which includes our other four classes. Generating high-purity
(Branch normal) SN Ia data sets is crucial for cosmological
studies (Jones et al. 2017), although we note our Type Ia
sample is only 96.7% Branch normal; 91bg-like SNe Ia (23),
91T-like SNe Ia (159), and SNe Ia with CSM interaction (18)
are also grouped into this classification. We see in Figure 14
that our GBM’s optimal confidence threshold is at p =0.175,
with a maximal Fj-score of 0.904 0.01 and accuracy of
0.93 £0.01. This matches our knowledge that our models
return underconfident SN Ia pseudoprobabilities. We also show
the corresponding purity matrix; SN Ia purity is high at
0.94 £0.01, at the cost of a lower SN-Other purity. The
contamination from non-Ia SNe is approximately double that in
the curated SN Ia data set from Jones et al. (2017), but a
confidence cut can be applied to increase our classifier’s SN Ia
purity. Additionally, only 4% + 1% of SNe Ia are classified as
non-Ia SNe.

5.4. Classification of Excluded Transient Types

Superphot+’s output classes exclude rarer transient types
that have SN-like light curves but lack the prevalence to
constitute additional output classes. These classes include
AGN, SNe Iax, Ibn, IIb, TDEs, and LBVs/other massive star
outbursts. We expect many light curves from these classes to
pass our data quality and fitting chi-squared cuts and thus
contaminate our predicted data sets. We first fit light curves of
these classes from our pruned spectroscopic set, and we remove
the 15 events with median reduced chi-squareds above 1.2. We
then classify the remaining 189 objects with our five-output
GBM model to determine which labels they would likely be
assigned, and summarize the results in Table 3.

Most SNe Iax are not labeled as SNe Ia, but rather as SNe
Ib/c. This is perhaps not surprising as Type Iax SNe tend to be
redder than SNe Ia (Foley et al. 2013). SNe IIb are also
primarily labeled as SNe Ib/c because they tend to be redder
and faster evolving than SNe II without clear plateaus (Claeys
et al. 2011). In contrast, most SNe Ibn are classified as SNe Ia
or SNe II, since their light curves evolve over faster timescales
but are too blue to be mistaken for SNe Ib/c. TDEs are most
commonly classified as SLSNe-I or SNe IIn since their light
curves are bluer and decay over very long timescales (although
many partial light curves are labeled as SNe Ia or SNe II). LBV
eruptions are predominantly labeled as SNe II; while their
timescales are shorter than those of SLSNe or SNe IIn, many
light curves exhibit postpeak variability that is incorrectly fit as
plateaus. AGN are mainly labeled as SNe IIn as both can
occupy sparser regions of the joint parameter space; further-
more, AGN stochastic behavior is often modeled as extremely
gradual declines aligned with some SNe IIn.

We can examine Superphot+’s photometric predictions for
its five output classes and determine the level of contamination
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from the classes listed here. From Table 3, we see that the most
common label is SNe Ib/c, with 45 (out of 189) rare-type
transients predicted to be SNe Ib/c. While this is significant
compared to the 259 true SNe Ib/c in our spectroscopic data
set, it is only 5.9% of the 713 events labeled as SNe Ib/c by
Superphot+, the majority being SN Ia misclassifications.
Therefore, we find that rare-type transients are a minor
contaminant for predicted SNe Ib/c. Across all classes,
misclassifications from within our five main spectroscopic
labels have the greatest impact on class purity. This supports
our decision not to include the rarer classes listed here as
additional output labels. However, we expect orders of
magnitude more events from these classes to be detected by
Rubin; a Rubin-tailored Superphot+ variant may include these
classes as additional outputs.

5.5. Inclusion of Redshift Information

Here, we train a variant GBM that does use redshift
information, as described in Section 4.3; this GBM includes
redshifts and brightest absolute magnitudes as additional
features. The resulting confusion matrices are shown in
Figure 15. By including redshift information, the accuracy
increases from 0.83 +0.01 to 0.88 +=0.01, and the F,-score
increases from 0.61 £ 0.02 to 0.71 £ 0.02. The most significant
improvement is the SLSN-I purity from 0.27 +0.06 to
0.58 +0.14, where the contamination from true SNe Ia and
SNe II is dramatically reduced. Without redshift information,
partial SLSN-I light curves can be mistaken for SNe Ia or SNe
IT depending on how much of the rise and fall regions are
missing; the disparity in peak absolute magnitudes fixes most
of these misclassifications. We additionally see improved SN
Ib/c purity from 0.28 4+ 0.03 to 0.38 4 0.06, as brighter SNe Ia
are less frequently mislabeled as SNe Ib/c.

We also consider the subsample classified with confidence
above 0.7 in Figure 16. Of the 6045 events with associated
redshifts, 4485 (74%) are classified with confidence above 0.7,
with a Fy-score of 0.81 £ 0.03. This F;-score is actually lower
than that of the GBM trained without redshift information when
the same confidence cut is applied. However, the GBM with
redshift information is generally more confident; a much lower
fraction of light curves (25% versus 47% for the redshift-
independent classifier) is removed by the p > 0.7 cut. We
conclude that including redshift information makes our
classifier more confident when labeling events, but less
accurate among highly confident predictions. To determine
why, we generate performance metrics among the most
confident 3200 events (chosen to match the number of events
remaining after the redshift-independent high-confidence cut).
In this case, the performance metrics are nearly identical, but
we see higher SLSN-I and SN IIn completeness when not using
redshift information. This, combined with the number of high-
confident SLSNe-I approximately doubling after including
redshift information, leads us to conclude that redshift
information is biasing our classifier to label high-redshift
events as SLSNe-I by default.

Finally, we train an SN Ia versus “other” SN model that uses
redshift information, and once again optimize the confidence
threshold. With an optimal threshold of p =0.160, the model
returns F; =0.92 £+ 0.01 and an SN Ia purity of 0.95 £ 0.01,
both of which slightly exceed the corresponding binary metrics
when not using redshift information.
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Figure 14. Top: The binary F;-score of our SN Ia vs. core-collapse SN
classifier as a function of confidence threshold. Higher thresholds mean the
classifier must return a higher pseudoprobability for SN Ia for us to assign the
object an SN Ia photometric label. We find that F; is optimized for an SN Ia
threshold of p > 0.175, indicated by the vertical dotted line. Bottom: The
corresponding purity matrix when we use the optimal confidence threshold. We
see very successful differentiation between SNe Ia and our other SN classes,
with an Fj-score of 0.90 £ 0.01 and an SN Ia purity of 0.94 & 0.01.

6. Comparison with Other Classifiers

We compare Superphot+’s performance (both including and
excluding redshift information) with those of three state-of-the-
art pipelines from previous works: Superphot (Hosseinzadeh
et al. 2020), SuperRAENN (Villar et al. 2020), and ParSNIP
(Boone 2021). Unlike Superphot+, all of these previous
pipelines require redshift information, and all were originally
trained on four-band Pan-STARRS Medium Deep Survey
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(PS1-MDS) light curves. Both the original Superphot and
SuperRAENN papers use random forests for classification,
whereas ParSNIP uses a GBM trained with LightGBM. We
regenerate light-curve encodings from each pipeline with our
ZTF data set for a fair comparison, and use those features to
train identical GBMs. This isolates variations in performance as
resulting from better light-curve encapsulation by the selection
of parametric (for Superphot+ and Superphot) or nonpara-
metric (for SuperRAENN and ParSNIP) features. We train both
multiclass and single-class (SN Ia) GBMs for each pipeline’s
feature set. We also train GBMs using only peak color (4,, Ap)
and redshift information (z, M,) as a baseline, to isolate
performance improvements from light-curve shape information
from each classifier.

The resulting accuracies and F'-scores are shown in Table 4,
with example light curves modeled by each pipeline in
Figure 17. Training with only color and redshift information
yields an accuracy of 0.77 £ 0.01 and F-score of 0.56 4= 0.02.
Superphot, the precursor to our current pipeline, yields
F1=0.55+0.02 and an accuracy of 0.80+0.01. This is
only marginally better than only using redshift and color
features, indicating that fits suffer tremendously from broad,
uniform priors. SuperRAENN vyields F; =0.71 £ 0.03 and an
accuracy of 0.89 £ 0.01, which is higher than metrics from the
original paper. We find that SuperRAENN decodings from the
same encoded light curve are unstable and vary depending
on the requested number of decoded time stamps. ParSNIP,
using a variational autoencoder, performs similarly with a F; =
0.71 £0.03 and accuracy of 0.8940.02. It excels at
differentiating between SNe Ib/c and SNe I/a since it can
nonparametrically encode secondary r-band “bumps” present
in some SN Ia light curves; neither Superphot’s nor Superphot
+’s empirical model can capture these additional peaks.

6.1. Comparisons to the ALeRCE Light-curve Classifier

We next direct our attention to ALeRCE’s light-curve
classifier, which is the only other publicly running, multiclass
SN classifier that does not use redshift information. Unlike
Superphot+-, which solely classifies within SNe, ALeRCE uses
a hierarchical random forest to first distinguish between
transients, stochastic sources, and periodic variables (the
“top-level classifier”), and then to categorize within these
broad categories (Sdnchez-Sédez et al. 2021). We use the top-
level classifier to select a photometric data set, as described in
Section 2.5; here, we explore ALeRCE’s SN-specific light-
curve classifier (“ALeRCE-SN”). AleRCE-SN also uses the
model fit parameters described in Section 3 as part of a larger
feature set, but it uses a gradient-descent based algorithm
(through Python’s scipy.curve fit function) rather than
our Bayesian sampling techniques. While faster, this fitting
algorithm can yield poorer optimal fits and in turn more
misclassifications. We will compare the performance of our
classifier without redshift information to that of ALeRCE-SN
to demonstrate the benefit of robust fitting techniques and
careful class rebalancing.

One difficulty in directly comparing Superphot+ with
ALeRCE-SN is that the latter only outputs pseudoprobabilities
for four labels: SN Ia, SN Ib/c, SN II, and SLSN. It is unclear
how we should treat our Type IIn true and predicted labels
when calculating agreement between the two classifiers. During
comparison, we only consider the events in our data set also
labeled by ALeRCE-SN, and we exclude all spectroscopic SNe
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Table 3
Miscellaneous Transient Classifications

Object Type SN Ia SN II SN IIn SLSN-I SN Ib/c
SN Iax (12) 0.250 (3) 0 (0) 0 (0) 0 (0) 0.750 (9)
SN Ibn (18) 0.444 (8) 0.278 (5) 0.056 (1) 0.222 (4) 0 (0)
SN IIb (57) 0.123 (7) 0.228 (13) 0.035 (2) 0.018 (1) 0.596 (34)
TDE (51) 0.137 (7) 0.098 (5) 0.216 (11) 0.549 (28) 0 (0)
LBV (6) 0.167 (1) 0.500 (3) 0.167 (1) 0 (0) 0.167 (1)
AGN (45) 0 () 0.178 (8) 0.600 (27) 0.200 (9) 0.022 (1)
Total (189) 26 34 42 42 45
Phot. Frac. 0.006 0.041 0.132 0.157 0.059

Note. Summary of how miscellaneous transients are classified by our five-class, redshift-independent classifier, with the highest assigned probabilities in bold. The
absolute number of events is shown in parentheses. In general, SNe Tax and SNe IIb are labeled as SNe Ib/c. Most SNe Ibn are classified as SNe Ia. TDEs tend to be
grouped with SLSNe-I. LBVs are mostly labeled as SNe II. We also show the fraction of contamination in Superphot+’s predicted data sets from these rarer classes,

with the heaviest contamination at 15.7% for predicted SLSNe-I.

IIn. After these cuts, we are left with 5525 events (91.2%) from
our data set. This includes events that are not spectroscopically
SNe IIn but are photometrically labeled as SNe IIn by
Superphot+; for these events, we instead use the label with
second-highest pseudoprobability. There are 137 such light
curves, with 74, 45, 10, and 10 events relabeled as predicted
SNe II, SLSNe-I, SNe Ia, and SNe Ib/c, respectively. After
these alterations, we can condense our five-class confusion
matrices into four-class confusion matrices for direct compar-
ison with ALeRCE-SN. Derived metrics will be underestimates
compared to if we had trained a model without SN IIn labels, as
our five-class model sacrifices some performance in all other
classes to balance SN IIn performance.

The four-class confusion matrices for ALeRCE-SN and
Superphot+ are shown in Figure 18. Using the shared data set,
Superphot+ has a Fy-score of 0.66 £ 0.03, which is better than
ALeRCE-SN’s F; =0.62 £+ 0.04. ALeRCE-SN tends to clas-
sify light curves with unconstrained fits as SLSNe-I, which
drops its class-averaged purity. Superphot+ instead defaults to
SN II or SN Ia labels when unsure.

A potential contributor to reduced ALeRCE-SN performance
could be its inclusion of an absolute #; fit parameter, which is
defined relative to a light curve’s first observation. The first
detection of incomplete or noisy light curves would be
significantly offset from the time of SN explosion, making
the corresponding 7, values uninterpretable and therefore
biasing ALeRCE-SN’s classifications. Superphot+, on the
other hand, does not use 7, at all (only a time delay between
bands), so the classifier’s behavior when applied to incomplete
light curves is more predictable. This effect would be
magnified when classifying the photometric data set, which
has more partial light curves.

7. New ZTF Photometric Classifications
7.1. Photometric Labels from Superphot+

In this section, we apply Superphot+, trained without
redshift information, to 3558 SN-like light curves that have not
been spectroscopically classified. Light curves in this “photo-
metric” data set, as collated in Section 2.5, pass the quality cuts
described in Section 2.3 and the reduced chi-squared fit cut
described in Section 3.1. The first few classification probabil-
ities are shown in Table 5; a full version of this table is
available on Zenodo.
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Superphot+ classifies 58.6% of the photometric data set as
SNe Ia, 13.3% as SNe II, 7.4% as SNe IIn, 8.0% as SLSNe-I,
and 12.7% as SNe Ib/c. The predicted SN Ia fraction is lower,
and the SLSN-I/SN IIn/SN Ib/c fractions are higher than
those of the spectroscopic data set. For example, we only
expect 1.4% predicted SLSNe-I and 4.3% predicted SNe Ibc in
order to match the spectroscopic class fractions. If we assume
the photometric data set’s true class breakdown matches the
spectroscopic’s true class breakdown (which may not be the
case), we conclude that Superphot+ classifies many true SNe
Ia as other classes, lowering CC SN purities and SN Ia
completeness. Including redshift information as described in
Section 5.5 yields a negligible change in photometric class
fractions, so we do not also analyze that variant here.

In Figure 19, we compare Superphot+’s spectroscopic and
photometric class fractions with those from other SN data sets:
the Pan-STARRS Medium-Deep Survey (PS1-MDS) subset
used in Hosseinzadeh et al. (2020), and the Young Supernova
Experiment Data Release 1 (YSE-DRI1; Aleo et al. 2023),
which both use measurements from the Pan-STARRS
telescopes. These Pan-STARRS fractions are quite similar,
with the main difference being YSE-DR1’s increased SN II
(16.1% versus 22.8%) and decreased SLSN-I (1.4% versus
0.4%) fractions. Because our spectroscopic sample is domi-
nated by ZTF BTS SNe, its class breakdown is quite similar to
that of ZTF BTS, as detailed in Section 2.6. Therefore, we do
not include a separate column for ZTF BTS in the figure.

7.2. Comparison with ALeRCE-SN’s Predictions

We also apply ALeRCE-SN to our photometric data set for
comparison, adding the resulting fractions to Figure 19.
Because the photometric data set is collated from ALeRCE’s
top-level predictions, every event in this data set has been
labeled by ALeRCE-SN. ALeRCE-SN classifies 14.6% of the
photometric set as SLSNe, which is a higher fraction than that
from Superphot+ but about equal to Superphot+’s combined
SLSN-I and SN IIn predicted fraction. This is not surprising
given ALeRCE-SN’s low SLSN purity within the spectro-
scopic data set, and ALeRCE-SN potentially labeling SN IIn
contenders as SLSNe. Both photometric class compositions
have fewer SNe Ia than expected in the photometric data set.
ALeRCE also underclassifies objects as SNe II (9.5%)
compared to the spectroscopic 16.1%.
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Figure 15. The completeness and purity confusion matrices for the redshift-
inclusive classifier. Adding redshift information improves the F-score from
0.61 £ 0.02 to 0.71 £ 0.02. There is significant improvement in SLSN-I, SN
I, and SN IIn classification, which demonstrates the importance of luminosity
in distinguishing between light curves of these classes.

We can now compare Superphot+’s and ALeRCE-SN’s
agreement when labeling the spectroscopic and photometric
data sets. First, we generate the expected agreement matrix
from each classifier’s spectroscopic confusion matrix, as
derived in Appendix B of Hosseinzadeh et al. (2020). This
predicts classification consistency assuming the two classifiers’
latent spaces are completely independent:

@)

_ pT
A = Psyperphot+ CALeRCE—SN-
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Figure 16. Same as Figure 15, but only including light curves classified with
confidence greater than or equal to 0.7. While high-confidence performance is
worse than when excluding redshift for the same cutoff, a much higher fraction
(4485 out of 6045) of light curves are classified with high confidence compared
to the redshift-exclusive classifier. This highlights the potential for inaccurate
but confident classifications from redshift biases.

Here, P is the purity matrix, and C is the completeness matrix.
The expected agreement score, which is simply the fraction of
all samples expected to receive the same label from both
classifiers, is 0.69 £ 0.03.

Next, we generate true agreement matrices from our reduced
spectroscopic and photometric data sets, which compare how
both classifiers actually labeled events. The agreement matrices
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Figure 17. Three SN Ia and one SN IIn light curve, in that order, fitted with each of the four pipelines compared in Table 4. The top left light curve is fit reasonably by
ParSNIP and Superphot+-, but Superphot suffers from its too broad priors. The top right light curve is fit fairly well by Superphot+ and Superphot, but ParSNIP is the
only pipeline that adequately captures the SN Ia’s secondary r-band bump. All pipelines except SuperRAENN fit the bottom left light curve adequately. The bottom
right (SN IIn) light curve has an exceptionally slow rise timescale and suffers from uneven rise sampling; the parametric classifiers Superphot+ and Superphot recreate
this light curve best. While SuperRAENN better recreates light curve at training time, it suffers from unstable decoding when fed a uniform time array for plotting.

are shown in Figure 20. The true agreement score for the
spectroscopic data set is 0.82 4+ 0.02, which is much higher
than the expected agreement score. All agreement scores are
higher than expected, with the largest improvements among
SNe Ia and SNe II. This improved agreement matches
expectations, as the features used for classification are very
much not independent; the same model is used to generate fit
parameters for both pipelines.
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To generate the agreement matrix for the photometric data
set, we first reallocate Superphot+’s SN IIn predictions just as
we did in Section 6.1. This reassigns 262 light curves to other
predicted classes, mainly SNe II and SLSNe. The resulting
photometric agreement matrix, with an overall agreement score
of 0.72+0.00, is shown in Figure 20 (bottom). To get
confidence intervals, we feed our photometric data set into each
K-fold model separately, generating 10 different agreement
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Figure 18. The four-class confusion matrices for Superphot+ (left) vs. ALeRCE-SN (right). The Superphot+ confusion matrices are condensed into four classes by
combining the second-highest probability label for objects predicted to be SNe IIn, and excluding samples with SN IIn true labels. This is done because ALeRCE-SN
does not include an SN IIn label. Even with this regrouping, the Superphot+ F;-score is higher than ALeRCE-SN’s.

matrices. This aggregate true agreement matrix closely matches
the expected agreement matrix, and somewhat mirrors the true
agreement matrix for the spectroscopic set, with many
ALeRCE-SN SLSNe-I classified as SNe II by Superphot+.
However, the photometric agreement matrix magnifies the
SLSN versus SN II disagreement we see in the spectroscopic
agreement matrix. This could be interpreted as an ALeRCE-SN
bias toward SLSN predictions or a Superphot+ bias toward SN
II predictions, especially for uncertain light curves. Seeing how
Superphot+ does not often assign SN 1II labels to partial light
curves (see Section 5.2), an ALeRCE-SN SLSN bias is more
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likely. There is similar agreement within samples ALeRCE-SN
labels as SNe Ib/c compared to the spectroscopic data set.

7.3. Correcting Class Fractions for Spectroscopic Bias

Like any classifier, Superphot+ has its biases, and we can
use those biases from classification of the spectroscopic data set
to “correct” our photometric data set’s class fractions. This will
better inform us on potential systematic differences between the
spectroscopic and photometric data sets. We can correct our
photometric class fractions by considering the fraction of each
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Figure 19. The class fractions of our spectroscopic data set (“Spec ZTF”) compared with those from the Young Supernova Data Release 1 data set (“Spec YSE”) and
the PS1-MDS (“Spec PS1-MDS”) set used in Villar et al. (2020). We compare these fractions with those derived from Superphot+’s and ALeRCE-SN’s photometric
classifications (“Phot” and “ALeRCE,” respectively). Additionally, the corrected class fractions (using the confusion matrices from validation) are included for

comparison.

predicted class that belongs to other classes (i.e., the per-class
purities). For example, the purity matrix from Figure 7
demonstrates that, of the spectroscopic SNe classified as Type
IIn, 51% =4 9% are true SNe IIn, 28% =+ 7% are true SNe II, and
15% + 5% are true SNe Ia. We can use these values to adjust
the corresponding class fractions in the photometric data set
(following Hosseinzadeh et al. 2020; Villar et al. 2020; Aleo
et al. 2023):

fraci,cm = Z frachiJ. (8)
J

Here, P; is the ith row and jth column of our purity matrix, or
the fraction of SNe predicted to be class j that are actually from
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class i. Computing this reallocation for all five classes, we can
convert our original class fractions to new, “corrected” class
fractions. The new fractions better account for the biases that
we know exist in our classifier. If the corrected photometric
class fractions still differ from the spectroscopic class fractions,
then there are potentially additional biases at play. Either the
differing data sets are causing our classifier to behave
differently than expected, or the spectroscopic and photometric
class fractions intrinsically differ.

The results of these corrections are shown in Figure 19.
Correcting Superphot+’s biases increases the SN Ia class
fraction to 68.5%, closer to the spectroscopic SN Ia class
fraction. We also compute corrections for ALeRCE-SN, which



THE ASTROPHYSICAL JOURNAL, 974:169 (32pp), 2024 October 20

Expected Agreement Matrix,
Spec. (A’=0.6918:52)

SLSN-110.33%3:9% 0.29739¢ 0.31£39¢ 0.11+382

0.10:33%

0.18+3:93

ORIl

SN 11

SN la 0. 02+0 0(1) 0. 06+0 82 0. 81+0 02 0. 12+0 03

ALeRCE-SN Classification

0.0373:82 0.133:07 KN 0134~ 382

SN Ibc 1

(9\/
Superphot+ Classification

de Soto et al.

True Agreement Matrix,
Spec. (A’=0.8215-32)

c SLSN_| 0. 46+0 16 028+005 0. 19+006 0. 05+0 05

o (107) . (63) (44) (12)

)

©

=

F o 11 {0-04238% LRAREEL 0.19286% 0.081883

% (37) (633) (156) (63)

(@)

G o 15 {001108% 0.02:26% (EPESRSY 0055k

wl a (49) (80) (3329) (165)

O

o'

% SN |bc 0. 01+0 01 0. 05+003 0. 38+008 0. 56+007
(6) (40) (302) (439)
l\ Q @ C

\S)
%\‘f S &

Superphot+ Classification

True Agreement Matrix,

! — +0.00
Phot. (A’ = 0.72+0:09)
SLSN-| 10:445853 0321383 0.192385 0.04186?
- (2306) (1698) (1009)  (197)
°
©
2 N ”_0.08i8;8% (WEMTE 0.117391 0.08+3:9%
= (261) |Gl (366)  (281)
©
m SN 1a]0:055888 0.06+000 KERRET 0.07:051
O (1218) (13a1) NERELHAN (1624)
(0]
-
< SN Ibc 0051888 0.10%369 0.28+3:63
€1 (216)  (452)  (1267)
\ N > ¢
N Q N N
o7 S > o

Superphot+ Classification

Figure 20. The expected (top left) and true (top right) agreement matrix for the spectroscopic data set between Superphot+ and ALeRCE-SN, as well as the true
agreement matrix for the photometric data set (bottom). The classifiers agree more than expected when labeling objects as SNe II, SLSNe-I, and SNe Ib/c. The
photometric set’s agreement is worse than the spectroscopic set’s, which may be due to contamination by nontransients or light-curve differences compared to light
curves with spectroscopic classifications. All three matrices suggest Superphot+ is more likely to classify unsure light curves as a common type (SN Ia or SN II),
whereas ALeRCE-SN favors SLSN labels, validating Superphot+’s higher purity.

also brings its photometric fractions closer to the spectroscopic
class fractions. For both classifiers, SNe II and SLSNe-I are still
overrepresented among the corrected photometric fractions,
while SNe Ia are underrepresented. The corrected ALeRCE-SN
SLSNe-I fraction is still double that of the spectroscopic data
set. We note that while correcting for expected biases shifts
both of our photometric fractions closer to the spectroscopic
sample’s, especially for ALeRCE-SN, we cannot use that
information to modify individual predictions. Therefore, while
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ALeRCE-SN’s corrected ratios are closer to the spectroscopic
data set’s ratios (excluding SNe IIn), Superphot+ has less
disparate uncorrected fractions among SLSNe-I and SNe II and
therefore less biased individual classifications.

8. Conclusions and Discussion

We have presented a novel photometric classifier, Superphot
+, that does not require redshift information to assign one of
five SN labels. We apply Superphot+ to ZTF light curves, but
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Table 4

Comparison to Other Classifiers
Classifier Multiclass Accuracy Multiclass F Binary Accuracy Binary F, Citation
Superphot+ (no z) 0.83 +£0.01 0.61 £0.02 0.93 £ 0.01 0.90 £ 0.01 This Work
Superphot+ (with z) 0.88 + 0.01 0.71 £+ 0.02 0.94 £+ 0.01 0.92 £ 0.01 This Work
Superphot 0.80 + 0.01 0.55 +0.02 0.90 £ 0.01 0.88 4+ 0.02 Hosseinzadeh et al. (2020)
SuperRAENN 0.89 +0.01 0.71 £ 0.03 0.94 +0.02 0.93 +£0.02 Villar et al. (2020)
SuperRAENN (only RAENN) 0.83 £0.02 0.62 £ 0.04 0.92 £0.02 0.89 £0.02 Villar et al. (2020)
ParSNIP 0.89 +0.02 0.71 £0.03 0.96 + 0.01 0.95 +0.01 Boone (2021)
Only z, Mpeax, and Ay 0.77 £ 0.01 0.56 £ 0.02 0.89 £ 0.01 0.86 &+ 0.02 This Work

Note. Comparison of Superphot+’s multiclass and SN Ia binary classification metrics (with and without redshifts) with those from training identical LightGBMs on
feature sets from other SN pipelines that use redshift information. All classifiers are retrained on identical ZTF data sets. The ALeRCE pipeline does not use redshift

information and is therefore not included in this table.

Table 5
Superphot+ Probabilities Assigned to the Photometric Data Set
ZTF Name TAU Name Fit Reduced XZ ALeRCE-SN Label p(SN Ia) p(SN II) P(SN IIn) P(SLSN-I) p(SN Ib/c)
ZTF18aaanaev 2022wkv 0.607 SN Ibc 0.226 0.161 0.104 0.129 0.380
ZTF18aabdajx 2018mac 0.914 SN Ia 0.277 0.116 0.116 0.467 0.024
ZTF18aabeszt 0.382 SN Ia 0.933 0.026 0.014 0.011 0.016
ZTF18aacsudg 2019pxz 0.876 SN 1II 0.029 0.241 0.249 0.031 0.451
ZTF18aaczmob 2023ecq 0.549 SN Ia 0.434 0.071 0.041 0.012 0.441
ZTF18aadrhsi 2018hzz 0.869 SN Ia 0.301 0.158 0.089 0.358 0.094
ZTF18aaexyql 2019tpu 0.596 SN Ibc 0.121 0.082 0.029 0.021 0.747
ZTF18aagtwyh 2021oud 0.606 SN Ia 0.445 0.257 0.132 0.029 0.136
ZTF18aahsuyl 2021jqj 0.569 SN Ia 0.934 0.022 0.014 0.005 0.025
ZTF18aahyute 2021rcu 0.706 SLSN-I 0.029 0.252 0.691 0.013 0.015

Note. The first 10 rows of our photometric classification results of the nonspectroscopically classified data set, which are sorted in alphabetical order. The highest
probabilities per event are in bold. Superphot+ and ALeRCE agree on 50% of these classifications.

(This table is available in its entirety in machine-readable form in the online article.)

emphasize its easy adaptation to other current and future
surveys. Superphot+ uses nested sampling and SVI to rapidly
fit light curves in all bands simultaneously, using correlated
priors to optimize fits for inconsistently sampled light curves.
These fit parameters are then oversampled to correct for class
imbalances, and used as training features for a GBM. On the
ZTF data set of 6061 spectroscopically classified events,
Superphot+ achieves a class-averaged Fj-score of 0.61 4 0.02.
We explore the addition of redshift information within
Superphot+, finding better overall performance with
F;=0.71 £ 0.02, but worse performance when only consider-
ing high-confidence predictions. Superphot+’s performance
exceeds or matches previous classifiers that require redshift
information, and it outperforms ALeRCE’s light-curve classi-
fier. This makes Superphot+, when trained on our ZTF data
set, the best-performing publicly available pipeline that does
not require redshifts.

We assign new photometric labels to 3558 SN-like ZTF light
curves without spectroscopic labels, classifying 58.6% as SNe
Ia, 13.3% as SNe II, 7.4% as SNe IIn, 8.0% as SLSNe-I, and
12.7% as SNe Ib/c. Correcting for classifier bias updates these
fractions to 68.5% SNe Ia, 17.7% SNe 11, 6.5% SNe Iln, 2.7%
SLSNe-1, and 4.7% SNe Ib/c. Before corrections, Superphot+
and ALeRCE-SN assign equal predicted SN Ib/c class
fractions, and Superphot+ assigns SN IIn and SLSN-I labels
approximately as frequently combined as ALeRCE-SN assigns
SLSN labels. There is evidence of intrinsic differences within

24

our spectroscopic and photometric data sets, supported by the
lower than expected SN Ia prevalence from both classifiers.

Nonparametric light-curve modeling is becoming more
prevalent in the literature due to the computational bottleneck
of Bayesian fitting to parametric models. However, with the use
of SVI and correlated priors, we have demonstrated that
Superphot+ is computationally fast enough to keep up with
both ZTF and expected LSST alert streams. In addition,
parametric fitting benefits from enforcing light-curve structure
a priori, improving modeling of very sparsely sampled
lightcurves. Therefore, we argue that parametric classifiers
are viable for the Rubin era, and we recommend Superphot+
for real-time ZTF and LSST photometric classification.

Superphot+ has been integrated as a filter of the ANTARES
alert broker (Saha et al. 2014), where we have incorporated the
early-phase variant detailed in Section 5.2. In place of a top-
level classifier to isolate SNe, we cross-check star and AGN
catalogs, and ignore light curves that were first observed over
1 yr ago. This will undoubtedly lead to classification of non-
SNe like AGNs and TDEs, but our existing cuts sufficiently
reduce nightly SN counts such that we can visually inspect
“strange” events. We save the fit parameters as light-curve
properties on ANTARES, enabling further downstream tasks
like anomaly detection or real-time inference. We leave this
exploration for future work.

In addition to the ZTF ANTARES filter detailed above,
Superphot+ can readily be applied to LSST-like data when the
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survey begins in 2025. Indeed, the empirical fitting and
subsequent classification described in this work have already
been modified for six-band simulated LSST data to be used in
the Extended LSST Astronomical Time-series Classification
Challenge'® (ELASTICC). While a simple, ALeRCE-like top-
level classifier was designed for this challenge, it has not been
optimized to the same extent as Superphot+’s SN classifica-
tion. The results of the ELASTICC challenge and Superphot
+’s application to LSST-like datastreams are left to
future work.
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Appendix A
Light-curve Clipping

Many ZTF light curves suffer from improper template
subtraction, leading to excessive constant flux data points long
after the light curve has set. To remove these data points, we
first calculate the “maximum” absolute slope of the light curve
by drawing a line connecting the maximum flux measurement
to the last observation of the light curve. If there is a chunk of
data points at the end of the light curve with a sufficiently flat
slope relative to this maximum slope, then we assume it to be
an artifact of template subtraction, and remove it. To
accomplish this, we start from the last observation and find

13 https:/ /portal.nersc.gov /cfs /Isst/ DESC_TD_PUBLIC /ELASTICC/
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Figure 21. Example ZTF light curve for an SLSN-I with an artificial extended
“tail” (slope| < 0.2|slope,|); this late-time excess flux is due to improper
template subtraction. These tails are clipped to maintain fitting integrity and
correct improper template subtraction. The maximum and tail slopes are
indicated by dashed/dotted lines, respectively, and the clipped data points are
represented by triangles.

the earliest observation such that the absolute slope between
these points is less than 0.2 times the value of the “maximum”
slope. The 0.2 cutoff was determined empirically by experi-
menting with various cutoff slopes. We then remove the entire
section of data points that follows the observation. This process
is done separately for the g and r bands, as the differences in
band amplitudes correspond to differences in maximum slope
from the last data point.

An example of this method applied to an SLSN-I is shown in
Figure 21. Due to improper template image subtraction, a
constant nonzero flux is measured in both bands for an
additional 1500 days after the SN’s fall. As our fit model does
not allow for a vertical offset, the incorrectly subtracted tail will
lead to poorer fit parameters and artificially high chi-squared
values. Our light-curve clipping method successfully removes
the tails (triangular data points) by determining that the flux
change within the tail is substantially less than the flux change
from peak to the last data point.

‘We do note that one downside of this method is that, in the case
of transients with rapid declines, our light-curve clipping strategy
may remove a good fraction of postpeak points. For example, the
radioactive tails of SN IIP light curves following plateau are
sometimes excessively clipped. However, visual inspection shows
that enough points are maintained to adequately constrain the fall
timescale. Similarly, SNe Ia exhibit secondary “bumps” in the r
band (e.g., see Kasen 2006 for more on this well-known
phenomena), which are sometimes clipped. Finally, there is the
potential for excessive clipping following spurious bright data
points, but we do not see this in practice among the transients that
pass our quality cuts.

Our procedure clips at least one data point from 4324 out of
9526 light curves (45%) in our unpruned spectroscopic data set.
The histogram of number of points clipped in each band among
those clipped light curves is shown in Figure 22. While most
light curves have less than 10 points clipped per band, there is a
long tail that extends beyond the figure up to a couple hundred.
The light curves with an excessive number of points removed
are those showing faulty template subtraction, with many
points of constant flux extending out hundreds of days. The
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Figure 22. A histogram of the number of points clipped in each band from the
light curves in our spectroscopic data set before pruning.

median number of points clipped is six in the g band and five in
the r band. Data quality cuts are applied to both data sets after
light curves are clipped. Only analyzing spectroscopic light
curves that pass our quality cuts yields a near identical number
of clipped points distribution, meaning that we are not
preferentially removing clipped light curves from the data set.
In contrast, only 24% of the photometric data set is clipped,
with the median number of clipped points in either bands
within this subset being four. This is expected, as light curves
without spectroscopic follow-up tend to be more sparsely
sampled and therefore have less excess points long after peak to
be clipped.

Appendix B
Sampler Selection

While gradient-descent based optimizers (e.g., the Leven-
berg—Marquardt algorithm) can be used to rapidly obtain best-
fit parameters, the resulting fits are often suboptimal, and we
cannot properly incorporate the .y, parameter during fitting.
In contrast, traditional Metropolis—Hastings Markov Chain
Monte Carlo methods better explore the posterior space but
take longer to converge and struggle computationally with the
piecewise discontinuity at t = t, + ~. Therefore, to optimize the
computational efficiency of our pipeline while still maintaining
accuracy, we explore a variety of alternate sampling techniques
to empirically fit our light curves. These include the following:

1. Importance nested sampling (Feroz et al. 2019). Nested
sampling uses shrinking ellipsoids to constrain regions of
highest posterior density. Importance nested sampling
uses information from previous as well as current
sampled points to speed up convergence. In our code,
we assume unimodality of the posterior space and use a
single constraining ellipsoid (Mukherjee et al. 2006). We
sample each light curve with 50 live points, 5000
maximum iterations, and a stopping criterion of
AlogZ < 0.5. New live points are sampled with random
walks from previous points (Skilling 2006), which is
more effective than uniform or slice sampling for our
problem’s dimensionality.

2. No U-Turn Sampler (Hoffman & Gelman 2011). No
U-Turn Sampler (NUTS) is a Hamiltonian Monte Carlo
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(Brooks et al. 2011) sampler, which creates an analog
between finding posterior density maxima and minimiz-
ing the potential energy of a Hamiltonian system. This
technique allows efficient and sometimes large steps
across the parameter space. It makes no unimodality
assumptions. The original Superphot (Hosseinzadeh et al.
2020) uses PyMC3’s implementation of NUTS (Salvatier
et al. 2016).

3. Stochastic variational inference (Hoffman et al. 2012).
SVI approximates the posterior by assuming an approx-
imate posterior shape a priori, which in our case is a
multidimensional Gaussian. Our loss function is the
negative of the evidence lower bound, which, when
maximized, minimizes the disparity between our approx-
imate and the true posterior distributions. Approximating
the posteriors in this way significantly speeds up
convergence compared to the other two methods, but
SVI also tends to underestimate the variance of the
marginal distributions.

4. MIGRAD (Fletcher 1970). MIGRAD is a very fast
variable metric method, which iteratively approximates
the negative log likelihood distribution as a multi-
dimensional quadratic function. It performs very well
near the true solution, but is prone to get stuck in local
minima.

5. CERES (Agarwal et al. 2023). CERES, like scipy.
curve\inferior fit, uses the Levenberg—Mar-
quardt algorithm (a combination of the Gauss—Newton
method and gradient descent) to iteratively minimize the
least-squares error of each fit. While the fastest of the
algorithms, it is very prone to getting stuck in local
minima or high-loss regions. This algorithm does not
incorporate any oOey,. parameters, or prior distribution
information (except for the parameter limits, and means
for the initial guess). We include it here to demonstrate
the shortcomings of gradient-descent based optimizers for
our problem.

Our nested sampling script is implemented using the Python
package dynesty (Speagle 2020), whereas the NUTS and
SVI algorithms are implemented using the numpyro package
(Bingham et al. 2019; Phan et al. 2019). The latter uses the
JAX (Frostig et al. 2018) backend to speed up differentiation
and fuse numerical functions, improving runtime drastically.
MIGRAD is called through iminuit (Dembinski et al. 2023),
which is a Python interface to the Minuit2 C++- library (James
& Roos 1975). Minuit2 switches to a simplex algorithm
(Nelder & Mead 1965) if MIGRAD cannot return a successful
fit. The CERES fits are run through the light-curve
(Malanchev et al. 2021) package’s VillarFit subroutine.

All techniques listed except MIGRAD and CERES are built
on a Bayesian framework, in which the likelihood p (f160), prior
w(0) and posterior p(0If) probabilities are related following
Bayes theorem:

p(OIf) o p(f10)7(8), (BI)
where 6 is the set of 14 model parameters described above, and
f is the set of observed fluxes. We model the likelihood of each
observation p(f/l@) as its probability if drawn from the
multidimensional Gaussian with mean F (¢;, @) and variance
07 + 0% Here, F(t;, ) is the model flux calculated for
parameters 6 at time ¢;.
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Figure 23. Comparison of the mean fitting runtime, median reduced x* value,
and fraction of X?e q > 1.2 fits from all available Superphot+ samplers,
averaged across 20 light curves of each true spectroscopic class. Nested
sampling and NUTS are the slowest but most accurate options, with almost no
poor fits. SVI is much faster and still correctly fits most light curves. MIGRAD
and CERES struggle with the enforced joint constraints inherent during fitting,
so fail to fit >50% of the light curves.

Bayesian techniques tend to be slower than gradient-based
methods as they attempt to map out the entire posterior
probability space rather than just find a nearby minimum within
the space. However, they do tend to better handle problems
with joint parameter constraints, which applies to our piecewise
model. To ensure the piecewise transition happens after a
(potentially infinitesimally small) plateau region, we enforce
that the derivative of the first piecewise portion be <0 at
t — to=y. This works out to

6% X (% — Trise — 7) < Trise- (Bz)

We also ensure that the derivative of the second piecewise
portion is more negative than that of the first portion at
t—1ty="ry, to properly model a postplateau drop off. This
criterion simplifies to

< 1 — ﬁTfall.

< (B3)
K 3
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Figure 24. Median model fluxes (solid line) along with the 16th and 84th
percentiles (shaded region) for each sampler in Superphot+, for two light
curves in our data set. CERES and MIGRAD fail at fitting both light curves,
whereas SVI only fits the top light curve correctly. Only NUTS and nested
sampling fit both light curves well.

This simultaneously ensures that the model flux is always
positive. We enforce these two criteria for both bands
independently, within every sampler except CERES.

To compare the efficiency and accuracy of each sampler’s
fits, we average both the mean runtime and median reduced
chi-squared across 20 objects of each spectroscopic class. We
use the median instead of mean reduced chi-squared value
because some techniques treat each dimension independently,
and sometimes a probable selection of parameters indepen-
dently leads to a poor model fit jointly; using the median better
handles these outlier X?e d values. Additionally, if the median

Xfe 4 1s greater than 1.2, we consider it a “poor” fit, as we further
justify in Section 3.1. A comparison of the median reduced chi-
squared values (among Xfe 4 < 1.2 fits) and mean fitting time,
as well as the fraction of poor fits, averaged across each true
spectroscopic class is shown in Figure 23. Additionally, we
show how each sampler fits example light curves in Figure 24.
We see that there is a clear trade-off between runtime and
fitting accuracy, with nested sampling and NUTS taking the
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longest yet yielding almost no poor fits. Nested sampling is
about an order of magnitude faster than NUTS. Nested
sampling, NUTS, and SVI have the lowest fraction of poor
fits, which is expected from their Bayesian nature. Both SVI
and MIGRAD run at least an order of magnitude faster than
nested sampling. SVI is limited by a one-time compilation so
will be faster per fit after more consecutive fits. MIGRAD can
potentially be sped up by an order of magnitude after compiling
the likelihood function with numba. MIGRAD successfully fits
about half the light curves, and struggles with handling the joint
constraints between our model parameters. CERES seems to
fail when fitting most of our light curves (returning the initial
guess of the prior means), which could be due to it drawing
directly from fit parameter space rather than log space, like our
other samplers do.

Ultimately, we decide that, because time is not a limiting
factor for classifier training and adding new photometric labels
to archival data, we use nested sampling for training and
inference from archival data sets, such as the one analyzed in
this paper. However, nested sampling proves too slow for
consistent real-time fitting and classification, especially in
anticipation of the LSST alert stream. Within the publicly
available ANTARES filter, we use SVI as the default fitting
method but switch to nested sampling on a per-light-curve
basis if the SVI fit is poor. We leave all five samplers as
available options in the Superphot+ codebase.

Appendix C
Bayesian Oversampling to Balance Classifier Training

To balance training across our five classes, we explore using
only the median fit parameters in conjunction with (1)
multiplying the loss contribution from each light curve by a
class weight, or (2) using synthetic minority oversampling
techniques (SMOTE; Chawla et al. 2002; similar to Hossein-
zadeh et al. 2020; Villar et al. 2020) to generate a balanced
training set. Alternatively, we try a Bayesian oversampling
approach where we draw multiple parameter sets from the
posterior distribution of each minority-class light curve, and
treat those draws as independent classifier inputs during
training. The number of fits used per light curve depends on
the relative training set abundance of that light-curve
classification, with the classifier using more parameter sets
per light curve for less prevalent classes. This allows us to input
an equal number of light curves from each class into our
classifier, while also better accounting for the fit uncertainty
within each light curve. The distributions of samples resulting
from both SMOTE and our Bayesian oversampling technique
are compared in Figure 25, with the latter yielding improved
classification accuracy and more robust performance metrics
across classes and K-folds. We end up using 22,730 over-
sampled feature sets per class across our training and validation
sets, corresponding to five sets of fit parameters per SN Ia light
curve and round (22,730/n) sets per light curve for each less
prevalent class, with n being the events per class in our training
(or validation) set. We find that drawing more samples per SN
class did not improve classifier performance, while drawing
fewer samples hurts SN Ia classification. These fits are drawn
from the light-curve posterior space with replacement, so
inputting the same set of model parameters into our classifier
multiple times is possible among the less prevalent classes.
Because of this, we oversample affer dividing the SNe between
the training, validation, and test sets, so there is no possibility
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Figure 25. Comparison of oversampling techniques to balance our imbalanced
spectroscopic data set. Here, we show only SLSNe-I, which is our smallest
class in the sample, for visual clarity. SMOTE (top) draws samples from
hyperplanes connecting pairs of observed SNe. This leads to a low diversity of
samples when connecting outliers. In contrast, sampling directly from the set of
equally weighted fits (bottom) for each light curve creates smoother
oversampling.

of repeat fits or fits from the same light curve appearing in both
a training and test set.

Appendix D
Classifier Architecture Selection

Here, we explore two architecture options for SN classifica-
tion. First, we train a multilayer perceptron (MLP), which is a
simple neural network with fully connected layers of
“neurons”’; each neuron applies a nonlinear activation function
to a linear combination of the input values. For simplicity, we
only use dense layers in the MLP, with a constant number of
neurons per hidden layer. Additionally, we include a 50%
dropout rate for each hidden layer, and a 20% dropout rate on
the input layer, as suggested by Hinton et al. (2012). Here,
dropout refers to randomly masking out neuron values during
training, which prevents a small subset of nodes from being the
main determinant for discerning specific classes. As a result,
nodes more evenly contribute to discerning important features
within the latent space. The dropout applied to the input layer
prevents the network from relying too heavily on specific fit
parameters; instead, it more evenly weighs information from
multiple regions of the light curve. This is important for
accurately classifying partial light curves. To optimize the
network architecture (number of hidden layers and neurons per
layer), we perform a grid search over one to five hidden layers
and 4-256 neurons per layer in intervals of 2", and calculate the
validation set’s class-averaged F;-score for each combination.
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We find that three hidden layers with 128 neurons each
maximize the combined validation F-score across all K-folds.
Across 10 folds, the MLP’s F;-score spans 0.59 £ 0.03 across
an 80% confidence interval. For context, this is slightly lower
than Superphot’s reported Fj-score, which uses redshift
information.

Next, we train a GBM using LightGBM (Ke et al. 2017). We
attempt to optimize LightGBM’s hyperparameters using a grid
search, and find negligible performance improvements across
different hyperparameter configurations. The results in this
paper are obtained using the DART boosting strategy, goss
sampling strategy, a max tree depth of 5, max number of leaves
of 20, a regularization of 5, and 250 estimators. The LightGBM
trains an order of magnitude faster than the MLP, and yields an
Fi-score 80% confidence interval of 0.61 £ 0.02. While the
median F-score is higher than that of the MLP, the two
confidence intervals overlap (i.e., the worst-performing K-folds
for the GBM report a lower F-score than the best-performing
K-folds for the MLP). Because the K-folds were selected
independently for the MLP and GBM, we thus argue that the
lower MLP performance can potentially be attributed to the
way the training set was randomly divided among folds for
each architecture. Even so, we finalize the LightGBM model as
the default classifier, as it is 2 orders of magnitude faster to
train compared to the MLP.
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Appendix E
Detailed Partial Light-curve Performance

Here, we delve deeper into Superphot+’s classification of
partial light curves when trained on all features versus only
early-phase features. Figure 26 shows how the completeness,
purity, and F-score evolve for each classifier for each
spectroscopic class as the light curves are truncated at different
phases. The early-phase classifier especially excels for light
curves truncated near peak, with much higher phase = 0 values
for SN IIn purity (0.50+0.25 versus 0.03 +£0.02), SN Ia
completeness (0.79 £ 0.09 versus 0.4540.13), and SN II
completeness (0.31 = 0.11 versus 0.15 = 0.08) compared to the
full-phase classifier. In contrast, the full-phase classifier yields
significantly higher SN II completeness (0.41 £ 0.13 versus
0.72 + 0.05) at late phases.

SLSN-I classification for both variants is stable from very early
phases, as is SN IIn classification without postpeak features. This is
expected, as both classes can be set apart by their slower rise
evolution, which is constrained weeks before peak brightness. Both
variants assign SN Ta and SN Ib/c labels with better completeness
and purity near peak, where the peak color is fit more precisely;
from Figure 3, we infer SNe Ib/c are most distinguishable by
redder colors. The classification accuracy for SNe II (and SNe IIn
with postpeak features) only increases weeks after peak, as
classification relies on constraint of their characteristic plateaus.
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Figure 26. Classification completeness, purity, and F-score as a function of light-curve phase, for each spectroscopic class. The dashed line corresponds to the early-
phase classifier, whereas the full-phase classifier is represented by the solid line and associated 10 K-fold uncertainty margins. While SNe Ib/c classification accuracy
improves significantly a few days before peak magnitude, light curves are only consistently labeled as SNe II or SNe IIn ~15 days after peak, when the postpeak
behavior can be adequately measured.
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