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Abstract

We introduce dual curvature measures for log-concave func-
tions, which in the case of characteristic functions recover the
dual curvature measures for convex bodies introduced by Huang-
Lutwak-Yang-Zhang in 2016. Variational formulas are shown. The
associated Minkowski problem for these dual curvature measures
is considered and sufficient conditions in the symmetric setting are
demonstrated.

1. Introduction

Geometric measures associated with convex bodies have been a core
part of convex geometric analysis in the past few decades. In the classi-
cal Brunn-Minkowski theory of convex bodies, quermassintegrals (such
as volume, surface area, mean width, and much more in higher dimen-
sions) are the central geometric invariants and are used to describe the
shape of convex bodies via isoperimetric (or reverse isoperimetric) in-
equalities. Area measures introduced by Aleksandrov, Fenchel-Jessen,
and curvature measures introduced by Federer can be viewed as the “de-
rivative” of quermassintegrals when viewed as functionals on the set of
convex bodies. Invariably, these geometric measures carry some curva-
ture terms which make it possible for them to encode shape information
of convex bodies. At the same time, unlike curvatures (in the sense of
differential geometry), these geometric measures are defined even with
minimal regularity assumptions. The study of these geometric measures
is often intertwined with PDE (Monge-Ampère equations in particular),
Gauss curvature flows, and inevitably isoperimetric inequalities. (After
all, half of calculus is focused on using derivatives to study properties
of the original function.)
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A major alternative to the classical Brunn-Minkowski theory in mod-
ern convex geometry is the dual Brunn-Minkowski theory. The dual
Brunn-Minkowski theory, introduced by Lutwak in 1975, is a theory
that is in a sense dual to the classical Brunn-Minkowski theory. A good
discussion of the dual theory can be found in Section 9.3 of Schneider’s
classical volume [70]. Quoting from Gardner-Hug-Weil [41]:“The dual
Brunn-Minkowski theory can count among its successes the solution of
the Busemann-Petty problem in [38], [43], [59], and [73]. It also has
connections and applications to integral geometry, Minkowski geome-
try, the local theory of Banach spaces, and stereology; see [40] and the
references given there.”
In the seminal work [48], Huang-Lutwak-Yang-Zhang (Huang-LYZ),

for the first time, revealed the fundamental geometric measures, duals
of Federer’s curvature measures, called dual curvature measures, in the
dual Brunn-Minkowski theory. These measures were obtained through
“differentiating” dual quermassintegrals which are central in the dual
theory. They have led to many natural open problems and quickly
attracted much attention. Details on this will be provided below.
It is well-known that the set of convex bodies can be embedded in

the set of upper semi-continuous log-concave functions via their char-
acteristic functions. This work aims to introduce the functional ver-
sion of dual curvature measures through the machinery of the theory of
functions of bounded anisotropic weighted variation and to study their
characterization problem (generally known as Minkowski problems). It
is worth pointing out that, by picking proper weight functions, func-
tional versions of many other geometric measures can be introduced in
this fashion. However, this will not be explored in this work.
In the past few decades (even more so in the last decade), interest in

log-concave functions has grown considerably, much of it motivated by
their counterparts in the theory of convex bodies. Perhaps the first such
breakthrough and by now a well-known result is the Prékopa-Leindler
inequality: For any nonnegative integrable functions f, g on Rn and
their sup-convolution (1− λ) · f ⊕ λ · g given by

((1− λ) · f ⊕ λ · g) (z) = sup
(1−λ)x+λy=z

f(x)1−λg(y)λ,

where 0 < λ < 1, one has the following inequality regarding their L1

norms,
(1.1)󰁝

Rn
((1− λ) · f ⊕ λ · g) (z)dz ≥

󰀕󰁝

Rn
f(x)dx

󰀖1−λ󰀕󰁝

Rn
g(y)dy

󰀖λ

.

The Prékopa-Leinder inequality is the functional (and equivalent) ver-
sion of the celebrated Brunn-Minkowski inequality,

V ((1− λ)X + λY ) ≥ V (X)1−λV (Y )λ,
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which holds for any bounded measurable sets X,Y ⊂ Rn such that
(1−λ)X+λY is measurable. See the survey [39] by Gardner. It is impor-
tant to note that convexity is required neither in the Brunn-Minkowski
inequality nor in the Prékopa-Leindler inequality, although it does man-
ifest itself in the equality conditions. Notice here that the Minkowski
combination (1−λ)X+λY corresponds to the sup-convolution between
functions (see, (4.1) for a complete definition) and the volume of a mea-
surable set corresponds to the integral of a non-negative function. That
this is natural can be seen by replacing f and g by characteristic func-
tions of subsets of Rn.
In the same spirit, many other geometric invariants and operations

have found their counterparts for log-concave functions (or, equivalently,
convex functions). We provide a quick overview of some of these re-
markable results. In the seminal work [5], Artstein-Avidan and Milman
demonstrated how the Legendre-Fenchel transform can be viewed as the
functional version of taking the polar body of a convex body. Compare
this to another remarkable paper [9] by Böröczky-Schneider. Prior to
this, the functional version of the Blaschke-Santaló inequality was dis-
covered by Ball in his Ph.D. thesis and by Artstein-Avidan, Klartag, and
Milman in [3]. Steiner formula and quermassintegrals for quasi-concave
functions were studied by Bobkov-Colesanti-Fragalà [8]. Extensions of
affine surface area and affine isoperimetric inequalities can be found
in [4, 17, 18, 54]. Much more recently, Colesanti, Ludwig, and Mussnig
embarked on a journey to characterize valuations on the set of convex
functions [27–31] (compare them to Hadwiger-type theorems on convex
bodies [45, 46, 56–58,71]).
In the dual Brunn-Minkowski theory, the central geometric invariants

are known as dual quermassintegrals. Let q = 1, . . . , n, and K be a
convex body that contains the origin in its interior. As Lutwak [59]

showed, up to a constant multiple, the q-th dual quermassintegral 󰁨Vq(K)
can be defined as the average of lower-dimensional sectional areas of K
with q-dimensional subspaces:

󰁨Vq(K) = c

󰁝

G(n,q)
Hq(K ∩ ξ)dξ,

whereG(n, q) is the Grassmannian manifold containing all q-dimensional
subspaces of Rn and the integration is with respect to the Haar mea-
sure. Dual quermassintegrals have integral representations (see (2.4))
which warrant the immediate extension to q ∈ R. Note that with the
exception of the special case q = n, when the dual quermassintegral is
simply volume, the q-th dual quermassintegral is generally not invariant
under translations of K.



4 Y. HUANG, J. LIU, D. XI & Y. ZHAO

A major question answered in the landmark work [48] (and subse-

quently [62]) by Huang-LYZ was the differentiability of 󰁨Vq. In particu-
lar, it was shown that if K is a convex body in Rn such that the origin
is an interior point and L is a compact convex subset of Rn, then

(1.2) lim
t→0+

󰁨Vq(K + t · L)− 󰁨Vq(K)

t
=

󰁝

Sn−1

hL(v)
1

hK(v)
d 󰁨Cq(K, v).

Here the geometric measure 󰁨Cq(K, ·) is known as the q-th dual curvature
measure ofK. In fact, there is naturally an Lp version of (1.2) that leads
to the (p, q)-dual curvature measure introduced in [62] and the measure

1
hK(v)d

󰁨Cq(K, v) is nothing but the (1, q)-dual curvature measure. The

“1” here stands for the fact that the sum K + t · L is the classical
Minkowski sum, or, the l1 sum of support functions of K and L.
Let q > 0. The (q − n)-th moment of a density function f is defined

as

󰁨Vq(f) =
󰁝

Rn
|x|q−nf(x)dx,

if it exists. The moment 󰁨Vq is a natural extension of dual quermassin-
tegrals to the set of log-concave functions (which in turn justifies this
notation). Indeed, if f = 1K , where 1K is the characteristic function of
some convex body K that contains the origin in its interior, then, by
integration via polar coordinates, one immediately has

󰁨Vq(1K) = 󰁨Vq(K).

Motivated by the work [48] and the correspondence between the Min-
kowski combination and sup-convolution, it is natural to ask whether

(1.3) lim
t→0

󰁨Vq(f ⊕ t · g)− 󰁨Vq(f)
t

exists for log-concave functions f, g, and if it does, what the limit is.
We remark that with the exception of q = n, for generic q > 0, the
moments considered in (1.3) are not invariant under the transformation
f(x) → f(x+x0). Therefore, the relative position of the origin is crucial
in the study of (1.3). In fact, since (1.2) only holds when K contains the
origin in its interior, some condition on f that mimics this constraint is
expected.

When q = n, the functional 󰁨Vq is nothing but the L1 norm of a log-
concave function. In this case, the limit (1.3) was studied by Colesanti-
Fragalà [32] under various regularity assumptions on f and g. In par-
ticular, they discovered that the limit (1.3) consists of two parts—one
concerning the behavior of f inside its support, the other concerning
the values of f on the boundary of its support as well as the shape
of the support set. Around the same time, Cordero-Erausquin and
Klartag [33] studied the limit with the additional assumption that f is
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essentially continuous and explored the connection with complex anal-
ysis [7] and optimal transport. Recently, Rotem [67] showed that the
result of Colesanti-Fragalà remains valid without any of the various ad-
ditional regularity requirements, by employing tools from the theory of
functions of bounded anisotropic variation. The first main result of this
paper is to show that by considering functions of bounded anisotropic
weighted variation, one can compute the limit in (1.3) for any q > 0. It
is important to emphasize that unlike the special case q = n, for generic
q > 0, the q-th moment of a function is not translation-invariant. In par-
ticular, our approach is motivated by the dual approach (differentiating
radial functions) to the variational formula developed in [48].
It is also worth pointing out that the extension of functions of bounded

variation in Rn with respect to the Lebesgue measure to functions of
bounded variation in Rn with respect to an arbitrary measure (even
those absolutely continuous with respect to the Lebesgue measure) is
not entirely trivial. This has been previously done in, for example, [6]
and [65] via different approaches (which led to non-equivalent definitions
of weighted total variation).
Let LC(Rn) be the set of all upper semi-continuous log-concave func-

tions f : Rn → [0,∞). The limit (1.3) leads to two Borel measures—one
on Rn and one on Sn−1.

Definition 1.1. Let f = e−φ ∈ LC(Rn) with nonzero finite L1 norm.

The Euclidean q-th dual curvature measure of f , denoted by 󰁨Ce
q (f ; ·), is

a Borel measure on Rn given by

(1.4) 󰁨Ce
q (f ;B) =

󰁝

∇φ(x)∈B
|x|q−nf(x) dx,

for each Borel set B ⊂ Rn.

In (1.4), note that since φ is convex, its gradient ∇φ exists almost
everywhere in the interior of its domain {x ∈ Rn : φ(x) < ∞}. Note
that by definition, f > 0 if and only if φ < ∞. Therefore, the integral
in (1.4) is well-defined.

Definition 1.2. Let f = e−φ ∈ LC(Rn) with nonzero finite L1 norm.

The spherical q-th dual curvature measure of f , denoted by 󰁨Cs
q (f ; ·), is

a Borel measure on Sn−1 given by

󰁨Cs
q (f ; η) =

󰁝

νKf
(x)∈η

|x|q−nf(x) dHn−1(x),

for each Borel set η ⊂ Sn−1, where Kf is the support of f and νKf
is its

Gauss map defined almost everywhere on ∂Kf with respect to dHn−1(x).

These two measures generated through differentiating the q-th mo-
ment of a log-concave function f with respect to sup-convolution are
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associated with the absolutely continuous and singular part of the dis-
tributional derivative of f , respectively. It is worth noting that in the

case of the characteristic function of a convex body, the measure 󰁨Cs
q (f ; ·)

recovers the (1, q)-dual curvature measure for convex bodies appearing
in (1.2).
The first of our main theorems shows that the limit in (1.3) does exist

under minor assumptions on f and g near the origin.

Theorem 1.3. Let f = e−φ ∈ LC(Rn) with non-zero finite L1 norm
and q > 0. Assume f achieves its maximum at the origin and

(1.5) lim sup
x→o

|f(x)− f(o)|
|x|α+1

< ∞,

for some 0 < α < 1.
Let g = e−ψ ∈ LC(Rn) be compactly supported with g(o) > 0. Then,

(1.6)
lim
t→0+

󰁨Vq(f ⊕ t · g)− 󰁨Vq(f)
t

=

󰁝

Rn
ψ∗(y)d 󰁨Ce

q (f ; y) +

󰁝

Sn−1

hKg(v)d 󰁨Cs
q (f ; v).

where hKg is the support function of the support set Kg of g, and ψ∗ is
the Legendre-Fenchel conjugate of ψ.

Note that hypothesis (1.5) in the above theorem is not the best hy-
pothesis, see Proposition 4.9 and Remark 4.10 for more details. We
emphasize again that it is expected that we need some condition on f
that mimics the idea that “f contains the origin in its interior”. The
assumption that f achieves its maximum at the origin, together with
hypothesis (1.5), ensures that almost all of f ’s nonempty level sets con-
tain the origin in the interior and these level sets contain the origin in
their interiors in some uniform way. We remark that if f is C1,α in a
neighborhood of the origin, then (1.5) is satisfied. To better explain the
condition g(o) > 0, we focus for the moment on the special case that g is
the characteristic function of some convex body L. In this case, without
the condition g(o) > 0, the convex body L might be far away from the
origin. As a consequence, the origin might be outside the Minkowski
combination of the level sets of f and L. This makes it very challenging
to apply geometric results to level sets of f . See Theorem 4.5 for details.
When f and g are characteristic functions of convex bodies that con-

tain the origin in their interiors, the first integral on the right-hand side
in (1.6) vanishes whereas the second term becomes the right-hand side
of (1.2).

Minkowski problems in convex geometric analysis are characterization
problems of geometric measures associated with convex bodies. These
geometric measures are often “derivatives” of important geometric in-
variants. In differential geometry, Minkowski problems are known as
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various prescribed curvature problems. This line of research that asks
when a given measure µ can be realized as a certain geometric measure
of a to-be-solved convex body (without any unnecessary regularity as-
sumptions) goes back to the classical Minkowski problem that inspired
the study of nonlinear elliptic PDE through the last century; see, for ex-
ample, Minkowski [64], Aleksandrov [1], Cheng-Yau [25], Pogorelov [66],
and the works of Caffarelli on the regularity theory of Monge-Ampère
equations [14–16], among many other influential works. In many ways,
the study of Minkowski problems goes hand-in-hand with the study of
sharp isoperimetric inequalities; see [19].
In the last two to three decades, there are two major families of

Minkowski problems. One is the Lp Minkowski problem that belongs to
the Lp Brunn-Minkowski theory whose success can be credited to the
landmark work by Lutwak [60, 61] where the fundamental Lp surface
area measure was discovered. The Lp Minkowski problem includes the
logarithmic Minkowski problem and the centro-affine Minkowski prob-
lem and has been studied through a variety of methods; see, for example,
Hug-Lutwak-Yang-Zhang (Hug-LYZ) [51], Chou-Wang [26], Böröczky-
LYZ [13], and most recently Guang-Li-Wang [44]. A vast library of
works on this topic can be found by looking for those citing the above-
mentioned works. It is worth pointing out that there is much unknown
regarding the Lp Brunn-Minkowski theory, especially for p < 1. In
fact, the log Brunn-Minkowski conjecture, arguably the most beautiful
and powerful (yet plausible) conjecture in convex geometry in the last
decade, is the isoperimetric inequality associated with the log Minkowski
problem. See, for example, [12, 23, 52, 63, 72].
The other major family of Minkowski problems are the dual Minkow-

ski problems following the landmark work [48]. In a short period since
[48], there have been many influential works on this topic which have
already led to many interesting conjectures regarding isoperimetric in-
equalities as well as the discovery of novel curvature flows; see, for exam-
ple, Böröczky-Henk-Pollehn [11], Chen-Chen-Li [21], Chen-Huang-Zhao
[20], Chen-Li [24], Gardner-Hug-Weil-Xing-Ye [42], Henk-Pollehn [47],
Li-Sheng-Wang [53], Liu-Lu [55], Zhao [74]. It is important to note that
the list is by no means exhaustive.

In this paper, we study the Minkowski problem for 󰁨Ce
q .

The functional dual Minkowski problem. Let q > 0 and µ be a
non-zero finite Borel measure on Rn. Find the necessary and sufficient
conditions on µ so that there exists f ∈ LC(Rn) with nonzero finite L1

norm such that

(1.7) µ = 󰁨Ce
q (f ; ·).

Under sufficient regularity assumption, that is, the measure µ has a
C∞ density (say, g ≥ 0) and f ∈ C∞, equation (1.7) is equivalent to
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the following Monge-Ampère type equation in Rn

(1.8) g(∇φ(x)) det(∇2φ(x)) = |x|q−ne−φ(x),

where f = e−φ.

It is important to note that the measure 󰁨Ce
q (f ; ·) might not be abso-

lutely continuous. Thus, the Minkowski problem (1.7) does not always
reduce to (1.8) in the general setting.
When q = n, the functional dual Minkowski problem becomes the

Minkowski problem for moment measures. See Cordero-Erausquin and
Klartag [33] where it is completely solved within the class of essentially
continuous functions. The highly nontrivial Lp extension of Cordero-
Erausquin and Klartag’s result can be found in the recent papers by
Fang-Xing-Ye [35] for p > 1 and Rotem [68] for 0 < p < 1.
As pointed out earlier, a key difference between the case q = n and

q ∕= n is that in the latter case, (1.7) is not invariant under translations of
f (with respect to its domain). We point out that translation-invariance
played a central role in [33].
In the current work, we provide a sufficient condition for the existence

of solutions to (1.7) in the origin-symmetric case.

Theorem 1.4. Let q > 0 and µ be a non-zero even finite Borel
measure on Rn. Suppose µ is not concentrated in any proper subspaces
and

󰁕
Rn |x|dµ(x) < ∞. There exists an even f0 ∈ LC(Rn) with nonzero

finite L1 norm such that

µ = 󰁨Ce
q (f0; ·).

The functional dual Minkowski problem (1.7) is heavily intertwined
with its counterpart in the setting of convex bodies. In particular, esti-
mates regarding dual quermassintegrals are critically needed. As part of
the process to get the required estimates, we require a Blaschke-Santaló

type inequality for the functional 󰁨Vq. See Lemma 5.6. It is of great
interest to see if there is a sharp (more refined) version.
We remark that the assumption

󰁝

Rn
|x|dµ(x) < ∞

is necessary here. See Theorem 5.12.
The rest of this paper is organized in the following way. In Section 2,

we recall some notations and basics. In Section 3, we gather some basics
in the theory of functions of bounded variation. Section 4 is devoted to
proving Theorem 1.3 whereas Section 5 is devoted to proving Theorem
1.4.
Acknowledgement. We are in great debt to the referees for their

extremely valuable comments and suggestions.
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2. Preliminaries

This section is divided into two parts. The first part contains some
notations and basics in the theory of convex bodies, whereas the sec-
ond part deals with those for convex functions as well as log-concave
functions.
For convenience, throughout the current work, if the exact value of

a constant C > 0 does not matter, then we may use the same C for
different positive constants (that may differ from line to line).

2.1. Convex bodies. The standard reference is the comprehensive
book [70] by Schneider.
A convex body in Rn is a compact convex set with a nonempty in-

terior. The boundary of K is written as ∂K. We use Kn for the set of
all convex bodies in Rn. The subclass of convex bodies that contain the
origin in their interiors in Rn is denoted by Kn

o .
We will use B(x, r) to denote the ball in Rn centered at x with radius

r. Occasionally, we write B(r) = B(o, r) and B = B(o, 1) for simplicity.
The support function hK of K is defined by

hK(y) = max{〈x, y〉 : x ∈ K}, y ∈ Rn.
The support function hK is a continuous function homogeneous of de-
gree 1. SupposeK contains the origin in its interior. The radial function
ρK is defined by

ρK(x) = max{λ : λx ∈ K}, x ∈ Rn \ {0}.
The radial function ρK is a continuous function homogeneous of degree
−1. It is not hard to see that ρK(u)u ∈ ∂K for all u ∈ Sn−1 and the
reciprocal radial function is a (potentially asymmetric) norm. To be
more specific, we write

(2.1) 󰀂x󰀂K =
1

ρK(x)
= hK∗(x), for each x ∈ Rn.

Here, the convex body K∗ is known as the polar body of K and is
defined by

K∗ = {y ∈ Rn : 〈x, y〉 ≤ 1, ∀x ∈ K}.
By the definition of the polar body, it is simple to see that the Banach
spaces (Rn, 󰀂 · 󰀂K) and (Rn, 󰀂 · 󰀂K∗) are dual to each other and we have
the following generalized Cauchy-Schwarz inequality

〈x, y〉 ≤ 󰀂x󰀂K󰀂y󰀂K∗ .

Let h : Sn−1 → (0,∞) be continuous, the Wulff shape [h] ∈ Kn
o is

given by

[h] = {x ∈ Rn : 〈x, v〉 ≤ h(v) for all v ∈ Sn−1}.
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It is simple to see that if K ∈ Kn
o , then [hK ] = K. Also immediate from

the definition of [h] is that for every u ∈ Sn−1, we have

(2.2) ρ[h](u)〈u, v〉 ≤ h(v), ∀v ∈ Sn−1,

and there exists v∗ ∈ Sn−1 such that

(2.3) ρ[h](u)〈u, v∗〉 = h(v∗).

For each x ∈ ∂K, we will write νK(x) for the outer unit normal of K
at x. Note that by convexity, the map νK is defined almost everywhere
on ∂K with respect to Hn−1. For each v ∈ Sn−1, define

ν−1
K (v) = {x ∈ ∂K : 〈x, v〉 = hK(v)}.

Since K is a convex body, for almost all v ∈ Sn−1, the set ν−1
K (v)

contains only one boundary point of K. With slight abuse of notation,
we will use ν−1

K to denote a map that is defined almost everywhere on

Sn−1 and ν−1
K maps v to the unique point in ν−1

K (v).
The fundamental geometric functionals in the dual Brunn-Minkowski

theory are dual quermassintegrals. For q ∕= 0, the q-th dual quermass-

integral of K, denoted by 󰁨Vq(K), is defined as

(2.4) 󰁨Vq(K) =
1

q

󰁝

Sn−1

ρqK(u)du.

When q = 1, · · · , n, dual quermassintegrals have the strongest geometric
significance. They are proportional to the mean of the q-dimensional
volume of intersections of K with q-dimensional subspaces in Rn.
In [48], it was established that variation of the dual quermassintegral

with respect to the logarithmic Minkowski sum leads to the so-called
dual curvature measure:

󰁨Cq(K, η) =
󰁝

νK(x)∈η
〈x, νK(x)〉|x|q−ndHn−1(x),

for each Borel η ⊂ Sn−1. In particular, this implies that for each p ∈ R,
we have

(2.5)

lim
t→0

󰁨Vq(K +p t · L)− 󰁨Vq(K)

t

=

󰁝

Sn−1

hL(v)h
−p
K (v)d 󰁨Cq(K, v)

:=

󰁝

Sn−1

hL(v)d 󰁨Cp,q(K, v),

where the Borel measure 󰁨Cp,q(K, ·) is known as the (p, q)-dual curvature
measure ofK. HereK+pt·L is known as the Lp Minkowski combination
between convex bodies. In particular, when p ≥ 1 and t > 0, the
convex body K+p t ·L is defined so that its support function is given by
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(hpK + thpL)
1/p. The variational formula (2.5), as well as the definition

of the Lp combination, can be found in [62].

2.2. Convex functions and log-concave functions. Let µ be a
Borel measure on some set Ω. We will use L1(µ,Ω) for the set of all
µ-measurable functions f on Ω with

󰁕
Ω |f |dµ < ∞. The set L1

loc(µ,Ω)

consists of functions f such that f ∈ L1(µ,K) for every compact set
K ⊂ Ω. Occasionally, when Ω = Rn, we may write L1(µ). When
µ is the standard Lebesgue measure, we may simply write L1(Ω), or,
L1 = L1(Rn). When µ is a finite measure, we write |µ| for its total
mass.
Let CVX(Rn) be the set of all lower semi-continuous, convex func-

tions φ : Rn → (−∞,∞] and LC(Rn) be the set of all upper semi-
continuous log-concave functions f that take the form f = e−φ for some
φ ∈ CVX(Rn).
For any function φ : Rn → [−∞,∞], the Legendre-Fenchel conjugate

of φ, denoted by φ∗, is defined as

φ∗(y) = sup
x∈Rn

{〈x, y〉 − φ(x)}.

Note that from the definition, it is simple to see that φ∗ ∈ CVX(Rn), as
long as φ ∕≡ +∞. It is also straightforward from the definition that the
Legendre-Fenchel transform reverses order; in other words, if φ1 ≤ φ2,
then φ∗

1 ≥ φ∗
2.

When restricting to CVX(Rn), the Fenchel-Moreau theorem states
that the Legendre-Fenchel transform is an involution:

φ∗∗ = φ, for each φ ∈ CVX(Rn).

In a remarkable paper [5], Artstein-Avidan and Milman showed that
any order-reversing involution on CVX(Rn) is essentially the Legendre-
Fenchel transform.
In general (without assuming φ ∈ CVX(Rn)), by the definition of the

Legendre-Fenchel transform, one may show that

φ∗∗ ≤ φ,

and if φ ≥ 0, then φ∗∗ ≥ 0.
The expression 1E denotes the characteristic function of some subset

E ⊂ Rn; that is, 1E(x) = 1 if x ∈ E and 1E(x) = 0 if x /∈ E.
Let K ∈ Kn and

ψ(x) =

󰀫
0, if x ∈ K

∞, otherwise.

Note that 1K = e−ψ. It follows from the definition that

(2.6) ψ∗ = hK .
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Indeed, let y ∈ Rn be arbitrary. Then, according to the definition of ψ∗,
we have

ψ∗(y) = sup
x∈Rn

{〈x, y〉 − ψ(x)} = sup
x∈K

{〈x, y〉} = hK(y),

where the second equality follows from the fact that if x /∈ K, then
ψ(x) = ∞ and consequently one can restrict to K in search of the
supremum.
We shall require the following trivial facts.

Proposition 2.1. Let f = e−φ ∈ LC(Rn) and q > 0. If

(2.7) lim inf
|x|→∞

φ(x)

|x| > 0,

then

󰁨Vq(f) =
󰁝

Rn
f(x)|x|q−ndx < ∞.

Proof. By (2.7) and the convexity of φ, there exist C > 0 and r0 > 0
such that

φ(x) > C|x|, for all x ∈ B(r0)
c.

Therefore, we have
󰁝

B(r0)c
f(x)|x|q−ndx ≤

󰁝

B(r0)c
e−C|x||x|q−ndx < ∞.

Since f is upper semi-continuous, it is locally bounded from above.
Therefore,

󰁝

B(r0)
f(x)|x|q−ndx ≤ C1

󰁝

B(r0)
|x|q−ndx < ∞.

q.e.d.

It is well-known that (2.7) holds if and only if either of the following
two statements holds:

1) f ∈ L1;
2) lim|x|→∞ φ(x) = ∞.

See, for example, [33].
When a convex function φ is finite in a neighborhood of the origin, [69,

Theorem 11.8(c)] combined with Proposition 2.1 immediately implies
the following.

Proposition 2.2. Let q > 0. If φ : Rn → [0,∞] is finite in a
neighborhood of the origin, then

󰁨Vq(e−φ∗
) =

󰁝

Rn
|y|q−ne−φ∗(y)dy < ∞.
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3. Functions of anisotropic weighted total variation

Let Ω ⊂ Rn be an open set. Write V ⋐ Ω if an open set V is
compactly contained in Ω, that is, the closure of V is compact and is a
subset of Ω. The set C1

c (V,Rn) consists of all C1 functions from V to
Rn with compact support. We say a function f ∈ L1

loc(Ω) is locally of
bounded variation (i.e., f ∈ BVloc(Ω)) if for each open V ⋐ Ω, we have
(3.1)

TV (f ;V ) = sup

󰀝󰁝

V
f div T dx : T ∈ C1

c (V,Rn), |T (x)| ≤ 1, ∀x
󰀞
< ∞.

Intuitively speaking, functions of locally bounded variation are those
whose distributional derivatives are Radon measures. Indeed, the Struc-
ture Theorem for BVloc functions states (see Theorem 5.1 in [34]) that
if f ∈ BVloc(Ω), then there exist a Radon measure 󰀂Df󰀂 on Ω and a
󰀂Df󰀂-measurable map σf : Ω → Rn such that |σf | = 1 󰀂Df󰀂-almost
everywhere with

󰁝

Ω
f div T dx = −

󰁝

Ω
〈T,σf 〉d󰀂Df󰀂,

for all T ∈ C1
c (Ω,Rn). When f ∈ L1(Ω) and 󰀂Df󰀂(Ω) is finite, we say f

is of bounded variation on Ω; that is f ∈ BV (Ω). The space of BV (Ω)
is well studied and we refer the readers to the classical books [2,34] for
additional properties of BV functions.
There have been several generalizations to the definition of BV (Ω)

(and correspondingly BVloc(Ω)). One direction of such generalization
is that the Euclidean norm (applied to T ) in (3.1) can be replaced by
any (potentially asymmetric) norm. Fix L ∈ Kn

o , let 󰀂 · 󰀂L and 󰀂 · 󰀂L∗

be as defined in (2.1). Note that since L is compact and contains the
origin in its interior, both 󰀂 ·󰀂L and 󰀂 ·󰀂L∗ are equivalent to the standard
Euclidean norm and therefore, the space BVL(Ω) (and BVL,loc(Ω), resp.)
consisting of L1(Ω) functions with

TVL(f ;Ω)

= sup

󰀝󰁝

Ω
f div T dx : T ∈ C1

c (Ω,Rn), 󰀂T (x)󰀂L ≤ 1, ∀x
󰀞
< ∞,

remains unchanged when compared to BV (Ω) (and BVloc(Ω), resp.).
However, the anisotropic total variation TVL(f ;Ω) is generally not the
same as TV (f ;Ω). As a matter of fact, when f = 1K for some K ∈ Kn,
then TV (1K ;Rn) gives the surface area of K whereas TVL(1K ;Rn) gives
the mixed volume V1(K,L) =

󰁕
Sn−1 hLdSK . For f ∈ BVloc(Ω), we may

define the anisotropic total variation measure with respect to L by

󰀂 󰃚Df󰀂L∗ = hL(󰃚σf )󰀂Df󰀂.
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It can be shown that f ∈ BVL(Ω) if and only if 󰀂 󰃚 Df󰀂L∗ is a finite
measure. Moreover, we have TVL(f ;Ω) = 󰀂 󰃚Df󰀂L∗(Ω). Functions of
bounded anisotropic total variation were studied in, for example, [36,
37] where anisotropic isoperimetric inequalities and anisotropic Sobolev
inequalities were studied for sets of finite perimeter and functions of
bounded variation. It is important to note that many of the classical
results mentioned in the standard books [2, 34] work in the anisotropic
setting with only very minor alterations to the proofs.
Another direction of generalization to BV (Ω) is to replace the Lebes-

gue measure in Rn by a generic measure. Things start to get complicated
in this setting. As an example, the approximation of such BV functions
by smooth ones might fail. This explains why there are non-equivalent
ways of defining BV functions in a generic measure space (Rn, µ). We
mention [65] for one of the approaches where µ is a doubling measure.
When µ = ω(x)dx is absolutely continuous with respect to Lebesgue
measure, another way of generalizing the classical total variation (not
equivalent to the one given in [65]; see Section 5.1 in [65]) was given
in [6].
For our purpose, we adopt the following definition. We say a function

f ∈ L1(ωdx,Ω) is of bounded anisotropic weighted variation (or f ∈
BVL,ω(Ω)) if f ∈ BVloc(Ω) and ω ∈ L1(󰀂 󰃚Df󰀂L∗ ,Ω). In this case, we
define the (L,ω)-anisotropic total variation of f to be

(3.2) TVL,ω(f ;Ω) =

󰁝

Ω
ωd󰀂 󰃚Df󰀂L∗ .

To see how this is connected to the classical definition (3.1), we mention
that when ω : Rn → [0,∞] is a lower semi-continuous function with
ω(x) > 0 for all x ∕= o, using an approximation argument in both f and
ω, one can see that

TVL,ω(f ;Ω)

= sup

󰀝󰁝

Ω
f div T dx : T ∈ C1

c (Ω,Rn), 󰀂T (x)󰀂L ≤ ω(x), ∀x
󰀞
.

Since this representation is not required in the current work, we do not
provide a proof here.
Let E ⊂ Rn be a measurable set. When 1E ∈ BVL,ω(Rn), we say E

has finite (L,ω)-anisotropic weighted perimeter and write PerL,ω(∂E) =
TVL,ω(1E ;Rn).
Let f : Rn → R and t ∈ R, write

[f > t] = {x ∈ Rn : f(x) > t}.

For BV functions, the following version of the classical coarea formula
can be found in Figalli-Maggi-Pratelli [36, (2.22)]: if f ∈ BV (Rn) and
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ζ : Rn → [0,∞] is a Borel function, then
󰁝

Rn
ζd󰀂 󰃚Df󰀂L∗ =

󰁝 ∞

−∞

󰀕󰁝

Rn
ζd󰀂 󰃚D1[f>t]󰀂L∗

󰀖
dt.

In particular, this implies

(3.3) TVL,ω(f ;Rn) =
󰁝 ∞

−∞
PerL,ω(∂[f > t])dt.

4. Log-concave functions and their (L,ω) total variation

Throughout this section, if not specified otherwise, we let q > 0.
It is well-known that the set of convex bodies can be embedded nat-

urally into LC(Rn) via their characteristic functions. Let f = e−φ,
g = e−ψ be in LC(Rn) and s, t > 0. The sup-convolution between f and
g can be defined via the Legendre-Fenchel conjugate of their respectively
associated convex functions:

(4.1) s · f ⊕ t · g = e−(sφ∗+tψ∗)∗ .

When s = 1 − t, (4.1) coincides with (1.1). For the purpose of the
current work, we consider the special case s = 1, which we will write as
f⊕t·g. It is well-known that when f = 1K and g = 1L are characteristic
functions of convex bodies, then

1K ⊕ t · 1L = 1K+tL,

where K+ tL is the usual Minkowski combination between convex bod-
ies. Therefore, the supremum convolution ⊕ can be viewed as a natural
generalization of the Minkowski addition for convex bodies.
For each q > 0, the (q − n)-th moment of a log-concave function f is

defined as

󰁨Vq(f) =
󰁝

Rn
|x|q−nf(x)dx.

When f = 1K for some convex body K ∈ Kn
o , by polar coordinates, it

is simple to see that

󰁨Vq(1K) =
1

q

󰁝

Sn−1

ρqK(u)du = 󰁨Vq(K),

where 󰁨Vq(K) is the q-th dual quermassintegral of K. Therefore, the

quantity 󰁨Vq on LC(Rn) can be viewed as the natural generalization of
dual quermassintegrals for convex bodies.
In the seminal work [48, 62], the differentials of dual quermassinte-

grals were studied, which led to a family of long-sought-for geometric
measures known as (p, q)-dual curvature measures. These measures and
their characterization problems (called Minkowski-type problems) have
been intensively studied in the past few years and have already led to
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many interesting conjectures regarding isoperimetric inequalities as well
as the discovery of novel curvature flows.
It is natural to wonder whether the same philosophy can be applied

in the space of log-concave functions—given that all the elements (dual
quermassintegrals and Minkowski addition) have their natural counter-
parts in the larger space. It is the intention of the current section to
demonstrate that the answer is yes, with some minor restrictions on the
log-concave functions f and g. To explain why these restrictions are
needed, note that the variational formulas demonstrated in [48, 62] re-
quire the convex body to contain the origin as an interior point and con-
sequently the family of (p, q)-dual curvature measures are only defined
for such bodies. See, for example, equation (1.9) in [48]. Therefore, it is
natural to expect certain restrictions on f that mimic the requirement
that K has the origin in the interior as in the convex body case.
In the following, we show that the variation of the moment of f is

strongly connected to the theory of functions of bounded anisotropic
weighted variation in Section 3.
We will study the existence of the following limit

(4.2) δq(f, g) = lim
t→0+

󰁨Vq(f ⊕ t · g)− 󰁨Vq(f)
t

.

Note that it is not clear at all why the limit should exist.
For the rest of the section, we write ωq for the weight function

ωq(x) = |x|q−n,
for q > 0. It is important to emphasize that the following proofs actually
work for more general weight functions. As an example, the proofs (with
very minor modifications) will work for the Gaussian weight function

ω(x) = e−|x|
2/2.

We require the following lemma from [48] (see also Theorem 6.5 in
[62]).

Lemma 4.1 ( [48]). Let K ∈ Kn
o and g : Sn−1 → R be a continuous

function. For sufficiently small |t|, define ht : Sn−1 → (0,∞) by

ht = hK + tg.

Then, we have

(4.3) lim
t→0

󰁨Vq([ht])− 󰁨Vq([h0])
t

=

󰁝

Sn−1

g(v)d 󰁨C1,q(K, v),

where the definition of 󰁨C1,q(K, ·) is given in Section 2.1.

When g = hL for some compact convex L ⊂ Rn, we will denote the
right-hand-side of (4.3) by 󰁨V1,q(K,L); that is

󰁨V1,q(K,L) =
󰁝

Sn−1

hL(v)d 󰁨C1,q(K, v) =

󰁝

Sn−1

hL(v)

hK(v)
d 󰁨Cq(K, v).
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Recall that a log-concave function is almost everywhere differentiable.
It was shown in Rotem [68] that if f ∈ LC(Rn) and f is L1, then
f ∈ BV (Rn) and its distributional derivative is given by

(4.4) σf󰀂Df󰀂 = ∇f dx− fνKf
dHn−1|∂Kf

,

where Kf is the support of f and is thus convex by the fact that f ∈
LC(Rn). With this in mind, by (3.2), it is simple to see that if K,L ∈
Kn
o , then K is of finite anisotropic weighted perimeter. Indeed,

(4.5)

PerL,ωq(∂K) = TVL,ωq(1K ,Rn)

=

󰁝

∂K
hL(νK(x))|x|q−ndx

=

󰁝

Sn−1

hL(v)d 󰁨C1,q(K, v)

= 󰁨V1,q(K,L) < ∞.

The following lemma is due to Huang-LYZ [48]. We provide a short
proof here for the convenience of the readers as the lemma as stated
here is buried in the long proof of Lemma 4.1 in [48].

Lemma 4.2. Let h0, h1 : Sn−1 → (0,∞) be continuous. Denote
Ki = [hi]. Then, for every u ∈ Sn−1, we have

|log ρK1(u)− log ρK0(u)| ≤ max
Sn−1

| log h1 − log h0|.

Proof. We fix an arbitrary u ∈ Sn−1. By (2.2) and (2.3), for each
i = 0, 1, we have

(4.6) ρKi(u)〈u, v〉 ≤ hi(v), ∀v ∈ Sn−1

and there exists vi ∈ Sn−1 such that

(4.7) ρKi(u)〈u, vi〉 = hi(vi).

By (4.7) and (4.6),

(4.8)
log ρK1(u)− log ρK0(u) = log ρK1(u)− log h0(v0) + log〈u, v0〉

≤ log h1(v0)− log h0(v0)

Reversing the role of K1 and K0 immediately gives

(4.9) log ρK0(u)− log ρK1(u) ≤ log h0(v1)− log h1(v1).

The desired result immediately follows from (4.8) and (4.9). q.e.d.

Lemma 4.3. Let K ∈ Kn
o and r0 > 0 be such that

B(r0) ⊂ K.

Let L be a compact convex subset of Rn and denote

Kt = K + tL.
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Then, there exist C > 0, δ0 > 0 which depend only on r0 and maxL |x|,
such that

󰀏󰀏󰀏󰀏
log ρKt − log ρK

t

󰀏󰀏󰀏󰀏 < C on Sn−1,

for every t ∈ (0, δ0).

Proof. Since K ∈ Kn
o and L is a compact convex set, for sufficiently

small t > 0 dependent only on r0 and maxL |x|, we have that Kt ∈
Kn
o . For simplicity, we will write ht = hKt . Note that ht is a positive

continuous function on Sn−1 and [ht] = Kt.
Note that on Sn−1,

(4.10)

log ht = log(h0 + thL)

= log h0 + log(1 + thL/hK)

= log h0 + t
hL
hK

+ o(t, ·),

where

|o(t, v)| ≤ hL(v)
2

2(hK(v)− |thL(v)|)2
t2, v ∈ Sn−1.

It is simple to see that there exist δ0, C1 > 0 that only depend on r0
and maxL |x|, such that for each 0 < t < δ0, we have

(4.11)

󰀏󰀏󰀏󰀏
o(t, v)

t

󰀏󰀏󰀏󰀏 < C1,

uniformly in t and v. By Lemma 4.2, (4.10), and (4.11), for each fixed
0 < t < δ0

󰀏󰀏󰀏󰀏
log ρKt − log ρK

t

󰀏󰀏󰀏󰀏 ≤
maxv∈Sn−1 |log ht(v)− log h0(v)|

t
< C,

where C > 0 only depends on r0, and maxL |x|. q.e.d.

Corollary 4.4. Under the same assumptions as in Lemma 4.3, for
each q > 0, there exists δ0 > 0 dependent only on r0 and maxL |x| such
that

󰀏󰀏󰀏󰀏󰀏
ρqKt

− ρqK
t

󰀏󰀏󰀏󰀏󰀏 < 2qCqρqK , ∀t ∈ (0, δ0).

Here C is from Lemma 4.3.
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Proof. By Lemma 4.3 and the mean value theorem,
󰀏󰀏󰀏󰀏󰀏
ρqKt

− ρqK
t

󰀏󰀏󰀏󰀏󰀏 =
󰀏󰀏󰀏󰀏
eq log ρKt − eq log ρK

log ρKt − log ρK

󰀏󰀏󰀏󰀏

󰀏󰀏󰀏󰀏
log ρKt − log ρK

t

󰀏󰀏󰀏󰀏

≤ C

󰀏󰀏󰀏󰀏
eq log ρKt − eq log ρK

log ρKt − log ρK

󰀏󰀏󰀏󰀏

= Cqθq,

where θ is between ρKt and ρK . Since B(r0) ⊂ K and L is compact, for
sufficiently small δ0 (dependent on r0 and maxL |x|), we have Kt ⊂ 2K
for each 0 < t < δ0. Consequently, θ < 2ρK , which immediately gives
the desired bound. q.e.d.

Denote [f ≥ s] = {x ∈ Rn : f(x) ≥ s}.

Theorem 4.5. Let q > 0, f ∈ LC(Rn) with non-zero finite L1 norm
and L be a compact convex subset of Rn with o ∈ L. Assume f achieves
its maximum at o, and

(4.12) lim sup
x→o

|f(x)− f(o)|
|x|α+1

< ∞,

for some 0 < α < 1. Then,

δq(f, 1L) =

󰁝 ∞

0

󰁨V1,q([f ≥ s], L) ds < ∞.

Proof. For simplicity, write

Ks = [f ≥ s],

and M = f(o) = max f .
We first claim that there exist ε0 > 0 and c0 > 0 such that

(4.13) Ks ⊃ c0(M − s)
1

α+1B,

for any s ∈ (M −ε0,M). Indeed by (4.12), there exist Λ > 0 and η0 > 0
such that for every x ∈ B(η0), we have

M − f(x) = |f(x)− f(o)| < Λ|x|α+1,

where we used the fact that M = f(o) = max f . Equivalently, this
implies that for every x ∈ B(η0), we have

f(x) > M − Λ|x|α+1.

A direct computation now shows that if s ∈ (0,M), then

Ks ⊃ B

󰀣󰀕
M − s

Λ

󰀖 1
α+1

󰀤
∩B(η0).
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We now choose ε0 > 0 so that for every s ∈ (M − ε0,M), we have

B

󰀣󰀕
M − s

Λ

󰀖 1
α+1

󰀤
⊂ B(η0).

Consequently, we have

Ks ⊃ B

󰀣󰀕
M − s

Λ

󰀖 1
α+1

󰀤
= c0(M − s)

1
α+1B,

for some c0 > 0.
In particular, (4.13) implies, for each s < M , that the set Ks contains

the origin in the interior. We also require that ε0 is sufficiently small
so that Ks ⊂ c1B for each s ∈ (M − ε0,M) and some c1 > 0. This is
possible since f ∈ L1 ∩ LC(Rn) implies that lim|x|→∞ f(x) = 0.
Note that by layer cake representation, we have

δq(f, 1L) = lim
t→0+

󰁝 M

0

󰁨Vq(Ks + tL)− 󰁨Vq(Ks)

t
ds

Step 1:

lim
t→0+

󰁝 M

M−ε0

󰁨Vq(Ks + tL)− 󰁨Vq(Ks)

t
ds

=

󰁝 M

M−ε0

lim
t→0+

󰁨Vq(Ks + tL)− 󰁨Vq(Ks)

t
ds.

In particular, the integral on the right is finite.

Proof of step 1: For t ∈ (0, 1) and s ∈ (M − ε0,M), let

g(t; s) = 󰁨Vq(Ks + tL).

By Lemma 4.1, for each s ∈ (M − ε0,M), the function g(t; s) is differ-
entiable in t and

∂

∂t
g(t; s) =

󰁝

Sn−1

hL(v)

hKs+tL(v)
d 󰁨Cq(Ks + tL, v).

Therefore, by the mean value theorem

g(t; s)− g(0; s)

t
=

󰁝

Sn−1

hL(v)

hKs+θL(v)
d 󰁨Cq(Ks + θL, v),
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where θ ∈ [0, t] and is dependent on s. Since o ∈ L, we have Ks + θL ⊃
Ks ⊃ c0(M − s)

1
1+αB. Since L is compact, for t ∈ (0, 1), we have,

g(t; s)− g(0; s)

t
≤ qmax

L
|x| · 1

c0
(M − s)−

1
1+α 󰁨Vq(Ks + L)

≤ qmax
L

|x| · 1
c0
(M − s)−

1
1+α 󰁨Vq(c1B + L)

≤ C(M − s)−
1

1+α ,

for some C > 0.

Note that (M −s)−
1

1+α is integrable near M thanks to α > 0. There-
fore, by the dominated convergence theorem, we get the desired result.

q.e.d.

Step 2:

lim
t→0+

󰁝 M−ε0

0

󰁨Vq(Ks + tL)− 󰁨Vq(Ks)

t
ds

=

󰁝 M−ε0

0
lim
t→0+

󰁨Vq(Ks + tL)− 󰁨Vq(Ks)

t
ds.

In particular, the integral on the right is finite.

Proof to step 2: For each s ∈ (0,M − ε0), there exists λ0 > 0 such that

Ks ⊃ KM−ε0 ⊃ λ0B.

By Corollary 4.4, for t ∈ (0, δ0) (where δ0 is from Corollary 4.4),

󰁨Vq(Ks + tL)− 󰁨Vq(Ks)

t
=

1

q

󰁝

Sn−1

ρqKs+tL
− ρqKs

t
du ≤ 2qC

󰁝

Sn−1

ρqKs
du.

Here the constant C is from Corollary 4.4. In particular, C and δ0 are
not dependent on s.
Note now that

1

q

󰁝 M−ε0

0

󰁝

Sn−1

ρqKs
duds

=

󰁝 M−ε0

0

󰁨Vq(Ks)ds

≤
󰁝 M

0

󰁨Vq(Ks)ds

=

󰁝

Rn
|x|q−nf(x)dx < ∞.

Therefore, we may use the dominated convergence theorem to justify
the exchange of limit and integration. q.e.d.
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By Step 1 and Step 2, we have

δq(f, 1L) =

󰁝 M

0
lim
t→0+

󰁨Vq(Ks + tL)− 󰁨Vq(Ks)

t
ds

=

󰁝 M

0

󰁨V1,q([f ≥ s], L)ds

=

󰁝 ∞

0

󰁨V1,q([f ≥ s], L)ds.

Note that it is included in Steps 1 and 2 that the right-hand side is
finite. q.e.d.

We first show the validity of Theorem 1.3 in the special case that g
is a constant multiple of a characteristic function.

Theorem 4.6. Let q > 0, f ∈ LC(Rn) with non-zero finite L1 norm
and L be a compact convex subset of Rn with o ∈ L. Assume f achieves
its maximum at o and

lim sup
x→o

|f(x)− f(o)|
|x|α+1

< ∞,

for some 0 < α < 1.
Let g = c1L = e−ψ for some c > 0. Then,

δq(f, g) =

󰁝

Rn
ψ∗(y)d 󰁨Ce

q (f ; y) +

󰁝

Sn−1

hL(v)d 󰁨Cs
q (f ; v).

Proof. We first restrict ourselves to the case where L ∈ Kn
o .

We may assume without loss of generality that c = 1. In this case,
by (2.6), ψ∗ = hL.
According to Theorem 4.5, (4.5), and (3.3), we have

∞ > δq(f, 1L) =

󰁝 ∞

0

󰁨V1,q([f ≥ s], L) ds

=

󰁝 ∞

0
PerL,ωq(∂[f ≥ s])ds

= TVL,ωq(f ;Rn).

By (3.2) and (4.4), we have
(4.14)

δq(f, 1L)

=TVL,ωq(f ;Rn)

=

󰁝

Rn
hL(∇φ)f(x)|x|q−ndx+

󰁝

∂Kf

hL(νKf
)f(x)|x|q−ndHn−1(x)

=

󰁝

Rn
hL(y)d 󰁨Ce

q (f ; y) +

󰁝

Sn−1

hL(v)d 󰁨Cs
q (f ; v).
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Here, the last equality follows straightly from the definition of 󰁨Ce
q and

󰁨Cs
q . See Definitions 1.1 and 1.2.
To see that the result still holds when L is a compact convex set with

o ∈ L, consider the body L′ = L+B ∈ Kn
o . Then, by using (4.14) twice,

we have
(4.15)

δq(f, 1L′) =

󰁝

Rn
hL′(y)d 󰁨Ce

q (f ; y) +

󰁝

Sn−1

hL′(v)d 󰁨Cs
q (f ; v)

=

󰁝

Rn
hL(y)d 󰁨Ce

q (f ; y) +

󰁝

Sn−1

hL(v)d 󰁨Cs
q (f ; v)

+

󰁝

Rn
hB(y)d 󰁨Ce

q (f ; y) +

󰁝

Sn−1

hB(v)d 󰁨Cs
q (f ; v)

=

󰁝

Rn
hL(y)d 󰁨Ce

q (f ; y) +

󰁝

Sn−1

hL(v)d 󰁨Cs
q (f ; v) + δq(f, 1B).

On the other hand, note that 󰁨V1,q(K,L) is linear in L with respect to
the Minkowski addition. Therefore, by Theorem 4.5, we have

(4.16) δq(f, 1L′) = δq(f, 1L) + δq(f, 1B).

The desired result now follows from combining (4.15) and (4.16). q.e.d.

We need the following lemma from [67].

Lemma 4.7. Let f = e−φ, g = e−ψ ∈ LC(Rn) be such that f has
nonzero finite L1 norm and g is compactly supported. Then for almost
all x ∈ Rn, we have

lim
t→0+

(f ⊕ (t · g))(x)− f(x)

t
= ψ∗(∇φ(x))f(x).

We are now ready to prove the promised variational formula; that is,
compute the limit in (4.2).

Theorem 4.8. Let q > 0 and f = e−φ ∈ LC(Rn) with non-zero finite
L1 norm. Assume f achieves its maximum at o and

(4.17) lim sup
x→o

|f(x)− f(o)|
|x|α+1

< ∞,

for some 0 < α < 1. Let g = e−ψ ∈ LC(Rn) be compactly supported and
g(o) > 0. Then,

(4.18) δq(f, g) =

󰁝

Rn
ψ∗(y)d 󰁨Ce

q (f ; y) +

󰁝

Sn−1

hKg(v)d 󰁨Cs
q (f ; v).

Proof. Let ft = f ⊕ (t · g). Since g is compactly supported, there

exists A > 0 such that g ≤ A1Kg and therefore ft ≤ 󰁨ft = f ⊕ (t ·A1Kg).
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By Lemma 4.7,

lim
t→0+

󰁨ft − ft
t

= lim
t→0+

󰁨ft − f

t
− lim

t→0+

ft − f

t

=hKg(∇φ)f + lnAf − ψ∗(∇φ)f.

By Fatou’s lemma, we have

lim inf
t→0+

󰁝

Rn

󰁨ft − ft
t

|x|q−ndx

≥
󰁝

Rn
[hKg(∇φ)f + lnAf − ψ∗(∇φ)f ] · |x|q−ndx

=

󰁝

Rn
(hKg(y)− ψ∗(y))d 󰁨Ce

q (f ; y) + lnA · 󰁨Vq(f).

Since g(o) > 0, we have o ∈ Kg. By Theorem 4.6, we have

lim
t→0+

󰁝 󰁨ft − f

t
|x|q−ndx

=

󰁝

Rn
hKg(y)d 󰁨Ce

q (f ; y) + lnA · 󰁨Vq(f) +
󰁝

Sn−1

hKg(v)d 󰁨Cs
q (f ; v).

Combining the above two formulas, we have

lim sup
t→0+

󰁝
ft − f

t
|x|q−ndx

≤
󰁝

Rn
ψ∗(y)d 󰁨Ce

q (f ; y) +

󰁝

Sn−1

hKg(v)d 󰁨Cs
q (f ; v).

For the other direction of the inequality, define for each positive in-
teger j, the set

Qj =

󰀝
x ∈ Rn : g(x) ≥ 1

j

󰀞
.

Since g is compactly supported, we conclude that Qj ↑ Kg. Since g(o) >
0, for sufficiently large j, we have o ∈ Qj . We focus on such j.
Let

ḡj =
1

j
1Qj , and f̄j,t = f ⊕ t · ḡj .

Note that f̄j,t ≤ ft. Arguing the same way as before, we have

lim inf
t→0+

󰁝
ft − f̄j,t

t
|x|q−ndx ≥

󰁝

Rn
(ψ∗(y)−hQj (y)) d

󰁨Ce
q (f ; y)+ln j · 󰁨Vq(f),
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and

lim
t→0+

󰁝
f̄j,t − f

t
|x|q−ndx

=

󰁝

Rn
hQj (y)d

󰁨Ce
q (f ; y)− ln j · 󰁨Vq(f) +

󰁝

Sn−1

hQj (v)d
󰁨Cs
q (f ; v).

Adding the above two formulas, we have

lim inf
t→0+

󰁝
ft − f

t
|x|q−ndx ≥

󰁝

Rn
ψ∗(y) d 󰁨Ce

q (f ; y)+

󰁝

Sn−1

hQj (v)d
󰁨Cs
q (f ; v).

Letting j → ∞, by the monotone convergence theorem, we have

lim inf
t→0+

󰁝
ft − f

t
|x|q−ndx ≥

󰁝

Rn
ψ∗(y) d 󰁨Ce

q (f ; y)+

󰁝

Sn−1

hKg(v)d 󰁨Cs
q (f ; v).

This completes the proof. q.e.d.

We remark here that the hypothesis (4.12) in Theorem 4.5 (and conse-
quently (4.17) in Theorem 4.8) is not the best hypothesis. In particular,
we show that if the level sets of f near the origin are uniformly in “good
shape”, then Theorem 4.5 still holds when L ∈ Kn

o .
For K ∈ Kn

o , define

rK = max{r ≥ 0 : rB ⊂ K}

and

RK = min{r ≥ 0 : K ⊂ rB}.

Proposition 4.9. Let f ∈ LC(Rn) with non-zero finite L1 norm and
L ∈ Kn

o . Assume f achieves its maximum at o. If there exist ε0 > 0
and C > 0 such that for almost all f(o)− ε0 < s < f(o), we have

(4.19) 1 ≤
R[f≥s]
r[f≥s]

< C,

then

δq(f, 1L) =

󰁝 ∞

0

󰁨V1,q([f ≥ s], L) ds < ∞.

Proof. Denote f(o) by M and Ks = [f ≥ s]. Like in the proof of
Theorem 4.5, it is sufficient to show

(4.20)

lim
t→0+

󰁝 M

M−ε0

󰁨Vq(Ks + tL)− 󰁨Vq(Ks)

t
ds

=

󰁝 M

M−ε0

lim
t→0+

󰁨Vq(Ks + tL)− 󰁨Vq(Ks)

t
ds,
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and

(4.21)

lim
t→0+

󰁝 M−ε0

0

󰁨Vq(Ks + tL)− 󰁨Vq(Ks)

t
ds

=

󰁝 M−ε0

0
lim
t→0+

󰁨Vq(Ks + tL)− 󰁨Vq(Ks)

t
ds.

Note that the latter follows in the same way as before. Hence, we only
need to justify (4.20).
By (4.19), it is simple to see that for almost all s ∈ (M − ε0,M) and

t ∈ (0, 1), we have

RKs+tL

rKs+tL
< C1

for some C1 > 0 independent of s and t. Consequently, there exist
c2 > 0 independent of s and t such that

(4.22) c2 < νKs+tL(x) ·
x

|x| ≤ 1,

for almost all x ∈ ∂(Ks + tL).
Let g(t; s) be as defined in the proof of Theorem 4.5. By the same

argument, we have

g(t; s)− g(0; s)

t
=

󰁝

Sn−1

hL(v)

hKs+θL(v)
d 󰁨Cq(Ks + θL, v),

where θ ∈ [0, t] and is dependent on s. By the fact that L ∈ Kn
o and

(4.22), there exists C3 > 0 independent of t and s such that

(4.23)
g(t; s)− g(0; s)

t
≤ C3

󰁝

Sn−1

ρq−1
Ks+θL(u)du.

When q ≥ 1, by (4.23) and the fact that Ks + θL ⊂ Ks + L ⊂
KM−ε0 + L whenever t ∈ (0, 1) and s ∈ (M − ε0,M), we have

g(t; s)− g(0; s)

t
≤ C3

󰁝

Sn−1

ρq−1
KM−ε0

+L(u)du ≤ C4,

for some C4 > 0. Equation (4.20) then follows from the bounded con-
vergence theorem.
Let us now concentrate on the case q ∈ (0, 1). By the fact that f is

positive in a neighborhood of the origin, there exists c5 > 0 such that

f(x) ≥ M/2,
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for all |x| ≤ c5. By log-concavity of f , we have

f(y) = f

󰀕󰀕
1− |y|

c5

󰀖
o+

|y|
c5

󰀕
y

|y|c5
󰀖󰀖

≥ M
1− |y|

c5

󰀕
M

2

󰀖 |y|
c5

=M · 2−
|y|
c5 ,

for every 0 < |y| ≤ c5. Consequently, there exist δ0 > 0 and C6 > 0
such that for all s ∈ (M − δ0,M), we have

Ks ⊃ C6(logM − log s)B.

Therefore, (4.23) and the fact that 0 < q < 1 in combination with
Ks ⊂ Ks + θL, show that for each s ∈ (M − δ0,M),

g(t; s)− g(0; s)

t
≤ C3

󰁝

Sn−1

ρq−1
Ks

(u)du ≤ C7(logM − log s)q−1,

for some C7 > 0. Note that
󰁝 M

M−δ0

(logM − log s)q−1ds < ∞.

Hence, by the dominated convergence theorem, we conclude the validity
of (4.20) with ε0 replaced by δ0. Note that (4.21) holds with ε0 replaced
by δ0 as well—via the exact same argument. Therefore, we derive the
desired result. q.e.d.

Remark 4.10. We remark here that since in the proof of Theorem 4.8
we required (4.17) only for the ability to apply Theorem 4.6, by Proposi-
tion 4.9, we conclude that with the additional assumption that the origin
is an interior point of the support of g, Theorem 4.8 continues to hold
with (4.17) replaced by (4.19). In particular, hypothesis (4.19) allows
for log-concave functions such as

f(x) = e−󰀂x󰀂K ,

where K ∈ Kn
o . It is of great interest to see whether assumptions like

(4.17) and (4.19) can be dropped altogether.

A few additional remarks are in order:

1) Theorem 4.8 justifies why we referred to 󰁨Ce
q (f ; ·) and 󰁨Cs

q (f ; )̇ as the
Euclidean and spherical dual curvature measures for log-concave
functions. In particular, when f and g are characteristic functions
of convex bodies containing the origin in their respective interiors,
(4.18) recovers its convex geometric counterpart (1.2).

2) Since φ is convex and therefore almost everywhere differentiable

in the support of f , the measure 󰁨Ce
q (f ; ·) is well-defined. Notice
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that its total measure is equal to 󰁨Vq(f). Therefore, by Proposition
2.1, as long as f is in L1, the measure 󰁨Ce

q (f ; ·) is always finite.
3) Since f is log-concave, its support Kf is necessarily convex and

therefore it makes sense to write νKf
. However, even with the

assumption that f ∈ L1, it might not be the case that the mea-

sure 󰁨Cs
q (f ; ·) is finite. To see this, simply take the example where

Kf has a facet that contains the origin in the relative interior. In
that case, the density |x|q−n will have a non-integrable singularity
at the origin in that subspace when q < 1. This counterexample
suggests that we must impose some condition on f such that f
“contains the origin in the interior”. With the additional assump-
tion that Kf contains the origin in its interior, one may show that
󰁨Cs
q (f ; ·) is always a finite measure.

4) When f = 1K is the characteristic function of a convex body

K ∈ Kn
o , the Euclidean dual curvature measure 󰁨Ce

q (f ; ·) reduces
to a point mass concentrated at the origin and

󰁨Cs
q (f ; ·) = 󰁨C1,q(K, ·).

5) Let us emphasize again that although the weight function ωq =
|x|q−n is the only type of weight functions treated in this sec-
tion, many results presented here can be shown for other weight
functions (with only small changes). In particular, the Gaussian
weight function is one of the many weight functions that can be
used here to replace ωq. We mention that in the setting of convex
bodies, a variational formula for the Gaussian volume and its cor-
responding Gaussian Minkowski problem was previously studied
by the authors in [49].

5. The Minkowski problem for 󰁨Ce
q

The purpose of this section is to study the following Minkowski prob-
lem for the Euclidean dual curvature measure of log-concave functions.
We will restrict our attention to the even case—the prescribed mea-

sure µ in (1.7) is even and we are restricting our solution set to all even
functions f ∈ LC(Rn).
5.1. The variational structure. In this subsection, we convert the
solvability of (1.7) into the existence of a minimizer to a minimization
problem.
We recall the following result in [68, Proposition 2.1].

Proposition 5.1 ( [68]). Let φ, ζ : Rn → (−∞,∞] be lower semi-
continuous functions. Assume ζ is bounded from below and ζ(0),φ(0) <
∞. Then at every point x0 ∈ Rn where φ∗ is differentiable, we have

∂

∂t

󰀏󰀏󰀏󰀏
t=0+

(φ+ tζ)∗(x0) = −ζ(∇φ∗(x0)).



DUAL CURVATURE MEASURES FOR LOG-CONCAVE FUNCTIONS 29

Note that in [68, Proposition 2.1], the derivative is stated as a one-
sided derivative. However, for ζ ∈ Cc(Rn), one can consider −ζ and
immediately get that the derivative is double-sided.
We will require the following variational formula.

Lemma 5.2. Let f ∈ LC(Rn) be an even function and q > 0. Sup-
pose f has non-zero finite (q−n)-th moment and takes the form f = e−φ

for some φ ∈ CVX(Rn). For ζ ∈ Cc(Rn), define

φt(x) = (φ∗ + tζ)∗(x),

and

ft(x) = e−φt(x).

Then, we have

d

dt

󰀏󰀏󰀏󰀏
t=0

󰁨Vq(ft) =
󰁝

Rn
ζ(∇φ(x))|x|q−nf(x) dx =

󰁝

Rn
ζ(y)d 󰁨Ce

q (f ; y).

Proof. We note that the second equality follows directly from the

definition of 󰁨Ce
q (f ; ·) and therefore only the first equality needs a proof.

By the fact the f is even, Proposition 5.1, and the remark immediately
below it, we have

∂φt(x)

∂t

󰀏󰀏󰀏󰀏
t=0

= −ζ(∇φ(x)),

almost everywhere in Rn.
For simplicity, write

ht(x) = |x|q−nft(x).

Since ζ ∈ Cc(Rn), there exists M > 0 such that |ζ| ≤ M . Therefore, we
have

φ∗ − |t|M ≤ φ∗ + tζ ≤ φ∗ + |t|M.

Since Legendre transform reverses the order, we have

φ− |t|M = (φ∗ + |t|M)∗ ≤ (φ∗ + tζ)∗ ≤ (φ∗ − |t|M)∗ = φ+ |t|M.

Using the above estimates, we have the existence of C > 0, such that

󰀏󰀏󰀏󰀏
ht(x)− h(x)

t

󰀏󰀏󰀏󰀏 = |x|q−n
󰀏󰀏󰀏󰀏󰀏
e−φt(x) − e−φ(x)

t

󰀏󰀏󰀏󰀏󰀏

≤ |x|q−ne−φ(x)

󰀏󰀏󰀏󰀏󰀏max

󰀫
e|t|M − 1

t
,
e−|t|M − 1

t

󰀬󰀏󰀏󰀏󰀏󰀏

≤ 2C|x|q−ne−φ(x),
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for sufficiently small |t|. Therefore, by the dominated convergence the-
orem, we have

d

dt

󰀏󰀏󰀏󰀏
t=0

󰁨Vq(ft) =
󰁝

Rn

∂

∂t

󰀏󰀏󰀏󰀏
t=0

ht(x)dx

=

󰁝

Rn
ζ(∇φ(x))|x|q−nf(x)dx.

q.e.d.

Let A > 0 be an arbitrary number and µ be a nonzero even finite
Borel measure on Rn. Consider the following optimization problem
(5.1)

inf

󰀝󰁝

Rn
φdµ : 󰁨Vq(e−φ∗

) ≥ A,φ ≥ 0,φ ∈ L1(µ),φ is an even function

󰀞
.

The following lemma shows that the Euler-Lagrange equation of the
above constrained optimization problem implies the existence of a solu-
tion to (1.7).

Lemma 5.3. Let q > 0 and µ be a non-zero even finite Borel mea-
sure on Rn that is not concentrated in any proper subspace. If an even
function φ0 ∈ CVX(Rn) is such that φ0 ∈ L1(µ), φ0(o) > 0,

󰁨Vq(e−φ∗
0) = A, for some A > 0,

and

󰁝

Rn
φ0dµ

= inf

󰀝󰁝

Rn
φdµ : 󰁨Vq(e−φ∗

) ≥ A,φ ≥ 0,φ ∈ L1(µ),

φ is an even function} ,

then

µ = 󰁨Ce
q (f0; ·),

where

f0 =
|µ|

󰁨Vq(e−φ∗
0)
e−φ∗

0 .

Moreover, f0 ∈ L1.

Proof. Let ζ ∈ Cc(Rn) be an even function. Set

φt(x) = φ0(x) + tζ(x)

and

λ(t) = 󰁨Vq(e−φ∗
t ).
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The fact that λ(t) is finite for small |t| comes from Proposition 2.2, the
fact that φ0 ∈ L1(µ), and that µ is a finite measure not concentrated in
any proper subspaces. Set

󰁨φt(x) = φt(x)− lnλ(t) + lnA.

It is simple to notice that

󰁨Vq(e−
󰁨φ∗
t ) = 󰁨Vq(e−φ∗

t )
A

λ(t)
= A.

Since ζ ∈ Cc(Rn), there existsM > 0 such that |ζ| < M . This implies
that

λ(t) ≤ 󰁨Vq(e−φ∗
0)e|t|M = Ae|t|M .

Thus, the choice of 󰁨φt implies that when |t| is sufficiently small, we have

󰁨φt ≥ φ0(o)− 2|t|M > 0.

Such 󰁨φt satisfies the constraints of the optimization problem. Since φ0

is the minimizer and 󰁨φ0 = φ0, by Lemma 5.2,

0 =
d

dt

󰀏󰀏󰀏󰀏
t=0

󰁝

Rn
󰁨φtdµ

=

󰁝

Rn
ζ(x)dµ(x)− |µ|

A
λ′(0)

=

󰁝

Rn
ζ(x)dµ(x)−

󰁝

Rn
ζ(x)d 󰁨Ce

q (f0;x),

where f0 = e−φ∗
0+ln |µ|−ln(A). Since ζ is arbitrary in Cc(Rn), this implies

that

µ = 󰁨Ce
q (f0; ·).

To see that f0 ∈ L1, note that since µ is not concentrated in any
proper subspaces and φ0 ∈ L1(µ), we conclude that φ0 is finite in a
neighborhood of the origin. The fact that f0 ∈ L1 now follows from the
Proposition 2.2 with q = n. q.e.d.

Note that although the requirement φ ≥ 0 in the constraints of the
optimization problem is a closed condition, to make the Euler Lagrange
equation equal to 0, we have to establish that the minimizer actually
satisfies a stronger condition (φ0 > 0). This will be done in the next
subsection.



32 Y. HUANG, J. LIU, D. XI & Y. ZHAO

5.2. Existence of a minimizer. This section is dedicated to showing
the existence of a minimizer to (5.1) under the assumption that µ is an
even measure.
It turns out that the C0 estimates here are closely related to the

estimates of the dual quermassintegrals of level sets of convex func-
tions. This is perhaps not surprising, given that in the case of char-
acteristic functions, the (q − n)-th moment of a log-concave function
reduces to the q-th dual quermassintegral of a convex body. The follow-
ing lemma reveals the simple fact that if the images of the orthogonal
projections of a set of convex bodies onto a k-dimensional subspace,
where k = 1, . . . , n − 1, are uniformly bounded, then their q-th dual
quermassintegrals are uniformly bounded when q < k.

Lemma 5.4. Let k = 1, . . . , n− 1, and 0 < q < k. For each R > 0,
there exists C > 0, such that for all K ∈ Kn

o satisfying

(5.2) PξK ⊂ B(R) ∩ ξ, for some k-dim subspace ξ ⊂ Rn,

we have

󰁨Vq(K) < C.

Here, we use PξK to denote the image of the orthogonal projection of
K onto ξ.

Proof. By (5.2), we have

K ⊂ B(
√
2R)∪[PξK×(ξ⊥\B(R))] ⊂ B(

√
2R)∪[(B(R)∩ξ)×(ξ⊥\B(R))].

Hence,

󰁨Vq(K)

≤
󰁝

ξ⊥\B(R)

󰁝

B(R)∩ξ
|(y, z)|q−ndHk(y)dHn−k(z) +

󰁝

B(
√
2R)

|x|q−ndx

≤
󰁝

ξ⊥\B(R)
|z|q−ndHn−k(z)

󰁝

B(R)∩ξ
dHk(y) +

C

q
(
√
2R)q

=CRk

󰁝 ∞

R
ρq−nρn−k−1dρ+

C

q
(
√
2R)q

=C
1

k − q
Rq +

C

q
(
√
2R)q.

q.e.d.

For K ∈ Kn
o , we write

V q(K) =

󰀕
1

q

󰁝

Sn−1

ρqK(u)du

󰀖 1
q

,

for the normalized version of dual quermassintegrals.
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A quick application of Lemma 5.4 gives the following Blaschke-Santaló
type estimates for normalized dual quermassintegrals. This is a special
case of Theorem 3.1 in [21].

Lemma 5.5. Let K be an origin-symmetric convex body in Rn. If
q ∈ (0, 1) and p > 0, then there exists C > 0 independent of K such
that

(5.3) V q(K
∗)V p(K) < C.

Proof. Let v0 ∈ Sn−1 be such that

hK∗(v0) = min
v∈Sn−1

hK∗(v).

Note that the functional V q(K
∗)V p(K) is invariant under rescaling of

K. Therefore, by rescaling, we may assume hK∗(v0) = 1. This, by the
choice of v0, implies

B ⊂ K∗,

and consequently,

(5.4) K ⊂ B.

Moreover,

PξK
∗ ⊂ B ∩ ξ,

where ξ = span{v0}. Equation (5.3) follows from Lemma 5.4 and (5.4).
q.e.d.

By integrating (in a certain way) over level sets of a log-concave
function, Lemma 5.5 readily implies the following Blaschke-Santaló type
inequality for log-concave functions.

Lemma 5.6. Let φ ∈ CVX(Rn) be an even function with φ(o) = 0.
Assume φ is finite in a neighborhood of the origin and lim|x|→∞ φ(x) =
∞. Suppose q > 0 and 0 < p < 1. There exists C > 0, independent of
φ, such that

󰀕󰁝

Rn
|x|q−ne−φ∗(x)dx

󰀖󰀕󰁝 ∞

0
e−tV p([φ ≤ t])qdt

󰀖
< C.

Proof. Recall that, for convenience, when no confusion arises, a con-
stant C > 0 might change from line to line (or even within the same
line).
By Proposition 2.2, since φ is finite in a neighborhood of the origin,

we have 󰁝

Rn
|x|q−ne−φ∗(x)dx < ∞.

By the definition of the Legendre-Fenchel transform, we have

φ∗(x) = sup{〈x, y〉 − φ(y)} ≥ −φ(o) = 0.
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Furthermore, we have for any s, t ≥ 0,

[φ∗ ≤ s] ⊂ (s+ t)[φ ≤ t]∗.

The proof of this fact can be found, for example, in the proof of The-
orem 2.1 in [3]. Note that since φ is finite in a neighborhood of the
origin and φ(o) = 0, we conclude that for each t > 0, the sublevel set
[φ ≤ t] contains the origin in the interior. On the other hand, since
lim|x|→∞ φ(x) = ∞, the level set [φ ≤ t] is bounded. Lemma 5.5 now
implies the existence of C > 0 such that

V q([φ
∗ ≤ s]) ≤ (s+ t)V q([φ ≤ t]∗) ≤ C(s+ t)V p([φ ≤ t])−1.

By definition of V q, we have

(5.5)

󰁝

[φ∗≤s]
|x|q−ndx ≤ C(s+ t)qV p([φ ≤ t])−q.

Set

F (s) =

󰀫
e−s

󰁕
[φ∗≤s] |x|

q−ndx, if s ≥ 0

0, otherwise,

and

G(t) =

󰀫
e−tV p([φ ≤ t])q, if t ≥ 0

0, otherwise,

and

H(x) =

󰀫√
Ce−x(2x)

q
2 , if x ≥ 0,

0, otherwise.

Then, (5.5) implies that for any s, t ≥ 0,

H

󰀕
1

2
s+

1

2
t

󰀖
=

√
Ce−

s+t
2 (s+ t)

q
2 ≥ F (s)

1
2 G (t)

1
2 .

It is simple to check that the above inequality is also true when s or t
is negative, in which case the right-hand side of the inequality is 0.

Therefore, by the Prékopa-Leindler inequality, we have

(5.6)

󰀣󰁝 ∞

0
e−s

󰁝

[φ∗≤s]
|x|q−ndxds

󰀤󰀕󰁝 ∞

0
e−tV p([φ ≤ t])qdt

󰀖

≤C
󰀕󰁝 ∞

0
e−xx

q
2dx

󰀖2

<C.
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The fact that φ∗ ≥ 0 and layer-cake representation now imply
󰁝

Rn
|x|q−ne−φ∗(x)dx =

󰁝 ∞

0

󰁝

[e−φ∗≥t]
|x|q−ndxdt

=

󰁝 ∞

0
e−s

󰁝

[φ∗≤s]
|x|q−ndxds.

This, when combined with (5.6), gives the desired estimate. q.e.d.

The above lemma immediately implies the following comparison.

Lemma 5.7. Let φ ∈ CVX(Rn) be an even function with φ(o) = 0
and µ be a nonzero even finite Borel measure not concentrated in any
proper subspace. Suppose q > 0 and φ ∈ L1(µ). There exist C1 > 0 and
C2 < 0, independent of φ such that

(5.7)

󰁝

Rn
φdµ ≥ C1

󰁨V
1
q
q (e−φ∗

) + C2.

Proof. If
󰁨Vq(e−φ∗

) = 0,

or equivalently φ∗ is almost everywhere +∞, there is nothing to prove.
Therefore, we may assume that φ∗ is finite in a neighborhood of the
origin, and by Proposition 2.2, we have that

󰁝

Rn
e−φ(x)dx < ∞,

or equivalently, φ → ∞ as |x| → ∞.
We first note that since µ is not concentrated in any proper subspaces,

there exists c1 > 0 such that󰁝

Rn
|〈x, u〉|dµ(x) > c1,

for every u ∈ Sn−1.
Set

K = {x ∈ Rn : φ(x) ≤ 1}.
Since φ ∈ L1(µ) is even and µ is not concentrated in any proper sub-
space, we have that φ is finite in a neighborhood of o. Therefore, by
the fact that φ(o) = 0, we have that K is a symmetric closed convex set
that contains the origin in its interior.
Let rK be such that

rK = sup{r > 0 : rB ⊂ K}.
The facts that φ → ∞ when |x| → ∞ imply that K ∕= Rn. Therefore
0 < rK < ∞. Note that since K is closed, there exists u0 ∈ Sn−1 such
that rKu0 ∈ ∂K. This in turn implies that hK(u0) = rK .
We fix now an arbitrary x ∈ Rn with |〈x, u0〉| > 2rK . We consider

x′ = 2rK
|〈x,u0〉|x. Note that by choice of x, we have |〈x′, u0〉| > rK . This
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implies that x′ /∈ K and therefore φ(x′) > 1. By convexity of φ, we now
have

1 < φ(x′) = φ

󰀕󰀕
1− 2rK

|〈x, u0〉|

󰀖
o+

2rK
|〈x, u0〉|

x

󰀖
≤ 2rK

|〈x, u0〉|
φ(x).

Hence, for every x ∈ Rn, we have

φ(x) + 1 ≥ 1

2rK
|〈x, u0〉|.

Integrating with respect to µ, we have

(5.8)

󰁝

Rn
φdµ ≥ 1

2rK

󰁝

Rn
|〈x, u0〉|dµ(x)− |µ| ≥ c1

2rK
− |µ|.

We now estimate the right-hand side of (5.7). By Lemma 5.6, there
exist 0 < p < 1 and c2 > 0 such that

(5.9) 󰁨Vq(e−φ∗
) < c2

󰀕󰁝 ∞

0
e−tV p([φ ≤ t])qdt

󰀖−1

.

Note that by the convexity of φ and since φ(o) = 0, we have

[φ ≤ t] ⊃ tK,

for t < 1. Therefore, we have

(5.10)

󰁝 ∞

0
e−tV p([φ ≤ t])qdt ≥

󰁝 1

0
e−tV p(tK)qdt

= V p(K)q
󰁝 1

0
e−ttqdt

≥ V p(rKB)
q

󰁝 1

0
e−ttqdt

= c3r
q
K ,

for some c3 > 0.
Combining (5.9) and (5.10), for some c4 > 0, we have

󰁨V
1
q
q (e−φ∗

) ≤ c4
rK

.

By (5.8), we have the existence of c5 > 0 such that
󰁝

φdµ ≥ c5 󰁨V
1
q
q (e−φ∗

)− |µ| =: C1
󰁨V

1
q
q (e−φ∗

) + C2,

for some C1 > 0 and C2 < 0. q.e.d.

In [33, Lemma 17], Cordero-Erausquin and Klartag demonstrated
that, if φk is a sequence of nonnegative convex functions with uniform
L1(µ) bound and φk(o) = 0, then one may construct a subsequence
φkj and a nonnegative convex function φ such that the L1(µ) norm of

φ is bounded from above by the lower limit of the L1(µ) norm of the

subsequence while 󰁨Vn(e−φ∗
) is bounded from below by the upper limit
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of 󰁨Vn(e
−φ∗

kj ). As observed by Rotem [68], the assumption φk(o) = 0 is
only used to know that φk(λx) is increasing in λ on (0, 1) and this is
trivially true when φk is even. Upon further inspection of the proof, it
is not hard to see that such a “selection theorem” holds for any q > 0.
We state the following generalized version without providing a proof.

Lemma 5.8 ( [33]). Let q > 0 and µ be a non-zero even finite Borel
measure on Rn. Assume µ is not concentrated in any proper subspace.
If φk ∈ CVX(Rn) is non-negative, even and

sup
k

󰁝

Rn
φkdµ < ∞,

then, there exists a subsequence φkj and a non-negative, even, convex

function φ ∈ L1(µ) such that
(5.11)󰁝

Rn
φdµ ≤ lim inf

j→∞

󰁝

Rn
φkjdµ, and 󰁨Vq(e−φ∗

) ≥ lim sup
j→∞

󰁨Vq(e
−φ∗

kj ).

We are now ready to show the existence of a minimizer to (5.1).

Lemma 5.9. Let q > 0 and µ be a non-zero even finite Borel mea-
sure on Rn. Suppose µ is not concentrated in any proper subspace and󰁕
Rn |x|dµ(x) < ∞. For sufficiently large A > 0, there exists an even

function φ0 ∈ CVX(Rn) such that φ0 ∈ L1(µ), φ0(o) > 0,

󰁨Vq(e−φ∗
0) = A,

and

(5.12)

󰁝

Rn
φ0dµ

= inf

󰀝󰁝

Rn
φdµ : 󰁨Vq(e−φ∗

) ≥ A,φ ≥ 0,φ ∈ L1(µ),

φ is an even function} .

Proof. Let cn > 0 be such that
󰁝

B(cn)
|x|q−ndx = 1.

Set

C = cn

󰁝

Rn
|x|dµ > 0.

By the condition on µ, it is simple to see that C is finite.
We choose a fixed A > 0 such that

(5.13) |µ| lnA+ C < C1A
1
q + C2,
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where C1, C2 are from Lemma 5.7 and depend only on µ and q. It is
simple to see that such an A exists and in fact, all sufficiently large
A > 0 satisfies (5.13).
Let φk be a minimizing sequence; that is, we have φk ≥ 0, φk ∈ L1(µ),

φk is even,

󰁨Vq(e−φ∗
k) ≥ A,

and

lim
k→∞

󰁝

Rn
φkdµ

= inf

󰀝󰁝

Rn
φdµ : 󰁨Vq(e−φ∗

) ≥ A,φ ≥ 0,φ ∈ L1(µ),

φ is an even function} .

Notice that

φ∗∗
k ≤ φk,

and since φk ≥ 0, we have φ∗∗
k ≥ 0. Moreover, note that (φ∗∗

k )∗ =
φ∗
k. Therefore, we may without loss of generality, assume that φk ∈

CVX(Rn).
We claim now that

(5.14) sup
k

󰁝

Rn
φkdµ < ∞.

To see this, set

Γ(x) = lnA+ cn|x|,

It is simple to compute that

Γ∗(x) = 1∞B(cn)
(x)− lnA,

where

1∞B(cn)
(x) =

󰀫
0, if x ∈ B(cn),

∞, otherwise.

Moreover,

󰁨Vq(e−Γ∗
) = A,

according to the choice of cn. Note that Γ(x) is positive and even.
Moreover,

󰁝

Rn
Γ(x)dµ = |µ| lnA+ C,

Since φk is a minimizing sequence, we conclude (5.14).
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By Lemma 5.8, there exists a subsequence φkj and a non-negative
even convex function φ0 such that (5.11) holds. In particular, this sug-
gests that φ0 is a minimizer to (5.12). By possibly replacing φ0 by φ∗∗

0 ,
we may assume that φ0 ∈ CVX(Rn).
It remains to show that φ0(o) > 0 and

(5.15) 󰁨Vq(e−φ∗
0) = A.

To see the former, we argue by contradiction. Assume φ0(o) = 0.
Therefore, we may conclude by using Lemma 5.7 that

|µ| lnA+ C ≥
󰁝

Rn
φ0dµ ≥ C1

󰁨V
1
q
q (e−φ∗

0) + C2 ≥ C1A
1
q + C2.

This is a contradiction to (5.13).
To show (5.15), if it was not the case, we set

󰁨φ0 = φ0 − ε.

Note that for sufficiently small ε > 0, we have 󰁨φ0 > 0 thanks to φ0(o) >
0. Moreover,

󰁨Vq(e−
󰁨φ∗
0) = e−ε 󰁨Vq(e−φ∗

0) > A,

for sufficiently small ε > 0. However, it is trivial to see
󰁝

Rn
󰁨φ0dµ <

󰁝

Rn
φ0dµ,

which contradicts the minimality of φ0. q.e.d.

Lemmas 5.3 and 5.9 now immediately solve the Minkowski problem
(1.7).

Theorem 5.10. Let q > 0 and µ be a non-zero even finite Borel
measure on Rn. Suppose µ is not concentrated in any proper subspace
and

󰁕
Rn |x|dµ(x) < ∞. There exists an even f0 ∈ LC(Rn) with nonzero

finite L1 norm such that

µ = 󰁨Ce
q (f0; ·).

To complete this section, we show that the assumption that
󰁝

Rn
|x|dµ(x) < ∞

is necessary in Theorem 5.10. We require the following basic lemma
about log-concave functions.

Lemma 5.11. Suppose f : R→ [0,∞) is a log-concave function. If

(5.16) lim
t→±∞

f(t) = 0,

then, for each t0 ≥ 0, we have
󰁝

|t|≥t0
|f ′(t)|dt ≤ 4 sup

|t|≥t0
f(t).



40 Y. HUANG, J. LIU, D. XI & Y. ZHAO

Proof. Since f is log-concave, it is locally Lipschitz in the interior of
the interval in which it is positive. Moreover, it is unimodal. Therefore,
by (5.16) and the fundamental theorem of calculus, we have

󰁝

t≥t0
|f ′(t)|dt ≤ 2 sup

t≥t0
f(t),

and
󰁝

t≤−t0
|f ′(t)|dt ≤ 2 sup

t≤−t0
f(t).

Combining the above two inequality gives us the desired result. q.e.d.

Theorem 5.12. Let q > 0 and f ∈ LC(Rn) be with nonzero finite L1

norm. If Kf , the support of f , contains the origin as an interior point,
then

(5.17)

󰁝

Rn
|x|d 󰁨Ce

q (f ;x) =

󰁝

Rn
|∇f(x)| · |x|q−ndx < ∞.

In particular, (5.17) is valid for even f ∈ LC(Rn) with nonzero finite
L1 norm.

Proof. We first consider the case where q ∈ (0, n].
Since Kf contains the origin as an interior point, the function f is

Lipschitz in B(r0) for some r0 > 0. Denote the Lipschitz constant of f
inside B(r0) by Λ > 0. This implies that inside B(r0), we have |∇f | ≤ Λ
almost everywhere. Therefore,

󰁝

B(r0)
|∇f(x)| · |x|q−ndx ≤ Λ

󰁝

B(r0)
|x|q−ndx < ∞.

Therefore, to show (5.17), we only need to show

󰁝

B(r0)c
|∇f(x)| · |x|q−ndx < ∞.

In particular, since

|∇f(x)| =

󰁶󰀕
∂f

∂x1
(x)

󰀖2

+ · · ·+
󰀕

∂f

∂xn
(x)

󰀖2

≤
n󰁛

i=1

󰀏󰀏󰀏󰀏
∂f

∂xi
(x)

󰀏󰀏󰀏󰀏 ,

without loss of generality, it is sufficient to show

󰁝

B(r0)c

󰀏󰀏󰀏󰀏
∂f

∂xn
(x)

󰀏󰀏󰀏󰀏 · |x|
q−ndx < ∞.
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We write x = (y, t) ∈ Rn−1 ×R. Note that since f ∈ L1, then f → 0 as
|x| → ∞. Therefore, since 0 < q ≤ n, by Lemma 5.11,
(5.18)󰁝

B(r0)c

󰀏󰀏󰀏󰀏
∂f

∂t
(x)

󰀏󰀏󰀏󰀏 · |x|
q−ndx

≤
󰀣󰁝

B(r0/2)c∩Rn−1

󰁝 ∞

−∞
+

󰁝

B(r0/2)∩Rn−1

󰁝

|t|≥
√
3
2
r0

󰀤

·
󰀏󰀏󰀏󰀏
∂f

∂t
(y, t)

󰀏󰀏󰀏󰀏 |(y, t)|
q−ndtdy

≤4
󰁝

B(r0/2)c∩Rn−1

sup
t∈R

f(y, t) · |y|q−ndy

+

󰀣√
3

2
r0

󰀤q−n 󰁝

B(r0/2)∩Rn−1

󰁝

|t|≥
√
3
2
r0

󰀏󰀏󰀏󰀏
∂f

∂t
(y, t)

󰀏󰀏󰀏󰀏 dtdy

≤4
󰁝

B(r0/2)c∩Rn−1

sup
t∈R

f(y, t) · |y|q−ndy

+ 4

󰀣√
3

2
r0

󰀤q−n 󰁝

B(r0/2)∩Rn−1

sup
t∈R

f(y, t)dy

≤4
󰁝

B(r0/2)c∩Rn−1

sup
t∈R

f(y, t) · |y|q−ndy + C,

for some positive constant C depending on r0 and sup f . Since f ∈ L1,
if we write f = e−φ, we have

lim inf
|x|→∞

φ(x)

|x| > 0.

In particular, this implies the existence of c0 > 0 and M > 0 such that
for all |(y, t)| > M , we have

(5.19) φ(y, t) > c0|(y, t)|.

The desired result follows from combining (5.18) and (5.19).
Let us now consider the case q > n.
We first note that

󰁝

B(M2)
|∇f(x)| · |x|q−ndx ≤M2(q−n)

󰁝

B(M2)
|∇f(x)|dx

≤M2(q−n)
󰁝

Rn
|∇f(x)|dx

<∞,
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where the last inequality follows from the previously established case
q = n. Therefore, we only need to show

(5.20)

󰁝

B(M2)c
|∇f(x)| · |x|q−ndx < ∞.

Note that,
(5.21)󰁝

B(M2)c

󰀏󰀏󰀏󰀏
∂f

∂xn
(x)

󰀏󰀏󰀏󰀏 · |x|
q−ndx

=
∞󰁛

k=M2

󰁝

B(k+1)\B(k)

󰀏󰀏󰀏󰀏
∂f

∂xn
(x)

󰀏󰀏󰀏󰀏 · |x|
q−ndx

≤
∞󰁛

k=M2

(k + 1)q−n
󰁝

B(k+1)\B(k)

󰀏󰀏󰀏󰀏
∂f

∂xn
(x)

󰀏󰀏󰀏󰀏 dx

≤
∞󰁛

k=M2

(k + 1)q−n

󰀣󰁝

[B(k+1)\B(k−1)]∩Rn−1

󰁝 ∞

−∞
+

󰁝

B(k−1)∩Rn−1

󰁝

|t|≥
√
k

󰀤

·
󰀏󰀏󰀏󰀏
∂f

∂t
(y, t)

󰀏󰀏󰀏󰀏 dtdy

For the first term, by (5.19), we have

(5.22)

∞󰁛

k=M2

(k + 1)q−n
󰁝

[B(k+1)\B(k−1)]∩Rn−1

󰁝 ∞

−∞

󰀏󰀏󰀏󰀏
∂f

∂t
(y, t)

󰀏󰀏󰀏󰀏 dtdy

≤4
∞󰁛

k=M2

(k + 1)q−n
󰁝

[B(k+1)\B(k−1)]∩Rn−1

sup
t∈R

f(y, t)dy

≤4
∞󰁛

k=M2

(k + 1)q−n
󰁝

[B(k+1)\B(k−1)]∩Rn−1

e−c0|y|dy

≤4C
∞󰁛

k=M2

(k + 1)q−ne−c0(k−1)(k + 1)n−1 < ∞.

For the second term, by using Lemma 5.11 again, we have

󰁝

|t|≥
√
k

󰀏󰀏󰀏󰀏
∂f

∂t
(y, t)

󰀏󰀏󰀏󰀏 dt ≤ 4 sup
|t|≥

√
k

f(y, t),
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and consequently, by (5.19),

(5.23)

∞󰁛

k=M2

(k + 1)q−n
󰁝

B(k−1)∩Rn−1

󰁝

|t|≥
√
k

󰀏󰀏󰀏󰀏
∂f

∂t
(y, t)

󰀏󰀏󰀏󰀏 dtdy

≤4
∞󰁛

k=M2

(k + 1)q−n
󰁝

B(k−1)∩Rn−1

sup
|t|≥

√
k

f(y, t)dy

≤4
∞󰁛

k=M2

(k + 1)q−n
󰁝

B(k−1)∩Rn−1

e−c0
√
kdy

=4C

∞󰁛

k=M2

(k + 1)q−n(k − 1)n−1e−c0
√
k < ∞.

Equation (5.20) now follows from (5.21), (5.22), and (5.23). q.e.d.
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