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Abstract

We introduce dual curvature measures for log-concave func-
tions, which in the case of characteristic functions recover the
dual curvature measures for convex bodies introduced by Huang-
Lutwak-Yang-Zhang in 2016. Variational formulas are shown. The
associated Minkowski problem for these dual curvature measures
is considered and sufficient conditions in the symmetric setting are
demonstrated.

1. Introduction

Geometric measures associated with convex bodies have been a core
part of convex geometric analysis in the past few decades. In the classi-
cal Brunn-Minkowski theory of convex bodies, quermassintegrals (such
as volume, surface area, mean width, and much more in higher dimen-
sions) are the central geometric invariants and are used to describe the
shape of convex bodies via isoperimetric (or reverse isoperimetric) in-
equalities. Area measures introduced by Aleksandrov, Fenchel-Jessen,
and curvature measures introduced by Federer can be viewed as the “de-
rivative” of quermassintegrals when viewed as functionals on the set of
convex bodies. Invariably, these geometric measures carry some curva-
ture terms which make it possible for them to encode shape information
of convex bodies. At the same time, unlike curvatures (in the sense of
differential geometry), these geometric measures are defined even with
minimal regularity assumptions. The study of these geometric measures
is often intertwined with PDE (Monge-Ampere equations in particular),
Gauss curvature flows, and inevitably isoperimetric inequalities. (After
all, half of calculus is focused on using derivatives to study properties
of the original function.)
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A major alternative to the classical Brunn-Minkowski theory in mod-
ern convex geometry is the dual Brunn-Minkowski theory. The dual
Brunn-Minkowski theory, introduced by Lutwak in 1975, is a theory
that is in a sense dual to the classical Brunn-Minkowski theory. A good
discussion of the dual theory can be found in Section 9.3 of Schneider’s
classical volume [70]. Quoting from Gardner-Hug-Weil [41]:“The dual
Brunn-Minkowski theory can count among its successes the solution of
the Busemann-Petty problem in [38], [43], [59], and [73]. It also has
connections and applications to integral geometry, Minkowski geome-
try, the local theory of Banach spaces, and stereology; see [40] and the
references given there.”

In the seminal work [48], Huang-Lutwak-Yang-Zhang (Huang-LYZ),
for the first time, revealed the fundamental geometric measures, duals
of Federer’s curvature measures, called dual curvature measures, in the
dual Brunn-Minkowski theory. These measures were obtained through
“differentiating” dual quermassintegrals which are central in the dual
theory. They have led to many natural open problems and quickly
attracted much attention. Details on this will be provided below.

It is well-known that the set of convex bodies can be embedded in
the set of upper semi-continuous log-concave functions via their char-
acteristic functions. This work aims to introduce the functional ver-
sion of dual curvature measures through the machinery of the theory of
functions of bounded anisotropic weighted variation and to study their
characterization problem (generally known as Minkowski problems). It
is worth pointing out that, by picking proper weight functions, func-
tional versions of many other geometric measures can be introduced in
this fashion. However, this will not be explored in this work.

In the past few decades (even more so in the last decade), interest in
log-concave functions has grown considerably, much of it motivated by
their counterparts in the theory of convex bodies. Perhaps the first such
breakthrough and by now a well-known result is the Prékopa-Leindler
inequality: For any nonnegative integrable functions f,¢g on R™ and
their sup-convolution (1 —\) - f @ X - g given by

(1=N-foXr-g) ()= suwp  f(2) gy
(1=N)z+Ay=2
where 0 < A < 1, one has the following inequality regarding their £
norms,

(1.1)
[a-n-sengez ([ swa) ([ )

The Prékopa-Leinder inequality is the functional (and equivalent) ver-
sion of the celebrated Brunn-Minkowski inequality,

V(1 =MNX+XY)>V(X) V()
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which holds for any bounded measurable sets X,Y C R" such that
(I—=A\)X+)Y is measurable. See the survey [39] by Gardner. It is impor-
tant to note that convexity is required neither in the Brunn-Minkowski
inequality nor in the Prékopa-Leindler inequality, although it does man-
ifest itself in the equality conditions. Notice here that the Minkowski
combination (1—A)X 4+ \Y corresponds to the sup-convolution between
functions (see, (4.1) for a complete definition) and the volume of a mea-
surable set corresponds to the integral of a non-negative function. That
this is natural can be seen by replacing f and g by characteristic func-
tions of subsets of R".

In the same spirit, many other geometric invariants and operations
have found their counterparts for log-concave functions (or, equivalently,
convex functions). We provide a quick overview of some of these re-
markable results. In the seminal work [5], Artstein-Avidan and Milman
demonstrated how the Legendre-Fenchel transform can be viewed as the
functional version of taking the polar body of a convex body. Compare
this to another remarkable paper [9] by Boroczky-Schneider. Prior to
this, the functional version of the Blaschke-Santal6 inequality was dis-
covered by Ball in his Ph.D. thesis and by Artstein-Avidan, Klartag, and
Milman in [3]. Steiner formula and quermassintegrals for quasi-concave
functions were studied by Bobkov-Colesanti-Fragala [8]. Extensions of
affine surface area and affine isoperimetric inequalities can be found
in [4,17,18,54]. Much more recently, Colesanti, Ludwig, and Mussnig
embarked on a journey to characterize valuations on the set of convex
functions [27-31] (compare them to Hadwiger-type theorems on convex
bodies [45,46,56-58, 71]).

In the dual Brunn-Minkowski theory, the central geometric invariants
are known as dual quermassintegrals. Let ¢ = 1,...,n, and K be a
convex body that contains the origin in its interior. As Lutwak [59]
showed, up to a constant multiple, the g-th dual quermassintegral YN/q(K )
can be defined as the average of lower-dimensional sectional areas of K
with g-dimensional subspaces:

Ty(K) = C/G( A g
n,q

where G(n, ¢) is the Grassmannian manifold containing all g-dimensional
subspaces of R™ and the integration is with respect to the Haar mea-
sure. Dual quermassintegrals have integral representations (see (2.4))
which warrant the immediate extension to ¢ € R. Note that with the
exception of the special case ¢ = n, when the dual quermassintegral is
simply volume, the ¢-th dual quermassintegral is generally not invariant
under translations of K.
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A major question answered in the landmark work [48] (and subse-
quently [62]) by Huang-LYZ was the differentiability of 17,1. In particu-
lar, it was shown that if K is a convex body in R™ such that the origin
is an interior point and L is a compact convex subset of R”, then

V(K +t-L)—Vy(K) 1~
(1.2) tlg& ; = /snl hL(v)Wqu(K,v).

Here the geometric measure C~'q (K, -) is known as the ¢-th dual curvature
measure of K. In fact, there is naturally an L, version of (1.2) that leads
to the (p, ¢)-dual curvature measure introduced in [62] and the measure

deq(K ,v) is nothing but the (1, ¢)-dual curvature measure. The
“1” here stands for the fact that the sum K + ¢t - L is the classical
Minkowski sum, or, the [! sum of support functions of K and L.

Let ¢ > 0. The (¢ — n)-th moment of a density function f is defined
as

Vilh) = [ lalr" ),

if it exists. The moment Vq is a natural extension of dual quermassin-
tegrals to the set of log-concave functions (which in turn justifies this
notation). Indeed, if f = 1x, where 1x is the characteristic function of
some convex body K that contains the origin in its interior, then, by
integration via polar coordinates, one immediately has

Vy(1x) = Vy(K).

Motivated by the work [48] and the correspondence between the Min-
kowski combination and sup-convolution, it is natural to ask whether

t—0 t

exists for log-concave functions f,g, and if it does, what the limit is.
We remark that with the exception of ¢ = n, for generic ¢ > 0, the
moments considered in (1.3) are not invariant under the transformation
f(z) = f(x+xzo). Therefore, the relative position of the origin is crucial
in the study of (1.3). In fact, since (1.2) only holds when K contains the
origin in its interior, some condition on f that mimics this constraint is
expected.

When ¢ = n, the functional 17(1 is nothing but the £' norm of a log-
concave function. In this case, the limit (1.3) was studied by Colesanti-
Fragala [32] under various regularity assumptions on f and g. In par-
ticular, they discovered that the limit (1.3) consists of two parts—one
concerning the behavior of f inside its support, the other concerning
the values of f on the boundary of its support as well as the shape
of the support set. Around the same time, Cordero-Erausquin and
Klartag [33] studied the limit with the additional assumption that f is
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essentially continuous and explored the connection with complex anal-
ysis [7] and optimal transport. Recently, Rotem [67] showed that the
result of Colesanti-Fragala remains valid without any of the various ad-
ditional regularity requirements, by employing tools from the theory of
functions of bounded anisotropic variation. The first main result of this
paper is to show that by considering functions of bounded anisotropic
weighted variation, one can compute the limit in (1.3) for any ¢ > 0. It
is important to emphasize that unlike the special case ¢ = n, for generic
q > 0, the g-th moment of a function is not translation-invariant. In par-
ticular, our approach is motivated by the dual approach (differentiating
radial functions) to the variational formula developed in [48].

It is also worth pointing out that the extension of functions of bounded
variation in R™ with respect to the Lebesgue measure to functions of
bounded variation in R™ with respect to an arbitrary measure (even
those absolutely continuous with respect to the Lebesgue measure) is
not entirely trivial. This has been previously done in, for example, [6]
and [65] via different approaches (which led to non-equivalent definitions
of weighted total variation).

Let LC(IR™) be the set of all upper semi-continuous log-concave func-
tions f : R™ — [0,00). The limit (1.3) leads to two Borel measures—one
on R™ and one on S™~1.

Definition 1.1. Let f = e=% € LC(R™) with nonzero finite L' norm.

The FEuclidean q-th dual curvature measure of f, denoted by ég(f, -), 18
a Borel measure on R™ given by

(1.4) G(f:B) = /

|| f(x) de,
Vo(x)eB

for each Borel set B C R™.

In (1.4), note that since ¢ is convex, its gradient V¢ exists almost
everywhere in the interior of its domain {z € R™ : ¢(x) < oco}. Note
that by definition, f > 0 if and only if ¢ < oo. Therefore, the integral
in (1.4) is well-defined.

Definition 1.2. Let f = e=® € LC(R™) with nonzero finite L' norm.
The spherical q-th dual curvature measure of f, denoted by Ci(f;-), is
a Borel measure on S~ given by

& (fim) = / 207 f () dH (),

VKf (ff)en

for each Borel setn C S™1, where Ky is the support of [ and vic, 1is its
Gauss map defined almost everywhere on OK y with respect to dH" 1 (z).

These two measures generated through differentiating the g-th mo-
ment of a log-concave function f with respect to sup-convolution are
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associated with the absolutely continuous and singular part of the dis-
tributional derivative of f, respectively. It is worth noting that in the
case of the characteristic function of a convex body, the measure 6;( i)
recovers the (1, ¢)-dual curvature measure for convex bodies appearing
in (1.2).

The first of our main theorems shows that the limit in (1.3) does exist
under minor assumptions on f and g near the origin.

Theorem 1.3. Let f = e~ % € LC(R™) with non-zero finite L' norm
and g > 0. Assume f achieves its mazimum at the origin and

(1.5) lirgjgp%%(o)’ < 00,

for some 0 < a < 1.
Let g = =% € LC(R™) be compactly supported with g(o) > 0. Then,

o Vaf @)~ V()
(16) t—0+ - t
- [ v+ [
Rn

Sn

g, (v)dC3(f;v).

where h, is the support function of the support set K, of g, and 1™ is
the Legendre-Fenchel conjugate of 1.

Note that hypothesis (1.5) in the above theorem is not the best hy-
pothesis, see Proposition 4.9 and Remark 4.10 for more details. We
emphasize again that it is expected that we need some condition on f
that mimics the idea that “f contains the origin in its interior”. The
assumption that f achieves its maximum at the origin, together with
hypothesis (1.5), ensures that almost all of f’s nonempty level sets con-
tain the origin in the interior and these level sets contain the origin in
their interiors in some uniform way. We remark that if f is Cb® in a
neighborhood of the origin, then (1.5) is satisfied. To better explain the
condition g(o) > 0, we focus for the moment on the special case that g is
the characteristic function of some convex body L. In this case, without
the condition g(o) > 0, the convex body L might be far away from the
origin. As a consequence, the origin might be outside the Minkowski
combination of the level sets of f and L. This makes it very challenging
to apply geometric results to level sets of f. See Theorem 4.5 for details.

When f and g are characteristic functions of convex bodies that con-
tain the origin in their interiors, the first integral on the right-hand side
in (1.6) vanishes whereas the second term becomes the right-hand side
of (1.2).

Minkowski problems in convex geometric analysis are characterization
problems of geometric measures associated with convex bodies. These
geometric measures are often “derivatives” of important geometric in-
variants. In differential geometry, Minkowski problems are known as
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various prescribed curvature problems. This line of research that asks
when a given measure i can be realized as a certain geometric measure
of a to-be-solved convex body (without any unnecessary regularity as-
sumptions) goes back to the classical Minkowski problem that inspired
the study of nonlinear elliptic PDE through the last century; see, for ex-
ample, Minkowski [64], Aleksandrov [1], Cheng-Yau [25], Pogorelov [66],
and the works of Caffarelli on the regularity theory of Monge-Ampere
equations [14-16], among many other influential works. In many ways,
the study of Minkowski problems goes hand-in-hand with the study of
sharp isoperimetric inequalities; see [19].

In the last two to three decades, there are two major families of
Minkowski problems. One is the L, Minkowski problem that belongs to
the L, Brunn-Minkowski theory whose success can be credited to the
landmark work by Lutwak [60,61] where the fundamental L, surface
area measure was discovered. The L, Minkowski problem includes the
logarithmic Minkowski problem and the centro-affine Minkowski prob-
lem and has been studied through a variety of methods; see, for example,
Hug-Lutwak-Yang-Zhang (Hug-LYZ) [51], Chou-Wang [26], Boroczky-
LYZ [13], and most recently Guang-Li-Wang [44]. A vast library of
works on this topic can be found by looking for those citing the above-
mentioned works. It is worth pointing out that there is much unknown
regarding the L, Brunn-Minkowski theory, especially for p < 1. In
fact, the log Brunn-Minkowski conjecture, arguably the most beautiful
and powerful (yet plausible) conjecture in convex geometry in the last
decade, is the isoperimetric inequality associated with the log Minkowski
problem. See, for example, [12,23,52,63,72].

The other major family of Minkowski problems are the dual Minkow-
ski problems following the landmark work [48]. In a short period since
[48], there have been many influential works on this topic which have
already led to many interesting conjectures regarding isoperimetric in-
equalities as well as the discovery of novel curvature flows; see, for exam-
ple, Borocezky-Henk-Pollehn [11], Chen-Chen-Li [21], Chen-Huang-Zhao
[20], Chen-Li [24], Gardner-Hug-Weil-Xing-Ye [42], Henk-Pollehn [47],
Li-Sheng-Wang [53], Liu-Lu [55], Zhao [74]. It is important to note that
the list is by no means exhaustive. N

In this paper, we study the Minkowski problem for Cf.

The functional dual Minkowski problem. Let ¢ > 0 and u be a
non-zero finite Borel measure on R”. Find the necessary and sufficient
conditions on p so that there exists f € LC(R™) with nonzero finite £!
norm such that

(L.7) = C(f3 ).

Under sufficient regularity assumption, that is, the measure p has a
C* density (say, g > 0) and f € C*°, equation (1.7) is equivalent to
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the following Monge-Ampére type equation in R"
(1.8) 9(Vo(x)) det(V2(x)) = ||t e @),

where f = e~ ?. N

It is important to note that the measure C’g( f;+) might not be abso-
lutely continuous. Thus, the Minkowski problem (1.7) does not always
reduce to (1.8) in the general setting.

When ¢ = n, the functional dual Minkowski problem becomes the
Minkowski problem for moment measures. See Cordero-Erausquin and
Klartag [33] where it is completely solved within the class of essentially
continuous functions. The highly nontrivial L, extension of Cordero-
Erausquin and Klartag’s result can be found in the recent papers by
Fang-Xing-Ye [35] for p > 1 and Rotem [68] for 0 < p < 1.

As pointed out earlier, a key difference between the case ¢ = n and
g # n is that in the latter case, (1.7) is not invariant under translations of
f (with respect to its domain). We point out that translation-invariance
played a central role in [33].

In the current work, we provide a sufficient condition for the existence
of solutions to (1.7) in the origin-symmetric case.

Theorem 1.4. Let ¢ > 0 and p be a non-zero even finite Borel
measure on R™. Suppose i is not concentrated in any proper subspaces
and [, |z|dp(x) < oo. There exists an even fo € LC(R™) with nonzero
finite L' norm such that

Mzég(fo;')'

The functional dual Minkowski problem (1.7) is heavily intertwined
with its counterpart in the setting of convex bodies. In particular, esti-
mates regarding dual quermassintegrals are critically needed. As part of
the process to get the required estimates, we require a Blaschke-Santald
type inequality for the functional V;. See Lemma 5.6. It is of great
interest to see if there is a sharp (more refined) version.

We remark that the assumption

/n |z|dp(z) < oo

is necessary here. See Theorem 5.12.

The rest of this paper is organized in the following way. In Section 2,
we recall some notations and basics. In Section 3, we gather some basics
in the theory of functions of bounded variation. Section 4 is devoted to
proving Theorem 1.3 whereas Section 5 is devoted to proving Theorem
1.4.

Acknowledgement. We are in great debt to the referees for their
extremely valuable comments and suggestions.
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2. Preliminaries

This section is divided into two parts. The first part contains some
notations and basics in the theory of convex bodies, whereas the sec-
ond part deals with those for convex functions as well as log-concave
functions.

For convenience, throughout the current work, if the exact value of
a constant C' > 0 does not matter, then we may use the same C' for
different positive constants (that may differ from line to line).

2.1. Convex bodies. The standard reference is the comprehensive
book [70] by Schneider.

A convex body in R" is a compact convex set with a nonempty in-
terior. The boundary of K is written as 0K. We use K™ for the set of
all convex bodies in R™. The subclass of convex bodies that contain the
origin in their interiors in R™ is denoted by K.

We will use B(z,r) to denote the ball in R™ centered at x with radius
r. Occasionally, we write B(r) = B(o,r) and B = B(o, 1) for simplicity.

The support function hg of K is defined by

hi(y) = max{(z,y) :z € K}, yeR"

The support function hg is a continuous function homogeneous of de-
gree 1. Suppose K contains the origin in its interior. The radial function
pk is defined by

pr(z) =max{\: \x € K}, ze€R"\{0}.

The radial function pg is a continuous function homogeneous of degree
—1. It is not hard to see that px(u)u € K for all u € S"~! and the
reciprocal radial function is a (potentially asymmetric) norm. To be
more specific, we write

1
(2.1) lzl|x = pK—(ﬂc)

Here, the convex body K* is known as the polar body of K and is
defined by

= hg+(x), for each x € R".

K*={yeR": (z,y) <1,Vz € K}.

By the definition of the polar body, it is simple to see that the Banach
spaces (R™,|| - ||x) and (R™, || - ||x+) are dual to each other and we have
the following generalized Cauchy-Schwarz inequality
(z,y) < llzllxllyllx--
Let h : S"! — (0,00) be continuous, the Wulff shape [h] € K7 is
given by

[h] = {x € R : (z,v) < h(v) for all v € S" 1}
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It is simple to see that if K € K, then [hx] = K. Also immediate from

o

the definition of [h] is that for every u € S"~!, we have
(2:2) P () ) < h(v), VoS,
and there exists v, € S™ ! such that

(2.3) o (u) (u, 0.) = h(u).

For each x € 0K, we will write vi (x) for the outer unit normal of K
at x. Note that by convexity, the map vx is defined almost everywhere
on OK with respect to H" L. For each v € S"~!, define

vl (v) = {z € 0K : (x,v) = h(v)}.

Since K is a convex body, for almost all v € S"!, the set v ' (v)
contains only one boundary point of K. With slight abuse of notation,
we will use VI_(I to denote a map that is defined almost everywhere on
S™1 and VI_(I maps v to the unique point in V[_(l (v).

The fundamental geometric functionals in the dual Brunn-Minkowski
theory are dual quermassintegrals. For ¢ # 0, the ¢-th dual quermass-
integral of K, denoted by V,(K), is defined as

~ 1
(2.4 V) = [ wn
q Snfl
When g =1, -+ ,n, dual quermassintegrals have the strongest geometric

significance. They are proportional to the mean of the ¢-dimensional
volume of intersections of K with ¢g-dimensional subspaces in R".

In [48], it was established that variation of the dual quermassintegral
with respect to the logarithmic Minkowski sum leads to the so-called
dual curvature measure:

oK, ) = / o ) ),
K(T)EN

for each Borel n C S™~!. In particular, this implies that for each p € R,
we have

VoK +pt- L) = Vo(K)

lim
t—0 t
(2.5) - /S B ()h (0)dCy (K, v)

::/ 1hL(v)deyq(K,v),
Sn—

where the Borel measure (~}'p7q(K ,-) is known as the (p, ¢)-dual curvature
measure of K. Here K +,t-L is known as the L, Minkowski combination
between convex bodies. In particular, when p > 1 and ¢ > 0, the
convex body K +,t- L is defined so that its support function is given by
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(K% + thh)1/P. The variational formula (2.5), as well as the definition
of the L, combination, can be found in [62].

2.2. Convex functions and log-concave functions. Let u be a
Borel measure on some set Q. We will use £!(u,Q) for the set of all
p-measurable functions f on Q with [, |f|dp < co. The set L (1, )
consists of functions f such that f € L(u,R) for every compact set
£ C Q. Occasionally, when Q@ = R", we may write £!(x). When
p is the standard Lebesgue measure, we may simply write £(£), or,
LY = LYR™). When p is a finite measure, we write |u| for its total
mass.

Let CVX(R™) be the set of all lower semi-continuous, convex func-
tions ¢ : R" — (—o00,00] and LC(R™) be the set of all upper semi-
continuous log-concave functions f that take the form f = e~? for some
¢ € CVX(R").

For any function ¢ : R" — [—00, 00|, the Legendre-Fenchel conjugate
of ¢, denoted by ¢*, is defined as

¢*(y) = sup {(z,y) — é(z)}.
TER™

Note that from the definition, it is simple to see that ¢* € CVX(R"), as
long as ¢ #Z +o0. It is also straightforward from the definition that the
Legendre-Fenchel transform reverses order; in other words, if ¢1 < ¢,
then ¢f > ¢3.

When restricting to CVX(R™), the Fenchel-Moreau theorem states
that the Legendre-Fenchel transform is an involution:

¢** = ¢, for each ¢ € CVX(R").

In a remarkable paper [5], Artstein-Avidan and Milman showed that
any order-reversing involution on CVX(R") is essentially the Legendre-
Fenchel transform.

In general (without assuming ¢ € CVX(R™)), by the definition of the
Legendre-Fenchel transform, one may show that

o < 9,

and if ¢ > 0, then ¢** > 0.
The expression 1r denotes the characteristic function of some subset
E C R"; that is, lg(z) =1ifx € F and 1g(x) =0if z ¢ E.

Let K € K™ and
0, ifre K
Y(x) = { :
o0, otherwise.

Note that 15 = e~ ¥. It follows from the definition that
(2.6) V" = hg.



12 Y. HUANG, J. LIU, D. XI & Y. ZHAO

Indeed, let y € R™ be arbitrary. Then, according to the definition of ¥*,
we have

Y*(y) = sup {(z,y) — ¥(x)} = sup{(z,y)} = hk (),
TER"™ rzeK

where the second equality follows from the fact that if z ¢ K, then
Y(x) = oo and consequently one can restrict to K in search of the
supremum.

We shall require the following trivial facts.

Proposition 2.1. Let f = e~ € LC(R") and q > 0. If

(2.7) lim inf aC) >0,

2|00 ||

then
Vo(f) = /Rn f(z)|z]9 " dz < oo.

Proof. By (2.7) and the convexity of ¢, there exist C' > 0 and r9 > 0
such that

¢(x) > C|z|, for all z € B(rg)°.

Therefore, we have

/ f(z)|z|T"dx < / el 2T de < oo.
B(ro)*

B(ro)©

Since f is upper semi-continuous, it is locally bounded from above.
Therefore,

/ fz)|x|T"dx < C’l/ |z|9"dx < 0.
B(ro)

B(ro)

q.e.d.

It is well-known that (2.7) holds if and only if either of the following
two statements holds:

1) fech
See, for example, [33].

When a convex function ¢ is finite in a neighborhood of the origin, [69,
Theorem 11.8(c)] combined with Proposition 2.1 immediately implies
the following.

Proposition 2.2. Let ¢ > 0. If ¢ : R* — [0,00] is finite in a
neighborhood of the origin, then

V(%) = / |7 e Wy < oo,
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3. Functions of anisotropic weighted total variation

Let © C R™ be an open set. Write V € Q if an open set V is
compactly contained in 2, that is, the closure of V is compact and is a
subset of . The set C1(V,R") consists of all C'! functions from V to
R™ with compact support. We say a function f € Elloc(Q) is locally of
bounded variation (i.e., f € BVjo.(Q2)) if for each open V' & Q, we have
(3.1)

TV(f;V) = sup{/ fdivTdz:T € CHV,R"),|T(z)| < 1,V:E} < 0.
\%4

Intuitively speaking, functions of locally bounded variation are those
whose distributional derivatives are Radon measures. Indeed, the Struc-
ture Theorem for BVj,. functions states (see Theorem 5.1 in [34]) that
if f € BVipe(€2), then there exist a Radon measure ||Df| on © and a
| D f|-measurable map oy : £ — R"™ such that |o¢| = 1 || D f]|-almost
everywhere with

/fdidex: —/(T,of>d||Df||,
QO Q

for all T € CL(Q,R™). When f € £1(Q) and || Df]||(2) is finite, we say f
is of bounded variation on ; that is f € BV (2). The space of BV (Q)
is well studied and we refer the readers to the classical books [2,34] for
additional properties of BV functions.

There have been several generalizations to the definition of BV (Q)
(and correspondingly BVio(€2)). One direction of such generalization
is that the Euclidean norm (applied to T) in (3.1) can be replaced by
any (potentially asymmetric) norm. Fix L € K, let || - ||z and || - ||+
be as defined in (2.1). Note that since L is compact and contains the
origin in its interior, both ||-||z and ||- ||z are equivalent to the standard
Euclidean norm and therefore, the space BV (§2) (and BV, 1o¢(€2), resp.)
consisting of £!(2) functions with

TVL(f;9Q)

= sup {/ fdivTdz:T e CHQRY), |T(z)| < 1,\m} < o0,
Q

remains unchanged when compared to BV () (and BVj,.(Q2), resp.).
However, the anisotropic total variation T'Vy(f; ) is generally not the
same as TV (f; Q). As a matter of fact, when f = 1k for some K € K",
then TV (1x;R™) gives the surface area of K whereas TVy (1x;R™) gives
the mixed volume Vi(K, L) = [4,-1 hpdSk. For f € BVio.(Q), we may
define the anisotropic total variation measure with respect to L by

|- Dflle- = he(-op)| DIl



14 Y. HUANG, J. LIU, D. XI & Y. ZHAO

It can be shown that f € BV.(Q) if and only if || - Df||z- is a finite
measure. Moreover, we have TVL(f;Q) = || - Df||z+(£2). Functions of
bounded anisotropic total variation were studied in, for example, [36,
37] where anisotropic isoperimetric inequalities and anisotropic Sobolev
inequalities were studied for sets of finite perimeter and functions of
bounded variation. It is important to note that many of the classical
results mentioned in the standard books [2,34] work in the anisotropic
setting with only very minor alterations to the proofs.

Another direction of generalization to BV () is to replace the Lebes-
gue measure in R” by a generic measure. Things start to get complicated
in this setting. As an example, the approximation of such BV functions
by smooth ones might fail. This explains why there are non-equivalent
ways of defining BV functions in a generic measure space (R", u). We
mention [65] for one of the approaches where p is a doubling measure.
When p = w(x)dz is absolutely continuous with respect to Lebesgue
measure, another way of generalizing the classical total variation (not
equivalent to the one given in [65]; see Section 5.1 in [65]) was given
in [6].

For our purpose, we adopt the following definition. We say a function
f € LYwdz,Q) is of bounded anisotropic weighted variation (or f €
BV ,(Q)) if f € BViee(Q) and w € L(|| - Df| 1+, Q). In this case, we
define the (L,w)-anisotropic total variation of f to be

(3.2) TVLo(£:9) = [ wil - Dfli-

To see how this is connected to the classical definition (3.1), we mention
that when w : R™ — [0,00] is a lower semi-continuous function with
w(x) > 0 for all  # o, using an approximation argument in both f and
w, one can see that

TVL,w(f; Q)

=sup {/Q fdivTde: T € CHQRY), |T(z)|r < w(:L'),V:U} .

Since this representation is not required in the current work, we do not
provide a proof here.

Let E C R™ be a measurable set. When 15 € BVy, ,(R"™), we say E
has finite (L, w)-anisotropic weighted perimeter and write Pery, ,(0F) =
TV w(1g; R™).

Let f:R" — R and t € R, write

[f >t]={z eR": f(x) > t}.

For BV functions, the following version of the classical coarea formula
can be found in Figalli-Maggi-Pratelli [36, (2.22)]: if f € BV(R") and
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¢ :R™ — [0, 00] is a Borel function, then

/Rn ¢d| - Df||p- = /_Z (/Rn ¢d|| - Dl[f>t]HL*> dt.

In particular, this implies

(e}

(3.3) TVio(f;R") = / Pery, o (A[f > 1])dt.

—o0
4. Log-concave functions and their (L,w) total variation

Throughout this section, if not specified otherwise, we let ¢ > 0.

It is well-known that the set of convex bodies can be embedded nat-
urally into LC(R™) via their characteristic functions. Let f = e~%,
g = e ¥ bein LC(R") and s,¢ > 0. The sup-convolution between f and
g can be defined via the Legendre-Fenchel conjugate of their respectively
associated convex functions:

(4.1) s-f@t-g=e XTI

When s = 1 — ¢, (4.1) coincides with (1.1). For the purpose of the
current work, we consider the special case s = 1, which we will write as
f@t-g. It is well-known that when f = 1x and g = 1, are characteristic
functions of convex bodies, then

Ik @t -1 = 1k 41,

where K +tL is the usual Minkowski combination between convex bod-
ies. Therefore, the supremum convolution @ can be viewed as a natural
generalization of the Minkowski addition for convex bodies.

For each ¢ > 0, the (¢ — n)-th moment of a log-concave function f is
defined as

Ul = [ lalr" fla)da,

When f = 1x for some convex body K € K, by polar coordinates, it
is simple to see that

Vi) = ¢ [ pleluydu = Vi(5),

where YN/q(K ) is the g-th dual quermassintegral of K. Therefore, the

quantity V; on LC(R™) can be viewed as the natural generalization of
dual quermassintegrals for convex bodies.

In the seminal work [48,62], the differentials of dual quermassinte-
grals were studied, which led to a family of long-sought-for geometric
measures known as (p, q)-dual curvature measures. These measures and
their characterization problems (called Minkowski-type problems) have
been intensively studied in the past few years and have already led to
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many interesting conjectures regarding isoperimetric inequalities as well
as the discovery of novel curvature flows.

It is natural to wonder whether the same philosophy can be applied
in the space of log-concave functions—given that all the elements (dual
quermassintegrals and Minkowski addition) have their natural counter-
parts in the larger space. It is the intention of the current section to
demonstrate that the answer is yes, with some minor restrictions on the
log-concave functions f and g. To explain why these restrictions are
needed, note that the variational formulas demonstrated in [48,62] re-
quire the convex body to contain the origin as an interior point and con-
sequently the family of (p, ¢)-dual curvature measures are only defined
for such bodies. See, for example, equation (1.9) in [48]. Therefore, it is
natural to expect certain restrictions on f that mimic the requirement
that K has the origin in the interior as in the convex body case.

In the following, we show that the variation of the moment of f is
strongly connected to the theory of functions of bounded anisotropic
weighted variation in Section 3.

We will study the existence of the following limit

- Vy(fet-g) = V(f)
4.2 0, =1 1 LR
(4.2) o(f,9) = lim "
Note that it is not clear at all why the limit should exist.
For the rest of the section, we write w, for the weight function

w(I(m) = |:L"q_n7

for ¢ > 0. It is important to emphasize that the following proofs actually
work for more general weight functions. As an example, the proofs (with
very minor modifications) will work for the Gaussian weight function
w(x) = e~l2l?/2,

We require the following lemma from [48] (see also Theorem 6.5 in
[62]).

Lemma 4.1 ( [48]). Let K € K? and g : S" ' — R be a continuous
function. For sufficiently small |t|, define hy : S"1 — (0,00) by

Then, we have

(4.3) i Va(lhe]) = Vo([ho)
t—0 t

- / 9(0)dCh oK),
Sn—l

where the definition of 61,(1([(, -) is given in Section 2.1.

When g = hy, for some compact convex L C R", we will denote the
right-hand-side of (4.3) by Vi 4(K, L); that is

oK, L) = / 4G, (K, v).

[ o)y (K. 0) = /

Sn—1 h/K(’U)
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Recall that a log-concave function is almost everywhere differentiable.
It was shown in Rotem [68] that if f € LC(R") and f is £!, then
f € BV(R™) and its distributional derivative is given by

(4.4) of|DfIl = Vfdx — fu,dH" ok,

where K is the support of f and is thus convex by the fact that f €
LC(R™). With this in mind, by (3.2), it is simple to see that if K, L €
K7, then K is of finite anisotropic weighted perimeter. Indeed,

PeI‘qu (8K) = TVLMq(lK,Rn)
_ / hi(vie (2)) |2 dz
0K

_ / hi(0)dCh o (K, v)
Snfl
=Vi4(K,L) < cc.

The following lemma is due to Huang-LYZ [48]. We provide a short
proof here for the convenience of the readers as the lemma as stated
here is buried in the long proof of Lemma 4.1 in [48].

Lemma 4.2. Let hg,h; : S" ! — (0,00) be continuous. Denote
K; = [hi]. Then, for every u € S"~ 1, we have

llog pic, (u) — log picy (u)| < max |log iy —log hol.

Proof. We fix an arbitrary u € S"~!. By (2.2) and (2.3), for each
i1 =0,1, we have

(4.6) pK; (uw)(u,v) < hi(v), Yo € §n1
and there exists v; € S” ! such that
(4.7) prc; (w)(u, vi) = hi(vi).

By (4.7) and (4.6),

(4.8) log pr, (u) —log px, (u) = log px, (w) — log ho(vo) + log(u, vg)
' < log h1(vo) — log ho(vo)

Reversing the role of K7 and Ky immediately gives
(4.9) log pr, (u) —log pr, (1) < loghg(v1) — log hy(v1).
The desired result immediately follows from (4.8) and (4.9). q.e.d.
Lemma 4.3. Let K € K} and r9 > 0 be such that
B(rg) C K.
Let L be a compact convex subset of R™ and denote

K=K +tL.
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Then, there exist C > 0,69 > 0 which depend only on ro and maxy, |x|,
such that

log pr, — log pic
t

<C on S 1,

for every t € (0, o).

Proof. Since K € K and L is a compact convex set, for sufficiently
small ¢ > 0 dependent only on 79 and maxy, |z|, we have that K; €
7. For simplicity, we will write hy = hg,. Note that h; is a positive
continuous function on S"~! and [hi] = K.

Note that on S™1,

log hy = log(hg + thr)

(4.10) = log hg + log(1 + thr /hK)

h
== log h() + t—L + O(ta ')7
hx

where

hr(v)?

2 n—1
NS o) — o Cop? €

It is simple to see that there exist dg, C; > 0 that only depend on rg
and maxy, |z|, such that for each 0 < t < Jp, we have

o(t,v)

(4.11) ;

< Cla

uniformly in ¢ and v. By Lemma 4.2, (4.10), and (4.11), for each fixed
0<t<dy

<C,

log pk, — log px ‘ < MaXyegn- llog h¢(v) — log ho(v)]
t - t

where C' > 0 only depends on ry, and maxy, |z|. q.e.d.

Corollary 4.4. Under the same assumptions as in Lemma 4.3, for
each q > 0, there exists 59 > 0 dependent only on ro and maxy, |x| such
that
P, — P

; < 21Cqpl., Vit e (0,6).

Here C is from Lemma 4.3.
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Proof. By Lemma 4.3 and the mean value theorem,

P, — Pk

t

ed108pr, _ pqlogpi

t

log pk, — log pic ’
log pi, —log p

edog K, _ pqlogpk
<C

log pr, — log pic
= Cqbf,

where 6 is between pg, and pg. Since B(rg) C K and L is compact, for
sufficiently small dp (dependent on ¢ and maxy, |z|), we have K; C 2K
for each 0 < t < &g. Consequently, 6 < 2pg, which immediately gives
the desired bound. q.e.d.

Denote [f > s] = {z € R": f(z) > s}.

Theorem 4.5. Let ¢ > 0, f € LC(R™) with non-zero finite L* norm
and L be a compact convex subset of R™ with o € L. Assume f achieves
its maximum at o, and

[f(x) = f(o)]

(4.12) lim sup P

Tr—0

< 00,
for some 0 < a < 1. Then,

6q(f1L) = /0°° ‘71,q([f > s|,L)ds < .

Proof. For simplicity, write
KS = [f 2 8]7

and M = f(0o) = max f.
We first claim that there exist g > 0 and ¢y > 0 such that

(4.13) K, D co(M — s)a+1B,

for any s € (M —ep, M). Indeed by (4.12), there exist A > 0 and 79 > 0
such that for every x € B(ng), we have

M — f(z) =|f(z) = f(o)] < Alz[**,

where we used the fact that M = f(0o) = max f. Equivalently, this
implies that for every = € B(ng), we have

f(z) > M — Alz|>TL,

A direct computation now shows that if s € (0, M), then

K,> B ((MA‘ S)“) N B(no).
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We now choose gy > 0 so that for every s € (M — g9, M), we have

B<@ﬁf>ﬁ>c3wy

Consequently, we have

1
M — s\ art
K@B(( AS> +>:cO(M—5)%HB,

for some ¢g > 0.

In particular, (4.13) implies, for each s < M, that the set K contains
the origin in the interior. We also require that ¢ is sufficiently small
so that Ky C ¢ B for each s € (M — ¢, M) and some ¢; > 0. This is
possible since f € £ N LC(R™) implies that im0 f(2) = 0.

Note that by layer cake representation, we have

M (K, + tL) — Vy(K)

%(f1e) = tgr(l)%r 0 t ds
Step 1:
v =
o MVl D)~ V(K
t—=0T J e t
v ~ =
L[y BT,
M—gqo t—0T t

In particular, the integral on the right is finite.

Proof of step 1: For t € (0,1) and s € (M — g, M), let

g(t; s) = V(K + tL).

By Lemma 4.1, for each s € (M — g, M), the function g¢(t;s) is differ-
entiable in ¢ and

a . hrp(v)  ~
5 (t;s) = /Snl hKS-s-tL(U)qu(KS +tL,v).

Therefore, by the mean value theorem

g(t;s) — g(0;5) / hr(v)  ~
98 — 915 8) _ ) 4G (K, + 0L, v),
t sn-1 hicror(v) ol )
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where 6 € [0,t] and is dependent on s. Since o € L, we have K+ 6L D
1
K D cg(M — s)T+a B. Since L is compact, for ¢ € (0,1), we have,

ts) — (0 1 T
9(t;s) — 9(0;5) < gmax|z| - —(M — 3)_1%“/(1("(5 +1)
t L €0
1 ~
< qmgx!a:\ . c_(M - 3)*1+%Vq(C1B + L)
0

< C(M — ) T,

for some C' > 0. )
Note that (M — s)” T+« is integrable near M thanks to o > 0. There-
fore, by the dominated convergence theorem, we get the desired result.

q.e.d.
Step 2:
M=e0 V(K +tL) — Vy(K
lim Vo(Ks +tL) = Vo(Ks) |
t—0t Jo t
M—eo % 1

:/ lim Vo(Ks +tL) Vq(Ks)ds.

0 t—0t t

In particular, the integral on the right is finite.

Proof to step 2: For each s € (0, M — ), there exists A9 > 0 such that
K, D KM_EO D MB.
By Corollary 4.4, for t € (0,09) (where dy is from Corollary 4.4),

q q
Vo(Ks +tL) — Vo(Ks) 1 / sz+tLt_ PK, du < 21C
Sn—1

t q
Here the constant C' is from Corollary 4.4. In particular, C' and g are

not dependent on s.
1 M—¢q
- / / ple duds
qJo gn-1 0

Note now that
M—eo _
:/ Vo(Ks)ds
0

M ~
g/ Vy(Ks)ds
0

:/ |z|T7" f(x)dz < 0.
Rn

Therefore, we may use the dominated convergence theorem to justify
the exchange of limit and integration. q.e.d.

a
- Pk, du.



22 Y. HUANG, J. LIU, D. XI & Y. ZHAO

By Step 1 and Step 2, we have

M
A A

t—0+ t

ds

M ~
:/0 Vig(lf > s8], L)ds
:/Ooovlﬁq([fz s, L)ds.

Note that it is included in Steps 1 and 2 that the right-hand side is
finite. q.e.d.

We first show the validity of Theorem 1.3 in the special case that g
is a constant multiple of a characteristic function.

Theorem 4.6. Let g > 0, f € LC(R™) with non-zero finite L' norm
and L be a compact convex subset of R™ with o € L. Assume f achieves
its mazimum at o and

|[f(x) = f(o)]

lim sup s

Tr—0

< 00,

for some 0 < a < 1.
Let g =cly = e for some ¢ > 0. Then,

(0 = [ wdCitr+ [ hu@aCisio)

Proof. We first restrict ourselves to the case where L € K.
We may assume without loss of generality that ¢ = 1. In this case,

by (2.6), ¥* = hp,.
According to Theorem 4.5, (4.5), and (3.3), we have

00 > by(fo11) = /0°° Vig(lf > sl L) ds

= /oo Perr, ., (O[f > s])ds
0
= TVL,Wq(f; Rn)

By (3.2) and (4.4), we have
(4.14)
5Q(fa 1L)

=TVLw,([;R")
:/ hL(V¢)f(ﬂf)!w\q"d‘”+/ hi(vi,) f (@)= " " dH" (x)
Rn

0K

= [ ho@)dCe(fiy) + / i (0)dCE (3 ).
Rn gn—1
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Here, the last equality follows straightly from the definition of 5’; and

55. See Definitions 1.1 and 1.2.

To see that the result still holds when L is a compact convex set with
o € L, consider the body L' = L+ B € K. Then, by using (4.14) twice,
we have

(4.15)
(1) = [ by + [ h)iG(fio
= [ mwidCitrin + [ mu)acy(sio)
+ [ bewdC(sin)+ [ ha)dGy(fiv)
R™ gn-1
= [ hwaCitsin + [ hu)dCifio) + 8,05, 10).

On the other hand, note that ‘717q(K, L) is linear in L with respect to
the Minkowski addition. Therefore, by Theorem 4.5, we have

(4.16) (£, 11) = 84(f: 1) + 84( /. 1).
The desired result now follows from combining (4.15) and (4.16). q.e.d.

We need the following lemma from [67].

Lemma 4.7. Let f = ¢ %,g = e¥ € LC(R") be such that f has
nonzero finite L' norm and g is compactly supported. Then for almost
all x € R™, we have

L (8 0)(@) — f(@)

t—0+ t

=97 (Vo(x))f ().

We are now ready to prove the promised variational formula; that is,
compute the limit in (4.2).

Theorem 4.8. Let ¢ > 0 and f = e~¢ € LC(R™) with non-zero finite
L' norm. Assume f achieves its maximum at o and

(4.17) lim sup /(@) = f(o)] < 00

T—0 |CE|O[+1 ’

for some 0 < a < 1. Let g = e~% € LC(R™) be compactly supported and
g(o) > 0. Then,

@18 e = [ 0@+ [ @)

Proof. Let fy = f @ (t-g). Since g is compactly supported, there
exists A > 0 such that g < Alg, and therefore f; < fy = f@ (- Alg,).
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By Lemma 4.7,
T N D RN T
lim ~——— = lim — lim
t—0+ t t—0t+ t t—o0t t

=hg, (Vo) f +InAf —4*(Vo)f.

By Fatou’s lemma, we have

lim inf u]ﬂdq_"dm
t—0t Jrn

> [ 1w, (VO + A = 0 (Vo) ] o'~ "da
]Rn
= [ (e, () = 6" @Gy (fi3) + A= Ty( ),

Since g(o) > 0, we have o0 € K. By Theorem 4.6, we have

lim /ftt;f]x\q_"dx

t—0t

= /R hic,(Y)dCE(f3y) +In A - Vy(f) +/5n1 hi, (v)dC(f3v).

Combining the above two formulas, we have

limsup/MMq"d:c
t—0t t

< [ wwacsrm+ [

Sn

g, (v)dC(f;v).

For the other direction of the inequality, define for each positive in-
teger j, the set

QjZ{ﬂﬁGR"ig(fﬂ)z%}.

Since g is compactly supported, we conclude that Q; 1 K,. Since g(o) >
0, for sufficiently large j, we have o € ;. We focus on such j.
Let

_ 1 = _
g9; = lej, and fj: = f@t-gj.

Note that fj,t < fi. Arguing the same way as before, we have

timint [ 5D ol e > [ ()=o) dC(Fiw) 10 V()

t—0t+
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and

lim /@\x!q_”dx

t—0t

= [ ho,)dCi(fi) ~ s Vuh) + [ ho,(waCi(riv).

Adding the above two formulas, we have

.. ft - f q—n * ~e(lr. S (£
liminf | =—|z|? "dx > Y (y) dCy(f;y)+ hq, (v)dCy(f;v).
t—0t t Rn Sn—l 7

Letting j — oo, by the monotone convergence theorem, we have

t—0t n—1

tmint [ jpprar> [ o @)aCirins [ g @G,
Rn S
This completes the proof. q.e.d.

We remark here that the hypothesis (4.12) in Theorem 4.5 (and conse-
quently (4.17) in Theorem 4.8) is not the best hypothesis. In particular,
we show that if the level sets of f near the origin are uniformly in “good
shape”, then Theorem 4.5 still holds when L € K.

For K € K}, define

rgk =max{r >0:rB C K}
and
Rig =min{r > 0: K C rB}.

Proposition 4.9. Let f € LC(R™) with non-zero finite L' norm and
L € K7'. Assume f achieves its mazimum at o. If there exist g > 0
and C > 0 such that for almost all f(0) —ep < s < f(0), we have

Rip>q
(4.19) 1< W2l
T(f>s]

then
6q(f 1) = /0°° ‘Z,q([f > s],L)ds < oo.

Proof. Denote f(o) by M and Ks = [f > s|. Like in the proof of
Theorem 4.5, it is sufficient to show

MK+ L) = Vy(Ky)

lim+ . ds
t—0 _
(4.20) oM _
K L) -V, (K
[V g Bl D) ST,
M—gg t—0T t
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and
M—eo 7 _ 17
. VoK +11) = Vy(K,)
(4 21) t—0t Jo t
‘ M=o V(K +tL) — Vy(K,
=/ i YalSs +tL) = Vo(KS) o
0 t—0t t

Note that the latter follows in the same way as before. Hence, we only
need to justify (4.20).

By (4.19), it is simple to see that for almost all s € (M — g, M) and
t € (0,1), we have

Ri, yi1
Retth o)
TKs+tL

for some C7 > 0 independent of s and t. Consequently, there exist
¢ > 0 independent of s and ¢ such that

(4.22) cs < Uk oo (2) - % <1,

for almost all x € O(Ks +tL).
Let g(t;s) be as defined in the proof of Theorem 4.5. By the same
argument, we have

g(t;s) — g(0;s) / hr(v)
98— 95S) Y 46 (K + 0L, v),
t sn—1 hi 1or(v) ol )

where 6 € [0,t] and is dependent on s. By the fact that L € K and
(4.22), there exists C5 > 0 independent of ¢ and s such that

t;s) —g(0;s _
(4.23) w < C4 én_l p%si_%(u)du.

When ¢ > 1, by (4.23) and the fact that K5 + 0L C K, + L C
Kpr—ey + L whenever t € (0,1) and s € (M — g, M), we have

t;s) —g(0;s _
gltis) = 9(0:5) " 9(0;5) < 03/5 _IP(}(A;_EOJFL(U)OZUS Cy,

for some Cy > 0. Equation (4.20) then follows from the bounded con-
vergence theorem.

Let us now concentrate on the case ¢ € (0,1). By the fact that f is
positive in a neighborhood of the origin, there exists c5 > 0 such that

fx) = M2,
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for all || < ¢5. By log-concavity of f, we have

s =r((1-8) o2 (1))

for every 0 < |y| < ¢5. Consequently, there exist §p > 0 and Cg > 0
such that for all s € (M — &y, M), we have

Ks D Cg(log M —log s)B.

Therefore, (4.23) and the fact that 0 < ¢ < 1 in combination with
K, C K; + 0L, show that for each s € (M — &g, M),

t;5) — g(0; _
M) 90) oy [ wdu < Crllog M —log )7,
Sn—1

for some C7 > 0. Note that

M

/ (log M —log s)? ds < oo.
M—d9

Hence, by the dominated convergence theorem, we conclude the validity

of (4.20) with &g replaced by dp. Note that (4.21) holds with & replaced

by dg as well—via the exact same argument. Therefore, we derive the

desired result. q.e.d.

Remark 4.10. We remark here that since in the proof of Theorem 4.8
we required (4.17) only for the ability to apply Theorem 4.6, by Proposi-
tion 4.9, we conclude that with the additional assumption that the origin
is an interior point of the support of g, Theorem 4.8 continues to hold
with (4.17) replaced by (4.19). In particular, hypothesis (4.19) allows
for log-concave functions such as

f(z) = ezl

where K € K. It is of great interest to see whether assumptions like
(4.17) and (4.19) can be dropped altogether.

A few additional remarks are in order:

1) Theorem 4.8 justifies why we referred to 55’(]”; -) and 65(]”; ) as the
Fuclidean and spherical dual curvature measures for log-concave
functions. In particular, when f and g are characteristic functions
of convex bodies containing the origin in their respective interiors,
(4.18) recovers its convex geometric counterpart (1.2).

2) Since ¢ is convex and therefore almost everywhere differentiable
in the support of f, the measure 5;( f;+) is well-defined. Notice
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that its total measure is equal to 17(1( f). Therefore, by Proposition
2.1, as long as f is in £!, the measure 5’;(f; -) is always finite.
Since f is log-concave, its support K is necessarily convex and
therefore it makes sense to write vi,. However, even with the
assumption that f € £!, it might not be the case that the mea-
sure 6’3’ (f;-) is finite. To see this, simply take the example where
Ky has a facet that contains the origin in the relative interior. In
that case, the density |z|9~™ will have a non-integrable singularity
at the origin in that subspace when ¢ < 1. This counterexample
suggests that we must impose some condition on f such that f
“contains the origin in the interior”. With the additional assump-
tion that Ky contains the origin in its interior, one may show that
6‘5( f;-) is always a finite measure.

When f = 1k is the characteristic function of a convex body
K € K7, the Euclidean dual curvature measure 6;( f;+) reduces
to a point mass concentrated at the origin and

Cy(f;) = Crq(K,>).
Let us emphasize again that although the weight function w, =
|2|2~™ is the only type of weight functions treated in this sec-
tion, many results presented here can be shown for other weight
functions (with only small changes). In particular, the Gaussian
weight function is one of the many weight functions that can be
used here to replace w,. We mention that in the setting of convex
bodies, a variational formula for the Gaussian volume and its cor-

responding Gaussian Minkowski problem was previously studied
by the authors in [49].

5. The Minkowski problem for C~'§

The purpose of this section is to study the following Minkowski prob-

lem for the Euclidean dual curvature measure of log-concave functions.

We will restrict our attention to the even case—the prescribed mea-
sure p in (1.7) is even and we are restricting our solution set to all even
functions f € LC(R™).

5.1. The variational structure. In this subsection, we convert the

solvability of (1.7) into the existence of a minimizer to a minimization
problem.

We recall the following result in [68, Proposition 2.1].

Proposition 5.1 ( [68]). Let ¢, : R" — (—o0,00] be lower semi-
continuous functions. Assume ¢ is bounded from below and ((0), »(0) <
0o. Then at every point xo € R™ where ¢* is differentiable, we have

0

|, (610 () = ~((V6" (w0))



DUAL CURVATURE MEASURES FOR LOG-CONCAVE FUNCTIONS 29

Note that in [68, Proposition 2.1], the derivative is stated as a one-
sided derivative. However, for ¢ € C.(R"), one can consider —( and
immediately get that the derivative is double-sided.

We will require the following variational formula.

Lemma 5.2. Let f € LC(R™) be an even function and q > 0. Sup-
pose f has non-zero finite (q—n)-th moment and takes the form f = e=®
for some ¢ € CVX(R™). For ¢ € C.(R"), define

¢u(x) = (6" +1¢)* (),
and
fila) = e,
Then, we have

a
dt

Vulf) = [ (Vo@lalt " @ydo = [ ()i fin).
t=0 R™ Rn
Proof. We note that the second equality follows directly from the
definition of Cy(f;-) and therefore only the first equality needs a proof.
By the fact the f is even, Proposition 5.1, and the remark immediately
below it, we have

8¢t (iL‘)
ot

= —((Vo()),

t=0

almost everywhere in R".
For simplicity, write

hi(x) = [x]T" fi(x).

Since ¢ € C.(R™), there exists M > 0 such that || < M. Therefore, we
have

¢ — [t|M < ¢" +1( < " + [t|M.
Since Legendre transform reverses the order, we have
¢ —[tIM = (¢" + [t|]M)" < (¢" + Q)" < (¢" — [t|]M)" = ¢ + [t|M.
Using the above estimates, we have the existence of C' > 0, such that

hi(z) — h(z)

< ||t e 0@

< 2C|z|? e ),
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for sufficiently small |t|. Therefore, by the dominated convergence the-
orem, we have

d

0
o hi(x)dx

IRy
= [ T sa)lel @)

q.e.d.

Let A > 0 be an arbitrary number and p be a nonzero even finite
Borel measure on R™. Consider the following optimization problem
(5.1)

inf {/ odp ‘7;1(6_(1)*) >A,¢6>0,¢€LYn),ois an even function} .
R

The following lemma shows that the Euler-Lagrange equation of the
above constrained optimization problem implies the existence of a solu-
tion to (1.7).

Lemma 5.3. Let g > 0 and o be a non-zero even finite Borel mea-
sure on R™ that is not concentrated in any proper subspace. If an even

function ¢g € CVX(R™) is such that ¢g € L (1), ¢o(0) > 0,
XZ,(@_(z’a) =A, for some A > 0,

and

Podp
R’V’L

—inf {/ b V(e ) > Arp > 0,6 € £1(3),

¢ is an even function}

then
H = 6§(f07 ')7
where
[ —
fo=="——e"%.
Vy(e™?0)

Moreover, fo € L.
Proof. Let ¢ € C.(R™) be an even function. Set
¢u(x) = ¢o(x) + t¢(z)
and

A(t) = Vyle ).
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The fact that A(¢) is finite for small |¢| comes from Proposition 2.2, the
fact that ¢g € £(p), and that p is a finite measure not concentrated in
any proper subspaces. Set

oi(x) = dp(x) —InA\(¢) + In A.
It is simple to notice that
A

Vale®) = Vyfe ) 555 = A

Since ¢ € C.(R™), there exists M > 0 such that |¢| < M. This implies
that

A(t) < V(e %0)elM = peltM.
Thus, the choice of <z~5t implies that when |¢| is sufficiently small, we have
$r > ¢o(0) — 2[t|M > 0.
Such <Et satisfies the constraints of the optimization problem. Since ¢

is the minimizer and ¢y = ¢g, by Lemma 5.2,

d

O:a

&:du
t=0 JR"

— [ ¢@dute) - Hxo)
.

A
= | C@)du(x) - [ C(=)dCe(fo;2),
R™ R

where fo = e~%0tnul=In(4) " Since ¢ is arbitrary in C.(R"), this implies
that

p=Ce(fos).

To see that fo € L£!, note that since i is not concentrated in any
proper subspaces and ¢g € L!(u), we conclude that ¢g is finite in a
neighborhood of the origin. The fact that fy € £' now follows from the
Proposition 2.2 with ¢ = n. q.e.d.

Note that although the requirement ¢ > 0 in the constraints of the
optimization problem is a closed condition, to make the Euler Lagrange
equation equal to 0, we have to establish that the minimizer actually
satisfies a stronger condition (¢9 > 0). This will be done in the next
subsection.
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5.2. Existence of a minimizer. This section is dedicated to showing
the existence of a minimizer to (5.1) under the assumption that p is an
even measure.

It turns out that the C° estimates here are closely related to the
estimates of the dual quermassintegrals of level sets of convex func-
tions. This is perhaps not surprising, given that in the case of char-
acteristic functions, the (¢ — n)-th moment of a log-concave function
reduces to the g-th dual quermassintegral of a convex body. The follow-
ing lemma reveals the simple fact that if the images of the orthogonal
projections of a set of convex bodies onto a k-dimensional subspace,
where £k = 1,...,n — 1, are uniformly bounded, then their ¢-th dual
quermassintegrals are uniformly bounded when ¢ < k.

Lemma 5.4. Let k=1,...,n—1, and 0 < g < k. For each R > 0,
there exists C' > 0, such that for all K € K satisfying

(5.2) P:K C B(R)N¢,  for some k-dim subspace & C R",
we have
V,(K) < C.

Here, we use PcK to denote the image of the orthogonal projection of
K onto &.

Proof. By (5.2), we have
K C B(V2R)U[P:K % (£"\B(R))] C B(V2R)U[(B(R)N&)x (£X\B(R))].

Hence,

Vy(K)

S T R O e O R I T
¢\B(R) J B(R)NE B(V2R)

< / 2T (2) / () + S (VaRy
E\B(R) B(R)NE q

=CRF* / PR dp + %(\/5}2)‘1
R

1
oY riy C(aRy
k—q q
q.e.d.

For K € K, we write

V,(K) = G /Snl p%(u)du)é ,

for the normalized version of dual quermassintegrals.
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A quick application of Lemma 5.4 gives the following Blaschke-Santalé
type estimates for normalized dual quermassintegrals. This is a special
case of Theorem 3.1 in [21].

Lemma 5.5. Let K be an origin-symmetric convex body in R™. If
q € (0,1) and p > 0, then there exists C > 0 independent of K such
that

(5.3) V(K")V,(K) < C.
Proof. Let vg € S"~! be such that

hi+(vg) = min hg=(v).
veSn—1
Note that the functional V,(K*)V,(K) is invariant under rescaling of
K. Therefore, by rescaling, we may assume hg~(vg) = 1. This, by the
choice of vy, implies

BCK*,
and consequently,
(5.4) K C B.
Moreover,
P:K* C BNg,
where & = span{vp}. Equation (5.3) follows from Lemma 5.4 and (5.4).

q.e.d.

By integrating (in a certain way) over level sets of a log-concave
function, Lemma 5.5 readily implies the following Blaschke-Santal6 type
inequality for log-concave functions.

Lemma 5.6. Let ¢ € CVX(R"™) be an even function with ¢(o) = 0.
Assume ¢ is finite in a neighborhood of the origin and lim|g_, ¢(x) =
0o. Suppose ¢ > 0 and 0 < p < 1. There exists C > 0, independent of
¢, such that

(/n |x!q_”e—¢*(m)dx> (/Ooo eV o(jp < t])th> <C

Proof. Recall that, for convenience, when no confusion arises, a con-
stant C' > 0 might change from line to line (or even within the same
line).

By Proposition 2.2, since ¢ is finite in a neighborhood of the origin,
we have

/ 2|77 "e " @ dy < 0.

By the definition of the Legendre-Fenchel transform, we have

¢ (x) = sup{(z,y) — ¢(y)} > —¢(0) = 0.
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Furthermore, we have for any s,t > 0,
[¢" <s] C (s+1)p <t]".

The proof of this fact can be found, for example, in the proof of The-
orem 2.1 in [3]. Note that since ¢ is finite in a neighborhood of the
origin and ¢(0) = 0, we conclude that for each ¢ > 0, the sublevel set
[¢ < t] contains the origin in the interior. On the other hand, since
lim) o0 @(x) = 00, the level set [¢p < t] is bounded. Lemma 5.5 now
implies the existence of C' > 0 such that

Vo([* <sl) < (s +1)Vo(lp <H]") < Cs + V([ <)~
By definition of Vq, we have

(5.5) /[¢*< el < O+ 0Tl < )

Set

F(s) = {6_5 f[¢*g5} 2|7 "dz, ifs>0

0, otherwise,
and
Vo ([¢p <), ift>0
G(t)z € P([¢_ ]) , 1Lt =2 .
0, otherwise,
and

Hiz) = {\/56_“5(23:)3, itz >0,

0, otherwise.

Then, (5.5) implies that for any s,¢ > 0,

H (%s + %t) =VCe s (s+1)

N

> F(s)2 G ()2 .

It is simple to check that the above inequality is also true when s or ¢
is negative, in which case the right-hand side of the inequality is 0.
Therefore, by the Prékopa-Leindler inequality, we have

(/Ooo 0" /WSS} \azlq_”da;ds> (/Ooo eV, ([6 < t])th>
(5.6) c </Ooo e‘"’”x%dg;)z

<C.
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The fact that ¢* > 0 and layer-cake representation now imply

o
/ ‘l‘|q_n6_¢*(x)dl‘:/ / || " dadt
R™ 0 [e=¢" >t
:/ e_s/ |x|T " dzds.
0 [¢*<s]

This, when combined with (5.6), gives the desired estimate. q.e.d.
The above lemma immediately implies the following comparison.

Lemma 5.7. Let ¢ € CVX(R") be an even function with ¢(o) = 0
and i be a nonzero even finite Borel measure not concentrated in any
proper subspace. Suppose ¢ >0 and ¢ € L (). There exist C1 > 0 and
Csy < 0, independent of ¢ such that

1
(5.7) [ oduz i)+ co
RTL

Proof. If
Vy(e @) =0,
or equivalently ¢* is almost everywhere +oo, there is nothing to prove.
Therefore, we may assume that ¢* is finite in a neighborhood of the
origin, and by Proposition 2.2, we have that

/ e @iy < o,

or equivalently, ¢ — 0o as |z| — oo.
We first note that since  is not concentrated in any proper subspaces,
there exists ¢; > 0 such that

[ e wldu(z) > e

for every u € S™1.
Set

K ={z cR": ¢(z) < 1}.

Since ¢ € L£'(p) is even and p is not concentrated in any proper sub-
space, we have that ¢ is finite in a neighborhood of 0. Therefore, by
the fact that ¢(0) = 0, we have that K is a symmetric closed convex set
that contains the origin in its interior.

Let rx be such that

rg =sup{r >0:rB C K}.
The facts that ¢ — oo when |x| — oo imply that K # R™. Therefore
0 < rg < co. Note that since K is closed, there exists ug € S~ ! such
that rgug € K. This in turn implies that hx (ug) = rg.
We fix now an arbitrary € R™ with [(x,uo)| > 2rx. We consider

x = |(§T—u};>\x Note that by choice of x, we have |(z',ug)| > rg. This
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implies that 2’ ¢ K and therefore ¢(x’) > 1. By convexity of ¢, we now
have

1<) =0 (1 oree) °* Torea®) = Tomagn e

Hence, for every x € R™, we have

$w)+12 5|0l

Integrating with respect to u, we have

1 C1
5.8 dy > —— , d — > .
68) [ oduz g [ leudlduta) = el = 5~

We now estimate the right-hand side of (5.7). By Lemma 5.6, there
exist 0 < p < 1 and ¢y > 0 such that

00 -1
(5.9) V(e ") < e ( /0 e Vp(lo < t])th>
Note that by the convexity of ¢ and since ¢(0) = 0, we have
[¢ <] DK,

for t < 1. Therefore, we have

/Oo e 'Vy([p < t])%dt > /1 e 'V, (tK)1dt
0 0

(5.10)

for some c3 > 0.
Combining (5.9) and (5.10), for some ¢4 > 0, we have

Vi (e ") < 2,
K
By (5.8), we have the existence of ¢5 > 0 such that

1 1
/gbd# > sVl (e %7) — |ul =: 1V (e797) + C,
for some C7 > 0 and Cy < 0. q.e.d.

In [33, Lemma 17|, Cordero-Erausquin and Klartag demonstrated
that, if ¢y is a sequence of nonnegative convex functions with uniform
L'(p) bound and ¢(0) = 0, then one may construct a subsequence
¢r; and a nonnegative convex function ¢ such that the L' (1) norm of
¢ is bounded from above by the lower limit of the £!(x) norm of the
subsequence while YN/n(e_‘z’*) is bounded from below by the upper limit
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of ‘771(6_(%1 ). As observed by Rotem [68], the assumption ¢x(0) = 0 is
only used to know that ¢ (Az) is increasing in A on (0,1) and this is
trivially true when ¢y is even. Upon further inspection of the proof, it
is not hard to see that such a “selection theorem” holds for any ¢ > 0.
We state the following generalized version without providing a proof.

Lemma 5.8 ( [33]). Let ¢ > 0 and p be a non-zero even finite Borel
measure on R™. Assume i is not concentrated in any proper subspace.
If ¢, € CVX(R™) is non-negative, even and

sup [ ¢rdu < oo,
k R7

then, there exists a subsequence ¢r; and a non-negative, even, conver
function ¢ € L(u) such that

(5.11)
/ oddp < lim inf/ b dp, and Vy(e™®") > limsup 17(1(67(;5’21‘).
Rn J]—00 Rn J j—00

We are now ready to show the existence of a minimizer to (5.1).

Lemma 5.9. Let ¢ > 0 and p be a non-zero even finite Borel mea-
sure on R™. Suppose p is not concentrated in any proper subspace and
Jgn l2ldp(z) < co. For sufficiently large A > 0, there exists an even
function ¢g € CVX(R™) such that ¢o € L1 (1), ¢o(0) >0,

Vy(e %) = 4,
and

Podp
RTL

(5:12) _jng {/ b Vy(e ") > A, 6> 0,6 € L1(1),
¢ is an even function} .

Proof. Let ¢, > 0 be such that

/ |x|9 " dx = 1.
B(cn)

Set
C = cn/ |z|dp > 0.
]Rn

By the condition on u, it is simple to see that C is finite.
We choose a fixed A > 0 such that

(5.13) u|In A+ C < C1AT + O,



38 Y. HUANG, J. LIU, D. XI & Y. ZHAO

where C1,Cs are from Lemma 5.7 and depend only on p and ¢. It is
simple to see that such an A exists and in fact, all sufficiently large
A > 0 satisfies (5.13).

Let ¢y be a minimizing sequence; that is, we have ¢, > 0, ¢, € L1 (),
¢y, is even,

Vy(e %) > A,
and

lim [ ¢rdu

k—o00 Rn

:inf{ ddp: V(e ) > A,0>0,¢ € L),
Rn
¢ is an even function} .
Notice that
(Z)z* < (Z)/ﬁ
and since ¢, > 0, we have ¢;* > 0. Moreover, note that (¢;*)* =
¢y Therefore, we may without loss of generality, assume that ¢, €

CVX(R™).
We claim now that

(5.14) sup ordp < oo.
k R

To see this, set
I'(z) =InA+ ¢z,
It is simple to compute that
I"(z) = 15, (x) —In 4,

where

oo, otherwise.

% (7)) = {0, if x € B(cn),

Moreover,
Vg(e™™) = 4,

according to the choice of ¢,. Note that I'(z) is positive and even.
Moreover,

/ [(x)du = |p|In A+ C,
]Rn

Since ¢y, is a minimizing sequence, we conclude (5.14).
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By Lemma 5.8, there exists a subsequence ¢y, and a non-negative
even convex function ¢ such that (5.11) holds. In particular, this sug-
gests that ¢g is a minimizer to (5.12). By possibly replacing ¢o by ¢g*,
we may assume that ¢o € CVX(R™).

It remains to show that ¢g(0) > 0 and
(5.15) Vy(e7%) = A.

To see the former, we argue by contradiction. Assume ¢g(0) = 0.
Therefore, we may conclude by using Lemma 5.7 that

1 )
g/ lnA+C > / podp > C1 V! (67¢0) + Cy > ClAtlz + Cs.
Rn”

This is a contradiction to (5.13).
To show (5.15), if it was not the case, we set
do = do — €.
Note that for sufficiently small € > 0, we have 50 > 0 thanks to ¢g(0) >
0. Moreover,
V(e %) = e*Vy(e™%) > 4,
for sufficiently small € > 0. However, it is trivial to see

Godp < [ dodp,
R7l Rn

which contradicts the minimality of ¢g. q.e.d.
Lemmas 5.3 and 5.9 now immediately solve the Minkowski problem
(1.7).

Theorem 5.10. Let ¢ > 0 and p be a non-zero even finite Borel
measure on R™. Suppose p is not concentrated in any proper subspace
and [g, |z|dp(x) < co. There exists an even fo € LC(R™) with nonzero
finite L norm such that

p=Cq(fo;")-
To complete this section, we show that the assumption that

/n |z|dp(z) < oo

is necessary in Theorem 5.10. We require the following basic lemma
about log-concave functions.

Lemma 5.11. Suppose f: R — [0,00) is a log-concave function. If
(5.16) lim f(t) =0,

t—+o0

then, for each tg > 0, we have

/ ()t < 4 sup F(D).
[t|>to

[t >0
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Proof. Since f is log-concave, it is locally Lipschitz in the interior of
the interval in which it is positive. Moreover, it is unimodal. Therefore,
by (5.16) and the fundamental theorem of calculus, we have

/ F(0)ldt < 25 £,
t>to

t>to

and

/ |f/(t)|dt <2 sup f(t).
t<—to

t<—to
Combining the above two inequality gives us the desired result. q.e.d.

Theorem 5.12. Let ¢ > 0 and f € LC(R™) be with nonzero finite L1
norm. If Ky, the support of f, contains the origin as an interior point,
then

(5.17) /R (2| dCe () = /R V£(@)] - 2|7 "da < oo.

In particular, (5.17) is valid for even f € LC(R™) with nonzero finite
LY norm.

Proof. We first consider the case where ¢ € (0,n].

Since Ky contains the origin as an interior point, the function f is
Lipschitz in B(rg) for some ro > 0. Denote the Lipschitz constant of f
inside B(rp) by A > 0. This implies that inside B(rg), we have |V f| < A
almost everywhere. Therefore,

/ Vf(@)| - |2t "dz < A/ 27" dz < oo.
B(ro) B(ro)
Therefore, to show (5.17), we only need to show
/ IV f(z)|- || "dx < oo.
B(To)c

In particular, since

V= \/(%@))2 oo (%(m)f <y

i=1

of
8:51-

()

)

without loss of generality, it is sufficient to show

/ of
B(ro)©

2, (%)

x|Tdr < 0.




DUAL CURVATURE MEASURES FOR LOG-CONCAVE FUNCTIONS 41
We write z = (y,t) € R"™! x R. Note that since f € £', then f — 0 as

|x| — oo. Therefore, since 0 < ¢ < n, by Lemma 5.11,
(5.18)

»/B(TQ)C
SV B A |
B(ro/2)cnR»~1 J —c0 B(ro/2)NR7—1 MZ@TO

of .

of
E(UC)

x|Tdx

§4/ sup f(y,t) - [y|* "dy
B(ro/2)°NRn—1 teR
q—n
3 0
+ £r0 / / —f(y,t)‘dtdy
2 B(ro/2)rRn—1 J|t}> L, | OF

<4 /B ( sup £(y.t) - |y7 " dy

r0/2)eNRn—1 t€R
V3 A\
+4 (77"0 / sup f(y,t)dy
B(ro/2)NRn—1 teR

<4 / sup £y, 1) - [y dy + C,
B(ro/2)cnR"—1 teR

for some positive constant C' depending on rg and sup f. Since f € £,
if we write f = e~?, we have

lim inf M > 0.
2|00 |Z]

In particular, this implies the existence of ¢y > 0 and M > 0 such that
for all |(y,t)| > M, we have

(519) d)(y? t) > CO’(ya t)‘
The desired result follows from combining (5.18) and (5.19).

Let us now consider the case ¢ > n.
We first note that

/ V()] - |et " de <M / V£ (2)de
B(M?) B(M?)

< M) / V1 (2)|da
Rn

<00,
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where the last inequality follows from the previously established case
q = n. Therefore, we only need to show

(5.20) / IVf(z)| - 2|7 "dz < oo.
B(MQ)C
Note that,
(5.21)
of _
——(x)| - x| "dx
L @) 1
e Bl D\B (k) | 920
< (k:—l—l)q_"/ a—f x)|dz
v B(k+1)\B(k) | 0Tn
<3 (k1) / / + / /
k:Z]:wz( ) ([B(kJrl)\B(kl)}ﬂR"—l —oo  JBk—=1)NR~1 J|t|>VE
of
= (y,t)| dtd
5y (W: 1)| dtdy

For the first term, by (5.19), we have

k+ 1)
> k+) A;

/ ‘E(y,t)‘dtdy

(k+1)\B(k—1)JnR*~1 J —0o

k
<4 Z (k + 1)q—n/ Supf(y,t)dy
k=M? [B(k+1)\B(k—1)]NR"»—1 t€R
(5.22) .
<4 Z (k + l)q—n/ e—colvl gy
k=M? [B(k+1)\B(k—1)|NR"—1

<40 3 (k)T D (k1) < oo,
k=M?2

For the second term, by using Lemma 5.11 again, we have

/|t|zﬁ

of
ot

@xﬁms4sm>ﬂ%m
[t|>vk
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and consequently, by (5.19),

= 0
> (k+ 1)"_”/ / —f(y,t)‘ dtdy
Mayy® Ble-1nR 1 jt|>vE | OF
<4 ) (k+1)q_"/ sup f(y,t)dy
k=M2 B(k—l)ﬂR"‘l |t‘2\/E
(5.23) o
<A S (bt 1) / e—0VE gy,
Pary® B(k—1)NRn—1
=4C Y (k+ )Tk — 1) temeoVE < oo,
k=M?2
Equation (5.20) now follows from (5.21), (5.22), and (5.23). q.e.d.
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