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Abstract—This letter introduces a novel graph convolutional
neural network (GCN) architecture for solving the optimal
switching problem in distribution networks while integrating the
underlying power flow equations in the learning process. The
switching problem is formulated as a mixed-integer second-order
cone program (MISOCP), recognized for its computational
intensity making it impossible to solve in many real-world
cases. Transforming the existing literature, the proposed learning
algorithm is augmented with mathematical model information
representing physical system constraints both during and post
training stages to ensure the feasibility of the rendered decisions.
The findings highlight the significant potential of applying
predictions from a linearized model to the MISOCP form.

Index Terms—Distribution ~ Switching, = Mixed-Integer
Programming, Graph Convolutional Networks, Power Flow

I. INTRODUCTION

Istribution  system operators execute switching

operations to enhance grid’s reliability, efficiency, and
resilience. These operations include network reconfiguration,
fault isolation, loss minimization, load balancing, and
voltage regulation, highlighting the importance of optimal
switching decisions [1], [2]. The optimal switching problem,
characterized by integer (e.g. switching) and non-convex (e.g.
power flow) constraints, demands extensive computational
effort, imposing a challenge in practical distribution operations
where swift and timely decision-making is crucial.

Solving mixed-integer programs (MIPs) with machine
learning (ML)-based methods is an active research area. Early
research demonstrated promising speed-ups in solving certain
MIP classes [3]. Although the learned ML model in [3]
outperformed the solver in several instances, it could not beat
solver when dealing with electricity grid problems. In addition
to the inherent complexity, infeasibility, and sub-optimality
are mentioned as challenges of ML prediction tasks in
power system problems [4], [5]. To avoid infeasibility issue,
researchers often use ML output as warm start solutions,
rather than directly fixing decisions, which limits the predictive
power of the ML models. The proposed novel framework
here employed a physics-informed GCN network that utilizes
MIP features for prediction of optimal integer solutions. The
proposed GCN incorporates physical system constraints both
during training (through a constraint violation penalty) and
after prediction (using a filtering layer) to guarantee feasible
solutions.
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II. MODEL BACKGROUND

Consider a power distribution grid with remotely controlled
switches on selected lines. The optimal distribution switching
problem, presented in (1), includes binary line switching
variables and utilizes a second-order cone programming
(SOCP)-relaxed power flow. The objective function (la)
minimizes the cost of energy loss, purchase from the upstream
grid, battery degradation, and the value of lost load. For
lines with a switch, f;j signifies the operational state of the
switch. For lines without a switch, the energization status
is inferred from neighboring lines. To maintain the radiality
of the network post-switch operation, the single-parent flow
model (1b)-(1e) is employed. Two binary variables y;  and
Yi,; are introduced to determine the directional flow within
each line. Equation (1b) ensures that energy flow remains
unidirectional within each line. Here, 1B denotes the set of
buses connected to a switch. According to (1c), energy cannot
flow towards the substation. The single-parent flow constraint
is presented in (1d). By (le), if a switch is activated, all of its
neighboring lines are energized.
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The real/reactive power (p/q) limits for demands (D), storage
devices (£), feeders (F), renewables (R), and capacitors (S)
are modeled in (I1f) and (1g). The SOCP power flow is
modeled in (1h) - (Im). This SOCP relaxation is proven to
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be exact in radial networks [6]. Voltage and line flow limits
are enforced in (1n) and (10). According to (1p), the battery’s
next hour energy (al) depends on its current energy (o) and
power exchange, considering cycle efficiency 7. Energy loss is
calculated by (1q). The power flow variables and constraints
in MISOCP (1) can be linearized similar to the linearization
concept utilized in [7], yielding an MILP as described in (2),
incorporated in learning to solve the MISCOP problem.
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III. METHODOLOGY

Despite its convex nature, the extensive integer decisions
present in MISOCP (1) complicate its solution. This
section illustrates the ML algorithm designed to expedite
decision-making without sacrificing feasibility and optimality.
The algorithm’s training is guided by a loss function that
complements the binary cross entropy (BCE) loss with
a violation loss component, refining the neural network’s
weights to converge on feasible solutions. Final binary
predictions are obtained by confidence threshold (CT)
selection and applying a filtering layer that adheres to the
physical system constraints, as illustrated in Fig. 1.
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Fig. 1. The illustration of the proposed method

In the first and second steps, the MISOCP (1) is
formulated, and its linear equivalent (2) is obtained. The MILP
representation is chosen for training due to its computational
efficiency. In step 3, the optimal solutions to different instances
of (2) are obtained and processed, categorizing the binary
variables into fixed and varying groups. Variables classified as
fixed are incorporated into the set of predicted x labels. The LP
features are extracted in step 4 by considering (2) as a graph
comprised of variables and constraint nodes [8]. To extract
features for each feasible MIP solution, its LP-relaxed form
is considered. Variable features include objective coefficient
(f1), lower/upper bounds (f33), type (ff), value (f3),
fractionality (fg), reduced cost (f¥), basis status (fg), and
sensitivity metrics to optimal basis (f§_;5). Constraint features
include sense (ff), right-hand side (fs5), slack (f$), dual
value (ff), basis status (f§), and sensitivity metrics ( I6.7)-
The physical system information, i.e. constraints that must
be enforced by the mathematical model, are determined and
processed in step 5. The constraint violations (denoted by v)
for the set of integer constraints in (2) (denoted by H) are
given in (3). This function is called both during GCN training

(Step 6) and binary prediction (Step 7).
v, =A%z —b*, VheH. 3)

The training algorithm is implemented in step 6. Let V,,
and C, respectively denote the encoded normalized features
for the m!* variable and n'" constraint extracted in step 4.
In each layer, the graph convolution operation is comprised
of a variable-to-constraint and a constraint-to-variable pass,
respectively expressed for the [** GCN layer as:
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Here, v and ¢ are differentiable functions. The general idea
of a GCN layer is to update node features by incorporating
information from adjacent nodes. A Sigmoid function is
applied to the decoder output to ensure all predictions are
within the (0,1) range. Hence, the final outputs can be treated
as I-probability of each binary variable. The training loss
function is comprised of the BCE and the violation loss. The
BCE loss is presented in (6), where o and «; denote weights
for loss of 0 and 1 components, respectively.

BCE(z, %) = Ziel
We also introduce the idea of violation loss, where the

GCN outputs are assessed against the physical system model.
Considering (3), the violation loss is defined as:
Violation(x) = 3}, .4, max(0,vp). (7
In step 7, binary predictions are initially processed by the
CT selection layer, which utilizes a quantified strategy to
discard assignments that do not meet the confidence criteria.
The CT selection is governed by the parameter «, which can
range between 50% to 100%. For each integer variable x;, its
corresponding binary assignment is determined based on its
proximity to either O or 1 value, delineated as follows:

ao(1—2;)log (1 — x;) + ay2; log z; (6)

predict 1 x; > «/100,
CT(a) = predict 0 x; < (100 — «) /100, (8)
do not predict otherwise.

A filtering layer then evaluates these predictions against
the physical system constraints to guarantee feasibility.
Particularly, the filtering rule obtains violations for each
constraint in 4 based on (3). Binary assignments that
result in non-negative violations are filtered out to ensure
feasibility of the predictions. Combining CT selection together
with the filtering layer ensures that predictions not only
adhere to statistical confidence but also align with practical
requirements. Ultimately, in step 8, the predicted decisions are
passed as fixed-value constraints to the solver (e.g. Gurobi).

Numerical example: Consider the MILP: minx; — 2z,
¢+ 22 > 1, 1,29 € {0,1}, with the optimal solution
[0,1]. For the feasible solution [1, 1], the first 5 elements in
the feature vector of =y (i.e. fi2;) are [—2,0, 1, B, 1]. For the
constraint ¢y, the first 3 elements (i.e. fy'3) are [>,1,—1].
After applying one-hot encoding to non-numerical features,
the resulting vectors are normalized. If the GCN output (i.e.,
1-probability) for these features is [0.15,0.75], a constraint
violation loss of 0.1 is considered. Additionally, the filtering
layer will only predict z; to avoid infeasible predictions.
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IV. RESULTS AND DISCUSSION

In this part, the performance of the proposed GCN solver
is investigated. Comparisons are presented for solving
randomized instances of the optimal switching problem in both
its MILP and MISOCP forms. The GCN solver is implemented
as part of the Gurobi solver. The test scenario involves a
modified IEEE 33 bus distribution network, featuring 37 lines
(10 with switching capability) and 2 solar units, each paired
with a battery unit and a shunt capacitor. The resulting MIP
contains 4,438 continuous variables and 924 binary variables.
As a result of solving 200 MILP instances for 15 minutes each,
1994 samples were extracted as training dataset. The MILPs
were generated randomly by adjusting demand and renewable
generation curves by multipliers drawn from A(1,0.03) for
temporal values and A(1,0.1) for spatial values. Training 100
episodes took 1442 seconds. To perform tests on unseen MIP
instances, the average processor time for extracting features
and returning GCN predictions was 4.47 and 1.69 seconds,
respectively.

A. Learning to Solve the Linearized Switching Problem

In our analysis, we compare the performance of the GCN
solver with the Gurobi solver across 10 randomly selected
MILP instances. It is clear from Figure 2 that the proposed
framework will quickly lead to small duality gaps. Figure
3 reveals that the GCN solver significantly reduces solution
times compared to Gurobi and achieves a very small gap. The
superiority of the GCN solver is highlighted by its ability to
identify high-quality solutions in a fraction of the time needed
by Gurobi.
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Fig. 3. Objective value for Gurobi vs. GCN solver (MILP case)

B. Applying the GCN Solver for Solving the MISOCP

In this part, the GCN trained on MILP instances is utilized
to solve MISOCP problems. Remarkably, the GCN solver’s

superiority over Gurobi is even more pronounced in MISOCP
instances than in MILP cases. As demonstrated in Fig. 4,
the GCN solver quickly attains high-quality solutions within
minutes, in stark contrast to Gurobi’s struggle even after 30
minutes across 10 instances. Notably, the GCN solver achieves
an average objective value of $4,555, whereas Gurobi’s
average stands at $41,046 at the same solve time, highlighting
the GCN solver’s substantial advantage. More importantly, all
of the rendered solutions to the GCN-empowered solver are
feasible given the physics-informed architecture implemented.
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Fig. 4. Duality gap for Gurobi vs. GCN solver (MISOCP case)

The results underscore the GCN’s crucial capacity for
rapidly identifying high-quality solutions. Table I presents the
objective values at various stages of the solving process for
both solvers, with values in parentheses indicating the number
of problem instances where a feasible solution was achieved
at that stage. After 120 seconds, Gurobi has yet to find any
feasible solutions, whereas the GCN solver has identified 9,
achieving an average objective of 17,304. Table II summarizes
the gap progress across 10 test instances highlighting the
superiority of GCN solver in attaining very low gaps compared
to Gurobi. Notably, in the MISOCP scenario, Gurobi fails to
achieve an 80% gap within 1800 seconds, while GCN, on
average, reaches this gap in just 271 seconds.

TABLE I
OBJECTIVE VALUE AT CERTAIN TIME (MISOCP CASE)

Time (s) 120 180 300 600 900 1200 1800
Gurobi ($) oo (0) oo (0) 66,942 (3) 57,116 (9) 55,537 (10) 54,108 (10) 41,047 (10)
GCN ($) 17,304 (9) 12,002 (10) 8,795 (10) 6,061 (10) 5,872 (10) 4,643 (10) 4,556 (10)

TABLE I
TIME TO REACH SPECIFIC DUALITY GAP IN SECONDS (COUNT OF
INSTANCES REACHED TO GAP OUT OF 10 TEST INSTANCES)

Problem Solver  95% 80%  65%  50% 30% 5%
MILP  Gurobi 17 (10) 80 (10) 98 (10) 107 (10) 111 (10) 141 (10)
MILP  GCN  7(10) 7(10) 14 (10) 15(10) 16 (10) 16 (10)
MISOCP Gurobi 1,509 (7) o0 (0) o0 (0) o00(0) oo (0) oo (0)
MISOCP GCN 128 (10) 271 (10) 264 (9) 273 (9) 277 (9) 277 (8)
MISOCP Gurobi* 174 (10) 197 (9) 187 (6) 187 (6) 195 (6) oo (0)
MISOCP GCN* 39 (10) 67 (10) 77(9) 91(9) 91 (9) 178 (6)
In our baseline experiments, Gurobi’s pre-solve and

heuristic features were disabled. To demonstrate the GCN’s
ability to learn patterns and guide the search process in
ways traditional solvers might not, the bottom rows in
Table II (distinguished with *) are designated to additional
comparisons when Gurobi* is used in its full capacity. It
is observed that here, GCN* still outperforms Gurobi* by
a considerable margin. For example, it reaches 80% and
30% gap solutions approximately 2.9 and 2.1 times faster,
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respectively. At the same time, GCN* is 11% and 50% more
successful than Gurobi* in reaching these gaps.

C. Scalability Tests on a Larger Problem

To demonstrate the scalability of the proposed framework,
GCN was trained for the MILP problem for a modified
IEEE 123-bus feeder. The resulting problem consisted of
31,152 variables and 53,952 constraints. The GCN training
time for 100 episodes was 1673 seconds, with an average
GCN prediction time of 3.96 seconds. The objective value
of each solver at different stages of the solution process is
displayed in Table III. Notably, although Gurobi ultimately
reaches a solution with a 0.24% smaller gap, GCN finds
low-cost solutions much faster. For example, GCN reaches
a 30% optimality gap in an average of 97 seconds, whereas
Gurobi achieves the same gap in 676 seconds, demonstrating

a 7.0-fold speed-up.
P P TABLE III

OBJECTIVE VALUE AT CERTAIN TIME (LARGE SYSTEM CASE)

Time (s) 120 180 300 450 750 900
Gurobi ($) oo (0) oo (0) 124,766 (6) 37,244 (10) 29,341 (10) 24,001 (10)
GCN ($) 28,333 (10) 25,958 (10) 24,059 (10) 24,059 (10) 24,059 (10) 24,059 (10)

V. CONCLUSIONS

This letter explores using GCNs, reinforced with physical
system information. It is shown that augmenting system
constraints into the learning framework directs GCN
predictions towards feasibility. The model trained based on
the MILP problem is utilized to make meritorious predictions
for the MISOCP problem. The comparative analysis shows
significant enhancements in both solution speed and quality
with the GCN solver against the Gurobi solver for the MILP
and MISOCP formulations of the problem.

REFERENCES

[1] Z.Li, S. Jazebi, and F. De Leon, “Determination of the optimal switching
frequency for distribution system reconfiguration,” IEEE Transactions on
Power Delivery, vol. 32, no. 4, pp. 2060-2069, 2016.

[2] T. Zhang, C. Wang, F. Luo, P. Li, and L. Yao, “Optimal design of the
sectional switch and tie line for the distribution network based on the
fault incidence matrix,” IEEE Transactions on Power Systems, vol. 34,
no. 6, pp. 4869-4879, 2019.

[3] V. Nair, S. Bartunov, F. Gimeno, I. Von Glehn, P. Lichocki, I. Lobov,
B. O’Donoghue, N. Sonnerat, C. Tjandraatmadja, P. Wang et al.,
“Solving mixed integer programs using neural networks,” arXiv preprint
arXiv:2012.13349, 2020.

[4] A. S. Xavier, F. Qiu, and S. Ahmed, “Learning to solve large-scale
security-constrained unit commitment problems,” INFORMS Journal on
Computing, vol. 33, no. 2, pp. 739-756, 2021.

[S] T. Wu, Y.-J. A. Zhang, and S. Wang, “Deep learning to optimize:
Security-constrained unit commitment with uncertain wind power
generation and besss,” IEEE Transactions on Sustainable Energy, vol. 13,
no. 1, pp. 231-240, 2021.

[6] A.F. Soofi, S. D. Manshadi, G. Liu, and R. Dai, “A socp relaxation for
cycle constraints in the optimal power flow problem,” IEEE Transactions
on Smart Grid, vol. 12, no. 2, pp. 1663-1673, 2020.

[7] R. Bayani, M. Bushlaibi, and S. D. Manshadi, “Short-term operational
planning problem of the multiple-energy carrier hybrid ac/dc microgrids,”
in 2021 IEEE Power & Energy Society General Meeting (PESGM).
IEEE, 2021, pp. 1-5.

[8] Q. Cappart, D. Chételat, E. B. Khalil, A. Lodi, C. Morris, and
P. Velickovi¢, “Combinatorial optimization and reasoning with graph
neural networks,” Journal of Machine Learning Research, vol. 24, no.
130, pp. 1-61, 2023.



	Introduction
	Model Background
	Methodology
	Results and discussion
	Learning to Solve the Linearized Switching Problem
	Applying the GCN Solver for Solving the MISOCP
	Scalability Tests on a Larger Problem

	Conclusions
	References

