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Traffic Density Control for Heterogeneous
Highway Systems With Input Constraints

Arash Rahmanidehkordi

Abstract—This letter introduces a traffic management
algorithm for heterogeneous highway corridors consist-
ing of both human-driven vehicles (HVs) and autonomous
vehicles (AVs). The traffic flow dynamics are modeled
using the heterogeneous METANET model, with variable
speed control employed to maintain desired vehicle den-
sities and reduce congestion. To generate speed control
commands, we developed a hybrid framework that com-
bines feedback linearization (FL) and model predictive
control (MPC), treating the traffic system as an over-
actuated, constrained nonlinear system. The FL component
linearizes the nonlinear dynamics, while the MPC com-
ponent handles constraints by generating virtual control
inputs that ensure control limits are respected. To address
the over-actuated nature of the system, we introduce a
novel constraint mapping algorithm within the MPC that
links virtual control input constraints to the actual control
commands. Additionally, we propose a real-time reference
density generation method that accounts for both AVs and
HVs to mitigate congestion. Numerical simulations were
conducted for two scenarios: controlling only AVs and
controlling both AVs and HVs. The results demonstrate
that the proposed FL-MPC framework effectively reduces
congestion, even when speed control is applied exclusively
to AVs.

Index Terms—Traffic control, feedback linearization, het-
erogeneous systems, model predictive control.

[. INTRODUCTION

RAFFIC control on heterogeneous traffic highways, with

both AVs and HVs, presents unique challenges [1].
While AV integration can improve traffic flow, reduce con-
gestion, and enhance safety, effective control strategies must
address nonlinearity, uncertainty, and regulatory state and
control input constraints. Among traffic control methods for
large-scale highways, feedback control-based approaches are
often preferred for their simplicity and robustness, espe-
cially compared to the more computationally demanding
MPC-based techniques [2], [3]. In highway traffic control,
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maintaining the desired density is crucial for preventing
congestion [4]. Variable speed control is an effective approach
for achieving this. FL is particularly promising for determining
speed commands, as it simplifies the complex nonlinear
dynamics of heterogeneous traffic systems. However, speed
constraints, bounded between zero and the maximum limit,
pose challenges for traditional FL. methods, often resulting
in suboptimal or infeasible solutions [3]. To address this
limitation, feedback linearization can be combined with an
MPC algorithm to form an FL-MPC hybrid controller [5], [6].
In this approach, the virtual control input of FL is deter-
mined via MPC to ensure the actual control commands stay
within the required bounds. However, since traffic velocities
are constrained to be non-negative, applying the FL-MPC
method from [5], [6] may lead to infeasibility. This is because
achieving full controllability within these constraints requires
treating the traffic control problem as an over-actuated system,
and using the Moore-Penrose pseudoinverse for constraint
mapping, as in [5], [7], does not always guarantee a solution
for the virtual control command.

To overcome the limitations of the FL-MPC approach, we
introduced a novel constraint mapping algorithm that links
the bounds of the actual control inputs to the virtual control
inputs of FL. By utilizing the null space of the control input
matrix, the algorithm generates multiple candidate matrices
that ensure system constraints are met. The optimal matrix
is then chosen by solving an MPC problem that minimizes
the cost function, thereby guaranteeing feasible control inputs
and effectively balancing desired traffic density with control
limits [8]. Building on the core control algorithm from our
previous work [8], this letter significantly advances its applica-
tion by adapting it to a more complex system, a heterogeneous
traffic model, instead of the previously addressed homoge-
neous network.

In addition to handling input constraints, determining the
reference commands is another crucial challenge in designing
feedback controllers, including FL for heterogeneous traffic
highways. Unlike homogeneous traffic, which uses critical
density as a reference, a more intricate approach is required
for heterogeneous highways. To our knowledge, no existing
work has yet addressed the selection of reference commands in
heterogeneous traffic networks. This study proposes a method
to determine and update the density reference commands
in real-time consider each cell’s congestion proximity and
the AV-to-HV ratio, ensuring neither vehicle class is overly
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Fig. 1. Schematic of a traffic network divided into cells, showing state
variables: density (p; A, pj H), velocity (v; a. v 1), and outflow (g; A. gj H)
for AVs and HVs.

restricted in movement. The simulation results demonstrate
that integrating the proposed density reference generation
approach with the FL-MPC controller effectively reduces con-
gestion in heterogeneous traffic highways, even when control
commands are provided only to AVs and not necessarily to
HVs.

This letter is structured as follows: Section II introduces
the METANET model for macroscopic flow dynamics in
heterogeneous traffic. Section III discusses maintaining desired
traffic densities with the FL-MPC approach and mapping
control constraints. Section IV presents simulation results
showing the effectiveness of FL-MPC in reducing congestion
with control applied only to AVs. Section V concludes with
future research directions.

Il. MACROScOPIC FLOW DYNAMICS OF
HETEROGENEOUS TRAFFIC ON HIGHWAY CORRIDOR

Consider a heterogeneous highway corridor including AVs
and HVs. To model and analyze the traffic flow within these
corridors, we utilize the heterogenecous METANET model
described in [9]. For this purpose, the highway is discretized
into n cells, denoted as C;, each characterized by a length
¢; and the number of lanes y;, where i € {1,2,...,n}. The
populations of AVs and HVs in each cell are represented as
n; A and n; g, respectively, as depicted in Fig. 1.

Let us define the state vector for the entire traffic system
along the corridor as x = [x1, %2, ..., x,]T, where x; =
[ pi,A» P Vi,as Vi 1T Here, pjc = njc/¢; and v; . represent
the density and average velocity of vehicles in class ¢, with ¢ €
{AVs, HVs}. The changes in the densities within cell C; follow
the law of conservation of vehicles and can be expressed as

pre® = (gm0~ 410 ). (M
iy

where g; . = pi.c vi represents the outflows of vehicle class ¢

from cell CG;.

In the heterogeneous METANET model, the evolution of
velocities v; ¢, along with the interaction between vehicle
classes, is predicated on the assumption that a triangular
fundamental diagram can depict their macroscopic behavior in
homogeneous scenarios (see Fig. 2). Parameters like capacity
flows Cg, critical densities pcritm,c, free-flow speeds virc, and
maximum densities pjamc are defined for each vehicle class,
with AVs assumed to have higher values for these in this
research [see Fig. 2(a)].

The velocity changes within the heterogeneous METANET
model can be derived by

. 1 1
Vi,c(t) = _L__(Ui,c - Vic) + _Vi,c(Vifl,c - Vi,c)
¢

¢
Ne <pi+l,c - pi,c>’ )
LiTe Pic T Ke

i i P
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Fig. 2. (a) Fundamental diagrams for two vehicle classes: AVs and
HVs. (b) Three traffic regimes in a mixed traffic system: free flow, semi-
congested, and fully congested.

where 7., 7., and k. are class-dependent parameters.
Specifically, t. represents the aggregated traffic response to
changes in density, n. reflects the sensitivity to changes in
the downstream density, and «. ensures the applicability of
the model at high densities while preventing oversensitivity at
low densities. Furthermore, U; ¢ is the suggested velocity for
each vehicle class, which serves as the control command to
the traffic system. In the present work, we define U;. as a
composition of two parts as expressed as follows:

Ui,c = (1 - ui,c)Vi,c, 3)

where 0 < u; . < 1 represents the regulatory control input,
and V; . refers to the desired or target speeds that each vehicle
class aims to maintain in the absence of active traffic control
interventions, such as variable speed limits. Here, we define
Vic as [9],

pi,c(®)

Vie®) = fo’ce[%<m)%:|’ )

where a. is a density-dependent parameter and «;. is the
class-dependent dynamic coupling terms that characterize the
interaction between AVs and HVs and are influenced by their
ratio and the total number of vehicles within cell C;.

Several methods exist to define «; ¢ [10]. In this letter, we
use the user-equilibrium model for its accuracy in capturing
AVs-HVs interactions at a macroscopic level. Assuming AVs
have higher free-flow speeds and both vehicle classes share
the highway, we define three traffic phases:

e Free-Flow Phase: AV and HV travel at their respec-
tive free-flow speeds (vi,w ~ Vim < Via =~
vir, o). The coupling terms are determined as o;g =
pit/ (Perit, 1 (s + P240)) and aja = 1 — i

o Semi-Congested Phase: HVs travel at their free flow
speed while the AVs enter congestion. Here, AVs travel at
a speed less than their free-flow speed but more than the
free-flow speed of HVs (viru =~ Vig < Via < v, A).
The coupling terms are calculated as o; 1 = p; H/ Perit, Ho
and oA = 1-— O H-

o Congested Phase: AVs and HVs are congested and travel
with the same velocity, which is less than the HVs’
free-flow velocity (Vinu = Via < virH < vir,a). The
coupling terms are obtained by solving V; a(pia/ctiaA) =
Vin(oin/oin) and a; g +aja = 1.

Once, the dynamics coupling terms are determined, the total
steady-state flow in cell C; can be determined as:

Pi A Pi,H
0= pi,AVi,A<al_> + pi,HVi,H<al_>- (5)

i,A i,H
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the three traffic flow models and dynamic coupling terms
assume steady-state conditions, where traffic is in equilib-
rium [10], [11]. However, in this letter, the system may be in a
transient state when determining o.. Despite this, we compute
the dynamic coupling terms based on a snapshot, assuming
steady-state at that moment.

I11. MAINTAINING DESIRED TRAFFIC DENSITY WITH
FL-MPC CONTROL

In highway traffic control, maintaining the desired density
is essential for preventing congestion. This section outlines the
design of a variable speed control algorithm that integrates FL
with MPC to ensure speed commands remain within practical
limits while achieving the desired density.

A. Feedback Linearization

For cell C;, let us define the desired reference density for
AVs and HVs as p;‘:C = [p;‘j A p:H]T. The FL controller seeks
to determine the recommended velocities U; . for each vehicle
class to minimize the error e; . = p;. — pj.c. In this approach,
we differentiate the output (densit};, in this case) up to the
point where the input term appears [12]. Assuming density as
the measurable output, i.e., y; . = pi.c, the input term appears
at second derivative as

. . - Ui ¢
Yi,e = Pi,c Zﬁ,c + [gi,c gi,c]|: he :|, (6)

Ui—1,c

where

L .
fie = F(pi—l,cvi—l,c — picvie + Vict,e = Vi),
124
P Ne Pitle = Pic
I//i,c = (T(Vi,c(vi—l,c - Vi,c) - _C#)

i,c
i Tc  Pict+Ke
Pi,c PicVie
- _Vi,c + - )
Tc Tc
PicVie - Pi-1,cVi-1,c
8ic = 5 8ic=—""7->
iyite iyite

As shown in (6), ¥; . depends on both upstream inflow and
downstream outflow. To ensure the flow remains non-negative
and within the limits of the fundamental diagram, controlling
the density in cell C; requires at least two control inputs,
such as u;—1. and u; ¢, for the highway system to be fully
controllable. By adjusting these inputs, reducing the upstream
velocity decreases the inflow and density in C;, while reducing
the velocity in C; increases its density. Expanding (6) to m
adjacent cells, from C;_,,+1 to C;, gives

Pe =Fe+ Geug, @)

where u. = [ujc,ui-1,c,..., ”ifm,c]T € Rm—i—l’ F. =
Vicrfictie - fimmi1.c]" € R™, and
8i,c gi,c 0 e 0
0 gi—1c &i-lec e 0
Gc - . . . . .
0 to 0 8i—m+1,c §i7m+1,c
Let us define H. € R"HDXm guch that
G x H = I, € R™™, (8)

2789
Then, the FL control command is derived as
ue =He [—Fc+vc] 9
Substituting (9) in (7), the output dynamics of FL is:
Pe = V. (10

Let po = [pics---» pi,mH,C]T be the density vector and
Ve = [vi,c,...,v,'_m_s_l,c]T € R™ the virtual control input
vector. Typically, v. is given as v. = o) + B1(0) — pc) +
Bo(pr — pc), with constants 81 and By chosen to ensure
Hurwitz dynamics. However, in highway traffic control, v,
must ensure u, remains within bounds 0 < u, < ue max < 1,
where Uemax = [Uicmaxs - - - » Uimm.c.max] - Here, uo = 0
represents no command being applied, while u. = 1 indicates
a full braking command for the vehicles. To address this, we
determine v, using an MPC approach.

B. Virtual Command Determination via MPC
This section presents the design of an MPC for computing
the virtual control input vector v, for the FL controller. Let
us define the state vector & € R as & = [pc pc]F. The
discrete-time state-space representation of the output dynamics
of the FL controller, from (10), are given by
Ec(k+ 1) = Ampc &(k) + Bmpc ve(k),
Ye(k) = Cmpc §c(k),
where AMPC, Bwmpc, and éMpC are discrete-time versions of
the following matrices, using zero-order hold (ZOH):

0, 1 0
A — m m . B — m i
MPC [Om Om] MPC |: Imi|
CMPC = [Im Om]

The virtual control input vector v, is obtained by solving the
following MPC optimization problem:

(11a)
(11b)

12)

N,
minJe = 3 (Iyetk +) = o2k + 7)1
c J:O

+ ek +DIE+ 1 Avetk+)I13)  (13)

subject to the dynamics outlined in (11) and ve min < Ve <
Ve,max Where ve min and ve max are bounds on v.. In (13), Q,
R, and § represent the weight matrices, N, is the prediction
horizon, and V,(k) = [ve(klk), ..., ve(k + Nylk)]T denotes
the decision vector, where N, is the control horizon. The
weight matrix Q tracks reference densities, R limits excessive
commands (avoiding unnecessary braking), and S ensures
smooth transitions in v.. Also, p} = [,ol?fc, o p;imH’c]T is
the reference signal. The decision vector v, must satisfy the
condition 0 < u, < u, max. Accordingly, a constraint mapping
algorithm is needed to link the bounds on u. to the bounds
on v.

C. Constraint Mapping Algorithm
To establish the relationship between the bounds of u, and
Ve, the control law in (9) can be reformulated as

Heve =H Fe + ue, (14)
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considering the bounds over u. yields

H.F. <Hv. <H.JF.+ Uc,max- (15)

Both F. and G, are state-dependent and vary over time,
requiring H, to be computed in real time. Since H, is an m +
1 x m matrix, there are m+ 1 inequalities but only m unknowns
for v., making the system overdetermined. Although there
are infinite choices for H. that satisfy (8), the Moore-Penrose
pseudoinverse is commonly used, i.e., H. = GI. However,
choosing H, = GZ does not always guarantee a feasible
solution for v, under (15). For instance, if the control block is
a single cell C;, the Moore-Penrose pseudoinverse would be:

" —1
He = GZ = GZ(GCGZ)
8i,c 8i,c - gzgjrc‘;’z
= |:—" ]([gi,c gl c]|: i|> = I'[g',-ft’( s (16)
8ic 8i.c ZA

considering (15) the constraints on v, can be expressed as

Sicle il _ SBiclic .. (70
gi,c + gi,c gi,c + gi,c gi,c + gi,c
_. . P _. . ]) _. N .
f!,Lﬁ,_Lz < Zgz,c _cz < 2gl,cfl,_c N (17b)
gi,c + gi,c gi,c + gi,c gi,c + gi,c
Dividing (17a) and (17b) by gg_f_z > 0 and p grg_z < 0,
respectively, yields et e
2 =2
fi,c <V ffi,c + L Ui, c,max» (18a)
8i,c
2 =2
g; —+ g
ﬁ‘,c = Ve Zﬁ',c + M Uj,c,max- (18b)
1,C
From (18), it becomes evident that when H. = Gz, the two

inequalities intersect at the single point v, = f; ., making this
the only feasible selection for v.. Taking this into account for
a single cell C;, where F,. = f; ., substituting the single point
answer of v, in (14), results in u, = 0. In other words, it may
be interpreted as we always apply the same command u, = 0
to our system. This means that the suggested velocity U; . for
each vehicle class is the same as speed without any active
interventions V; . (see (3)). Therefore, selecting H. = GI is
not a feasible solution for a highway traffic control system.
The crux of this letter is to address this issue by introducing
a new constraint mapping algorithm, selecting H,. to satisfy (8)
and ensure a solution interval for v, in (15). We propose an
algorithm that generates a set of candidate H, matrices, each
of which satisfies the constraint in (15). Since G. is a non-
square matrix with more columns than rows, it consistently
has full row rank m. As a result, G. has a null space
of dimension 1, ie., dim(N(G;)) = 1. Let ¢. be a basis
for the one-dimensional vector space (¢, C N(G.)) € R"*1,
Since the Moore-Penrose pseudoinverse matrix G satis-
fies (8), then adding any linear combination of the vector
@c to its columns will still satisfy (8). In particular,
G (G + @, Ap) = Iy, where @, = [¢, . .., o] € RUHDxm
is a matrix whose columns are the null space basis and A, =
diag([A1, - - -, Am]) € R™™ which its elements Ap, . .., A, can

be arbitrary numbers. Therefore, the matrix H. can be defined
as

H. =Gl + @, A.. (19)

To guarantee that (15) has a solution, we must reduce the
system of m + 1 to m inequalities. This can be achieved by
selecting Al = diag([k’l, e, kfn]), ensuring that the z—th row
of H. becomes zero. The resulting matrix H, with its i-th row
being zero is then can be expressed as

b b
h?,c hl ,C
) (7—1)1 (1—l)m
L =Gl+@AL=| 0 e 0 it (20)
hi,c hi c
(?+1)1 (z+1)
_hl(ni—&-l)l hl(nc1+l)m_

to the
inequality in (15), the constraint for the i-th row simplifies to
the trivial condition 0 < 0 < U, max. Next, let HA denotes the
resulting square matrix of size m x m, obtained by eliminating
the zero row from H; .. The inequality (15) can be rewritten
in the solvable form as

By selecting the elements of A;,; and applying H; .

I:I;’C F. < I:I;’C Ve < IA{;,C Fe + ue max- 2D
Since H. has m+1 rows, there are m+-1 possible A’ matrices
that can zero a row of H, for 1 < i < m + 1. Consequently,
there are m+ 1 candidate square, full-rank, invertible matrices
. € {Hl o Hz Crnnn Hm+1 ¢}. To select the best matrix, the
MPC problem is solved for each candidate and the optimal
matrix I:I;‘.‘, which resulted in a minimum cost J7, is chosen.
The virtual control input vector v} calculated for the MPC
problem with cost value J¥ is then applied into FL control

command u} as expressed in (9).

D. Reference Density Signal Generation in
Heterogeneous Traffic Systems

To determine the virtual control command v, the objective
function in (13) requires knowledge of the reference signal
p7.. In a congested homogeneous traffic system, the critical
dénsity Perit,c Where the maximum flow occurs [see Fig. 3(a)]
can be used as the desired density of the cell. However,
in a heterogeneous traffic network, this problem becomes
more complex. As described in Section II, for a two-class
highway traffic system, three distinct traffic flow phases can
be identified. These phases, represented as functions of AVs
and HVs densities, are illustrated in Fig. 2(b).

For a cell in the congested phase [indicated by the green
cross in Fig. 3(b)], the traffic management goal is to guide the
system towards free-flow conditions. Fig. 3(a) illustrates the
total steady flow Q as a function of AVs and HVs densities. It
is evident that focusing solely on flow maximization, without
considering the vehicle classes, could result in halting all
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Fig. 3. (a) Total steady-state flow contour and (b) Reference density
signal generation for cell C;.

Algorithm 1 FL-MPC Algorithm

1: Measure current states and determine the reference com-
mands p_c*. Update matrices G_c and F_c based on new
states as described in Section III-A.

2: Find ¢, the single basis of the null space N(G,)

3: Determine A’ such that i row of H. becomes zero.

4: Generate the set I:I;’C € {1:11, I:IQ, e, I:Im+1} by removing
the zero ith row from H..

5: Solve the MPC optimal control problem (13) m + 1 times
for all sets HA , subject to (21).

6: Select the MPC decision vector v} with the least cost
among the cases J; and determine u] based on (9).

7: Apply u} to the system and return to Step 1.

HVs, which is not a feasible solution. A more balanced
approach is needed to determine the optimal density without
disadvantaging either vehicle class.

To set the desired densities for each cell, the values p} A
and pl y are determined by drawing a line from the cell’s
current density position (p; a, pin) to the origin. The point
where this line intersects the boundary of the free-flow region,
indicated by the red cross in Fig. 3(b), is set as the desired
density. Defining the desired density vector this way allows
the reference point to adjust dynamically based on congestion
proximity and the AVs to HVs ratio within the cell. This
approach prevents full restriction of either class, maintaining
optimal flow and space for both.

In summary, the hybrid FL-MPC controller, designed
for nonlinear-constrained-over-actuated heterogeneous traffic
highway, can be outlined in the following algorithm.

IV. RESULTS AND DISCUSSION

This section evaluates the effectiveness of the proposed
reference generation algorithm combined with FL-MPC in
reducing congestion in a heterogeneous traffic network using
variable speed control. For this study, we consider a 3-lane
highway corridor divided into 8 cells, each with a length of
2 km (¢; = 2,km). The METANET model parameters for
each vehicle class are provided in Table I [11], [13].

We initialize the densities of cells 1 to 8 as fol-
lows: pao = [7,11,14,49,19,49,17, 14]T and pg =
[4,6,8,26,11,26,10,8]T (veh/km/lane). With these initial
densities, cells C4, Cs, and Cg are in congestion, with C4 and
Ce approaching jam conditions (i.e., near the line connecting

2791
TABLE |
HETEROGENEOUS METANET MODEL PARAMETERS
Parameter Unit AVs HVs
Perit,c veh/km/lane 34.7349 18.9261
Pic veh/km/lane 175 75
V¢ km/h 106.34 82.80
ac - 1.6761 2.1774
Te S 18 18
Ke veh/km/lane 40 40
. km?/h 60 60

AVs Density

1 68.43 min
2
3
a4
5
6
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Fig. 4. Changes in the densities of highway cells over a 2-hour period
for (a) No-Control, (b) Both-Class-Control, and (¢) AVs-Class-Control
scenarios.

Plam.A and pramp (the jam line) as shown in Fig. 3(b), while
other cells remain in free-flow. The input flows to cell 1 are
355 veh/h/lane for AVs and 157 veh/h/lane for HVs.

Our traffic control objective is to alleviate congestion in cells
[C4 Cs5 Cg ], considered as the control block. To achieve this,
the suggested velocity will be applied to cells 3, 4, 5, and 6,
with the control input defined as u. = [u3,¢, U4,c, Us,c, u6,c]T.
The simulation time step is 5 seconds, with an MPC control
period of 1 minute, a prediction horizon of N, = 20, and
a control horizon of N, = 10. The MPC control period is
set longer than the time step because frequent speed limit
adjustments, such as every few seconds, are impractical in
real-world scenarios. A longer control period aligns better with
realistic speed management. The diagonal weight matrices
used in the MPC optimization in (13) are Q =0.1 x I,
R =30 x I, and S = 100 x I,.

Fig. 4 shows the density changes of AVs and HVs in cells
over a period of 2 hours. The green line indicates the point
when all cells, not just those in the control block, reach the
free-flow state. Without control, it takes about 68 minutes for
congestion to clear. However, with FL-MPC applied to both
AVs and HVs [Fig. 4(b)], congestion is resolved 11% faster,
in approximately 60 minutes. When FL-MPC is applied only
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Fig. 5. Control block cells’ (a) input (blue), suggested velocity (red), and
(b) flow for AVs-Class-Control scenario.

to AVs [Fig. 4(c)], congestion clears 9% faster than without
control, in around 62 minutes.

By examining the density variation across cells, it is clear
that the FL-MPC leverages cell capacity before the control
block by concentrating vehicles in those cells, enabling the
control block to exit congestion more quickly. Specifically,
Fig. 4(b) shows that cell C3 briefly experiences conges-
tion, which helps reduce congestion in downstream cells
more quickly, ultimately leading to faster overall conges-
tion relief. Additionally, controlling AVs alone [Fig. 4(c)]
shows significant benefits. It achieves nearly the same reduc-
tion in congestion time as controlling both AVs and HVs,
while requiring fewer interventions. This demonstrates the
effectiveness of targeting AVs control, as it can signifi-
cantly improve overall traffic flow with less control effort
required.

Fig. 5 shows the control commands and traffic flow for
the scenario where only AVs receive commands. Specifically,
Fig. 5(a) shows the regulatory control command us and
the suggested velocity Ua. For our simulations to prevent
excessive deceleration and avoid commanding the vehicle to
a full stop, we set umaxec = 0.9 ensuring safety. Fig. 5(a)
shows that controller effectively keeps the control commands
and suggested velocities within the limits. It is noteworthy that
when u; A = Umax, A, the controller recommends lower vehicle
velocities (see (3)). To reduce congestion, the controller
frequently suggests a low velocity for vehicles in Cell Cs,
which slows down the inflow to Cell C4, leading to the
density concentration observed in Fig. 4. In contrast, Cell
Ce often receives a control value of zero, allowing vehicles
to exit at the maximum possible velocity. It is noteworthy
that this maximum velocity is not necessarily the free-flow
speed but is also influenced by the cell’s density (see (3)
and (4)). Notably, there is always at least one zero control

command at any time. This results from the constraint mapping
algorithm, where a zero row in H} enforces a zero control
command.

Fig. 5(b) shows the total traffic flow (g; A + ¢;u) for the
cells in the control block. The FL-MPC controller intentionally
slows down the vehicles, explaining why the red line (no
control) initially shows higher flow. However, after 62 minutes,
as congestion is relieved, the controlled scenario (blue line)
experiences more flow, as traffic becomes smoother. The flow
finally merges to the inflow flow.

V. CONCLUSION

This letter presents a novel approach to managing hetero-
geneous traffic with both HVs and AVs using a FL-MPC
framework. It addresses the challenges of nonlinear traffic
dynamics and input constraints by integrating FL. and MPC
to ensure that control commands stay within bounds. A new
constraint mapping algorithm ensures feasible solutions, even
for over-actuated systems. Simulation results demonstrate the
effectiveness of the approach in reducing congestion faster
compared to uncontrolled systems. Future work will focus on
addressing uncertainties in model parameters.
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