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Traffic Density Control for Heterogeneous
Highway Systems With Input Constraints

Arash Rahmanidehkordi and Amir H. Ghasemi , Member, IEEE

Abstract—This letter introduces a traffic management
algorithm for heterogeneous highway corridors consist-
ing of both human-driven vehicles (HVs) and autonomous
vehicles (AVs). The traffic flow dynamics are modeled
using the heterogeneous METANET model, with variable
speed control employed to maintain desired vehicle den-
sities and reduce congestion. To generate speed control
commands, we developed a hybrid framework that com-
bines feedback linearization (FL) and model predictive
control (MPC), treating the traffic system as an over-
actuated, constrained nonlinear system. The FL component
linearizes the nonlinear dynamics, while the MPC com-
ponent handles constraints by generating virtual control
inputs that ensure control limits are respected. To address
the over-actuated nature of the system, we introduce a
novel constraint mapping algorithm within the MPC that
links virtual control input constraints to the actual control
commands. Additionally, we propose a real-time reference
density generation method that accounts for both AVs and
HVs to mitigate congestion. Numerical simulations were
conducted for two scenarios: controlling only AVs and
controlling both AVs and HVs. The results demonstrate
that the proposed FL-MPC framework effectively reduces
congestion, even when speed control is applied exclusively
to AVs.

Index Terms—Traffic control, feedback linearization, het-
erogeneous systems, model predictive control.

I. INTRODUCTION

T
RAFFIC control on heterogeneous traffic highways, with

both AVs and HVs, presents unique challenges [1].

While AV integration can improve traffic flow, reduce con-

gestion, and enhance safety, effective control strategies must

address nonlinearity, uncertainty, and regulatory state and

control input constraints. Among traffic control methods for

large-scale highways, feedback control-based approaches are

often preferred for their simplicity and robustness, espe-

cially compared to the more computationally demanding

MPC-based techniques [2], [3]. In highway traffic control,
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maintaining the desired density is crucial for preventing

congestion [4]. Variable speed control is an effective approach

for achieving this. FL is particularly promising for determining

speed commands, as it simplifies the complex nonlinear

dynamics of heterogeneous traffic systems. However, speed

constraints, bounded between zero and the maximum limit,

pose challenges for traditional FL methods, often resulting

in suboptimal or infeasible solutions [3]. To address this

limitation, feedback linearization can be combined with an

MPC algorithm to form an FL-MPC hybrid controller [5], [6].

In this approach, the virtual control input of FL is deter-

mined via MPC to ensure the actual control commands stay

within the required bounds. However, since traffic velocities

are constrained to be non-negative, applying the FL-MPC

method from [5], [6] may lead to infeasibility. This is because

achieving full controllability within these constraints requires

treating the traffic control problem as an over-actuated system,

and using the Moore-Penrose pseudoinverse for constraint

mapping, as in [5], [7], does not always guarantee a solution

for the virtual control command.

To overcome the limitations of the FL-MPC approach, we

introduced a novel constraint mapping algorithm that links

the bounds of the actual control inputs to the virtual control

inputs of FL. By utilizing the null space of the control input

matrix, the algorithm generates multiple candidate matrices

that ensure system constraints are met. The optimal matrix

is then chosen by solving an MPC problem that minimizes

the cost function, thereby guaranteeing feasible control inputs

and effectively balancing desired traffic density with control

limits [8]. Building on the core control algorithm from our

previous work [8], this letter significantly advances its applica-

tion by adapting it to a more complex system, a heterogeneous

traffic model, instead of the previously addressed homoge-

neous network.

In addition to handling input constraints, determining the

reference commands is another crucial challenge in designing

feedback controllers, including FL for heterogeneous traffic

highways. Unlike homogeneous traffic, which uses critical

density as a reference, a more intricate approach is required

for heterogeneous highways. To our knowledge, no existing

work has yet addressed the selection of reference commands in

heterogeneous traffic networks. This study proposes a method

to determine and update the density reference commands

in real-time consider each cell’s congestion proximity and

the AV-to-HV ratio, ensuring neither vehicle class is overly
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Fig. 1. Schematic of a traffic network divided into cells, showing state
variables: density (ρi,A, ρi,H), velocity (vi,A, vi,H), and outflow (qi,A, qi,H)
for AVs and HVs.

restricted in movement. The simulation results demonstrate

that integrating the proposed density reference generation

approach with the FL-MPC controller effectively reduces con-

gestion in heterogeneous traffic highways, even when control

commands are provided only to AVs and not necessarily to

HVs.

This letter is structured as follows: Section II introduces

the METANET model for macroscopic flow dynamics in

heterogeneous traffic. Section III discusses maintaining desired

traffic densities with the FL-MPC approach and mapping

control constraints. Section IV presents simulation results

showing the effectiveness of FL-MPC in reducing congestion

with control applied only to AVs. Section V concludes with

future research directions.

II. MACROSCOPIC FLOW DYNAMICS OF

HETEROGENEOUS TRAFFIC ON HIGHWAY CORRIDOR

Consider a heterogeneous highway corridor including AVs

and HVs. To model and analyze the traffic flow within these

corridors, we utilize the heterogeneous METANET model

described in [9]. For this purpose, the highway is discretized

into n cells, denoted as Ci, each characterized by a length

�i and the number of lanes γi, where i ∈ {1, 2, . . . , n}. The

populations of AVs and HVs in each cell are represented as

ni,A and ni,H, respectively, as depicted in Fig. 1.

Let us define the state vector for the entire traffic system

along the corridor as x = [x1, x2, . . . , xn]T, where xi =

[ ρi,A, ρi,H, vi,A, vi,H ]T. Here, ρi,c = ni,c/�i and vi,c represent

the density and average velocity of vehicles in class c, with c ∈

{AVs, HVs}. The changes in the densities within cell Ci follow

the law of conservation of vehicles and can be expressed as

ρ̇i,c(t) =
1

�iγi

(

qi−1,c(t) − qi,c(t)
)

, (1)

where qi,c = ρi,c vi,c represents the outflows of vehicle class c

from cell Ci.

In the heterogeneous METANET model, the evolution of

velocities vi,c, along with the interaction between vehicle

classes, is predicated on the assumption that a triangular

fundamental diagram can depict their macroscopic behavior in

homogeneous scenarios (see Fig. 2). Parameters like capacity

flows Cc, critical densities ρcritm,c, free-flow speeds vff,c, and

maximum densities ρJam,c are defined for each vehicle class,

with AVs assumed to have higher values for these in this

research [see Fig. 2(a)].

The velocity changes within the heterogeneous METANET

model can be derived by

v̇i,c(t) =
1

τc

(

Ui,c − vic

)

+
1

�i

vi,c

(

vi−1,c − vi,c

)

−
ηc

�iτc

(

ρi+1,c − ρi,c

ρi,c + κc

)

, (2)

Fig. 2. (a) Fundamental diagrams for two vehicle classes: AVs and
HVs. (b) Three traffic regimes in a mixed traffic system: free flow, semi-
congested, and fully congested.

where τc, ηc, and κc are class-dependent parameters.

Specifically, τc represents the aggregated traffic response to

changes in density, ηc reflects the sensitivity to changes in

the downstream density, and κc ensures the applicability of

the model at high densities while preventing oversensitivity at

low densities. Furthermore, Ui,c is the suggested velocity for

each vehicle class, which serves as the control command to

the traffic system. In the present work, we define Ui,c as a

composition of two parts as expressed as follows:

Ui,c =
(

1 − ui,c

)

Vi,c, (3)

where 0 ≤ ui,c ≤ 1 represents the regulatory control input,

and Vi,c refers to the desired or target speeds that each vehicle

class aims to maintain in the absence of active traffic control

interventions, such as variable speed limits. Here, we define

Vi,c as [9],

Vi,c(t) = vff,ce

[

−1
ac

(

ρi,c(t)

ρcrit,c(t)αi,c(t)

)ac]

, (4)

where ac is a density-dependent parameter and αi,c is the

class-dependent dynamic coupling terms that characterize the

interaction between AVs and HVs and are influenced by their

ratio and the total number of vehicles within cell Ci.

Several methods exist to define αi,c [10]. In this letter, we

use the user-equilibrium model for its accuracy in capturing

AVs-HVs interactions at a macroscopic level. Assuming AVs

have higher free-flow speeds and both vehicle classes share

the highway, we define three traffic phases:

• Free-Flow Phase: AV and HV travel at their respec-

tive free-flow speeds (vff, H ≈ Vi,H < Vi,A ≈

vff, A). The coupling terms are determined as αi,H =

ρi,H/(ρcrit, H(
ρi,H

ρcrit, H
+

ρi,A

ρcrit, A
)) and αi,A = 1 − αi,H.

• Semi-Congested Phase: HVs travel at their free flow

speed while the AVs enter congestion. Here, AVs travel at

a speed less than their free-flow speed but more than the

free-flow speed of HVs (vff, H ≈ Vi,H ≤ Vi,A < vff, A).

The coupling terms are calculated as αi,H = ρi,H/ρcrit, H,

and αi,A = 1 − αi,H.

• Congested Phase: AVs and HVs are congested and travel

with the same velocity, which is less than the HVs’

free-flow velocity (Vi,H = Vi,A < vff, H < vff, A). The

coupling terms are obtained by solving Vi,A(ρi,A/αi,A) =

Vi,H(ρi,H/αi,H) and αi,H + αi,A = 1.

Once, the dynamics coupling terms are determined, the total

steady-state flow in cell Ci can be determined as:

Qi = ρi,AVi,A

(ρi,A

αi,A

)

+ ρi,HVi,H

(ρi,H

αi,H

)

. (5)
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the three traffic flow models and dynamic coupling terms

assume steady-state conditions, where traffic is in equilib-

rium [10], [11]. However, in this letter, the system may be in a

transient state when determining αc. Despite this, we compute

the dynamic coupling terms based on a snapshot, assuming

steady-state at that moment.

III. MAINTAINING DESIRED TRAFFIC DENSITY WITH

FL-MPC CONTROL

In highway traffic control, maintaining the desired density

is essential for preventing congestion. This section outlines the

design of a variable speed control algorithm that integrates FL

with MPC to ensure speed commands remain within practical

limits while achieving the desired density.

A. Feedback Linearization

For cell Ci, let us define the desired reference density for

AVs and HVs as ρ∗
i,c = [ρ∗

i,A ρ∗
i,H]T. The FL controller seeks

to determine the recommended velocities Ui,c for each vehicle

class to minimize the error ei,c = ρ∗
i,c − ρi,c. In this approach,

we differentiate the output (density, in this case) up to the

point where the input term appears [12]. Assuming density as

the measurable output, i.e., yi,c = ρi,c, the input term appears

at second derivative as

ÿi,c = ρ̈i,c = fi,c +
[

gi,c ḡi,c

]

[

ui,c

ui−1,c

]

, (6)

where

fi,c =
1

�iγi

(

ρ̇i−1,cvi−1,c − ρ̇i,cvi,c + ψi−1,c − ψi,c

)

,

ψi,c =

(

ρi,c

�i

(

vi,c(vi−1,c − vi,c) −
ηc

τc

ρi+1,c − ρi,c

ρi,c + κc

)

−
ρi,c

τc

vi,c +
ρi,cVi,c

τc

)

,

gi,c =
ρi,cVi,c

�iγiτc

ḡi,c = −
ρi−1,cVi−1,c

�iγiτc

As shown in (6), ÿi,c depends on both upstream inflow and

downstream outflow. To ensure the flow remains non-negative

and within the limits of the fundamental diagram, controlling

the density in cell Ci requires at least two control inputs,

such as ui−1,c and ui,c, for the highway system to be fully

controllable. By adjusting these inputs, reducing the upstream

velocity decreases the inflow and density in Ci, while reducing

the velocity in Ci increases its density. Expanding (6) to m

adjacent cells, from Ci−m+1 to Ci, gives

ρ̈c = Fc + Gcuc, (7)

where uc = [ui,c, ui−1,c, . . . , ui−m,c]T ∈ R
m+1, Fc =

[fi,c, fi−1,c, . . . , fi−m+1,c]T ∈ R
m, and

Gc =

£

¤

¤

¤

¥

gi,c ḡi,c 0 · · · 0

0 gi−1,c ḡi−1,c · · · 0
...

...
...

. . .
...

0 · · · 0 gi−m+1,c ḡi−m+1,c

¦

§

§

§

¨

.

Let us define Hc ∈ R
(m+1)×m such that

Gc × Hc = Im ∈ R
m×m. (8)

Then, the FL control command is derived as

uc = Hc [ −Fc + νc ]. (9)

Substituting (9) in (7), the output dynamics of FL is:

ρ̈c = νc. (10)

Let ρc = [ρi,c, . . . , ρi−m+1,c]T be the density vector and

νc = [νi,c, . . . , νi−m+1,c]T ∈ R
m the virtual control input

vector. Typically, νc is given as νc = ρ̈∗
c + β1(ρ̇

∗
c − ρ̇c) +

β0(ρ
∗
c − ρc), with constants β1 and β0 chosen to ensure

Hurwitz dynamics. However, in highway traffic control, νc

must ensure uc remains within bounds 0 ≤ uc ≤ uc,max ≤ 1,

where uc,max = [ui,c,max, . . . , ui−m,c,max]T. Here, uc = 0

represents no command being applied, while uc = 1 indicates

a full braking command for the vehicles. To address this, we

determine νc using an MPC approach.

B. Virtual Command Determination via MPC

This section presents the design of an MPC for computing

the virtual control input vector νc for the FL controller. Let

us define the state vector ξc ∈ R
2m as ξc = [ρc ρ̇c]T . The

discrete-time state-space representation of the output dynamics

of the FL controller, from (10), are given by

ξc(k + 1) = ĀMPC ξc(k) + B̄MPC νc(k), (11a)

yc(k) = C̄MPC ξc(k), (11b)

where ĀMPC, B̄MPC, and C̄MPC are discrete-time versions of

the following matrices, using zero-order hold (ZOH):

AMPC =

[

0m Im

0m 0m

]

, BMPC =

[

0m

Im

]

,

CMPC =
[

Im 0m

]

. (12)

The virtual control input vector νc is obtained by solving the

following MPC optimization problem:

min
Vc(k)

Jc =

Np
∑

j=0

(

‖yc(k + j) − ρ∗
c (k + j)‖2

Q

+ ‖νc(k + j)‖2
R + ‖
νc(k + j)‖2

S

)

(13)

subject to the dynamics outlined in (11) and νc,min ≤ νc ≤

νc,max where νc,min and νc,max are bounds on νc. In (13), Q,

R, and S represent the weight matrices, Np is the prediction

horizon, and Vc(k) = [νc(k|k), . . . , νc(k + Nu|k)]
T denotes

the decision vector, where Nu is the control horizon. The

weight matrix Q tracks reference densities, R limits excessive

commands (avoiding unnecessary braking), and S ensures

smooth transitions in νc. Also, ρ∗
c = [ρ∗

i,c, . . . , ρ
∗
i−m+1,c]T is

the reference signal. The decision vector νc must satisfy the

condition 0 ≤ uc ≤ uc,max. Accordingly, a constraint mapping

algorithm is needed to link the bounds on uc to the bounds

on νc.

C. Constraint Mapping Algorithm

To establish the relationship between the bounds of uc and

νc, the control law in (9) can be reformulated as

Hc νc = Hc Fc + uc, (14)
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considering the bounds over uc yields

Hc Fc ≤ Hcνc ≤ HcFc + uc,max. (15)

Both Fc and Gc are state-dependent and vary over time,

requiring Hc to be computed in real time. Since Hc is an m +

1×m matrix, there are m+1 inequalities but only m unknowns

for νc, making the system overdetermined. Although there

are infinite choices for Hc that satisfy (8), the Moore-Penrose

pseudoinverse is commonly used, i.e., Hc = G†
c . However,

choosing Hc = G†
c does not always guarantee a feasible

solution for νc under (15). For instance, if the control block is

a single cell Ci, the Moore-Penrose pseudoinverse would be:

Hc = G†
c = GT

c

(

GcGT
c

)−1

=

[

gi,c

ḡi,c

](

[

gi,c ḡi,c

]

[

gi,c

ḡi,c

])−1

=

£

¥

gi,c

g2
i,c+ḡ2

i,c
ḡi,c

g2
i,c+ḡ2

i,c

¦

¨, (16)

considering (15) the constraints on νc can be expressed as

gi,c fi,c

g2
i,c + ḡ2

i,c

≤
gi,c νc

g2
i,c + ḡ2

i,c

≤
gi,c fi,c

g2
i,c + ḡ2

i,c

+ ui,c,max, (17a)

ḡi,c fi,c

g2
i,c + ḡ2

i,c

≤
ḡi,c νc

g2
i,c + ḡ2

i,c

≤
ḡi,c fi,c

g2
i,c + ḡ2

i,c

+ ui,c,max. (17b)

Dividing (17a) and (17b) by
gi,c

g2
i,c+ḡ2

i,c

> 0 and
ḡi,c

g2
i,c+ḡ2

i,c

< 0,

respectively, yields

fi,c ≤ νc ≤ fi,c +
g2

i,c + ḡ2
i,c

gi,c

ui,c,max, (18a)

fi,c ≥ νc ≥ fi,c +
g2

i,c + ḡ2
i,c

ḡi,c

ui,c,max. (18b)

From (18), it becomes evident that when Hc = G†
c , the two

inequalities intersect at the single point νc = fi,c, making this

the only feasible selection for νc. Taking this into account for

a single cell Ci, where Fc = fi,c, substituting the single point

answer of νc in (14), results in uc = 0. In other words, it may

be interpreted as we always apply the same command uc = 0

to our system. This means that the suggested velocity Ui,c for

each vehicle class is the same as speed without any active

interventions Vi,c (see (3)). Therefore, selecting Hc = G†
c is

not a feasible solution for a highway traffic control system.

The crux of this letter is to address this issue by introducing

a new constraint mapping algorithm, selecting Hc to satisfy (8)

and ensure a solution interval for νc in (15). We propose an

algorithm that generates a set of candidate Hc matrices, each

of which satisfies the constraint in (15). Since Gc is a non-

square matrix with more columns than rows, it consistently

has full row rank m. As a result, Gc has a null space

of dimension 1, i.e., dim(N(Gc)) = 1. Let ϕc be a basis

for the one-dimensional vector space (ϕc ⊂ N(Gc)) ∈ R
m+1.

Since the Moore-Penrose pseudoinverse matrix G†
c satis-

fies (8), then adding any linear combination of the vector

ϕc to its columns will still satisfy (8). In particular,

Gc ( G†
c + �c �c) = Im, where �c = [ϕc, . . . , ϕc] ∈ R

(m+1)×m

is a matrix whose columns are the null space basis and �c =

diag([λ1, . . . , λm]) ∈ R
m×m which its elements λ1, . . . , λm can

be arbitrary numbers. Therefore, the matrix Hc can be defined

as

Hc = G†
c + �c �c. (19)

To guarantee that (15) has a solution, we must reduce the

system of m + 1 to m inequalities. This can be achieved by

selecting �î = diag([λî
1, . . . , λ

î
m]), ensuring that the î-th row

of Hc becomes zero. The resulting matrix Hc with its î-th row

being zero is then can be expressed as

H
î,c

= G†
c + �c�

î
c =

£

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¥

h
î,c
11 . . . h

î,c
1m

...
...

h
î,c
(

î−1
)

1
. . . h

î,c
(

î−1
)

m

0 . . . 0

h
î,c
(

î+1
)

1
. . . h

î,c
(

î+1
)

m

...
...

h
î,c
(m+1)1 . . . h

î,c
(m+1)m

¦

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

¨

←− îth. (20)

By selecting the elements of �î
c and applying H

î,c
to the

inequality in (15), the constraint for the î-th row simplifies to

the trivial condition 0 ≤ 0 ≤ uc,max. Next, let Ĥ
î,c

denotes the

resulting square matrix of size m × m, obtained by eliminating

the zero row from H
î,c

. The inequality (15) can be rewritten

in the solvable form as

Ĥ
î,c

Fc ≤ Ĥ
î,c

νc ≤ Ĥ
î,c

Fc + uc,max. (21)

Since Hc has m+1 rows, there are m+1 possible �î matrices

that can zero a row of Hc for 1 ≤ î ≤ m + 1. Consequently,

there are m+1 candidate square, full-rank, invertible matrices

Ĥ
î,c

∈ {Ĥ1,c, Ĥ2,c, . . . , Ĥm+1,c}. To select the best matrix, the

MPC problem is solved for each candidate and the optimal

matrix Ĥ∗
c , which resulted in a minimum cost J∗

c , is chosen.

The virtual control input vector ν∗
c calculated for the MPC

problem with cost value J∗
c is then applied into FL control

command u∗
c as expressed in (9).

D. Reference Density Signal Generation in
Heterogeneous Traffic Systems

To determine the virtual control command νc, the objective

function in (13) requires knowledge of the reference signal

ρ∗
i,c. In a congested homogeneous traffic system, the critical

density ρcrit,c where the maximum flow occurs [see Fig. 3(a)]

can be used as the desired density of the cell. However,

in a heterogeneous traffic network, this problem becomes

more complex. As described in Section II, for a two-class

highway traffic system, three distinct traffic flow phases can

be identified. These phases, represented as functions of AVs

and HVs densities, are illustrated in Fig. 2(b).

For a cell in the congested phase [indicated by the green

cross in Fig. 3(b)], the traffic management goal is to guide the

system towards free-flow conditions. Fig. 3(a) illustrates the

total steady flow Q as a function of AVs and HVs densities. It

is evident that focusing solely on flow maximization, without

considering the vehicle classes, could result in halting all
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Fig. 3. (a) Total steady-state flow contour and (b) Reference density
signal generation for cell Ci .

Algorithm 1 FL-MPC Algorithm

1: Measure current states and determine the reference com-

mands ρ_c∗. Update matrices G_c and F_c based on new

states as described in Section III-A.

2: Find ϕc, the single basis of the null space N(Gc)

3: Determine �î such that ith row of Hc becomes zero.

4: Generate the set Ĥ
î,c

∈ {Ĥ1, Ĥ2, . . . , Ĥm+1} by removing

the zero îth row from Hc.

5: Solve the MPC optimal control problem (13) m + 1 times

for all sets Ĥ
î,c

, subject to (21).

6: Select the MPC decision vector ν∗
c with the least cost

among the cases J∗
c and determine u∗

c based on (9).

7: Apply u∗
c to the system and return to Step 1.

HVs, which is not a feasible solution. A more balanced

approach is needed to determine the optimal density without

disadvantaging either vehicle class.

To set the desired densities for each cell, the values ρ∗
i,A

and ρ∗
i,H are determined by drawing a line from the cell’s

current density position (ρi,A, ρi,H) to the origin. The point

where this line intersects the boundary of the free-flow region,

indicated by the red cross in Fig. 3(b), is set as the desired

density. Defining the desired density vector this way allows

the reference point to adjust dynamically based on congestion

proximity and the AVs to HVs ratio within the cell. This

approach prevents full restriction of either class, maintaining

optimal flow and space for both.

In summary, the hybrid FL-MPC controller, designed

for nonlinear-constrained-over-actuated heterogeneous traffic

highway, can be outlined in the following algorithm.

IV. RESULTS AND DISCUSSION

This section evaluates the effectiveness of the proposed

reference generation algorithm combined with FL-MPC in

reducing congestion in a heterogeneous traffic network using

variable speed control. For this study, we consider a 3-lane

highway corridor divided into 8 cells, each with a length of

2 km (�i = 2, km). The METANET model parameters for

each vehicle class are provided in Table I [11], [13].

We initialize the densities of cells 1 to 8 as fol-

lows: ρA = [ 7, 11, 14, 49, 19, 49, 17, 14 ]T and ρH =

[ 4, 6, 8, 26, 11, 26, 10, 8 ]T (veh/km/lane). With these initial

densities, cells C4, C5, and C6 are in congestion, with C4 and

C6 approaching jam conditions (i.e., near the line connecting

TABLE I
HETEROGENEOUS METANET MODEL PARAMETERS

Fig. 4. Changes in the densities of highway cells over a 2-hour period
for (a) No-Control, (b) Both-Class-Control, and (c) AVs-Class-Control
scenarios.

ρJam,A and ρJam,H (the jam line) as shown in Fig. 3(b), while

other cells remain in free-flow. The input flows to cell 1 are

355 veh/h/lane for AVs and 157 veh/h/lane for HVs.

Our traffic control objective is to alleviate congestion in cells

[C4 C5 C6 ], considered as the control block. To achieve this,

the suggested velocity will be applied to cells 3, 4, 5, and 6,

with the control input defined as uc = [u3,c, u4,c, u5,c, u6,c]T.

The simulation time step is 5 seconds, with an MPC control

period of 1 minute, a prediction horizon of Np = 20, and

a control horizon of Nu = 10. The MPC control period is

set longer than the time step because frequent speed limit

adjustments, such as every few seconds, are impractical in

real-world scenarios. A longer control period aligns better with

realistic speed management. The diagonal weight matrices

used in the MPC optimization in (13) are Q = 0.1 × Im,

R = 30 × Im, and S = 100 × Im.

Fig. 4 shows the density changes of AVs and HVs in cells

over a period of 2 hours. The green line indicates the point

when all cells, not just those in the control block, reach the

free-flow state. Without control, it takes about 68 minutes for

congestion to clear. However, with FL-MPC applied to both

AVs and HVs [Fig. 4(b)], congestion is resolved 11% faster,

in approximately 60 minutes. When FL-MPC is applied only
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Fig. 5. Control block cells’ (a) input (blue), suggested velocity (red), and
(b) flow for AVs-Class-Control scenario.

to AVs [Fig. 4(c)], congestion clears 9% faster than without

control, in around 62 minutes.

By examining the density variation across cells, it is clear

that the FL-MPC leverages cell capacity before the control

block by concentrating vehicles in those cells, enabling the

control block to exit congestion more quickly. Specifically,

Fig. 4(b) shows that cell C3 briefly experiences conges-

tion, which helps reduce congestion in downstream cells

more quickly, ultimately leading to faster overall conges-

tion relief. Additionally, controlling AVs alone [Fig. 4(c)]

shows significant benefits. It achieves nearly the same reduc-

tion in congestion time as controlling both AVs and HVs,

while requiring fewer interventions. This demonstrates the

effectiveness of targeting AVs control, as it can signifi-

cantly improve overall traffic flow with less control effort

required.

Fig. 5 shows the control commands and traffic flow for

the scenario where only AVs receive commands. Specifically,

Fig. 5(a) shows the regulatory control command uA and

the suggested velocity UA. For our simulations to prevent

excessive deceleration and avoid commanding the vehicle to

a full stop, we set umax,c = 0.9 ensuring safety. Fig. 5(a)

shows that controller effectively keeps the control commands

and suggested velocities within the limits. It is noteworthy that

when ui,A = umax, A, the controller recommends lower vehicle

velocities (see (3)). To reduce congestion, the controller

frequently suggests a low velocity for vehicles in Cell C3,

which slows down the inflow to Cell C4, leading to the

density concentration observed in Fig. 4. In contrast, Cell

C6 often receives a control value of zero, allowing vehicles

to exit at the maximum possible velocity. It is noteworthy

that this maximum velocity is not necessarily the free-flow

speed but is also influenced by the cell’s density (see (3)

and (4)). Notably, there is always at least one zero control

command at any time. This results from the constraint mapping

algorithm, where a zero row in H∗
c enforces a zero control

command.

Fig. 5(b) shows the total traffic flow (qi,A + qi,H) for the

cells in the control block. The FL-MPC controller intentionally

slows down the vehicles, explaining why the red line (no

control) initially shows higher flow. However, after 62 minutes,

as congestion is relieved, the controlled scenario (blue line)

experiences more flow, as traffic becomes smoother. The flow

finally merges to the inflow flow.

V. CONCLUSION

This letter presents a novel approach to managing hetero-

geneous traffic with both HVs and AVs using a FL-MPC

framework. It addresses the challenges of nonlinear traffic

dynamics and input constraints by integrating FL and MPC

to ensure that control commands stay within bounds. A new

constraint mapping algorithm ensures feasible solutions, even

for over-actuated systems. Simulation results demonstrate the

effectiveness of the approach in reducing congestion faster

compared to uncontrolled systems. Future work will focus on

addressing uncertainties in model parameters.
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