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1. INTRODUCTION

The average American driver lost 36 hours to congestion in
2021, costing $564 in wasted time.Pishue 2021 To address
this, various traffic control approaches have been devel-
oped to reduce congestion, environmental pollution, and
safety risks. These approaches cater to both urban roads
and freeway networks.Hamilton et al. 2013, Siri et al. 2021
For freeway management, traffic control can be vehicle-
based or road-based.Mehr and Horowitz 2019, Wang et al.
2016 Vehicle-based strategies adjust the behavior of indi-
vidual vehicles, while road-based strategies influence over-
all traffic flow. Road-based algorithms, which are more
suitable for large traffic networks, regulate flow by manag-
ing ramp entry, routing traffic, or controlling mainstream
flow, often using variable speed limits (VSL).Su et al. 2014,
Pasquale et al. 2017, Karimi Shahri et al. 2023

Macroscopic traffic models are essential for designing road-
based controllers such as VSL. These models treat traffic
as a collective entity and analyze variables such as den-
sity, speed, and flow. They can be continuous, using dif-
ferential equations,Whitham 1990, Payne 1977, Lighthill
and Whitham 1955, Richards 1956 or discrete, using
difference equations.Daganzo 1994, Kotsialos et al. 2002
Models are also categorized by state variables: first-order
models track one variable,Lighthill and Whitham 1955,
Richards 1956, Daganzo 1994 while second-order mod-
els track both density and speed.Payne 1977, Kotsialos
et al. 2002 The METANET model, a discrete second-order
model, is widely used for freeway control and supports
⋆ This material is based upon work supported by the National
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various strategies, including feedback, optimal, model pre-
dictive, and advanced control frameworks.Chavoshi et al.
2023, Karimi Shahri et al. 2019, Liu et al. 2014, Ferrara
et al. 2015, Chen et al. 2019

Among the various control strategies for freeway traffic,
feedback controllers, such as proportional and integral
(PI), or feedback linearization, stand out for their sim-
plicity, effectiveness, and robustness in handling non-linear
and uncertain traffic conditions.Müller et al. 2015, Shahri
et al. 2023 These controllers adjust actions such as speed
to maintain stability and prevent congestion. A critical
requirement for these controllers is to consider physical
constraints on control inputs, ensuring that suggested ve-
locities are within feasible ranges and presented as discrete
values for Variable Speed Limit (VSL) signs.

This paper introduces an integrated FL-MPC controller
to manage freeway traffic flow. We adopt the METANET
model presented inShahri et al. 2020 and design a FL
controller by measuring the density of each cell. We
demonstrate that applying FL requires considering the
traffic system as over-actuated to ensure full controllability
under all conditions. To maintain bounded control inputs,
we define the virtual control input of FL through MPC.
Using the input-output linearized control (IOLC) law, we
map the original input constraints to the virtual control
input, creating a linear dynamical system with time-
varying constraints managed by linear MPC.Chavoshi
et al. 2023, Kurtz and Henson 1997 Since the proposed
traffic system is overactuated, employing the common
Moore-Penrose pseudoinverse in the FL process may not
necessarily satisfy the constraints. The main contribution

Keywords: Feedback Linearization, METANET, Traffic Control, Model Predictive Control,
Constraint Mapping

Abstract:

This paper introduces a novel algorithm that combines feedback linearization (FL) with
model predictive control (MPC) for managing highway traffic as an over-actuated, constrained
nonlinear system. FL converts the non-linear traffic flow dynamics of the METANET model
into a linear form, but it does not inherently handle control command constraints. To address
this, an MPC will be integrated that takes the linearized output from the FL controller and
produces the virtual control commands for the FL controller. Followed by that, a novel constraint
mapping algorithm will be presented to determine these virtual control commands, ensuring
all input constraints are met. The algorithm also selects the most cost-effective command for
optimal reference tracking. Simulations validate the approach, showing significant improvements
in traffic flow and reductions in average travel times.

∗ Department of Mechanical Engineering, University of North Carolina
at Charlotte, Charlotte, NC, USA (e-mail: arahmani@charlotte.edu,

ah.ghasemi@charlotte.edu)

Arash Rahmanidehkordi
∗
Amirhossein Ghasemi

∗

Enhancing Traffic Flow via Feedback

Linearization and Model Predictive Control

under Input Constraints

Copyright © 2024 The Authors. This is an open access article under the CC BY-NC-ND license 
(https://creativecommons.org/licenses/by-nc-nd/4.0/)



Arash Rahmanidehkordi  et al. / IFAC PapersOnLine 58-28 (2024) 372–377 373

of this paper is addressing this limitation by proposing
a novel constraint mapping algorithm that guarantees
the satisfaction of the constraints. The novelty lies in
exploiting the null space to generate the pseudoinverse
matrix while considering the component corresponding to
the optimal cost. The numerical results demonstrate that
this strategy effectively improves traffic flow management.

The paper is structured as follows. Section 2 covers the
METANET model for freeway traffic dynamics. Section
3 details the FL-MPC control design. Section 4 presents
simulation results. Section 5 concludes and suggests future
research directions.

2. METANET DYNAMIC

Let discretize the highway into a series of nc cells, denoted
by Ci, for i ∈ {1, 2, · · · , nc}. Each cell, Ci, is characterized
by specific attributes, including ts length ℓi and the
number of vehicles within the cells ni,veh. In this paper,
to describe and control the aggregated behavior of the
traffic highway, we adopt the METANET model due to its
strength in analyzing and predicting traffic flow on large-
scale networks. The dynamics of traffic highways can then
be described with a state vector x = [x1, x2, · · · , xnc

]T

where for each i = {1, 2, · · · , nc}, xi = [ρi, vi]
T represents

the density ρi = ni,veh/ℓi, where ni,veh is the number of
vehicles; and the average speeds vi within each cell Ci.

Fig. 1. Schematic of the traffic network

The changes of the density can be expressed by the
conservation equation as

ρ̇i(t) =
1

ℓiγi
(qi−1(t)− qi(t)) (1)

where qi(t) = ρi(t)vi(t) is the outflows of the vehicles
from the cell Ci. The changes of the average velocity in
the METANET model may be expressed as

v̇i(t) =
1

τ

(

Ui(t)− vi(t)
)

+
1

ℓi
vi(t)

(

vi−1(t)− vi(t)
)

−

η

ℓiτ

ρi+1(t)− ρi(t)

ρi(t) + κ
(2)

where Ui(t) is the suggested velocity to the vehicles at cell
Ci at time t and τ, η and κ are constant parameters.Lu
et al. 2011 The suggested velocity Ui may be obtained as
product of two terms as

Ui(t) = ( 1− βi(t) )Vi(t) (3)

where βi(t) is the control command and subjected to the
constraint

0 ≤ βi(t) ≤ 1 (4)

and Vi(t) refers to the desired or target speeds that each
class of vehicles aims to maintain in the absence of active

traffic control interventions, such as variable speed limits.
This speed can be influenced by various factors, including
traffic density, speed limits, and interaction with other
vehicles class, and can be defined as

Vi(t) = vff exp

[

−1

α

(

ρi(t)

ρcr,i

)α]

. (5)

Here, α is a density-dependent parameter that can be
identified based on the shape of the fundamental diagram,
vff is the free flow velocity, and ρcr,i is the critical density
of cell Ci.

It follows from (3)-(5) that the control command βi(t)
defined as a bounded parameter adjusts the suggested
velocity of vehicles within cell Ci and ensures that the
suggested velocity follows the fundamental diagram of the
traffic system and therefore is reachable. In particular, it
follows from (3) that in the absence of any local control
command, denoted by βi(t) = 0 the system operates with-
out intervention, and its macroscopic dynamics conform
to the steady-state velocity-density behavior. Conversely,
when βi(t) = 1 indicates that the controller recommends
the vehicles come to a complete stop as per the prescribed
control action.

3. FEEDBACK LINEARIZATION/MPC SCHEME
FOR TRAFFIC MANAGEMENT

Considering n cells within the traffic network of cells
from cell Ci−n+1 to cell Ci where 1 ≤ n < nc and
i ∈ {2, · · · , nc} as shown in Fig. 2. To improve the traffic
flow, in this section, the goal is designing an infrastructure-
based controller that calculates the suggested velocity
presented to the vehicles (via adaptive speed signs) so that
the density of the vehicles reaches to a desired density.
In practice, the desired density feeding as a reference
command to the controller can be the outcome of a higher-
level controllerKarimi Shahri et al. 2023 optimizing goals
such as minimizing the total travel time, the total travel
distance, or the total energy consumption.Pasquale et al.
2019 To determine the suggested velocity, a combination
of FL and MPC strategies will be utilized, considering
the constraint on the suggested velocity. In particular,
the objective of the FL-MPC controller is to design a
constrained control command βi,min ≤ βi ≤ βi,max and
make the error e(t) = ρdi (t) − ρi(t) small. The proposed
approach is described below.

3.1 Feedback Linearization

The relative degree between the measured density yi(t) =
ρi(t) and the control command Ui(t) is two. Taking the
second derivative of yi = ρi, gives (for the sake of
simplicity, the time (t) is not mentioned in the following
equations)

ÿi = ρ̈i = fi + [gi ḡi]

[

βi

βi−1

]

(6)

where
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fi =
1

ℓiγi
( ρ̇i−1vi−1 − ρ̇ivi + ψi−1 − ψi)

ψi = (
ρi

ℓi
( vi(vi−1 − vi)−

η

τ

ρi+1 − ρi

ρi + κ
)−

ρi

τ
vi +

ρiVi

τ
)

gi =
ρiVi

ℓiγiτ
, ḡi = −

ρi−1Vi−1

ℓiγiτ
(7)

As demonstrated in equation (6), an important aspect of
the FL for traffic network is that there are two inputs
that affect the ÿi (i.e., inflow from the upstream cells and
outflow to downstream cells). Extending equation (6) to
n adjacent cells Ci−n+1 to Ci as a block, as shown in Fig.
(2), leads to

ρ̈ = F +Gβ (8)

where β = [βi−n, βi−n+1, . . . , βn]
T, and

F =









fi
fi−1

...
fi−n+1









∈ R
n×1,

G =









gi ḡi 0 . . . 0
0 gi−1 ḡi−1 . . . 0
...

...
0 . . . 0 gi−n+1 ḡi−n+1









∈ R
n×(n+1)

(9)

Fig. 2. Block of cells under control

The FL control command then may be expressed as

β = H [−F + ν ] (10)

where H ∈ R
(n+1)×n is selected such that

G×H = In ∈ R
n×n (11)

substituting equation (10) in (8) gives

ρ̈ = ν (12)

where ν = [νi−n+1, . . . , νn]
T ∈ R

n×1 is the virtual decision
vector defined by the designer. The conventional choice for
νi assumes the form νi = ρ̈di + ξ1,i(ρ̇

d
i − ρ̇i) + ξ0,i(ρ

d
i −

ρi), where ξ1,i and ξ0,i are constant and selected such
that the output dynamics (12) be Hurwitz. However, the
traditional form of νi might lead to a breach of the control
command constraint, βi. We address this shortcoming by
creation of a model predictive controller (see Section 3.2),
which will facilitate the strategic selection of ν in a manner
that ensures the control command β remains within the
defined range (i.e. 0 ≤ β ≤ 1).

3.2 Determining Virtual Commands by MPC

In this section, it will be described how a model predictive
controller can be designed to determine the virtual decision
vector ν for the FL controller. First, let define a state
vector xmpc as xmpc = [ρmpc ρ̇mpc]

T, where ρmpc =
[ρi, · · · , ρi−n+1]

T. Then, the output dynamics of the FL
controller expressed in equation (12) can be described as

ẋmpc = Ampcxmpc +Bmpcumpc (13a)

ympc = Cmpcxmpc (13b)

where umpc = [νi, νi−1, · · · , νi−n+1]
T and

Ampc =



0n×n In×n

0n×n 0n×n



, Bmpc =



0n×n

In×n



Cmpc = [In×n 0n×n]

(14)

To determine ν so that the constraint 0 ≤ β ≤ 1
on the control command can be satisfied, the following
optimization is defined

min
V (k)

J =

Np


j=0

∥ympc(k + j)− ρd(k + j)∥2Q (15)

subjected to dynamics mentioned in equation (13). Here,
Q is the weight matrix, and Np is the prediction horizon,
and V (k) = [ν(k|k), · · · , ν(k + Nu|k)]

T is the decision
vector with Nu being the control horizon, and ρd =
[ρdi , · · · , ρ

d
i−n+1]

T is the reference signal.

Furthermore, the decision vector must satisfy 0 ≤ β(k) ≤ 1.
To develop a constraint mapping algorithm which bridges
the bounds on β to ν, equation (10) can be rewritten as

Hν = HF + β (16)

Taking the β bound’s interval [0 1] to account gives

HF ≤ Hν ≤ HF + 1 (17)

To solve the optimization expressed in (15), several techni-
cal challenges shall be addressed. First, since both matrices
F and G are state-dependent and vary with time, matrix
H should be updated in real-time for all the time steps in
the prediction horizon. Second, since the inequality (17)
is overdetermined (i.e., H has n + 1 rows but there are
only n decision variables ν = [ν1, · · · , νn]

T), there may not
necessarily exist a solution for the constraint inequality
expressed in (17). Therefore, it is essential to select a
matrix H that guarantees a solution for the constraint
inequality (17). A conventional choice for matrix H is to
be the Moore-Penrose pseudoinverse of the input matrix
G. In particular, H = G†, which also corresponds to the
least squares solution. However, it can be shown that there
is not always a solution to the inequality (17) if H = G†.
For instance, in a case where the aim is to control the
density of only one cell Ci it follows from equation (7) that
G = [ gi ḡi ]. Moreover, it is always valid that gi > 0 and
ḡi < 0. The Moore-Penrose pseudoinverse of G may be
represented as

H = G† = GT (GGT )−1 =



gi
ḡi



([gi ḡi]



gi
ḡi



)−1 =







gi

g2i + ḡ2i
ḡi

g2i + ḡ2i







(18)
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Referring to (17), the constraint for a single cell Ci in this
case may be presented as

gi

g2i + ḡ2i
fi ≤

gi

g2i + ḡ2i
ν ≤

gi

g2i + ḡ2i
fi + 1 (19a)

ḡi

g2i + ḡ2i
fi ≤

ḡi

g2i + ḡ2i
ν ≤

ḡi

g2i + ḡ2i
fi + 1 (19b)

dividing (19a) and (19b) by gi
g2

i
+ḡ2

i

> 0 and ḡi
g2

i
+ḡ2

i

< 0,

respectively, leads to

fi ≤ ν ≤ fi +
g2i + ḡ2i

gi
(20a)

fi ≥ ν ≥ fi +
g2i + ḡ2i

ḡi
(20b)

It follows from (20) that forH = G†, the intersection of the
two constraint inequalities will always be the single point
fi which translates to β = 0. Therefore, H = G† is not
an acceptable option. The crux of this paper is to address
this challenge by introducing a new constraint mapping
algorithm wherein H is selected in a way that it not only
satisfies (17) but also results ensures 0 ≤ β ≤ 1. This
challenge will be addressed in the next section where the
constraint mapping algorithm is going to be discussed.

Once H is determined, by solving the mpc problem de-
scribed in (15), the virtual input ν will be obtained as the
output of the MPC. Since ν will satisfy (17), it follows
from (16) that the constraint on the control command β
will also be satisfied.

3.3 Constraint Mapping

To solve the previously stated problem, an algorithm is
proposed which offers a set of candidate H matrices in
a way that they all satisfy the inequality (17). Matrix G
is a non-square matrix that always has one column more
than rows. Furthermore, G is always full row rank and has
a rank of n. Therefore, G always has a null space with
dimension 1, (dim(N (G)) = 1). Assuming w as a basis for
the one-dimensional vector space (w ⊂ N (G)), if matrixH
satisfies the equation (11) adding any linear combination
of the vector w to its column will still satisfy the equation
(11), which may be articulated as

G(G† +W Λ) = In, H = (G† +W Λ),

W = [w w · · · w ] , Λ =









λ1 0 . . . 0
0 λ2 . . . 0
...

. . .
0 . . . 0 λn









(21)

where W ∈ R
n×(n+1) is a matrix whose columns are the

null space basis w and Λ is a coefficient matrix whose
elements may be chosen arbitrarily. Now, if Λ is chosen
such that it makes the îth row of H equal to zero as

Hî =































hî
11 hî

12 . . . hî
1n

...
...

hî

(̂i−1)1
hî

(̂i−1)2
. . . hî

(̂i−1)n

0 0 . . . 0

hî

(̂i+1)1
hî

(̂i+1)2
. . . hî

(̂i+1)n

...
...

hî
(n+1)1 hî

(n+1)2 . . . hî
(n+1)n































←− îthrow (22)

then the corresponding constraint for that particular row
will always be the trivial condition 0 ≤ 0 ≤ 1, which
is always valid, which means inequality (17) will not be
overdetermined anymore. There are n + 1 possible Hî ∈
{H1, H2, . . . , Hn+1 } matrices with this property, where

1 ≤ î ≤ (n+1). As îth row constraint is always satisfied, it

may be removed from the Hî matrix.let Ĥî be a square
n × n matrix which is obtained by removing the zeros
row from Hî, there would be n + 1 candidates matrices

as Ĥî ∈ { Ĥ1, Ĥ2, . . . , Ĥn+1 }. Based on that, inequality
(17) may be degenerated to

ĤF ≤ Ĥν ≤ ĤF + 1 (23)

Now, Ĥ is a full rank square matrix, which means it is
invertible as well. Regarding that, range of Ĥ will span
Rn, furthermore it is always valid that ĤF ≤ ĤF + 1,
which means there is no conflict between the constraints
and they are compatible. Following that, there are always
feasible solutions for the MPC command vector ν.

Now, the question that needs to be answered is, among
these n+1 possible different Hî matrices, which one should
be considered for the constraint inequality (17). The
suggested method is, before MPC makes the final decision,
it will be solved once for all n + 1 possible Hî candidate
matrices; afterward, the decision vector which attains the
least cost will be applied on system and its correspondent
Hî matrix will be considered for the constraint (17).

Altogether, the proposed algorithm may be summarized
in 5 steps:

• Step 1 : Updating matrices G and F based on new
states as mentioned in (7)

• Step 2 : Finding w, the the single basis of N (G)
• Step 3 : Generating the set Hî ∈ {H1, H2, . . . , Hn+1 }
• Step 4 : Solving the MPC optimum control (15) n +

1 times for all Hî set, subjected to the constraint
equation (17)

• Step 5 : Selecting the MPC decision vector ν which
has the least cost among the cases

To have a better understanding of the suggested algorithm,
some implications may be discussed as follows. By setting
a row equal to zero based on equation (21), what happens
is, the corresponding βi command of that cell can no longer
be altered. In other words by sacrificing the redundancy
we guarantee the existence of the solution for inequality
(17), however, by evaluating the different possibilities we
still exploit the redundancy to some extent as well.

It is important to note that the proposed algorithm is
adaptable. The constraint matrices and boundaries are
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state-dependent and change with time, whereas in the pre-
dictions of the MPC prediction horizon, they are consid-
ered fixed. This adaptability ensures that constraints will
not be violated, a topic thoroughly investigated in.Kurtz
and Henson 1997

4. RESULTS AND DISCUSSION

4.1 Numerical Simulation

The presented example includes a single-lane highway with
eight road segments, all have the same length of 2 km.
Cells 5 and 7 are congested and both have a density
of 50 veh/km, whereas all other cells have a density of
27 veh/km. The lower bound input flow is 625 veh/h.
The METANET parameters are set based onChen et al.
2019 as shown in table (1), besides, the parameter α is
obtained based on the table (2) as addressed in.Shahri
et al. 2023 The simulation details are as follows: simulation
time is 50 minutes, simulation time step is 5 seconds,
MPC control period is one minute, and has the prediction
horizon Np = 10 and control horizon Nu = 5. The MPC
weigh matrix Q is a diagonal weight matrix with 0.1 on
its diagonals. The reference signal ρd = [ρdi , · · · , ρ

d
i−n+1]

T

is set to be the average of the cells’ densities which is also
updated with time.

Fig. (3) and Fig. (4) demonstrate density and flow of two
different cases where in the first case, there is no control
command is applied to the system while in the second one,
a control block including cells [ C7 C6 C5 C4 ] is defined,
therefore, the number of control signals would be five. As
depicted in Fig. (3), applying the control command causes
the congestion to be removed almost 14 minutes sooner. It
is worth noting that, in the controlled case, cells C3 and C4
experience a brief period of congestion, whereas it is not
the case for no-control case. It may be interpreted that
the controller uses the capacity of those cells to alleviate
congestion in general. Although some cells might become
congested during the control period, the overall congestion
time will be reduced.

Table 1. METANET Parameters

Name Value Unit Name Value Unit
τ 18 s κ 40 veh/km/lane
vff 110 km/h ρcr 33.5 veh/km/lane
η 60 km2/h ρmax 180 veh/km/lane

Table 2. Values of Parameter α

ρ α ρ α
0 ≤ ρ < ρcr 16 1.5 ρcr ≤ ρ < 3 ρcr 4

ρcr ≤ ρ < 1.5 ρcr 11 3 ρcr ≤ ρ ≤ ρmax 2.1

The control efforts are demonstrated in Fig. (5). As shown
in Fig. (5), all control signals for cells 3 to 7 experience

changes, indicating that different constraint matrices Ĥ
have been employed throughout the simulation. Further-
more, all control commands are within the range [0 1]
which proves that the proposed algorithm was successfully
capable of handling the constraints. Moreover, if all the
cells’ densities are less than ρcr, which means there is no
congestion, and then all cells may reach the vff speed and

(a) No control command

(b) With control command

Fig. 3. Cells density change

(a) No control command

(b) With control command

Fig. 4. Cells flow change

max possible flow, taking that into account, there is also
a condition that for such cases there is no need for control
command to be applied. As it may be observed in Fig. (5),
after 19 minutes all commands are going to be zero which
means none of the cells are in congestion anymore.

5. CONCLUSION AND FUTURE WORKS

This paper introduces an innovative algorithm that com-
bines FL with MPC in order to develop a control strategy
for managing highway traffic. By leveraging FL to linearize
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Fig. 5. Cells control effort

the nonlinear traffic flow dynamics and integrating MPC
to handle constraints on control commands, the proposed
method effectively addresses the challenges of controlling
constrained nonlinear systems in traffic management. Also,
it may be argued that by employing a nonlinear MPC tech-
nique, the constraints could be satisfied without needing
a mapping algorithm. However, it should be highlighted
that for cases where the aim is to control a large network
of cells, the nonlinear MPC requires significant amount of
computation. In contrast, solving the MPC optimization
problem for the linearized system can be done in real-time,
which justifies using FL.

While the results are promising, there are also issues
that should be pointed out. First, the uncertainties in
METANET hyperparameters need to be considered for
future work. Secondly, as demonstrated, the constraint
mapping algorithm can operate properly, but it considers
the same set of constraints over the whole prediction
horizon which is not exact because constraints are state-
dependent and states are updated through the prediction
steps; The same argument can be made for the references
as well. This matter could cause issues, particularly with
predictions for long time horizons, therefore this method
will not be as accurate in such cases. This suggests a
direction for future research to enhance accuracy in such
scenarios.
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