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State discretization for continuous-state MDPs in infectious disease control

Suyanpeng Zhang and Sze-chuan Suen 

Daniel J. Epstein Department of Industrial and Systems Engineering, Viterbi School of Engineering, University of Southern California, Los 
Angeles, CA, USA 

ABSTRACT 

Repeated decision-making problems may arise in the health policy context, such as infectious dis-
ease control for COVID-19 and other epidemics. These problems may sometimes be effectively 
solved using Markov decision processes (MDPs). However, the continuous or large state space of 
such problems for capturing infectious disease prevalence renders it difficult to implement tract-
able MDPs to identify the optimal disease control policy over time. We therefore develop an algo-
rithm for discretizing continuous states for approximate MDP solutions in this context. We 
benchmark performance against a uniform discretization using both a synthetic example and an 
example of COVID-19 in Los Angeles County.
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1. Introduction

Public health officials often need to determine the optimal 

population health intervention policy over time even as the 

state and trajectory of disease are driven by complex dynam-

ics. Many of these problems require making policy decisions 

sequentially over time, where the state may be represented 

using a continuous measure (e.g., the proportion of the 

population that is infected). For instance, during the 

COVID-19 pandemic, decision-makers needed to repeatedly 

set the start and end times of lockdowns that limited travel 

and interactions between individuals to reduce transmission 

without fully understanding the exact transmissibility of 

COVID-19. This sequential decision-making problem 

appears repeatedly in infectious disease control problems, as 

evidenced by prior literature on similar problems (Blower 

et al., 2002; Fu et al., 2022; Kaplan et al., 1996; Matrajt 

et al., 2021; Talbot et al., 2005; Zhang et al., 2011). Such 

problems often take into account underlying disease dynam-

ics, which are uncertain or depend on a variety of complex 

social and biological factors.
A difficulty in solving repeated decision-making problems 

for infectious disease control is the complexity of infectious 

disease dynamics, which are typically represented using 

compartmental models and simulation-based models 

(Brauer, 2008; Kopec et al., 2010). Such models are difficult 

to use for repeated decision-making problems as one often 

needs to evaluate the model repeatedly to identify an opti-

mal policy for disease control, which may require a signifi-

cant investment of computational time, as there is no 

closed-form solution.
While there are sophisticated means to identify optimal 

policies, these techniques have their own challenges. For 

instance, the maximum principal approach (Goenka et al., 
2014; Piguillem & Shi, 2022; Pontryagin, 2018) offers a solu-

tion framework for optimal control issues under differential 
equation systems. However, its application becomes increas-
ingly challenging with a large number of states or policies. 

Such expansion complicates both the Hamiltonian and the 
differential equations system, thereby rendering the process 
of deriving analytical or numerical solutions complicated 
and time-consuming. Moreover, it is difficult to find the 

optimal solution when the problem is non-convex. 
Simulation optimization, which can handle complex systems, 
has also been used in disease contexts (Carson & Maria, 

1997). However, this can also be computationally expensive 
and time-consuming. Furthermore, the quality of the solu-
tion highly depends on the search space and the heuristic 

function chosen, presenting challenges to its practical appli-
cation. This problem can be formulated as a dynamic pro-
gramming problem (Calvia et al., 2023), but the continuous 

or large state space can create difficulties. Furthermore, 
while the infectious disease control problem can be formu-
lated as a mixed-integer programming problem, the inher-
ently non-linear nature of most disease dynamics—such as 

the compartmental model—introduces non-linear con-
straints into the formulation. Consequently, the problem 
becomes extremely challenging to solve (Bertsimas et al., 

2022), which limits its generalizability, especially as the dis-
ease dynamics become more complex.

Markov decision processes (MDPs) are also a commonly 
used method for repeated decision-making problems. MDPs 
allow for state transitions, which can be used to describe 

changes in disease/health states over time and allow for 
repeated decisions over time. Given current computing 
innovations, many MDPs of useful size can be solved 
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effectively using algorithms such as backward induction, 

value iteration, policy iteration, etc. MDPs can also be effi-

ciently solved with non-convex problems.
However, incorporating dynamics from compartmental 

models and simulations into an MDP framework is chal-

lenging because disease models often use a continuous or 

large number of possible states (as the state usually repre-

sents a proportion of the whole population in certain sta-

tuses like infected, recovered, and hospitalized). Having a 

continuous state space makes the MDP problem difficult to 

solve since traditional MDP solution methods may then not 

work even for a short time horizon due to state-space explo-

sion issues. For example, backward induction needs 

jSj2jAjjT − 1j multiplications. In the case of value iteration, 

each iteration carries a complexity of OðjSj2jAjÞ: In the case 

of policy iteration, each iteration carries a complexity of 

OðjSj3 þ jSj2jAjÞ, and modified policy iteration requires 

OðkjSj2 þ jSj2jAjÞ per iteration (Puterman, 1994). For this 

reason, many traditional MDP studies in the healthcare field 

focus on finite-state decision-making problems like monitor-

ing, treatment initiation, and disease testing and diagnosis 

(Ahn & Hornberger, 1996; Alagoz et al., 2004, 2007; 2013; 

Capan et al., 2017; Chhatwal et al., 2010; David & Yechiali, 

1985; Denton et al., 2009; Hu et al., 1996; Kreke, 2007; Kurt 

et al., 2011; Lef�evre, 1981; Liu et al., 2017; Magni et al., 

2000; Maillart et al., 2008; Mason et al., 2014; Shechter 

et al., 2008; Suen et al., 2018; Zhang et al., 2021). Therefore, 

finding a good state discretization method that translates 

infectious disease dynamics onto a limited number of states 

improves computational efficiency and potentially widens 

the scope of MDP applications, particularly in the infectious 

disease space.
Uniform discretization is a traditional way of addressing 

continuous state problems. However, this methodology is 

suboptimal for addressing infectious disease control chal-

lenges. The heterogeneity in state visit frequencies—wherein 

some states (with extremely high prevalence) may remain 

unvisited and others (with lower prevalence) might be vis-

ited more frequently—renders uniform discretization ineffi-

cient. This approach may result in the overuse of 

discretization regions toward states that are less likely to be 

visited and an inadequate number of discretization regions 

for those with higher probabilities of being reached. How 

can we find a better way of discretizing the state space to 

closely represent the changes in health systems/disease? 

While many works have used various discretization methods 

to reduce state spaces (Lovejoy, 1991; Sandıkçı et al., 2013), 

we take a novel approach that treats the state discretization 

problem as an optimization problem. This allows us to find 

the discretization that will provide a smaller discretized 

region in more likely visited states for a more accurate 

description of the true dynamics.
We will explore the above state discretization in the con-

text of a disease control problem where states are used to 

describe the disease dynamics over a population, actions are 

implemented to prevent disease spread (lockdown, social 

distancing, face masks, and so on). States are assumed to be 

fully observable at each time period. Under this framework, 

we find a better way of discretizing states such that the dis-

cretized state space serves as a good proxy of the original 

state space. This paper addresses the challenge of formulat-

ing infectious disease control problems as MDPs by propos-

ing a new algorithm for non-uniform state discretization 

that enables the discrete representation of infinite state 

spaces.

1.1. Contributions

We make several contributions in this study. We provide a 

novel algorithm for defining a non-uniform, discrete state 

space for infectious disease control problems that well 

approximates the original continuous state dynamics. Our 

algorithm exploits the likelihood of each state being visited 

in the system to more efficiently capture the transitions 

between states. Defining a discrete set of states from an ori-

ginally continuous system allows us to incorporate infectious 

disease dynamics within frameworks that are better suited 

for discrete state spaces, such as MDPs. Finally, we demon-

strate that our state space discretization allows for more 

accurate MDP outcomes through two numerical examples, 

one using a classic SIR compartmental model and one using 

the COVID-19 model of Los Angeles County.
The remainder of this paper is organized as follows: we 

review the related literature in Section 2, present the prob-

lem setup in Section 3, and provide the algorithms in 

Section 4. The numerical example is shown in Section 5. In 

Section 6, we conclude.

2. Literature review

2.1. Markov decision processes in healthcare 

applications

MDPs have a rich history in the field of operations research, 

with wide range of applications such as inventory manage-

ment (Giannoccaro & Pontrandolfo, 2002), portfolio man-

agement (B€auerle & Rieder, 2009), production and storage 

optimization (Arruda & do Val, 2008), and various others. 

Extensive research has been conducted to solve and under-

stand the structure of MDPs, with notable contributions 

from works such as Puterman (1994) and Topkis (2011).
MDPs also find widespread application in the field of 

healthcare. They offer valuable insights and solutions to 

various health-related issues, including scheduling (Agrawal 

et al., 2023), screening (Alagoz et al., 2013; Chhatwal et al., 

2010; Maillart et al., 2008; McNealey et al., 2023; Shen et al., 

2024), sequential disease testing (Arruda et al., 2019; Singh 

et al., 2020), treatment initiation (Liu et al., 2017; Otero- 

Leon et al., 2023; Shechter et al., 2008), and organ trans-

plantation (Sandıkçı et al., 2008, 2013; Zhang et al., 2021, 

2024). For instance, patients in different age groups with 

risks of breast cancer may need personalized mammography 

exam frequencies (Alagoz et al., 2013), or, in another 

example, a patient with organ failure may be presented at 

different states with organ transplant options that vary in 

their compatibility with the patient. The patient may face 
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the decision to either wait for a better match or accept an 
offered organ as their own survival probability decreases 

over time (Zhang et al., 2021, 2024). For a more extensive 
exploration of MDPs in healthcare, refer to the comprehen-

sive reviews by Schaefer et al. (2004), Alagoz et al. (2010), 

and Sonnenberg and Beck (1993). Although MDPs are 
widely used in healthcare applications, most of these con-

sider finite-state decision-making. Constructing an MDP for 
infectious disease control problems with repeated decisions 

is challenging, especially when the state space for such prob-
lems is continuous.

2.2. Solving continuous state MDP

As previously discussed, an infinite or continuous state 

space is a major challenge when formulating MDPs. Several 
methods have been proposed to address this problem. In Li 

and Littman (2005), a discretization-free approach (modified 

value iteration with lazy approximation) is introduced, but it 
requires highly precise piece-wise constant approximations 

of both the value and transition functions. In Munos and 
Moore (2002), different criteria for discretizing state and 

time-space non-uniformly are discussed. These methods 
involve evaluating values or policies using dynamic pro-

gramming; however, some of these methods raise computa-
tional concerns for problems with continuous or large 

numbers of states. Zhou et al. (2010) used Monte-Carlo 
simulation to approximate the belief state using a finite 

number of particles on a discretized grid mesh. However, 
the study does not provide guidance on the construction of 

the grid mesh. Brooks et al. (2006) proposed a parametric 
method to uniformly discretize a continuous state space 

over a lower dimensional parametric space. However, since 
prior knowledge of the distribution is required, MDPs for 

infectious disease control would be difficult to solve in this 
manner. One remedy is to solve the MDP formulation by 

truncation and discretization of the state (Boucherie & Van 
Dijk, 2017). Researchers have used various methods to 

achieve this. For example, Sandıkçı et al. (2013) used fixed- 
resolution, non-uniform grids to discretize the belief state 

and approximate the optimal policy for a partially observ-
able MDP (POMDP) model. Lovejoy (1991) used fixed or 

uniform grids to approximate the solution of the POMDP. 
However, using uniform or pre-defined discretization 

regions (which requires domain knowledge) may not always 
be appropriate, particularly for infectious disease control 

problems where disease spread is subject to substantial 
changes across different policy scenarios. In such cases, a 

more effective discretization algorithm is needed to enable 
the computation of the optimal policy.

2.3. Modeling disease dynamics

To identify the optimal policy for an infectious disease con-
trol problem, it is necessary to have a model for describing 

the disease dynamics. For instance, during an emerging pan-
demic, how would disease transmission change if the gov-

ernment imposed a 1-month lockdown? How would it 

change if the government imposed a 3-month lockdown 

instead? Different policies may change the patterns of dis-

ease transmission and thus change the proportion of infec-

tions in total. To efficiently avert infections, these different 

possibilities need to be evaluated to understand the resultant 

health and cost outcomes. Multiple methods are available 

for assessing the impact of different policies on a specific 

population.
One common method to model disease dynamics is to 

use compartmental models based on differential equations 

(Brauer, 2008; Kermack & McKendrick, 1991a, 1991b, 

1991c). A compartmental model uses a mathematical frame-

work to provide insights into the mechanisms that affect the 

transmission and progression of disease. This framework 

partitions the population into different health or treatment 

states (compartments). For instance, each compartment rep-

resents a specific stage of the infectious disease (e.g., suscep-

tible, infected, recovered), and proportions of the population 

move between compartments described by differential equa-

tions at certain rates. This model is fundamental in epidemi-

ology for understanding the spread of diseases and 

evaluating the potential impact of public health interven-

tions. For example, compartmental models can compare the 

effectiveness of wearing masks and social distancing during 

the COVID-19 pandemic (Grimm et al., 2021; Kai et al., 

2020). Long et al. (2018) use a classical compartmental 

model to assist with the decision to allocate resources during 

the 2014 Ebola outbreak in Africa. In Section 5, we consider 

a classic Susceptible-Infected-Recovered (SIR) epidemic 

model, which has been extensively used in the epidemio-

logical literature (Beckley et al., 2013; Harko et al., 2014; 

Kr€oger & Schlickeiser, 2020).
Another method of evaluating disease dynamics is to use 

simulation models, which can be used to track transmission, 

progression, and behavior as well as policy outcomes. For 

instance, simulation models can be employed to examine 

the cost-effectiveness of screening recommendations for 

positive-HIV men who have sex with men (MSM) (Tuite 

et al., 2014), as well as to study the effectiveness of different 

disease control strategies for tuberculosis (TB) in India 

(Suen et al., 2014). Although these methods indeed capture 

the dynamics of complicated diseases, they are unable to 

compute dynamic policies effectively as mt evaluations are 

usually needed when there are m possible interventions 

and t decision epochs. Therefore, it is beneficial to find 

alternative effective ways of identifying the optimal policy 

for infectious disease control. In our paper, we consider a 

discrete-state MDP framework that takes advantage of its 

effective solution methods with underlying disease dynamics 

estimated from traditional disease models such as compart-

mental and simulation models.
To model this problem as a discrete-state MDP, we also 

need to define a transition function to describe the probabil-

ity of transitioning between the states. Several existing tech-

niques can be used to construct this function. For instance, 

Yaesoubi and Cohen (2011) proposed a way to compute 

transition probabilities given a system of ODEs. In another 

example, Mishalani and Madanat (2002) proposed a method 
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of developing transition probabilities from a stochastic dur-
ation model based on the hazard rate function. However, 
these methods are computationally intensive, which limits 
their usage to problems with small populations or disease 
models with special structures.

3. Problem setup

The notation used in this paper is as follows. We denote 
Xt 2 X as the state of the epidemic at time t. Xt ¼
½X1t , X2t , :::, Xnt� has n components where each represents 
the proportion of the population in the compartment (e.g., 
for a SIR model, n ¼ 3). For example, Xt ¼ ½XSt , XIt , XRt� 2
½0, 1�3 can describe the proportion of the population in sus-
ceptible (S), infected (I), and recovered (R) compartments at 
time t for an SIR model. We denote X0 as the initial state 
and we assume it follows an initial distribution X: We use 
fXtg ¼ ðX0, :::, XNÞ to denote the disease trajectory.

In this paper, we focus on the finite horizon problem. Let 
T ¼ f1, :::, Ng be the set of possible decision epochs for the 
problem. A ¼ f1, :::, jAjg is the set of possible policy inter-
ventions for the problem. We assume a small, finite number 
of actions/policies (e.g., lockdown versus no lockdown). We 
denote pt 2 A as the policy intervention at time t.

We consider a model denoted by f ðXt , ptÞ ¼ Xtþ1 that 
describes the disease dynamics across time epochs t. This 
function f ðXt , ptÞ can consider disease progression, trans-
mission over time, mortality, and interventions. Generally, 
f ðXt , ptÞ takes the state of the system and policy interven-
tion as an input and then returns the state in the next 
period. We assume that f ðXt , ptÞ is time-homogeneous for 
simplicity (if time-inhomogeneous dynamics are desired, our 
methods can be easily extended).

The cost in state Xt 2 X and taking action pt 2 A for t 2
T in the infectious disease control problem is denoted using 
rðXt , ptÞ: This cost can be dependent on health outcomes 
(e.g., number of infected, total vaccinated population, etc.) 
as well as other factors (financial cost, economic burden, 
etc.). We let k denote the discount factor.

Given the transition function f ðXt , ptÞ and the cost func-
tion rðXt , ptÞ, we have the following optimization formula-
tion for our repeated decision-making disease control 
problem:

min
p0 , :::, pN−1

X

N

t¼0

ktrðXt , ptÞjX0 (1) 

s:t: Xt ¼ f ðXt−1, pt−1Þ (2) 

In the above problem, the objective is to find a 
sequence of actions fp0, :::, pN−1g that minimizes the total 
discounted cost function rðXt , ptÞ over states Xt for the 
whole N-period time horizon given a known initial state 
X0: For example, Xt can represent the proportion of indi-
viduals in each COVID-19-related health stage at time t, 
and let rðXt , ptÞ compute the proportion of people dead 
from COVID-19 at time t. If pt denotes the policy inter-
vention (lockdown or not) at time t, then f ðXt−1, pt−1Þ
could be a system of different equations that describes the 

population flow across different health stages. Our object-

ive in this problem then is to find the optimal policy 

intervention at each time t that minimizes the total cost 

within N periods.
There are challenges to solving the above formulation 

using traditional MDP solution methods (e.g., backward 

induction, value iteration, policy iteration, etc.) as this for-

mulation usually contains constraints with non-linear 

dynamics on a continuous state space. These solution meth-

ods require a finite number of states for effective evaluation. 

Moreover, the function f ðXt , ptÞ may not be expressed as 

transition probabilities from state to state, while many tradi-

tional MDP solution methods use transition probability 

matrices to allow for the modeling of uncertainty and vari-

ability in decision-making processes.
To discretize the continuous state space, we partition the 

state space X into a discrete set of states �X : For each com-

ponent d in X , we use the discretization vector Gd to 

describe how the continuous state space is partitioned into 

discrete states. The discretization vector Gi contains the 

maximal and minimal values of the discretized regions for 

component d. We use G to represent the list of discret-

ization vectors for all components in X : For instance, for an 

SI model, if G ¼ f½0, 0:6, 1�, ½0, 0:2, 1�g, we mean that group 

1 (the susceptible proportion of the population) is parti-

tioned into two regions ½0, 0:6Þ and [0.6, 1], and the second 

group (infected proportion) is being partitioned into 

two regions ½0, 0:2Þ and [0.2, 1]. In this case, we have a 

total of 2 � 2 ¼ 4 regions. These four regions are given by 

ð1Þ :XS 2 ½0,0:6Þ,XI 2 ½0,0:2Þ;ð2Þ :XS 2 ½0,0:6Þ,XI 2 ½0:2,1�;ð3Þ :
XS 2 ½0:6,1�,XI 2 ½0,0:2Þ;ð4Þ :XS 2 ½0:6,1�,XI 2 ½0:2,1� (shown 

in Fig. 1).

Figure 1. Four regions defined using G ¼ f½0, 0:6, 1�, ½0, 0:2, 1�g are shown in dif-
ferent colors. These correspond to four states:ð1Þ : ½�X S ,�X I� ¼ ½0:3, 0:1�;ð2Þ :
½�X S ,�X I� ¼ ½0:3, 0:6�;ð3Þ : ½�X S ,�X I� ¼ ½0:8, 0:1�;ð4Þ : ½�X S ,�X I� ¼ ½0:8, 0:6�: For example, 
Xt ¼ ½0:1, 0:3�, the corresponding discretized state representation is �Xt ¼ ½0:3, 0:6�:
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From these regions, we capture the discretized state 

space in matrix �X , which is comprised of the Euclidean 

centroids of each region. The dimension of �X is B � n 

where B is the number of discretization regions and n is 

the number of components. Thus, in the example above, 

we would have four states. ð1Þ : ½�XS, �X I� ¼ ½0:3, 0:1�; ð2Þ:

½�XS, �X I� ¼ ½0:3, 0:6�; ð3Þ : ½�XS, �X I � ¼ ½0:8, 0:1�; ð4Þ : ½�XS, �X I� ¼

½0:8, 0:6�: In this case, �X ¼

0:3 0:1
0:3 0:6
0:8 0:1
0:8 0:6

2

6

6

4

3

7

7

5

: Similarly, we 

define �Xt 2 �X to be the discretized state at time t and 

f�Xtg ¼ ð�X0, :::, �XNÞ to be the trajectory for the discretized 

state.
With this new discretized state space, we can now define 

�f ð�Xt , pt , GÞ, the disease dynamics on the discretized state 

space. Even though the true disease dynamics might be non- 

linear, we approximate the transitions on the discretized 

state space using a linear transition matrix. This is a reason-

ably good approximation if the length of t is sufficiently 

small.
We denote this transition probability matrix as PðptÞ for 

pt 2 A: PðptÞ has the dimension of �X
�

�

�

�� j �X j where �X
�

�

�

� is 

the size of the state space. Then the probability of the sys-

tem being in a state at time t þ 1, �Xtþ1, given it was in 

state �Xt at time t and policy intervention pt 2 A is denoted 

as Pð�Xtþ1j�Xt , ptÞ: It is important to note that the function 

f ðXt , ptÞ is deterministic, whereas PðptÞ is a stochastic 

matrix. The stochastic nature arises from the transition pro-

cess within the discretized space. Initially, given the region 

of the initial state, the first transition is determined with 

100% certainty, allowing us to precisely identify the subse-

quent region. However, after the first transition, within any 

given discretized region, predicting the next region becomes 

uncertain as the algorithm only records past regions, not the 

exact points. Consequently, a transition probability matrix is 

employed to approximate the transition function, thereby 

facilitating its application to discretized MDPs.
Let Vtð�XtÞ denote the optimal value function of the discre-

tized state �Xt 2 �X , t 2 T for the discretized infectious disease 

control problem. At optimality, the following must hold:

Vtð�XtÞ ¼ max
pt2A

frð�Xt , ptÞ þ k
X

�X tþ12 �X

Pð�Xtþ1j�Xt , ptÞVtð�Xtþ1Þg

3.1. State space discretization problem

With the original system f ðXt , ptÞ and state space X , we 

aim to find the discretized state space �X and the transition 

matrices P that approximate well the original system in that 

it gives a similar objective value Vtð�XtÞ, trajectories f�Xtg
given fp0, :::, pN−1g, and a small optimality gap. In order to 

do this, we need to find a suitable G and map from 
�f ð�Xt , pt , GÞ to P.

We focus on approximating the original system by estab-

lishing an appropriate discretization approach. For a discret-

ization method to be effective, it should provide accurate 

estimates for regions of the state space that are more fre-
quently visited, where these frequencies are influenced by 
which interventions are implemented. To do this efficiently, 
the discretized states should be capable of providing higher 
precision in areas where the state space is more likely to be 
visited. This can lead to a better approximation of the true 
disease dynamics and can thus result in a more accurate 
MDP solution.

Given the function f ðXt , ptÞ, the initial state, the time 
horizon, and a sequence of policies fp0, :::, pN−1g, we can 
calculate a trajectory fXtg: Subsequently, we require a state 
discretization G that ensures the discretized trajectory f�Xtg
closely approximates fXtg for various initial states and poli-
cies. Therefore, our objective is to minimize the distance 
between the true trajectory and trajectory from the discre-
tized model over all samples h ¼ ðX0, fp0, :::, pN−1gÞ 2 H, 
all policy intervention scenarios pt , and all time, i.e., mini-
mizing 

P

h2H

PN
t¼1 j Xt −

�Xtjj2jh:
�

� Given a sequence of pol-
icy intervention fp0, :::, pN−1g and an initial state X0, we 
compute the true trajectory using f ðXt , ptÞ: We use 
�f ð�Xt , pt , GÞ to compute the trajectory from the discretization 
space matrix �X :

We then map the transition function for discretized states 
�f ð�Xt , pt , GÞ to transition probability matrix P. Various exist-
ing techniques help to construct transition probabilities 
given function �f ð�Xt , pt , GÞ: We discuss how to find a gener-
alizable and efficient way of computing transition probabil-
ities from �f ð�Xt , pt , GÞ given the state discretization in the 
next section. A complete list of notation used in this section 
is provided in Table 1.

4. Algorithms

In this section, we present a generalizable framework for 
discretizing a continuous state space for use in MDP frame-
works and correspondingly constructing transition probabil-
ity matrices.

4.1. Greedy algorithm for finding discretization regions 

(GreedyCut)

The main objective of discretization is to design an effective 
approach for approximating the disease dynamics with a 
high level of accuracy, making such problems tractable for 

Table 1. Table of notation.

T The set of all decision epochs

A The set of all policy interventions
X The set of all state representations
�X The set of all discretized state representations
fptg Policy intervention at decision epoch t

Gd Discretization vector for component d

fXtg Observed disease trajectory
f�X tg Discretized disease trajectory
f~X tg Markovian disease trajectory computed using transition  

probabilities
fðXt , ptÞ Transition function
�f ðXt , pt , GÞ Discretized transition function
PðptÞ Transition probability for policy pt

k Discount factor
rðXt , ptÞ Reward function
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conventional discrete-space MDP frameworks. However, it 

would not be advantageous if the process of finding discret-

ization regions itself becomes excessively costly. Therefore, 

our motivation is to identify a low-cost method that can 

produce discretization regions capable of representing the 

disease dynamics effectively. In particular, we are interested 

in outperforming a uniform discretization, which can be 

considered a general default discretization appropriate across 

many domains.
We assume there is a budget B that represents the total 

number of discretization regions we can have in realize of 

computational considerations. We use simulated initial states 

and policy interventions h ¼ ðX0, fp0, :::, pN−1gÞ 2 H to find 

the discretization regions.
The greedy approach has been widely applied to various 

optimization tasks, which is easy to implement and effective 

at finding solutions (Blanchard et al., 2014; Wu et al., 

2018; Zhao et al., 2022). We now propose Algorithm 1

(GreedyCut), a greedy-based iterative approach to finding a 

good discretization. A list of additional notation is listed in 

Table 2.

Algorithm 1 Iterative Discretization for Disease Control 

Problems

1: procedure COST(fXtg, �Xtf g) . fXtg is the true trajec-

tory, f�Xtg is the trajectory from the discretization
2:   return 

PN
t¼1 jj

�Xt − Xtjj
2
2

3: procedure CUT(d, i, G) . d is the component we want 

to cut, and we want to cut the i-th interval in 

half, i 2 1, 2, :::, Gd − 1
4:   Gd ¼ 0, :::, Gd, i, ðGd, i þ Gd, iþ1Þ=2, Gd, iþ1, :::, 1½ �
5:   return G
6: procedure GREEDY(B, G, f ðXt , ptÞ, �f ð�Xt , pt , GÞ, h) . B 

is the budget, f ðXt , ptÞ is the compartmental model 

dynamics, �f ð�Xt , pt , GÞ calculates the trajectory using 

discretized states �Xt , H is the pre-generated samples 

of initial states and policies, for each 

h 2 H, h ¼ ðX0, fp0, :::, pN−1gÞ
7:   iter_per_sample ¼ B=jHj
8:   for h 2 H do

9:    for iterations ¼ 1 : iter_per_sample do

10:     best cost ¼ 1
11:     worst cost ¼ −1
12:     for Component d do

13:      for region i 2 Gd do

14:       Compute fXtg using Xt ¼ f ðXt−1, pt−1Þ

15:       Compute f�Xtg using  
�Xt ¼�f ð�Xt−1,pt−1,Cutðd;i;GÞÞ

16:        tmp cost¼Cost(fXtg, f�Xtg)
17:        if tmp cost $<$ best cost then

18:        best cost¼ tmp cost
19:        d� ¼ d
20:        i� ¼ i
21:        if tmp cost $>$ worst cost then

22:        worst cost¼ tmp cost
23:    if worst cost¼ best cost then

24:      draw a point Xdt from fXtg
25:     Update ðd�, i�Þ such that ðd�, i�Þ satis-

fies Gd� , i� � Xdt � Gd� , i�þ1

26:      update G¼Cut(d�, i�, G)
27:    else

28:     update G¼Cut(d�, i�, G)
29:   return G

In Algorithm 1, we have three functions. The cost function 

computes the sum of squared error between the 

trajectory from the discretized state space f�Xtg and true 

trajectory fXtg from f ðXt ,ptÞ: Algorithm 1 can be adapted 

to any disease model without modifications to the 

algorithm. We compute the discretized trajectory f�Xtg using 

�f ð�Xt ,pt ,GÞ, where the d-th component �Xdt¼
PjGd j−1

j¼0 

1Gd,i�f ð�X t−1,pt−1Þd<Gd,iþ1

Gd,iþGd,iþ1

2 
takes the average value of the 

region it belongs to after the discretization. The cost function 

can also be customized (e.g., introduce another penalty term 

to emphasize certain disease compartments).
The cut function divides the i-th region of the d-th com-

ponent into two discretized regions, transforming a continu-

ous range into discrete segments. For instance, consider 

running a single iteration of GreedyCut on G ¼
½0, 0:6, 1�, ½0, 0:2, 1� with the point Xt ¼ ð0:1, 0:3Þ, as illus-

trated in Fig. 2(a). The initial cost is computed as 

ð0:3 − 0:1Þ2 þ ð0:6 − 0:3Þ2 ¼ 0:11: Four potential cuts are 

considered: Cutð1, 1, GÞ with a cost of 0.0925, Cutð1, 2, GÞ
with a cost of 0.11, Cutð2, 1, GÞ with a cost of 0.11, and 

Cutð2, 2, GÞ with a cost of 0.05. Among these, the optimal 

cut is Cutð2, 2, GÞ: This operation results in a new discret-

ization, G0, defined as G0 ¼ f½0, 0:6, 1�, ½0, 0:2, 0:6, 1�g: Figure 

2(b) displays this updated discretization. After the cut, there 

are now six discretized regions. Similarly, running another 

iteration of GreedyCut on G0 updates the discretization to 

G00 ¼ ½0, 0:3, 0:6, 1�, ½0, 0:2, 0:6, 1�, with the optimal cut being 

Cutð1, 1, G0Þ (shown in Fig. 2(c)). After the cut, nine discre-

tized are generated with G00: Consequently, the objective 

value decreases from 0.11 to 0.05 and then to 0.0125.
The greedy function then iteratively computes the cost of 

cutting one continuous range into two equal discretization 

regions along each component (dimension) and finds the 

best cut. We use the ‘worst cost’ and ‘best cost’ to monitor 

the least and most favorable cuts. Although a greedy algo-

rithm typically does not need the ‘worst cost’, we use it to 

identify cases that all cuts have equivalent costs. If each cut 

has the same cost, a point (Xdt 2 Xt) from the sampled tra-

jectory (fXtgjh) will be randomly drawn, and the region 

Table 2. Table of additional notation used in Section 4.

H The set of all samples used in GreedyCut
X̂0 Samples generated in sample average approximation for generating 

transition probabilities
B Total number of discretization regions generated
K Computational costs for calculating the observed trajectory given a 

sample
�K Computational costs for calculating the discretized trajectory given a 

sample
K̂ Computational costs for computing the discretized state in the next 

transitions in Algorithm 2
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that this point belongs to (component d of the region i of G 

such that Gd, i � Xdt � Gd, iþ1) will be cut into halves. When 

every cut incurs the same cost, we want to cut based on the 

data obtained through sampling. In general, it is unlikely 

that the costs for all cuts will be exactly the same; this might 

occur at the beginning of the algorithm when each discre-

tized state encompasses a large range and the approximation 

will not improve if cut only once. An alternative solution is 

to generate a few random cuts at the beginning and then 

run GreedyCut without recording the ‘worst cost’. Through 

this process, in total, jGj ¼
P

d Gdj ¼ Bj discretization 

regions will be generated. In Section 5.1.3, we will assess the 

effectiveness of this algorithm by comparing the sum of 

squared errors between the Markovian trajectory (the 

expected trajectory computed using probabilities and discret-

ization regions) and the observed trajectory with different 

discretization methods. This comparison will help us evalu-

ate how well GreedyCut estimates the actual disease trajec-

tory using transition probability matrices.

4.1.1. Complexity analysis

In Algorithm 1, if we assume that computing fXtg and 

f�Xtg using f ðXt , ptÞ and �f ð�Xt , pt , GÞ given one sample 

requires K and �K operations respectively, we can analyze the 

total number of operations performed by the GreedyCut 

algorithm. Since the computational costs for generating new 

discretization regions, comparing costs, and computing costs 

are relatively small compared to computing fXtg and f�Xtg
in our problem, we assume these costs are negligible com-

pared with other costs. At each iteration, the GreedyCut 

algorithm enumerates through each of b regions including 

all components d, where 1 � b � B: For each discretization, 

the algorithm performs computations of fXtg and f�Xtg, 

which have time complexities of K and �K operations 

respectively. The total number of iterations depends on B 

and jHj: It equals to jHj � B
jHj ¼ B:

The total number of operations for the GreedyCut algorithm 

can be estimated as the sum of operations over all iterations. 

This can be expressed as 
PB

b¼1 bðK þ �KÞ ¼ BðBþ1Þ
2

ðK þ �KÞ:
Therefore, the complexity of the GreedyCut algorithm is on the 

order of OðB2ðK þ �KÞÞ: This implies that the complexity grows 

exponentially with the budget of discretization regions, given by 

B. The time complexity increases quadratically with B while lin-

early with the number of operations required for each region, 

represented by ðK þ �KÞ:
As a result, the computational complexity of the algo-

rithm grows rapidly as the number of discretization regions 

increases. This highlights the exponential relationship 

between the complexity and the desired level of granularity 

in the discretization process.

4.2. Constructing a corresponding transition matrix

Once a suitable discretization of a continuous state space 

has been constructed, we additionally need a transition 

matrix between these discretized states to capture the 

dynamics for use in an MDP framework. To do this, we use 

a well-known sample average approximation (SAA)-based 

algorithm (hereafter referred to as Algorithm 2), commonly 

utilized in various algorithms (Bertsimas et al., 2018; Kim 

et al., 2015; Zhang & Sen, 2024). In our approach, SAA 

draws samples from each discretized state to determine the 

frequency of transitions to subsequent states via the function 

f ðXt , ptÞ and G (Hern�andez-Lerma & Lasserre, 2012). The 

detailed algorithm steps are provided in Appendix A.
In Algorithm 2, we draw c samples within each region in 

G and count the frequency of the transitions from the cur-

rent region to other regions using policy pt and f ðXt , ptÞ:

By sampling and counting the transitions from the original 

system, we approximate the underlying transition probabil-

ities directly. Creating approximated transition probability 

matrices in this way offers a practical approach to capturing 

the essential dynamics of the system and enables efficient 

decision-making at the population level.

4.2.1. Complexity analysis

In Algorithm 2, we generate c samples BjAj times, where B 

denotes the number of discretization regions and jAj repre-

sents the size of the action space. Assuming that computing 

and locating each transition in the appropriate region take 

K̂ operations, we can analyze the time complexity of 

Algorithm 2. The number of operations performed by the 

algorithm then is OðcK̂BjAjÞ:

Figure 2. Apply Cut(2,2,G) where G ¼ f½0, 0:6, 1�, ½0, 0:2, 1�g gives new discretization regions G
0
¼ f½0, 0:6, 1�, ½0, 0:2, 0:6, 1�g: Then apply Cut(1,1, G

0
) gives new dis-

cretization regions G
00
¼ f½0, 0:3, 0:6, 1�, ½0, 0:2, 0:6, 1�g: In both G

0
and G

00
, the �X t is changed as the Euclidean centroid where Xt belongs to has changed. For G, 

jjXt −
�Xtjj

2 ¼ 0:11: For G
0
, jjXt −

�X tjj
2 ¼ 0:05: For G

00
, jjXt −

�X tjj
2 ¼ 0:0125:
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Furthermore, in most disease control problems, such as 

COVID-19 mitigation strategies like lockdown, social dis-

tancing, and face masks, the size of the action space jAj is 

typically small. This implies that the algorithm’s time com-

plexity is primarily influenced by the number of samples c, 

the number of discretization regions B, and the operations 

K̂ needed for computing and locating transitions.

5. Numerical examples

In this section, we first showcase our proposed framework 

for reformulating a SIR model to an infectious disease con-

trol MDP framework for supporting public health decisions 

around social distancing policy. We then demonstrate the 

utility of this framework with an example of COVID-19 in 

Los Angeles County, drawing from empirical data of case 

counts in 2020.
We benchmark the outcome of our method (we refer to 

the ‘GreedyCut discretization method’ hereafter) in both 

examples by comparing our model outcomes to those of 

several other frameworks: a uniform discretization frame-

work, a discretization framework based on expert opinion 

(we refer to the ‘expert discretization method’ hereafter), 

and an InverseProportional discretization framework moti-

vated by Zhou et al. (2010). In the uniform discretization 

framework, we discretize the entire state space uniformly 

using the same number of discretization regions as used in 

the GreedyCut discretization method. In the Expert dis-

cretization framework, the state spaces for susceptible and 

recovered individuals are discretized uniformly. However, 

the proportion of the population that is infected is only 

uniformly discretized between [0, 0.4] instead of [0, 1]. 

This is based on the observation that the proportion of the 

population infected at the same time does not exceed 40% 

in most infectious diseases (Biggerstaff et al., 2014; Pei 

et al., 2021). In the InverseProportional discretization 

framework, the state space is discretized by assigning 

higher resolution to the more frequently visited states 

based on the simulation results. The transition probabil-

ities for all methods are generated using Algorithm 2. In 

the second example, we additionally compare our model 

outcomes to the empirical status-quo policy in Los 

Angeles in 2020 to demonstrate the improvement our 

method can achieve.

5.1. Example 1: a simple SIR model

The SIR model tracks the proportion of the population that 

is susceptible (S), infected (I), and recovered (R) at each 

time t. We use a discrete time model where the SIR model 

can be described using a system of difference equations 

(Allen, 1994):

Stþ1 ¼ St − bStIt

Itþ1 ¼ It þ bStIt − cIt

Rtþ1 ¼ Rt þ cIt 

The parameter b is the rate at which disease transmits 

from the infected to susceptible population proportions, and 

is dependent on the average contact rate and probability of 

transmission given a discordant contact. Similarly, c is the 

recovery rate.
Typically, at the beginning of an epidemic, the exact pro-

portion of the population that is infected may be unknown. 

We use X0 ¼ ½XS0, XI0, XR0� ¼ ½S0, I0, R0� to denote the initial 

state at the first decision epoch. We assume that while the 

exact initial state is unknown, we know an upper and lower 

bound on each of the compartments. We use S,�S, I ,�I , and 

R, �R to denote the upper and lower bound on initial states 

S0, I0, and R0, respectively.
Suppose at each time t, the health department can choose 

to implement a social distancing policy (a “lockdown”) until 

time epoch t þ 1 that reduces the transmission rate b: We 

assume there are a finite number of periods N.
The decision maker wishes to minimize the negative 

health outcomes and economic and social costs of imple-

menting a lockdown policy. To capture this objective, at 

each decision epoch, we let the cost be rðXt , ptÞ ¼
It þ uðptÞ, the proportion of the population infected (It) 

plus some time-invariant dis-utility value uðptÞ that captures 

the economic and social costs that are only incurred when 

the intervention is in effect and zero otherwise.
Throughout this section, we refer to this discrete time 

system as the ground-truth system, and we will construct 

our discretized MDP framework based on this. We assume 

no discounting in the objective (k¼1). The objective of the 

MDP is therefore to minimize the total costs over the whole 

time horizon.

5.1.1. Inputs

To evaluate this example, we let the transmission rate (b) be 

1.4 and the recovery rate (c) be 0.49. The decision interval 

(Dt) is a week, and the time horizon (N) is ten weeks. 

Implementing a lockdown will incur an economic and social 

cost, but it is unclear how this dis-utility can be quantified 

in reality. For simplicity, we assume the dis-utility is 

0.03 if lockdown was implemented and 0 otherwise 

(uðlockdownÞ ¼ 0:03, 

uðnolockdownÞ ¼ 0).
During the early stages of a pandemic, there is typically a 

large population in the susceptible category, while only a 

small population is infected. Therefore, we choose the initial 

states to be uniformly distributed within the upper and 

lower bounds for each compartment to be: ½S, �S� ¼
½0:7, 0:99�, ½I ,�I � ¼ ½0:01, 0:1�, and ½R, �R� ¼ ½0, 0:29�:

In the GreedyCut discretization method, for each sample 

(h) generated, ten iterations are run to generate ten add-

itional discretization regions (lines 9–24 in Algorithm 1). To 

generate samples h, X0 are generated uniformly from the 

region above, and p is a vector with ten random binary vari-

ables to indicate the policy intervention (0—no lockdown, 

1—lockdown). In Algorithm 2, we generate c ¼ 1000 sam-

ples to compute two transition probability matrices to cor-

respond to the no lockdown and lockdown policies, 

respectively. The reason for choosing c ¼ 1000 is that we 

observed the matrix stabilizes once c exceeds 1000.
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5.1.2. MDP solutions

We compare MDP solutions among the GreedyCut, 
InverseProportional, expert, and uniform discretization 
methods on 90, 150, 300, and 1200 discretization regions.

To evaluate our algorithm’s performance, we create 300 
samples (we denote the set of all samples as X�0) by selecting 
the initial susceptible proportion from 0.7 to 0.99 with steps-
ize of 0.01 and initialize the infected proportion from 0.001 
to 0.01 with 0.001 stepsize. We chose 3,000 state-time pairs 
because we observed that performance does not vary signifi-
cantly when the number of state-time pairs is changed. By 
enumerating each pair of S and I, we can have a total of 300 
different possible initial states (if S þ I > 1, we will renor-
malize each compartment). We compute the following met-
rics for both GreedyCut and uniform discretization methods 
on 90, 150, 300, and 1200 discretization regions:

� ACC: accuracy in matching the percentage of optimal 
actions by comparing discretized MDP with brute force 
(ground-truth) solution over each state-time pair (a total 

of 3000 state-time pairs). ACC ¼ 1 −

mismatch
3000

:

� MSE: mean squared error between the optimal value of 

the discretized MDP (�V
�
0) and the brute force solution 

(V�
0 ) on the first decision epoch over all states. 

MSE ¼ EX02�X0
½jj�V

�
0ðX0Þ − V�

0 ðX0Þjj
2�:

� E2: relative mean absolute error on the first decision 

epoch over all states. E2 ¼ EX02�X0
½
j�V

�
0ðX0Þ−V�

0 ðX0Þj

V�
0 ðX0Þ

�:

� Opt. Gap: average of the relative difference between the 
optimal value of brute force solution and the value of 
running optimal policy from discretized MDP on the 

true disease model (~V 0) on the first decision epoch. Opt. 

Gap ¼ EX02�X0
½
j~V 0ðX0Þ− V�

0 ðX0Þj

V�
0 ðX0Þ

�:

The GreedyCut discretized MDP is able to generate solu-
tions with a higher accuracy than the uniform discretized 
MDP. We compare the solutions from GreedyCut and other 
discretized MDPs against the brute force solution in the fifth 
week (t ¼ 5, shown in Fig. 3). We chose the fifth week to 
better illustrate the outcomes, as the decision boundary is 
less illustrative in earlier and later time periods. All state 
pairs recommend the same optimal actions. In the fifth  

Figure 3. We compare the optimal solution at t ¼ 5 across different states using the GreedyCut and uniform discretized MDPs against the ground truth optimal 
solution found using brute force methods. (a): Optimal solution from the GreedyCut discretized MDP compared to the brute force solution; (b): optimal solution 
from the uniform discretized MDP compared to the brute force solution. (0 – both models recommend not implementing lockdown; 1 – both models recommend 
implementing lockdown; 2 – the brute force method recommends not implementing lockdown while the other method recommends lockdown [type 2 error]; 3 – 
the brute force method recommends implementing lockdown while the other method recommends not implementing lockdown [type 1 error]).
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week, we compare optimal actions across 300 states. The 

results indicate that the GreedyCut discretized MDP has six 

mismatches, whereas the uniform discretized MDP has 26 

mismatches, the expert discretized MDP has 56 mismatches, 

and the InverseProportional discretized MDP has 20 mis-

matches when compared with the brute force solution.
Moreover, the number of mismatches may be worse with 

the other discretized MDPs compared to GreedyCut. In the 

GreedyCut discretized MDP, all six mismatches belong to 

the case where the brute force solution recommends not to 

lockdown while the GreedyCut discretized MDP recom-

mends implementing lockdown. However, in all other dis-

cretized MDPs, most mismatches belong to the case where 

the brute force solution recommends lockdown while the 

discretized MDP recommends not implementing lockdowns. 

In infectious disease control, failing to implement a lock-

down when it is necessary can cause a rapid increase in the 

proportion of infected cases. Therefore, error in this direc-

tion may be practically worse than in the converse direction. 

We see this illustrated in the optimality gap among four dis-

cretized MDPs (last columns in Table 3), which measures 

the distance between solutions from discretized MDPs and 

the true optimal solution. Here we see that GreedyCut MDP 

achieves a much lower optimality gap for this reason.
The GreedyCut discretization method outperforms other 

discretization methods across different evaluation metrics 

across all time periods and different discretization budgets. 

Table 3 shows the comparison among three discretization 

methods. Also, the GreedyCut discretization method has 

higher accuracy (approximately 10% more compared to the 

uniform discretization method) in matching the optimal 

actions from the brute force (ground-truth) solution over all 

state-time pairs. The GreedyCut discretization method is 

able to generate accurate recommendations on policy inter-

ventions even with a small number of discretization regions. 

Additionally, this method is able to provide a closer 

approximation of the objective value in both MSE and E2 

metrics across all discretization regions. When the number 

of discretization regions is small, the GreedyCut algorithm 

has an MSE that is under 1% of the MSE generated using 

the uniform discretization approach. Similarly, under these 

conditions, the GreedyCut algorithm’s E2 remains below 

10% of the E2 from the uniform discretization method. 

Moreover, the GreedyCut algorithm outperforms the uni-

form discretization method in reducing the optimality gap. 

The optimality gap ranges from 0.1% to 0.33% with different 

numbers of discretization regions in the GreedyCut algo-

rithm, compared with its ranges from 0.72% to 9.54% in the 

uniform discretization method. We also implemented the 

discretization-free algorithm from (Li & Littman, 2005); 

however, it achieved only about 50% accuracy, which is sig-

nificantly lower than all other methods. Therefore, we 

excluded this method from our comparisons. This poor per-

formance might be due to the short time horizon of the 

problem and the need for accurate piece-wise constant 

approximations of the value and transition functions.
As expected, with a small number of discretization 

regions, the difference in performance between the 

GreedyCut and the uniform discretization methods is large. 

The performance gap shrinks when the number of discret-

ization regions increases, as uniform discretization regions 

naturally benefit from smaller discretized regions—higher 

resolution. Additionally, to assess the robustness of 

GreedyCut against different cost functions, we implemented 

GreedyCut with the mean absolute error cost function. 

Although it performed slightly worse than the original 

GreedyCut, it still outperformed all benchmarking solutions 

across all numbers of discretization regions considered 

(results in the Appendix Table 2).

5.1.2.1. Interpretation of cuts generated. We compare the 

cuts generated by GreedyCut with those from other discret-

ization methods. We found that the GreedyCut algorithm 

allocated most of its cuts to states that are more likely to be 

visited based on sample trajectories. Unlike the 

InverseProportional method, which focuses solely on fre-

quently visited states, GreedyCut also made cuts in less fre-

quently visited but still possible regions, potentially offering 

a more reliable and robust discretization (the distribution of 

cuts can be found in Appendix Figure 2).

5.1.2.2. Run time outcomes. To understand how much time 

is needed to construct an MDP using the GreedyCut discret-

ization method and Algorithm 2, we compare the run time 

of Algorithm 1 and Algorithm 2 with different numbers of 

discretization regions using Matlab 2022b on a laptop with 

16 GB memory and Apple M1 pro chip.
There is an exponential relationship between the number of 

discretization regions and the algorithm runtime (see Fig. 4), 

consistent with the time complexity analysis in Section 4.1.1. 

Table 3. Comparison on MDP solutions.

ACC MSE

B GreedyCut InverseProportional Expert Uniform GreedyCut InverseProportional Expert Uniform

90 0.9657 0.8687 0.8927 0.8120 4.3239e − 04 0.0040 0.0084 0.0580
150 0.9850 0.9073 0.8753 0.8820 1.7896e − 04 0.0012 0.0037 0.0169
300 0.9787 0.9187 0.8780 0.8613 6.5032e − 05 4.0714e − 04 0.0011 0.0054
1200 0.9893 0.9767 0.9423 0.9150 3.0731e − 06 4.8719e − 05 4.9485e-04 4.3529e-04

E2 Opt. Gap

B GreedyCut InverseProportional Expert Uniform GreedyCut InverseProportional Expert Uniform

90 0.0689 0.2134 0.3115 0.8846 0.0033 0.0194 0.0364 0.0954
150 0.0435 0.1180 0.2060 0.4946 0.0011 0.0093 0.0164 0.0583
300 0.0233 0.0537 0.1012 0.2487 0.0018 0.0071 0.0111 0.0251
1200 0.0048 0.0220 0.0775 0.0654 4.5576e − 04 8.4937e − 04 0.0023 0.0072
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The curvature of the exponential function will depend on the 

complexity of the disease model f ðXt , ptÞ; with more compart-

ments or population stratifications, the total runtime may be 

larger for a similar number of discretization regions.
The runtime of generating transition matrices is much 

more costly compared with generating the discretization 

regions when number of discretization regions (B) is small 

for both GreedyCut and other discretization methods. 

Table 4 shows the runtime of generating transitions using 

Algorithm 2 for the GreedyCut discretization method (other 

discretization methods should have the same runtimes as 

there are same number of iterations needed). The runtime 

exceeds one hour with 300 discretization regions given c ¼
1000: Therefore, when B is small, the total runtime of con-

structing an approximate MDP is roughly the time for gen-

erating transitions using Algorithm 2. In this case, the time 

required to construct the MDP using the GreedyCut discret-

ization method is similar to that of using the uniform dis-

cretization method. This is because the runtime of 

Algorithm 1, which is only needed for GreedyCut and not 

for the uniform discretization, is negligible compared to the 

runtime of Algorithm 2. The total runtime of each algo-

rithm, including discretization, generation of the transition 

probability matrix, and solving the MDP can be found in 

the Appendix.

5.1.3. General algorithmic evaluations

In this section, we evaluate the GreedyCut discretization 

method’s performance on generating discretization regions 

that approximate the disease dynamics fXtg and Algorithm 

2’s performance on generating transition probability matri-

ces to approximate the discretized trajectories f�Xtg: We first 

examine the performance of Algorithm 2 to highlight its 

capability to generate precise transition probabilities. These 

probabilities are crucial for describing the discretized trajec-

tory across various discretization settings. Subsequently, we 

assess the performance of the GreedyCut discretization 

method by comparing the Markovian trajectories (using 

transition probabilities from Algorithm 2) against the actual 

trajectory fXtg between the GreedyCut algorithm and other 

discretization methods.

5.1.4. How accurate are the generated transition 

probabilities?

To evaluate the accuracy of generated transition probabilities 

from Algorithm 2, we draw samples and evaluate computed 

trajectories compared with trajectories f�Xtg from 
�f ð�Xt , pt , GÞ to eliminate the influence of the quality of the 

discretization algorithm.
For evaluation, we uniformly draw 100 samples (ĥ 2 Ĥ) 

that consist of initial states within the upper and lower 

bound of the proportions in each compartment and a 

sequence of policy interventions for each initial state. For 

each evaluation sample ĥ, we compute the discretized tra-

jectory f�Xtg using �f ð�Xt , pt , GÞ: To obtain the Markovian 

trajectories from the discretized Markov model, we use an 

initial belief b0 ¼ ei where all entries of b0 are zero except 

for i-th entry (corresponding to X0) which has value one. 

This indicates we know 100% the initial state of the discre-

tized Markov model. Then we update the belief bt ¼
PðptÞbt−1 over time. To compute the expected proportion of 

people on each time t (Markovian trajectory at time t, ~Xt), 

we use the weighted average over the belief vector at time 

t, e.g., ~Xt ¼ bT
t
�X : We then compute the cost E

ĥ2Ĥ 

½
PN

t¼1 jj
~Xt −

�Xtjj
2
2� to evaluate how close is Algorithm 2 able 

to generate reliable transition probability matrices.
The trajectories obtained from Algorithm 2 closely align 

with those generated from discretized states for each com-

partment. As shown in Fig. 5, we compared the trajectories 

obtained from Algorithm 2 using 300 discretization regions 

with the �f ð�Xt , pt , GÞ trajectories generated from the same 

300 discretized states.

Figure 4. Runtime of algorithm 1.

Table 4. Runtime of Algorithm 2.

B Runtime (hours):

90 0.12
150 0.34
>300 >1

Figure 5. Comparison between trajectories generated from Algorithm 2 given 
discretization regions and trajectories generated from discretized states. For 
each compartment S, I, and R, both trajectories are close to each other.
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We observed that as the number of discretization regions 

increases, Algorithm 2 is capable of generating transitions that 

closely resemble the dynamics of the disease, represented by 

f�Xtg: In Table 5, we show a comparison of the sum of squared 

error between the Markovian trajectory and discretized trajec-

tory (E½
PN

t¼1 jj~Xt −
�Xtjj

2
2�) for total budget of discretization 

regions (B) of 90, 150, 300, and 1,200 using the GreedyCut dis-

cretization method. We observe that the error consistently 

decreases as the number of discretization regions increases.
With fewer discretization regions, each individual discret-

ization possesses a larger range, making it more difficult for 

samples drawn from these discretization regions to transition 

accurately between decision epochs, leading to more error in 

approximating f�Xtg: On the other hand, when a larger num-

ber of discretization regions is employed, each discretization 

exhibits a smaller range. By drawing a sufficient number of 

samples, it becomes possible to provide a more precise 

description of f�Xtg: These findings highlight the algorithm’s 

reliability and accuracy in capturing the system’s dynamics.

5.1.5. How accurate are the discretization regions generated 

from the GreedyCut discretization method?. Next, to evalu-

ate the quality of discretization regions generated from the 

GreedyCut discretization method, we draw samples and cal-

culate the mean squared error across all samples. This error 

is measured between the actual trajectory (fXtg) and antici-

pated Markovian trajectory (f~Xtg), using the transition 

matrix created in Algorithm 2 using the discretization 

regions generated from Algorithm 1 based on the same 100 

samples for evaluating Algorithm 2.
We use the same discretization levels (90, 150, 300, and 

1200 discretization regions) generated in the previous sec-

tion for evaluation. To benchmark our model, we also gen-

erated uniform and InverseProportional discretization 

regions with the same number of discretization regions. 

Then, for all discretization methods, transition probability 

matrices were generated using Algorithm 2.
We find that both the GreedyCut and InverseProportional 

discretization method is able to better approximate the disease 

dynamics over the uniform discretization method. As shown 

in Fig. 6, a comparison among the GreedyCut, the 

InverseProportional, the expert, and the uniform discret-

ization methods based on 300 discretization regions shows 

that the Markovian trajectories for both the GreedyCut and 

the InverseProportional discretization methods are closely 

aligned with the actual trajectories. However, the uniform dis-

cretization method shows poor approximation, especially 

showing incorrect trends for the proportion of the population 

infected over time—where the proportion of the population 

infected over time starts to decline after week 8 in the 

Markovian trajectory, whereas the proportion of infected peo-

ple over time increases in the entire time horizon in the actual 

trajectory. Additionally, the uniform overestimates the pro-

portion of recovered populations by more than twice com-

pared with the actual proportion of infected people.
For all comparison pairs, the GreedyCut discretization 

method outperforms both expert and uniform discretization 

methods in the squared error between Markovian and actual 

trajectories. GreedyCut and InverseProportional discretization 

methods demonstrate similar performance overall comparison 

pairs. In Table 6, we show the result of the comparison of 

E
ĥ2Ĥ

½jjf~Xtg − fXtgjj
2� over 100 samples and 10 time periods 

between the GreedyCut and uniform discretization methods. 

Both algorithms are able to improve the result of approxima-

tion when the number of discretization regions used increases, 

as expected. However, the improvement in approximations is 

small when the number of discretization regions is large, 

which suggests a high budget may not be necessary. When the 

number of allowable discretization regions is small due to the 

computational budget, the GreedyCut discretization method 

can provide a much better approximation than the uniform 

discretization method, and adding discretization regions may 

not add much accuracy.
Although GreedyCut and InverseProportional demonstrate 

similar MSE in estimating the actual trajectories, GreedyCut is 

still able to generate better MDP solutions. One possible rea-

son could be that GreedyCut is finding a more accurate and 

relevant representation of the state space by minimizing 

E½jjf�Xtg − Xtjj
2�, leading to better policy generation in the 

MDP. In contrast, the InverseProportional method primarily 

focuses on giving higher resolution to more frequently visited 

states, which results in good trajectory estimations but not 

necessarily in optimal MDP solutions. Additionally, the qual-

ity of InverseProportional discretization method is also sensi-

tive to time horizon. For example, when the time horizon is 

long and the proportion of the population infected remains 

low for most of the time, the InverseProportional method will 

have an extremely high resolution in the region where the 

proportion of the population infected is low. However, this 

method will not provide sufficient resolution for other 

regions, potentially leading to suboptimal outcomes. This is 

also captured in the following example.

5.2. Example 2: COVID-19

COVID-19 led to a significant surge in infections within Los 

Angeles County (LAC). To mitigate the pandemic during its ini-

tial phases, LAC implemented a lockdown from the second 

week to the tenth week following March 1st, 2020, which 

marked the onset of the epidemic. In this example, we use an 

MDP with discretization regions to identify the optimal timing 

of imposing lockdowns in LAC to minimize the proportion of 

infected cases while considering the cost of a lockdown.

5.2.1. Model structure and inputs

To describe the disease dynamics of COVID-19 in LAC, we 

calibrated a SIR model that is stratified by health districts 

Table 5. Mean squared error for the trajectories given different numbers of 
discretization regions.

B

Mean squared error between discretized 
trajectory and Markovian trajectory [95% uncertainty interval]

90 0:1598 ½0:1411, 0:1785�
150 0:1173 ½0:1020, 0:1326�
300 0:1086 ½0:0940, 0:1232�
1200 0:1067 ½0:0923, 0:1211�
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(HD) (Redelings et al., 2010), meaning that the model allows 

for heterogeneity in health outcomes across HDs. The trans-

mission rates between HDs is also allowed to vary. The dis-

ease dynamics for HD i are then described as follows:

Si
tþ1 ¼ Si

t −

P

j bjiS
i
tI

j
t

Ii
tþ1 ¼ Ii

t þ
P

j bjiS
i
tI

j
t − cIi

t

Ri
tþ1 ¼ Ri

t þ cIi
t 

We use bij to represent the transmission rate from HD i 

to HD j, and all HDs are assumed to have the same clear-

ance rate. We consider whether to implement a lockdown 

policy at each decision epoch, Dt, which has a duration of 

one week. Decisions need to be made over a total time hori-

zon of 60 weeks (N¼ 60). If lockdown is implemented, 

transmission will be reduced (b decreases 80%).
We assume there were 1000 infections (0.01% of the total 

population) at the initial time epoch. This is consistent with 

the early stage of the COVID-19 epidemic in LAC where 

the proportion of the population infected remains a small 

proportion of the overall population. To calibrate the 

parameters of the stratified SIR model, we used empirical 

COVID-19 data of case counts to calibrate transmission rate 

b and recovery rate c (City of Los Angeles Public Health, 

2023). LAC mobility data are also used to help capture the 

heterogeneity in transmission rate among HDs (Caltrans, 

2023; Yu et al., 2024).
We let the stage costs be the proportion of the population 

infected plus the dis-utility if lockdown is implemented. We 

assume that the dis-utility without a policy intervention is 

zero. However, determining the dis-utility associated with a 

lockdown is challenging. If the dis-utility is excessively low, 

the optimal choice consistently leans toward implementing 

the lockdown, which ignores the potential economic and 

social burden brought by the lockdown. On the contrary, if 

the dis-utility proves to be excessively burdensome, it will 

never be enforced. To better reflect this tradeoff, we assume 

the dis-utility of implementing a one-week lockdown is 

Table 6. Mean squared error for the trajectories given different numbers of discretization regions.

B GreedyCut [95% CI] InverseProportional [95% CI] Expert [95% CI] Uniform [95% CI]

90 0:1261 ½0:1100, 0:1423� 0:1344 ½0:1160, 0:1528� 0:1437 ½0:1173, 0:1700� 0:2399 ½0:1627, 0:3170�
150 0:1165 ½0:1013, 0:1318� 0:1117 ½0:0960, 0:1274� 0:1301 ½0:1143, 0:1459� 0:1716 ½0:1218, 0:2215�
300 0:1088 ½0:0943, 0:1232� 0:1070 ½0:0927, 0:1214� 0:1214 ½0:1083, 0:1346� 0:1326 ½0:1118, 0:1535�
1200 0:1071 ½0:0935, 0:1225� 0:1076 ½0:0929, 0:1223� 0:1178 ½0:1044, 0:1312� 0:1197 ½0:1059, 0:1136�

Figure 6. Comparison between trajectories generated from the GreedyCut discretization method against the uniform discretization method (using 300 discret-
ization regions in total) given trajectories generated from SIR model. For each compartment S, I, and R, the GreedyCut discretization method can better capture the 
disease dynamics.
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0.005, implying it equates to the dis-utility of 0.5% of the 
population infected per epoch.

We create three discretized MDPs with 150 discretization 
regions using the GreedyCut discretization method and 

compare outcomes against those of the InverseProportional, 
expert, and uniform discretization methods. This will guar-

antee the completion of model construction within an hour 
for all discretization methods. In this COVID-19 example, 
the brute force results cannot be generated within a reason-

able time as there are 260 different cases compared to only 
210 different cases in the previous example. Therefore, we 

directly compare the MDP objective values generated by 
using the identified policies on the true disease model to 

evaluate each algorithm’s performance.

5.2.2. MDP results

We compared the optimal action recommended by the discre-
tized state MDP from the GreedyCut, InverseProportional, 

expert, and uniform discretization methods. We find that our 
GreedyCut algorithm outperforms the other discretization 

methods by identifying a better MDP optimal solution with a 
smaller cumulative proportion of the population infected. 

Figure 7 shows a comparison of disease dynamics across differ-
ent policies. Compared with no lockdown, the empirical policy 
in LAC (lockdown from week 2 to week 10) does not prevent 

but rather postpones infections (the total cumulative propor-
tion of the population infected over time is 0.7504 in the empir-

ical policy, and 0.7508 if no intervention is used). All uniform, 
InverseProportional, expert, and GreedyCut discretized MDPs 

are able to reduce the cumulative proportion of infections and 
the peak of infections. The GreedyCut discretization method 
outperforms the uniform discretization method in terms of the 

overall reduction in the proportion of the population infected 
by 0.4793 over the 60-week time horizon.

GreedyCut outperforms uniform, InverseProportional, 
expert, empirical, and ‘do nothing’ policies by achieving the 

lowest objective value (proportion of infected people over 
time plus lockdown disutility). Figure 8 compares the object-

ive value among different models evaluated on the ground- 
truth disease (compartmental) model. The 8-week empirical 

lockdown policy LAC imposed has a lower objective value 
than doing nothing after considering the cost of lockdown, 

as it was not able to reduce infections while incurring lock-
down disutility costs. Both uniform and GreedyCut MDPs 

provide a better solution. GreedyCut MDP is able to 
improve the objective value from doing nothing by 67%, 
from InverseProportional by 34%, and outperforms the uni-
form MDP outcome by 57%.

This example demonstrates that the GreedyCut algorithm 
is able to provide a solution that has a smaller total cost 
compared to the empirical lockdown policy in LAC and the 
policy generated by the other discretized MDPs. Even when 
the number of discretization regions is limited for each 
compartment (for example, a stratified compartmental 
model includes death, hospitalizations, exposed, etc.), the 
GreedyCut discretization method can generate quality solu-
tions with low total discounted costs. Moreover, we found 
that the uniform discretization method is not able to gener-
ate a near-optimal solution as its optimal value exceeds 
twice the objective value of the GreedyCut discretized MDP.

5.2.3. Sensitivity analysis: Uncertainty in transmission rate

We calibrated the transmission rate of a COVID-19 com-
partmental model using empirical COVID-19 data and traf-
fic data as a proxy for the contact matrix. However, these 
rates may be subject to measurement uncertainty. We, there-
fore, perform sensitivity analysis where the discretization is 
based on the original calibrated values, but the actual 

Figure 7. Proportions of the population that is susceptible/infected over time.

Figure 8. Comparison between objective values across policies from GreedyCut 
MDP, InverseProportional MDP, uniform MDP, empirical policy, and no policy.
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transmission rate is (1) 30% lower and (2) 30% higher to 

understand the performance of the discretization methods 

when input parameters are erroneous. The MDP solutions 

are generated using the actual transmission rate, while the 

discretization uses the original calibrated value. This allows 

us to compare the robustness and reliability of different dis-

cretization regions. In each case, we found that GreedyCut 

was still able to generate the best policy with the lowest 

objective value (details shown in Appendix Figure 3). This 

demonstrates that discretization regions generated by 

GreedyCut are robust to variations in the disease variables.

5.2.4. Extension: MDP with at most two policy switches

In Section 5.2.2, all discretized MDPs recommended a policy 

with many policy switches where lockdown would be imposed 

for many short durations. For example, the policy from the 

uniform discretized MDP recommends lockdown every few 

weeks in weeks 9-23 (shown in Fig. 9). This is not practical, as 

inconsistency in policies can lead to poor adherence or even 

psychological issues (Pedrozo-Pupo et al., 2020; Webster 

et al., 2020). In this section, we consider the same problem 

with additional constraints where we allow the policy to 

switch at most twice (once from no lockdown to lockdown, 

and once from lockdown to no lockdown). We set up the 

COVID-19 dynamics in the same way as in Section 5.2.2.

With at most two policy switches (one lockdown dur-

ation), the GreedyCut discretized MDP recommends a 

shorter lockdown duration than the uniform discretized 

MDP and an earlier lockdown initiation date. Figure 9

shows the lockdown policy outcomes given the disease 

dynamics of the ground-truth model. The GreedyCut discre-

tized MDP recommends starting the lockdown on week 7 

for a duration of 42 weeks. The InverseProportional discre-

tized MDP recommends starting the lockdown at the same 

time as GreedyCut but with a longer lockdown duration. 

The expert and uniform discretized MDP recommend ini-

tiating the lockdown in weeks 8 and 9, lasting for a duration 

of 50 weeks. Due to the highly transmissible nature of 

COVID-19, a lockdown of over 40 weeks is needed to 

reduce transmission. Figure 10 compares the trajectories 

using policies from the uniform discretized MDP and 

GreedyCut discretized MDP. The GreedyCut discretized 

MDP is able to generate a policy that reduces the cumulative 

proportion of the population infected by 0.0864 while using 

fewer weeks of lockdowns compared to the uniform discre-

tized MDP. Additionally, we observed that most countries 

do not impose prolonged lockdowns. Therefore, we consid-

ered an 11-week lockdown using the different discretized 

MDPs. The GreedyCut discretized MDP recommends start-

ing the lockdown from week 12, resulting in a cumulative 

infection proportion of 0.458. The uniform, expert, and 

InverseProportional discretized MDPs recommend starting 

Figure 9. Lockdown policy. The GreedyCut discretized MDP recommends starting the lockdown on week 7 for 42 weeks. The InverseProportional discretized MDP 
recommends starting the lockdown on week 7 for 49 weeks. The expert discretized MDP recommends starting the lockdown on week 8 for 50 weeks. The uniform 
discretized MDP recommends starting the lockdown on week 9 for 50 weeks.

Figure 10. Proportion of the population susceptible/infected over time for different MDPs with policy constraints.
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the lockdown in weeks 10, 13, and 16, respectively, resulting 

in cumulative infection proportions of 0.5834, 0.5399, and 

0.7012. All these values are higher than those achieved by 

implementing longer lockdown policies, confirming the 

necessity of imposing longer lockdowns.
With the additional constraint on the policy switches, the 

GreedyCut discretized MDP consistently generates a better 

solution than other discretized MDPs and other policies we 

considered in this analysis. In addition, the GreedyCut dis-

cretized MDP recommends a shorter lockdown duration 

compared with other discretized MDPs which could reduce 

the economic and societal burden brought by the lockdown.

6. Conclusions

In this article, we introduce a novel algorithm for formulating 

an MDP framework tailored for continuous or large state-space 

problems in repeated decision-making for infected disease con-

trol. In our numerical analyses, we found that our algorithm 

provides better MDP solutions than the other discretized MDPs 

for the models we evaluated. Our approach better approximates 

the true value function than the uniform discretized MDP, 

therefore leading to a better policy with a lower optimality gap. 

Compared to other discretization regions, our method demon-

strates better performance across different discretization budgets, 

particularly showing notable benefits when the number of dis-

cretization regions is small. This may be particularly pertinent 

for a compartmental model with many compartments, as the 

resultant number of discretization regions for each compartment 

may be extremely limited. In this case, a uniform discretization 

method may result in a poor estimation of disease dynamics.
We found that our algorithm is able to provide a better state 

discretization than the uniform discretization method in 

approximating disease dynamics for the examples considered. 

Our approach generates smaller regions for states with a higher 

likelihood of being visited, while also preserving some regions 

for states with a lower but still possible likelihood, leading to a 

robust and reliable discretization. Using the GreedyCut method 

would substantially improve the approximation quality, thus 

resulting in an improved decision-making process.
With a small number of discretization regions, the time 

spent discretizing the state using our approach is consider-

ably smaller than the time required to produce transition 

probability matrices. In our examples, the time needed to 

formulate the discretized MDP using our approach is nearly 

equivalent to the time necessary for the construction of a 

uniform discretized MDP or other benchmark methods. 

Therefore, our approach could offer an improvement to the 

MDP solution without substantially increasing computa-

tional expense under limited budgets.
We provide numeric examples to demonstrate the effi-

ciency and effectiveness of our algorithm in discretizing con-

tinuous-state decision-making problems. Benchmarking the 

performance with the different discretization methods, we 

demonstrate that our algorithm is able to generate preferable 

discretization regions with a limited budget that is a good 

proxy of the ground truth system. We also demonstrate that 

our algorithm can generate better policies in both synthetic 

examples and a COVID-19 example. In the synthetic example, 
our algorithm outperforms other discretization regions in all 

metrics for different discretization budgets. In the COVID-19 
example, our algorithm improves the objective by nearly 
100% from the uniform discretization.

Our numerical analysis also generated policy implications for 
social distancing policy during COVID-19 in LAC. The first pol-

icy implication is that the threshold of implementing the lock-
down depends on the proportions of susceptible and infected 
(recommending implementing the lockdown if the proportions 

of infected and susceptible are above certain numbers). When the 
proportion of the population infected increases, the threshold of 
implementing the lockdown on the proportion of the susceptible 

population decreases. This is because a less susceptible population 
is needed to spread the disease as the infected population grows. 
Similarly, when the proportion of the susceptible population 

increases, the threshold of implementing the lockdown on the 
proportion of the infected population decreases. Secondly, a short 
lockdown interval may not effectively reduce the total number of 

cases, instead only delays the epidemic peak. To more effectively 
control cases, a prolonged lockdown period is needed.

We must acknowledge several limitations of this work. The 
GreedyCut algorithm may not find the discretization that glo-
bally minimizes the cost function. The performance gap 

between the GreedyCut and the uniform discretization meth-
ods is small with a large discretization budget. The GreedyCut 
algorithm may have computational difficulty if there is a large 

action space and does not consider continuous action spaces; 
this leaves an interesting optimization direction for future 
studies. The output of the GreedyCut algorithm may be sensi-

tive to the choice of cost function; different choices may result 
in widely different discretization choices, thus requiring 
reevaluation of the objective function.

Despite these limitations, we believe that this work pro-
vides an effective and easy-to-handle scheme for dealing 

with decision-making problems in large or continuous state 
spaces. Our article provides insight into future work on 
improving the discretization of solving large-scale MDPs.
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Appendix A 

1.1. SAA algorithm for constructing transition 
matrices

Algorithm 2 Generating Transition matrix

1: procedure GENERATE(f ðXt , ptÞ, G) . f ðXt , ptÞ is the ground-truth 
discrete time model, G is the discretization

2:  Let P be a �X
�

�

�

�� j �X j � jAj transition matrix with all zeros and 
each state represents a discretized state from the discretized 
state space �X defined by G

3:  for each policy intervention pt 2 A do
4:     for each discretized state i from �X do
5:      Uniformly draw c number of samples (X̂0) within the 

region that contains i (including a centroid in this region)
6:      for each sample X̂0 do
7:        Compute X̂1 ¼ f ðX̂0, ptÞ
8:        Find the discretized state j such that the discretized 

region containing j also contains X̂1

9:        Pðjji, ptÞ ¼ Pðjji, ptÞ þ 1
10:   Normalize P to make it a stochastic matrix
11:  return P

Table A1. Total runtime by different algorithms, including discretization, gen-
eration of the transition probability matrix, and solving the MDP (in seconds).

Uniform GreedyCut InverseProportional ExpertOpinion

90 434 436 436 434
150 1226 1236 1228 1226
300 3625 3660 3630 3625
1200 10,560 10,721 10,568 10,560

Figure A1. Matrix convergence over time.

1.2 Total runtime by different algorithms 

1.3. MDP solutions of GreedyCut using different 
cost functions 

Table A2. Comparison on MDP solutions between sum of the squared error 
and mean absolute error.

ACC MSE

B

GreedyCut  
(Sum of  

Squared Error)
GreedyCut  

(MAE)

GreedyCut  
(Sum of  

Squared Error)
GreedyCut  

(MAE)

90 0.9657 0.9457 4.3239e − 04 8.5366e − 04
150 0.9850 0.9357 1.7896e − 04 6.6263e − 04
300 0.9787 0.9733 6.5032e − 05 1.7771e − 04
1200 0.9893 0.9900 3.0731e − 06 1.8360e − 05

E2 Opt. Gap

B GreedyCut  
(Sum of  

Squared Error)

GreedyCut  
(MAE)

GreedyCut  
(Sum of  

Squared Error)

GreedyCut  
(MAE)

90 0.0689 0.0905 0.0033 0.0060
150 0.0435 0.0839 0.0011 0.0089
300 0.0233 0.0457 0.0018 0.0017
1200 0.0048 0.0126 4.5576e − 04 4.1921e − 04

1.5. Distribution of discretization regions generated 

Figure A2. The GreedyCut algorithm allocated most of its cuts to states that 
are more likely to be visited based on sample trajectories. Unlike the 
InverseProportional method, which focuses solely on frequently visited states, 
GreedyCut also made cuts in less frequently visited but still possible regions, 
potentially offering a more reliable and robust discretization.

1.4. Matrix Convergence over number of samples 
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1.6. MDP outcomes using different numbers of state time pairs 

Table A3. Comparison on MDP solutions.

ACC MSE

B GreedyCut (3000 pairs) GreedyCut (6000 pairs) GreedyCut (3000 pairs) GreedyCut (6000 pairs)

90 0.9657 0.9597 4.3239e − 04 3.1057e − 04
150 0.9850 0.9711 1.7896e − 04 1.3284e − 04
300 0.9787 0.9772 6.5032e − 05 5.4063e − 05
1200 0.9893 0.9927 3.0731e − 06 2.3932e − 06

E2 Opt. Gap

B GreedyCut (3000 pairs) GreedyCut (6000 pairs) GreedyCut (3000 pairs) GreedyCut (6000 pairs)

90 0.0689 0.0546 0.0033 0.0036
150 0.0435 0.0350 0.0011 0.0019
300 0.0233 0.0212 0.0018 0.0019
1200 0.0048 0.0041 4.5576e − 04 2.8458e − 04

Figure A3. The objective of MDP solutions. (1) The actual transmission rate is 30% less than the calibrated values used in the discretization generation. (2) The 
actual transmission rate is 30% more than the calibrated values used in the discretization generation.

1.7. Sensitivity analysis: Uncertainty in transmission rate 

20 S. ZHANG AND S.-C. SUEN
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