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ABSTRACT

Repeated decision-making problems may arise in the health policy context, such as infectious dis-
ease control for COVID-19 and other epidemics. These problems may sometimes be effectively
solved using Markov decision processes (MDPs). However, the continuous or large state space of
such problems for capturing infectious disease prevalence renders it difficult to implement tract-
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able MDPs to identify the optimal disease control policy over time. We therefore develop an algo-
rithm for discretizing continuous states for approximate MDP solutions in this context. We
benchmark performance against a uniform discretization using both a synthetic example and an

example of COVID-19 in Los Angeles County.

1. Introduction

Public health officials often need to determine the optimal
population health intervention policy over time even as the
state and trajectory of disease are driven by complex dynam-
ics. Many of these problems require making policy decisions
sequentially over time, where the state may be represented
using a continuous measure (e.g., the proportion of the
population that is infected). For instance, during the
COVID-19 pandemic, decision-makers needed to repeatedly
set the start and end times of lockdowns that limited travel
and interactions between individuals to reduce transmission
without fully understanding the exact transmissibility of
COVID-19. This sequential decision-making problem
appears repeatedly in infectious disease control problems, as
evidenced by prior literature on similar problems (Blower
et al, 2002; Fu et al, 2022; Kaplan et al, 1996; Matrajt
et al., 2021; Talbot et al., 2005; Zhang et al., 2011). Such
problems often take into account underlying disease dynam-
ics, which are uncertain or depend on a variety of complex
social and biological factors.

A difficulty in solving repeated decision-making problems
for infectious disease control is the complexity of infectious
disease dynamics, which are typically represented using
compartmental models and simulation-based models
(Brauer, 2008; Kopec et al., 2010). Such models are difficult
to use for repeated decision-making problems as one often
needs to evaluate the model repeatedly to identify an opti-
mal policy for disease control, which may require a signifi-
cant investment of computational time, as there is no
closed-form solution.

While there are sophisticated means to identify optimal
policies, these techniques have their own challenges. For

instance, the maximum principal approach (Goenka et al,
2014; Piguillem & Shi, 2022; Pontryagin, 2018) offers a solu-
tion framework for optimal control issues under differential
equation systems. However, its application becomes increas-
ingly challenging with a large number of states or policies.
Such expansion complicates both the Hamiltonian and the
differential equations system, thereby rendering the process
of deriving analytical or numerical solutions complicated
and time-consuming. Moreover, it is difficult to find the
optimal solution when the problem 1is non-convex.
Simulation optimization, which can handle complex systems,
has also been used in disease contexts (Carson & Maria,
1997). However, this can also be computationally expensive
and time-consuming. Furthermore, the quality of the solu-
tion highly depends on the search space and the heuristic
function chosen, presenting challenges to its practical appli-
cation. This problem can be formulated as a dynamic pro-
gramming problem (Calvia et al., 2023), but the continuous
or large state space can create difficulties. Furthermore,
while the infectious disease control problem can be formu-
lated as a mixed-integer programming problem, the inher-
ently non-linear nature of most disease dynamics—such as
the compartmental model—introduces non-linear con-
straints into the formulation. Consequently, the problem
becomes extremely challenging to solve (Bertsimas et al.,
2022), which limits its generalizability, especially as the dis-
ease dynamics become more complex.

Markov decision processes (MDPs) are also a commonly
used method for repeated decision-making problems. MDPs
allow for state transitions, which can be used to describe
changes in disease/health states over time and allow for
repeated decisions over time. Given current computing
innovations, many MDPs of useful size can be solved
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effectively using algorithms such as backward induction,
value iteration, policy iteration, etc. MDPs can also be effi-
ciently solved with non-convex problems.

However, incorporating dynamics from compartmental
models and simulations into an MDP framework is chal-
lenging because disease models often use a continuous or
large number of possible states (as the state usually repre-
sents a proportion of the whole population in certain sta-
tuses like infected, recovered, and hospitalized). Having a
continuous state space makes the MDP problem difficult to
solve since traditional MDP solution methods may then not
work even for a short time horizon due to state-space explo-
sion issues. For example, backward induction needs
IS]*|A||T — 1| multiplications. In the case of value iteration,
each iteration carries a complexity of O(|S|*|A|). In the case
of policy iteration, each iteration carries a complexity of
O(S” +|SI°|A|), and modified policy iteration requires
O(K|S]* +|S|*|A|) per iteration (Puterman, 1994). For this
reason, many traditional MDP studies in the healthcare field
focus on finite-state decision-making problems like monitor-
ing, treatment initiation, and disease testing and diagnosis
(Ahn & Hornberger, 1996; Alagoz et al, 2004, 2007; 2013;
Capan et al., 2017; Chhatwal et al., 2010; David & Yechiali,
1985; Denton et al., 2009; Hu et al., 1996; Kreke, 2007; Kurt
et al., 2011; Lefevre, 1981; Liu et al, 2017; Magni et al,
2000; Maillart et al., 2008; Mason et al., 2014; Shechter
et al., 2008; Suen et al., 2018; Zhang et al, 2021). Therefore,
finding a good state discretization method that translates
infectious disease dynamics onto a limited number of states
improves computational efficiency and potentially widens
the scope of MDP applications, particularly in the infectious
disease space.

Uniform discretization is a traditional way of addressing
continuous state problems. However, this methodology is
suboptimal for addressing infectious disease control chal-
lenges. The heterogeneity in state visit frequencies—wherein
some states (with extremely high prevalence) may remain
unvisited and others (with lower prevalence) might be vis-
ited more frequently—renders uniform discretization ineffi-
cient. This approach may result in the overuse of
discretization regions toward states that are less likely to be
visited and an inadequate number of discretization regions
for those with higher probabilities of being reached. How
can we find a better way of discretizing the state space to
closely represent the changes in health systems/disease?
While many works have used various discretization methods
to reduce state spaces (Lovejoy, 1991; Sandike1 et al., 2013),
we take a novel approach that treats the state discretization
problem as an optimization problem. This allows us to find
the discretization that will provide a smaller discretized
region in more likely visited states for a more accurate
description of the true dynamics.

We will explore the above state discretization in the con-
text of a disease control problem where states are used to
describe the disease dynamics over a population, actions are
implemented to prevent disease spread (lockdown, social
distancing, face masks, and so on). States are assumed to be
fully observable at each time period. Under this framework,

we find a better way of discretizing states such that the dis-
cretized state space serves as a good proxy of the original
state space. This paper addresses the challenge of formulat-
ing infectious disease control problems as MDPs by propos-
ing a new algorithm for non-uniform state discretization
that enables the discrete representation of infinite state
spaces.

1.1. Contributions

We make several contributions in this study. We provide a
novel algorithm for defining a non-uniform, discrete state
space for infectious disease control problems that well
approximates the original continuous state dynamics. Our
algorithm exploits the likelihood of each state being visited
in the system to more efficiently capture the transitions
between states. Defining a discrete set of states from an ori-
ginally continuous system allows us to incorporate infectious
disease dynamics within frameworks that are better suited
for discrete state spaces, such as MDPs. Finally, we demon-
strate that our state space discretization allows for more
accurate MDP outcomes through two numerical examples,
one using a classic SIR compartmental model and one using
the COVID-19 model of Los Angeles County.

The remainder of this paper is organized as follows: we
review the related literature in Section 2, present the prob-
lem setup in Section 3, and provide the algorithms in
Section 4. The numerical example is shown in Section 5. In
Section 6, we conclude.

2. Literature review

2.1. Markov decision processes in healthcare
applications

MDPs have a rich history in the field of operations research,
with wide range of applications such as inventory manage-
ment (Giannoccaro & Pontrandolfo, 2002), portfolio man-
agement (Bauerle & Rieder, 2009), production and storage
optimization (Arruda & do Val, 2008), and various others.
Extensive research has been conducted to solve and under-
stand the structure of MDPs, with notable contributions
from works such as Puterman (1994) and Topkis (2011).
MDPs also find widespread application in the field of
healthcare. They offer valuable insights and solutions to
various health-related issues, including scheduling (Agrawal
et al., 2023), screening (Alagoz et al., 2013; Chhatwal et al,
2010; Maillart et al., 2008; McNealey et al., 2023; Shen et al,
2024), sequential disease testing (Arruda et al., 2019; Singh
et al, 2020), treatment initiation (Liu et al, 2017; Otero-
Leon et al, 2023; Shechter et al., 2008), and organ trans-
plantation (Sandikel et al., 2008, 2013; Zhang et al., 2021,
2024). For instance, patients in different age groups with
risks of breast cancer may need personalized mammography
exam frequencies (Alagoz et al, 2013), or, in another
example, a patient with organ failure may be presented at
different states with organ transplant options that vary in
their compatibility with the patient. The patient may face



the decision to either wait for a better match or accept an
offered organ as their own survival probability decreases
over time (Zhang et al, 2021, 2024). For a more extensive
exploration of MDPs in healthcare, refer to the comprehen-
sive reviews by Schaefer et al. (2004), Alagoz et al. (2010),
and Sonnenberg and Beck (1993). Although MDPs are
widely used in healthcare applications, most of these con-
sider finite-state decision-making. Constructing an MDP for
infectious disease control problems with repeated decisions
is challenging, especially when the state space for such prob-
lems is continuous.

2.2. Solving continuous state MDP

As previously discussed, an infinite or continuous state
space is a major challenge when formulating MDPs. Several
methods have been proposed to address this problem. In Li
and Littman (2005), a discretization-free approach (modified
value iteration with lazy approximation) is introduced, but it
requires highly precise piece-wise constant approximations
of both the value and transition functions. In Munos and
Moore (2002), different criteria for discretizing state and
time-space non-uniformly are discussed. These methods
involve evaluating values or policies using dynamic pro-
gramming; however, some of these methods raise computa-
tional concerns for problems with continuous or large
numbers of states. Zhou et al. (2010) used Monte-Carlo
simulation to approximate the belief state using a finite
number of particles on a discretized grid mesh. However,
the study does not provide guidance on the construction of
the grid mesh. Brooks et al. (2006) proposed a parametric
method to uniformly discretize a continuous state space
over a lower dimensional parametric space. However, since
prior knowledge of the distribution is required, MDPs for
infectious disease control would be difficult to solve in this
manner. One remedy is to solve the MDP formulation by
truncation and discretization of the state (Boucherie & Van
Dijk, 2017). Researchers have used various methods to
achieve this. For example, Sandik¢l et al. (2013) used fixed-
resolution, non-uniform grids to discretize the belief state
and approximate the optimal policy for a partially observ-
able MDP (POMDP) model. Lovejoy (1991) used fixed or
uniform grids to approximate the solution of the POMDP.
However, using uniform or pre-defined discretization
regions (which requires domain knowledge) may not always
be appropriate, particularly for infectious disease control
problems where disease spread is subject to substantial
changes across different policy scenarios. In such cases, a
more effective discretization algorithm is needed to enable
the computation of the optimal policy.

2.3. Modeling disease dynamics

To identify the optimal policy for an infectious disease con-
trol problem, it is necessary to have a model for describing
the disease dynamics. For instance, during an emerging pan-
demic, how would disease transmission change if the gov-
ernment imposed a 1-month lockdown? How would it
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change if the government imposed a 3-month lockdown
instead? Different policies may change the patterns of dis-
ease transmission and thus change the proportion of infec-
tions in total. To efficiently avert infections, these different
possibilities need to be evaluated to understand the resultant
health and cost outcomes. Multiple methods are available
for assessing the impact of different policies on a specific
population.

One common method to model disease dynamics is to
use compartmental models based on differential equations
(Brauer, 2008; Kermack & McKendrick, 1991a, 1991b,
1991c¢). A compartmental model uses a mathematical frame-
work to provide insights into the mechanisms that affect the
transmission and progression of disease. This framework
partitions the population into different health or treatment
states (compartments). For instance, each compartment rep-
resents a specific stage of the infectious disease (e.g., suscep-
tible, infected, recovered), and proportions of the population
move between compartments described by differential equa-
tions at certain rates. This model is fundamental in epidemi-
ology for understanding the spread of diseases and
evaluating the potential impact of public health interven-
tions. For example, compartmental models can compare the
effectiveness of wearing masks and social distancing during
the COVID-19 pandemic (Grimm et al., 2021; Kai et al,
2020). Long et al. (2018) use a classical compartmental
model to assist with the decision to allocate resources during
the 2014 Ebola outbreak in Africa. In Section 5, we consider
a classic Susceptible-Infected-Recovered (SIR) epidemic
model, which has been extensively used in the epidemio-
logical literature (Beckley et al., 2013; Harko et al., 2014;
Kroger & Schlickeiser, 2020).

Another method of evaluating disease dynamics is to use
simulation models, which can be used to track transmission,
progression, and behavior as well as policy outcomes. For
instance, simulation models can be employed to examine
the cost-effectiveness of screening recommendations for
positive-HIV men who have sex with men (MSM) (Tuite
et al., 2014), as well as to study the effectiveness of different
disease control strategies for tuberculosis (TB) in India
(Suen et al., 2014). Although these methods indeed capture
the dynamics of complicated diseases, they are unable to
compute dynamic policies effectively as m' evaluations are
usually needed when there are m possible interventions
and t decision epochs. Therefore, it is beneficial to find
alternative effective ways of identifying the optimal policy
for infectious disease control. In our paper, we consider a
discrete-state MDP framework that takes advantage of its
effective solution methods with underlying disease dynamics
estimated from traditional disease models such as compart-
mental and simulation models.

To model this problem as a discrete-state MDP, we also
need to define a transition function to describe the probabil-
ity of transitioning between the states. Several existing tech-
niques can be used to construct this function. For instance,
Yaesoubi and Cohen (2011) proposed a way to compute
transition probabilities given a system of ODEs. In another
example, Mishalani and Madanat (2002) proposed a method
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of developing transition probabilities from a stochastic dur-
ation model based on the hazard rate function. However,
these methods are computationally intensive, which limits
their usage to problems with small populations or disease
models with special structures.

3. Problem setup

The notation used in this paper is as follows. We denote
X; € X as the state of the epidemic at time t X; =
(X1, X2t ..., Xne] has n components where each represents
the proportion of the population in the compartment (e.g.,
for a SIR model, n = 3). For example, X; = [Xs, X1, Xps] €
[0,1]> can describe the proportion of the population in sus-
ceptible (S), infected (I), and recovered (R) compartments at
time t for an SIR model. We denote X, as the initial state
and we assume it follows an initial distribution Q. We use
{X;} = (Xo, ..., Xn) to denote the disease trajectory.

In this paper, we focus on the finite horizon problem. Let
T ={1,...,N} be the set of possible decision epochs for the
problem. A = {1,...,]A|} is the set of possible policy inter-
ventions for the problem. We assume a small, finite number
of actions/policies (e.g., lockdown versus no lockdown). We
denote m; € A as the policy intervention at time ¢.

We consider a model denoted by f(X;,7;) = X;;; that
describes the disease dynamics across time epochs t. This
function f(X;,m;) can consider disease progression, trans-
mission over time, mortality, and interventions. Generally,
f(X;, ;) takes the state of the system and policy interven-
tion as an input and then returns the state in the next
period. We assume that f(X;,m;) is time-homogeneous for
simplicity (if time-inhomogeneous dynamics are desired, our
methods can be easily extended).

The cost in state X; € X’ and taking action n; € A for t €
T in the infectious disease control problem is denoted using
r(Xs, ;). This cost can be dependent on health outcomes
(e.g., number of infected, total vaccinated population, etc.)
as well as other factors (financial cost, economic burden,
etc.). We let A denote the discount factor.

Given the transition function f(Xy, ;) and the cost func-
tion r(Xy, m;), we have the following optimization formula-
tion for our repeated decision-making disease control
problem:

N
. t
o min ; 2r(Xe )Xo (1
S.t. XI :f(XI—l) ﬂ:t_l) (2)

In the above problem, the objective is to find a
sequence of actions {m,...,7y—1} that minimizes the total
discounted cost function r(X; 7m;) over states X; for the
whole N-period time horizon given a known initial state
Xo. For example, X; can represent the proportion of indi-
viduals in each COVID-19-related health stage at time ¢,
and let r(X;,m;) compute the proportion of people dead
from COVID-19 at time ¢ If 7, denotes the policy inter-
vention (lockdown or not) at time ¢, then f(X;_j, 7w 1)
could be a system of different equations that describes the

population flow across different health stages. Our object-
ive in this problem then is to find the optimal policy
intervention at each time ¢ that minimizes the total cost
within N periods.

There are challenges to solving the above formulation
using traditional MDP solution methods (e.g., backward
induction, value iteration, policy iteration, etc.) as this for-
mulation usually contains constraints with non-linear
dynamics on a continuous state space. These solution meth-
ods require a finite number of states for effective evaluation.
Moreover, the function f(X; 7;) may not be expressed as
transition probabilities from state to state, while many tradi-
tional MDP solution methods use transition probability
matrices to allow for the modeling of uncertainty and vari-
ability in decision-making processes.

To discretize the continuous state space, we partition the
state space X into a discrete set of states X'. For each com-
ponent d in X, we use the discretization vector G, to
describe how the continuous state space is partitioned into
discrete states. The discretization vector G; contains the
maximal and minimal values of the discretized regions for
component d. We use G to represent the list of discret-
ization vectors for all components in X. For instance, for an
SI model, if G = {[0,0.6,1],[0,0.2,1]}, we mean that group
1 (the susceptible proportion of the population) is parti-
tioned into two regions [0,0.6) and [0.6, 1], and the second
group (infected proportion) is being partitioned into
two regions [0,0.2) and [0.2, 1]. In this case, we have a
total of 2 x 2 =4 regions. These four regions are given by
(1): X5 €[0,0.6),X; €[0,0.2); (2) : X5 €[0,0.6),X; € [0.2,1];(3) :
X5€10.6,1,X; €[0,0.2);(4) : X5 €[0.6,1],X;€[0.2,1]  (shown
in Fig. 1).

0.9
0.8
0.7
0.6 *Xt
0.5
0.4

03| %Xy

Infectious, G, =[0,0.2,1]

0.2

0.1

0 0.2 0.4 0.6 0.8 1

Susceptible, G's =[0,0.6,1]

Figure 1. Four regions defined using G = {[0,0.6,1],[0,0.2, 1]} are shown in dif-
ferent colors. These correspond to four states:(1):[Xs,X;]=[0.3,0.1];(2):
[Xs,X1] =10.3,0.6];(3) : [X5,X)] = [0.8,0.1];(4) : [X5,X)] =[0.8,0.6]. For example,
X = [0.1,0.3], the corresponding discretized state representation is X; = [0.3,0.6].



From these regions, we capture the discretized state
space in matrix X, which is comprised of the Euclidean
centroids of each region. The dimension of X is B x n
where B is the number of discretization regions and n is
the number of components. Thus, in the example above,
we would have four states. (1):[Xs X ] =[0.3,0.1];(2):
[Xs,X;] =1[0.3,0.6]; (3) : [Xs,X;] = [0.8,0.1]; (4) : [Xs, X1] =

0.3 0.1
. 103 06| o .
[0.8,0.6]. In this case, X = 08 01 Similarly, we
0.8 0.6

define X; € X to be the discretized state at time ¢ and
{X;} = (Xo,....Xy) to be the trajectory for the discretized
state.

With this new discretized state space, we can now define
f(X;, 7, G), the disease dynamics on the discretized state
space. Even though the true disease dynamics might be non-
linear, we approximate the transitions on the discretized
state space using a linear transition matrix. This is a reason-
ably good approximation if the length of t is sufficiently
small.

We denote this transition probability matrix as P(n;) for
m, € A. P(n;) has the dimension of |X| x |X| where |X| is
the size of the state space. Then the probability of the sys-
tem being in a state at time t+ 1, X,;;, given it was in
state X, at time ¢ and policy intervention 7; € A is denoted
as P(X;+1|/X, ;). It is important to note that the function
f(Xs,my) is deterministic, whereas P(m;) is a stochastic
matrix. The stochastic nature arises from the transition pro-
cess within the discretized space. Initially, given the region
of the initial state, the first transition is determined with
100% certainty, allowing us to precisely identify the subse-
quent region. However, after the first transition, within any
given discretized region, predicting the next region becomes
uncertain as the algorithm only records past regions, not the
exact points. Consequently, a transition probability matrix is
employed to approximate the transition function, thereby
facilitating its application to discretized MDPs.

Let V;(X;) denote the optimal value function of the discre-
tized state X; € X,t € T for the discretized infectious disease
control problem. At optimality, the following must hold:

V[(X[) = maX{r(Xt, nt) + ;L E P(Xr+1 |X[, ﬂ:t) Vt(Xt+l)}
e Xiped
t+1

3.1. State space discretization problem

With the original system f(X;, m;) and state space X, we
aim to find the discretized state space X and the transition
matrices P that approximate well the original system in that
it gives a similar objective value V,(X;), trajectories {X,}
given {mo,...,my-1}, and a small optimality gap. In order to
do this, we need to find a suitable G and map from
f(X:, 7, G) to P.

We focus on approximating the original system by estab-
lishing an appropriate discretization approach. For a discret-
ization method to be effective, it should provide accurate
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estimates for regions of the state space that are more fre-
quently visited, where these frequencies are influenced by
which interventions are implemented. To do this efficiently,
the discretized states should be capable of providing higher
precision in areas where the state space is more likely to be
visited. This can lead to a better approximation of the true
disease dynamics and can thus result in a more accurate
MDP solution.

Given the function f(X;, m;), the initial state, the time
horizon, and a sequence of policies {ny,...,7y_1}, we can
calculate a trajectory {X,}. Subsequently, we require a state
discretization G that ensures the discretized trajectory {X;}
closely approximates {X;} for various initial states and poli-
cies. Therefore, our objective is to minimize the distance
between the true trajectory and trajectory from the discre-
tized model over all samples 6 = (X, {7, ....,An-1}) € O,
all policy intervention scenarios m;, and all time, i.e., mini-
mizing 3,0 SN, ||Xi = Xi||,|0. Given a sequence of pol-
icy intervention {m,...,my_1} and an initial state X,, we
compute the true trajectory using f(X; 7). We use
f(X;, 7, G) to compute the trajectory from the discretization
space matrix X.

We then map the transition function for discretized states
f(X:, 7, G) to transition probability matrix P. Various exist-
ing techniques help to construct transition probabilities
given function f(X;, 7;, G). We discuss how to find a gener-
alizable and efficient way of computing transition probabil-
ities from f(X;,m;,G) given the state discretization in the
next section. A complete list of notation used in this section
is provided in Table 1.

4. Algorithms

In this section, we present a generalizable framework for
discretizing a continuous state space for use in MDP frame-
works and correspondingly constructing transition probabil-
ity matrices.

4.1. Greedy algorithm for finding discretization regions
(GreedyCut)

The main objective of discretization is to design an effective
approach for approximating the disease dynamics with a
high level of accuracy, making such problems tractable for

Table 1. Table of notation.

T The set of all decision epochs

A The set of all policy interventions

X The set of all state representations

X The set of all discretized state representations
{m} Policy intervention at decision epoch t

Gy Discretization vector for component d

{X:} Observed disease trajectory

{X¢} Discretized disease trajectory

{X¢} Markovian disease trajectory computed using transition
probabilities

f(Xe ) Transition function

f(Xe, 7, G) Discretized transition function

P(m¢) Transition probability for policy m;

A Discount factor

r(Xe, me) Reward function




6 (&) S.ZHANG AND S-C. SUEN

Table 2. Table of additional notation used in Section 4.

(S The set of all samples used in GreedyCut
Xo  Samples generated in sample average approximation for generating
transition probabilities

B Total number of discretization regions generated

K Computational costs for calculating the observed trajectory given a
sample

K Computational costs for calculating the discretized trajectory given a

. sample

K Computational costs for computing the discretized state in the next

transitions in Algorithm 2

conventional discrete-space MDP frameworks. However, it
would not be advantageous if the process of finding discret-
ization regions itself becomes excessively costly. Therefore,
our motivation is to identify a low-cost method that can
produce discretization regions capable of representing the
disease dynamics effectively. In particular, we are interested
in outperforming a uniform discretization, which can be
considered a general default discretization appropriate across
many domains.

We assume there is a budget B that represents the total
number of discretization regions we can have in realize of
computational considerations. We use simulated initial states
and policy interventions 0 = (Xo, {70, ..., 7y-1}) € O to find
the discretization regions.

The greedy approach has been widely applied to various
optimization tasks, which is easy to implement and effective
at finding solutions (Blanchard et al, 2014; Wu et al,
2018; Zhao et al, 2022). We now propose Algorithm 1
(GreedyCut), a greedy-based iterative approach to finding a
good discretization. A list of additional notation is listed in
Table 2.

Algorithm 1 Iterative Discretization for Disease Control
Problems

1: procedure Cost({X;}, {X;}) > {X;} is the true trajec-
tory, {X,} is the trajectory from the discretization

2: return >, ||X; — X/||

3: procedure Cur(d, i, G) > d is the component we want
to cut, and we want to cut the i-th interval in
half, i € 1,2,...,G4— 1

4. Gi=10,..,Gy1,(Gai + Gair1)/2,Gaix1s - 1]

return G

6: procedure Greepy(B, G, f(X;, 1), f(X; 7, G), 0) > B
is the budget, f(X;, ;) is the compartmental model
dynamics, f(X;, 7, G) calculates the trajectory using
discretized states X;, © is the pre-generated samples
of initial states and  policies, for each
0e®, 0= (XQ, {TL'(), ---:TCN—l})

7 iter_per_sample = B/|0O|

8: for 0 € ® do

9: for iterations = 1 : iter_per_sample do

L

10: best cost = oo

11: worst cost = —oo

12: for Component d do
13: for region i € G; do

14: Compute {X;} using X; = f(X¢—1, m-1)

15: Compute {X,} using
X =f(X¢-1,m-1,Cut(d,i,G))
16: tmp cost = Cost({X;}, {X:})
17: if tmp cost $<$ best cost then
18: best cost=tmp cost
19: d=d
20: i =i
21: if tmp cost $>$ worst cost then
22: worst cost =tmp cost
23: if worst cost =best cost then
24: draw a point Xy from {X;}
25: Update (d*,i*) such that (d*,i*) satis-
fies Gy i < Xar < Gar i 11
26: update G=Cut(d*, i*, G)
27: else
28: update G=Cut(d*, i*, G)
29: return G

In Algorithm 1, we have three functions. The cost function
computes the sum of squared error between the
trajectory from the discretized state space {X;} and true
trajectory {X;} from f(X;m;). Algorithm 1 can be adapted
to any disease model without modifications to the
algorithm. We compute the discretized trajectory {X;} using
f(X;,m,G), where the d-th component th:Z]E%‘_l

1 _ Ga,i+Ga,it1
Ga,i <f (Xi=1,7m1-1) 4<Ga,is1 2

region it belongs to after the discretization. The cost function
can also be customized (e.g., introduce another penalty term
to emphasize certain disease compartments).

The cut function divides the i-th region of the d-th com-
ponent into two discretized regions, transforming a continu-
ous range into discrete segments. For instance, consider
running a single iteration of GreedyCut on G =
[0,0.6,1],]0,0.2,1] with the point X; = (0.1,0.3), as illus-
trated in Fig. 2(a). The initial cost is computed as
(0.3—0.1)*> + (0.6 —0.3)> = 0.11. Four potential cuts are
considered: Cut(1,1,G) with a cost of 0.0925, Cut(1,2,G)
with a cost of 0.11, Cut(2,1,G) with a cost of 0.11, and
Cut(2,2,G) with a cost of 0.05. Among these, the optimal
cut is Cut(2,2,G). This operation results in a new discret-
ization, G/, defined as G’ = {[0,0.6,1],[0,0.2,0.6,1]}. Figure
2(b) displays this updated discretization. After the cut, there
are now six discretized regions. Similarly, running another
iteration of GreedyCut on G’ updates the discretization to
G’ =10,0.3,0.6,1],[0,0.2,0.6,1], with the optimal cut being
Cut(1,1,G’) (shown in Fig. 2(c)). After the cut, nine discre-
tized are generated with G”. Consequently, the objective
value decreases from 0.11 to 0.05 and then to 0.0125.

The greedy function then iteratively computes the cost of
cutting one continuous range into two equal discretization
regions along each component (dimension) and finds the
best cut. We use the ‘worst cost’ and ‘best cost’ to monitor
the least and most favorable cuts. Although a greedy algo-
rithm typically does not need the ‘worst cost’, we use it to
identify cases that all cuts have equivalent costs. If each cut
has the same cost, a point (X € X;) from the sampled tra-
jectory ({X;}|0) will be randomly drawn, and the region

takes the average value of the
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Figure 2. Apply Cut(2,2,G) where G = {[0,0.6, 1],[0,0.2, 1]} gives new di;cretiza}ion regions G = {[0,0.6,1],[0,0.2,0.6,1]}. Then apply Cut(1,1, G) gives new dis-
cretization regions G’ = {[0,0.3,0.6, 1],{0,0.2,0.6, 1]}. In both G and G', the X, is changed as the Euclidean centroid where X; belongs to has changed. For G,

[[X; = X¢||> = 0.11. For G, ||X; — X¢||* = 0.05. For G', ||X; — X;||* = 0.0125.

that this point belongs to (component d of the region i of G
such that G ; < Xz < Gy ;11) will be cut into halves. When
every cut incurs the same cost, we want to cut based on the
data obtained through sampling. In general, it is unlikely
that the costs for all cuts will be exactly the same; this might
occur at the beginning of the algorithm when each discre-
tized state encompasses a large range and the approximation
will not improve if cut only once. An alternative solution is
to generate a few random cuts at the beginning and then
run GreedyCut without recording the ‘worst cost’. Through
this process, in total, |G| =) ,|G4| =B discretization
regions will be generated. In Section 5.1.3, we will assess the
effectiveness of this algorithm by comparing the sum of
squared errors between the Markovian trajectory (the
expected trajectory computed using probabilities and discret-
ization regions) and the observed trajectory with different
discretization methods. This comparison will help us evalu-
ate how well GreedyCut estimates the actual disease trajec-
tory using transition probability matrices.

4.1.1. Complexity analysis

In Algorithm 1, if we assume that computing {X;} and
{X;} using f(X,n;) and f(X;, 7, G) given one sample
requires K and K operations respectively, we can analyze the
total number of operations performed by the GreedyCut
algorithm. Since the computational costs for generating new
discretization regions, comparing costs, and computing costs
are relatively small compared to computing {X;} and {X,}
in our problem, we assume these costs are negligible com-
pared with other costs. At each iteration, the GreedyCut
algorithm enumerates through each of b regions including
all components d, where 1 < b < B. For each discretization,
the algorithm performs computations of {X;} and {X,},
which have time complexities of K and K operations
respectively. The total number of iterations depends on B
and [@]. It equals to |©| x §; = B.

The total number of operations for the GreedyCut algorithm
can be estimated as the sum of operations over all iterations.
This can be expressed as > p_, b(K + K) = 2 (K 4 K).
Therefore, the complexity of the GreedyCut algorithm is on the
order of O(B*(K + K)). This implies that the complexity grows
exponentially with the budget of discretization regions, given by

B. The time complexity increases quadratically with B while lin-
early with the number of operations required for each region,
represented by (K + K).

As a result, the computational complexity of the algo-
rithm grows rapidly as the number of discretization regions
increases. This highlights the exponential relationship
between the complexity and the desired level of granularity
in the discretization process.

4.2. Constructing a corresponding transition matrix

Once a suitable discretization of a continuous state space
has been constructed, we additionally need a transition
matrix between these discretized states to capture the
dynamics for use in an MDP framework. To do this, we use
a well-known sample average approximation (SAA)-based
algorithm (hereafter referred to as Algorithm 2), commonly
utilized in various algorithms (Bertsimas et al.,, 2018; Kim
et al., 2015; Zhang & Sen, 2024). In our approach, SAA
draws samples from each discretized state to determine the
frequency of transitions to subsequent states via the function
f(X;,m;) and G (Herndndez-Lerma & Lasserre, 2012). The
detailed algorithm steps are provided in Appendix A.

In Algorithm 2, we draw ¢ samples within each region in
G and count the frequency of the transitions from the cur-
rent region to other regions using policy n; and f(X;, 7).
By sampling and counting the transitions from the original
system, we approximate the underlying transition probabil-
ities directly. Creating approximated transition probability
matrices in this way offers a practical approach to capturing
the essential dynamics of the system and enables efficient
decision-making at the population level.

4.2.1. Complexity analysis

In Algorithm 2, we generate ¢ samples B|A| times, where B
denotes the number of discretization regions and |A| repre-
sents the size of the action space. Assuming that computing
and locating each transition in the appropriate region take
K operations, we can analyze the time complexity of
Algorithm 2. The number of operations performed by the
algorithm then is O(cKBJA|).
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Furthermore, in most disease control problems, such as
COVID-19 mitigation strategies like lockdown, social dis-
tancing, and face masks, the size of the action space |A| is
typically small. This implies that the algorithm’s time com-
plexity is primarily influenced by the number of samples c,
the number of discretization regions B, and the operations
K needed for computing and locating transitions.

5. Numerical examples

In this section, we first showcase our proposed framework
for reformulating a SIR model to an infectious disease con-
trol MDP framework for supporting public health decisions
around social distancing policy. We then demonstrate the
utility of this framework with an example of COVID-19 in
Los Angeles County, drawing from empirical data of case
counts in 2020.

We benchmark the outcome of our method (we refer to
the ‘GreedyCut discretization method’ hereafter) in both
examples by comparing our model outcomes to those of
several other frameworks: a uniform discretization frame-
work, a discretization framework based on expert opinion
(we refer to the ‘expert discretization method’ hereafter),
and an InverseProportional discretization framework moti-
vated by Zhou et al. (2010). In the uniform discretization
framework, we discretize the entire state space uniformly
using the same number of discretization regions as used in
the GreedyCut discretization method. In the Expert dis-
cretization framework, the state spaces for susceptible and
recovered individuals are discretized uniformly. However,
the proportion of the population that is infected is only
uniformly discretized between [0, 0.4] instead of [0, 1].
This is based on the observation that the proportion of the
population infected at the same time does not exceed 40%
in most infectious diseases (Biggerstaff et al., 2014; Pei
et al, 2021). In the InverseProportional discretization
framework, the state space is discretized by assigning
higher resolution to the more frequently visited states
based on the simulation results. The transition probabil-
ities for all methods are generated using Algorithm 2. In
the second example, we additionally compare our model
outcomes to the empirical status-quo policy in Los
Angeles in 2020 to demonstrate the improvement our
method can achieve.

5.1. Example 1: a simple SIR model

The SIR model tracks the proportion of the population that
is susceptible (S), infected (I), and recovered (R) at each
time . We use a discrete time model where the SIR model
can be described using a system of difference equations
(Allen, 1994):

St+1 =8 — ﬁstlt
Iy = I + BSde — I
Ripr =R+l
The parameter f is the rate at which disease transmits
from the infected to susceptible population proportions, and

is dependent on the average contact rate and probability of
transmission given a discordant contact. Similarly, y is the
recovery rate.

Typically, at the beginning of an epidemic, the exact pro-
portion of the population that is infected may be unknown.
We use Xy = [Xs0, X10, Xro] = [So In, Ro] to denote the initial
state at the first decision epoch. We assume that while the
exact initial state is unknown, we know an upper and lower
bound on each of the compartments. We use S,S, I,I, and
R,R to denote the upper and lower bound on initial states
So» Io, and Ry, respectively.

Suppose at each time ¢, the health department can choose
to implement a social distancing policy (a “lockdown”) until
time epoch f+ 1 that reduces the transmission rate . We
assume there are a finite number of periods N.

The decision maker wishes to minimize the negative
health outcomes and economic and social costs of imple-
menting a lockdown policy. To capture this objective, at
each decision epoch, we let the cost be r(X;, m;) =
I; + u(m;), the proportion of the population infected (I;)
plus some time-invariant dis-utility value u(n;) that captures
the economic and social costs that are only incurred when
the intervention is in effect and zero otherwise.

Throughout this section, we refer to this discrete time
system as the ground-truth system, and we will construct
our discretized MDP framework based on this. We assume
no discounting in the objective (A=1). The objective of the
MDP is therefore to minimize the total costs over the whole
time horizon.

5.1.1. Inputs

To evaluate this example, we let the transmission rate () be
1.4 and the recovery rate (y) be 0.49. The decision interval
(At) is a week, and the time horizon (N) is ten weeks.
Implementing a lockdown will incur an economic and social
cost, but it is unclear how this dis-utility can be quantified
in reality. For simplicity, we assume the dis-utility is
0.03 if lockdown was implemented and 0 otherwise
(u(lockdown) = 0.03,

u(nolockdown) = 0).

During the early stages of a pandemic, there is typically a
large population in the susceptible category, while only a
small population is infected. Therefore, we choose the initial
states to be uniformly distributed within the upper and
lower bounds for each compartment to be: [S,S] =
[0.7,0.99], [I,I] =[0.01,0.1], and [R,R] = [0,0.29].

In the GreedyCut discretization method, for each sample
(0) generated, ten iterations are run to generate ten add-
itional discretization regions (lines 9-24 in Algorithm 1). To
generate samples 0, X, are generated uniformly from the
region above, and 7 is a vector with ten random binary vari-
ables to indicate the policy intervention (0—no lockdown,
1—lockdown). In Algorithm 2, we generate ¢ = 1000 sam-
ples to compute two transition probability matrices to cor-
respond to the no lockdown and lockdown policies,
respectively. The reason for choosing ¢ = 1000 is that we
observed the matrix stabilizes once ¢ exceeds 1000.



5.1.2. MDP solutions
We compare MDP solutions among the GreedyCut,
InverseProportional, expert, and uniform discretization
methods on 90, 150, 300, and 1200 discretization regions.
To evaluate our algorithm’s performance, we create 300
samples (we denote the set of all samples as Xj) by selecting
the initial susceptible proportion from 0.7 to 0.99 with steps-
ize of 0.01 and initialize the infected proportion from 0.001
to 0.01 with 0.001 stepsize. We chose 3,000 state-time pairs
because we observed that performance does not vary signifi-
cantly when the number of state-time pairs is changed. By
enumerating each pair of S and I, we can have a total of 300
different possible initial states (if S41 > 1, we will renor-
malize each compartment). We compute the following met-
rics for both GreedyCut and uniform discretization methods
on 90, 150, 300, and 1200 discretization regions:

e ACC: accuracy in matching the percentage of optimal
actions by comparing discretized MDP with brute force
(ground-truth) solution over each state-time pair (a total

of 3000 state-time pairs). ACC =1 — —Mi_i,?)‘o“&f”-
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e MSE: mean squared error between the optimal value of
the discretized MDP (\7;) and the brute force solution
(Vg) on the first decision epoch over all states.

. B )
MSE = Ex, ex, [[1V(X0) = V5 (Xo)[[]-
e E2: relative mean absolute error on the first decision

|V§(Xo)-Vy (Xo)|]
Vi (Xo) .

e Opt. Gap: average of the relative difference between the
optimal value of brute force solution and the value of
running optimal policy from discretized MDP on the

epoch over all states. E2 = Ex x [

true disease model (V) on the first decision epoch. Opt.

Vo(Xo) = Vi (X,
Gap = ]Exge)”(o [W]

The GreedyCut discretized MDP is able to generate solu-
tions with a higher accuracy than the uniform discretized
MDP. We compare the solutions from GreedyCut and other
discretized MDPs against the brute force solution in the fifth
week (t =5, shown in Fig. 3). We chose the fifth week to
better illustrate the outcomes, as the decision boundary is
less illustrative in earlier and later time periods. All state
pairs recommend the same optimal actions. In the fifth
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Figure 3. We compare the optimal solution at t = 5 across different states using the GreedyCut and uniform discretized MDPs against the ground truth optimal
solution found using brute force methods. (a): Optimal solution from the GreedyCut discretized MDP compared to the brute force solution; (b): optimal solution
from the uniform discretized MDP compared to the brute force solution. (0 — both models recommend not implementing lockdown; 1 - both models recommend
implementing lockdown; 2 — the brute force method recommends not implementing lockdown while the other method recommends lockdown [type 2 error]; 3 —
the brute force method recommends implementing lockdown while the other method recommends not implementing lockdown [type 1 error]).
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Table 3. Comparison on MDP solutions.

ACC MSE
B GreedyCut InverseProportional Expert Uniform GreedyCut InverseProportional Expert Uniform
90 0.9657 0.8687 0.8927 0.8120 4.3239% — 04 0.0040 0.0084 0.0580
150 0.9850 0.9073 0.8753 0.8820 1.7896e — 04 0.0012 0.0037 0.0169
300 0.9787 0.9187 0.8780 0.8613 6.5032e — 05 4.0714e — 04 0.0011 0.0054
1200 0.9893 0.9767 0.9423 0.9150 3.0731e — 06 4.8719e — 05 4.9485e-04 4.3529e-04
E2 Opt. Gap

B GreedyCut InverseProportional Expert Uniform GreedyCut InverseProportional Expert Uniform
90 0.0689 0.2134 0.3115 0.8846 0.0033 0.0194 0.0364 0.0954
150 0.0435 0.1180 0.2060 0.4946 0.0011 0.0093 0.0164 0.0583
300 0.0233 0.0537 0.1012 0.2487 0.0018 0.0071 0.0111 0.0251
1200 0.0048 0.0220 0.0775 0.0654 4.5576e — 04 8.4937e — 04 0.0023 0.0072

week, we compare optimal actions across 300 states. The
results indicate that the GreedyCut discretized MDP has six
mismatches, whereas the uniform discretized MDP has 26
mismatches, the expert discretized MDP has 56 mismatches,
and the InverseProportional discretized MDP has 20 mis-
matches when compared with the brute force solution.

Moreover, the number of mismatches may be worse with
the other discretized MDPs compared to GreedyCut. In the
GreedyCut discretized MDP, all six mismatches belong to
the case where the brute force solution recommends not to
lockdown while the GreedyCut discretized MDP recom-
mends implementing lockdown. However, in all other dis-
cretized MDPs, most mismatches belong to the case where
the brute force solution recommends lockdown while the
discretized MDP recommends not implementing lockdowns.
In infectious disease control, failing to implement a lock-
down when it is necessary can cause a rapid increase in the
proportion of infected cases. Therefore, error in this direc-
tion may be practically worse than in the converse direction.
We see this illustrated in the optimality gap among four dis-
cretized MDPs (last columns in Table 3), which measures
the distance between solutions from discretized MDPs and
the true optimal solution. Here we see that GreedyCut MDP
achieves a much lower optimality gap for this reason.

The GreedyCut discretization method outperforms other
discretization methods across different evaluation metrics
across all time periods and different discretization budgets.
Table 3 shows the comparison among three discretization
methods. Also, the GreedyCut discretization method has
higher accuracy (approximately 10% more compared to the
uniform discretization method) in matching the optimal
actions from the brute force (ground-truth) solution over all
state-time pairs. The GreedyCut discretization method is
able to generate accurate recommendations on policy inter-
ventions even with a small number of discretization regions.
Additionally, this method is able to provide a closer
approximation of the objective value in both MSE and E2
metrics across all discretization regions. When the number
of discretization regions is small, the GreedyCut algorithm
has an MSE that is under 1% of the MSE generated using
the uniform discretization approach. Similarly, under these
conditions, the GreedyCut algorithm’s E2 remains below
10% of the E2 from the uniform discretization method.
Moreover, the GreedyCut algorithm outperforms the uni-
form discretization method in reducing the optimality gap.

The optimality gap ranges from 0.1% to 0.33% with different
numbers of discretization regions in the GreedyCut algo-
rithm, compared with its ranges from 0.72% to 9.54% in the
uniform discretization method. We also implemented the
discretization-free algorithm from (Li & Littman, 2005);
however, it achieved only about 50% accuracy, which is sig-
nificantly lower than all other methods. Therefore, we
excluded this method from our comparisons. This poor per-
formance might be due to the short time horizon of the
problem and the need for accurate piece-wise constant
approximations of the value and transition functions.

As expected, with a small number of discretization
regions, the difference in performance between the
GreedyCut and the uniform discretization methods is large.
The performance gap shrinks when the number of discret-
ization regions increases, as uniform discretization regions
naturally benefit from smaller discretized regions—higher
resolution. Additionally, to assess the robustness of
GreedyCut against different cost functions, we implemented
GreedyCut with the mean absolute error cost function.
Although it performed slightly worse than the original
GreedyCut, it still outperformed all benchmarking solutions
across all numbers of discretization regions considered
(results in the Appendix Table 2).

5.1.2.1. Interpretation of cuts generated. We compare the
cuts generated by GreedyCut with those from other discret-
ization methods. We found that the GreedyCut algorithm
allocated most of its cuts to states that are more likely to be
visited based on sample trajectories. Unlike the
InverseProportional method, which focuses solely on fre-
quently visited states, GreedyCut also made cuts in less fre-
quently visited but still possible regions, potentially offering
a more reliable and robust discretization (the distribution of
cuts can be found in Appendix Figure 2).

5.1.2.2. Run time outcomes. To understand how much time
is needed to construct an MDP using the GreedyCut discret-
ization method and Algorithm 2, we compare the run time
of Algorithm 1 and Algorithm 2 with different numbers of
discretization regions using Matlab 2022b on a laptop with
16 GB memory and Apple M1 pro chip.

There is an exponential relationship between the number of
discretization regions and the algorithm runtime (see Fig. 4),
consistent with the time complexity analysis in Section 4.1.1.
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Table 4. Runtime of Algorithm 2.

B Runtime (hours):
90 0.12

150 0.34

>300 >1

The curvature of the exponential function will depend on the
complexity of the disease model f(X, 7;); with more compart-
ments or population stratifications, the total runtime may be
larger for a similar number of discretization regions.

The runtime of generating transition matrices is much
more costly compared with generating the discretization
regions when number of discretization regions (B) is small
for both GreedyCut and other discretization methods.
Table 4 shows the runtime of generating transitions using
Algorithm 2 for the GreedyCut discretization method (other
discretization methods should have the same runtimes as
there are same number of iterations needed). The runtime
exceeds one hour with 300 discretization regions given ¢ =
1000. Therefore, when B is small, the total runtime of con-
structing an approximate MDP is roughly the time for gen-
erating transitions using Algorithm 2. In this case, the time
required to construct the MDP using the GreedyCut discret-
ization method is similar to that of using the uniform dis-
cretization method. This is because the runtime of
Algorithm 1, which is only needed for GreedyCut and not
for the uniform discretization, is negligible compared to the
runtime of Algorithm 2. The total runtime of each algo-
rithm, including discretization, generation of the transition
probability matrix, and solving the MDP can be found in
the Appendix.

5.1.3. General algorithmic evaluations

In this section, we evaluate the GreedyCut discretization
method’s performance on generating discretization regions
that approximate the disease dynamics {X;} and Algorithm
2’s performance on generating transition probability matri-
ces to approximate the discretized trajectories {X;}. We first
examine the performance of Algorithm 2 to highlight its
capability to generate precise transition probabilities. These

IISE TRANSACTIONS ON HEALTHCARE SYSTEMS ENGINEERING 1"

M1arkovian Trajectories V.S. Discretized Trajectories

0.8r

o
o
.

|| === Markovian S
= Markovian |
= Markovian R
= =Discretized S
== =Discretized |
= =Discretized R

Proportions
o
N

0.2

0 2 4 6 8 10
Time: week

Figure 5. Comparison between trajectories generated from Algorithm 2 given
discretization regions and trajectories generated from discretized states. For
each compartment S, |, and R, both trajectories are close to each other.

probabilities are crucial for describing the discretized trajec-
tory across various discretization settings. Subsequently, we
assess the performance of the GreedyCut discretization
method by comparing the Markovian trajectories (using
transition probabilities from Algorithm 2) against the actual
trajectory {X;} between the GreedyCut algorithm and other
discretization methods.

5.1.4. How accurate are the generated transition
probabilities?

To evaluate the accuracy of generated transition probabilities

from Algorithm 2, we draw samples and evaluate computed

trajectories compared with trajectories {X;} from

f(X;, 7, G) to eliminate the influence of the quality of the

discretization algorithm.

For evaluation, we uniformly draw 100 samples (9 € @)
that consist of initial states within the upper and lower
bound of the proportions in each compartment and a
sequence of policy interventions for each initial state. For
each evaluation sample 0, we compute the discretized tra-
jectory {X;} using f(X;,m;,G). To obtain the Markovian
trajectories from the discretized Markov model, we use an
initial belief by = e; where all entries of b, are zero except
for i-th entry (corresponding to Xp) which has value one.
This indicates we know 100% the initial state of the discre-
tized Markov model. Then we update the belief b, =
P(m;)bs—y over time. To compute the expected proportion of
people on each time t (Markovian trajectory at time t, X,),
we use the weighted average over the belief vector at time
t, eg, X, =blX. We then compute the cost E;_g
[N [|X; = X;|[3] to evaluate how close is Algorithm 2 able
to generate reliable transition probability matrices.

The trajectories obtained from Algorithm 2 closely align
with those generated from discretized states for each com-
partment. As shown in Fig. 5, we compared the trajectories
obtained from Algorithm 2 using 300 discretization regions
with the f(X;, 7, G) trajectories generated from the same
300 discretized states.
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Table 5. Mean squared error for the trajectories given different numbers of
discretization regions.

Mean squared error between discretized
B trajectory and Markovian trajectory [95% uncertainty interval]

90 0.1598 [0.1411,0.1785]

150 0.1173  [0.1020,0.1326]
300 0.1086 [0.0940,0.1232]
1200 0.1067 [0.0923,0.1211]

We observed that as the number of discretization regions
increases, Algorithm 2 is capable of generating transitions that
closely resemble the dynamics of the disease, represented by
{X,}. In Table 5, we show a comparison of the sum of squared
error between the Markovian trajectory and discretized trajec-
tory (E[S°N, [|1X; = X|[3]) for total budget of discretization
regions (B) of 90, 150, 300, and 1,200 using the GreedyCut dis-
cretization method. We observe that the error consistently
decreases as the number of discretization regions increases.

With fewer discretization regions, each individual discret-
ization possesses a larger range, making it more difficult for
samples drawn from these discretization regions to transition
accurately between decision epochs, leading to more error in
approximating {X,}. On the other hand, when a larger num-
ber of discretization regions is employed, each discretization
exhibits a smaller range. By drawing a sufficient number of
samples, it becomes possible to provide a more precise
description of {X,}. These findings highlight the algorithm’s
reliability and accuracy in capturing the system’s dynamics.

5.1.5. How accurate are the discretization regions generated
from the GreedyCut discretization method?. Next, to evalu-
ate the quality of discretization regions generated from the
GreedyCut discretization method, we draw samples and cal-
culate the mean squared error across all samples. This error
is measured between the actual trajectory ({X;}) and antici-
pated Markovian trajectory ({X;}), using the transition
matrix created in Algorithm 2 using the discretization
regions generated from Algorithm 1 based on the same 100
samples for evaluating Algorithm 2.

We use the same discretization levels (90, 150, 300, and
1200 discretization regions) generated in the previous sec-
tion for evaluation. To benchmark our model, we also gen-
erated uniform and InverseProportional discretization
regions with the same number of discretization regions.
Then, for all discretization methods, transition probability
matrices were generated using Algorithm 2.

We find that both the GreedyCut and InverseProportional
discretization method is able to better approximate the disease
dynamics over the uniform discretization method. As shown
in Fig. 6, a comparison among the GreedyCut, the
InverseProportional, the expert, and the uniform discret-
ization methods based on 300 discretization regions shows
that the Markovian trajectories for both the GreedyCut and
the InverseProportional discretization methods are closely
aligned with the actual trajectories. However, the uniform dis-
cretization method shows poor approximation, especially
showing incorrect trends for the proportion of the population
infected over time—where the proportion of the population
infected over time starts to decline after week 8 in the

Markovian trajectory, whereas the proportion of infected peo-
ple over time increases in the entire time horizon in the actual
trajectory. Additionally, the uniform overestimates the pro-
portion of recovered populations by more than twice com-
pared with the actual proportion of infected people.

For all comparison pairs, the GreedyCut discretization
method outperforms both expert and uniform discretization
methods in the squared error between Markovian and actual
trajectories. GreedyCut and InverseProportional discretization
methods demonstrate similar performance overall comparison
pairs. In Table 6, we show the result of the comparison of
Ejeo I{Xe} - {X,}|’] over 100 samples and 10 time periods
between the GreedyCut and uniform discretization methods.
Both algorithms are able to improve the result of approxima-
tion when the number of discretization regions used increases,
as expected. However, the improvement in approximations is
small when the number of discretization regions is large,
which suggests a high budget may not be necessary. When the
number of allowable discretization regions is small due to the
computational budget, the GreedyCut discretization method
can provide a much better approximation than the uniform
discretization method, and adding discretization regions may
not add much accuracy.

Although GreedyCut and InverseProportional demonstrate
similar MSE in estimating the actual trajectories, GreedyCut is
still able to generate better MDP solutions. One possible rea-
son could be that GreedyCut is finding a more accurate and
relevant representation of the state space by minimizing
E[|[{X;} = X;||’], leading to better policy generation in the
MDP. In contrast, the InverseProportional method primarily
focuses on giving higher resolution to more frequently visited
states, which results in good trajectory estimations but not
necessarily in optimal MDP solutions. Additionally, the qual-
ity of InverseProportional discretization method is also sensi-
tive to time horizon. For example, when the time horizon is
long and the proportion of the population infected remains
low for most of the time, the InverseProportional method will
have an extremely high resolution in the region where the
proportion of the population infected is low. However, this
method will not provide sufficient resolution for other
regions, potentially leading to suboptimal outcomes. This is
also captured in the following example.

5.2. Example 2: COVID-19

COVID-19 led to a significant surge in infections within Los
Angeles County (LAC). To mitigate the pandemic during its ini-
tial phases, LAC implemented a lockdown from the second
week to the tenth week following March Ist, 2020, which
marked the onset of the epidemic. In this example, we use an
MDP with discretization regions to identify the optimal timing
of imposing lockdowns in LAC to minimize the proportion of
infected cases while considering the cost of a lockdown.

5.2.1. Model structure and inputs
To describe the disease dynamics of COVID-19 in LAC, we
calibrated a SIR model that is stratified by health districts
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Figure 6. Comparison between trajectories generated from the GreedyCut discretization method against the uniform discretization method (using 300 discret-
ization regions in total) given trajectories generated from SIR model. For each compartment S, I, and R, the GreedyCut discretization method can better capture the

disease dynamics.

Table 6. Mean squared error for the trajectories given different numbers of discretization regions.

B GreedyCut [95% Cl] InverseProportional [95% Cl] Expert [95% Cl] Uniform [95% CI]

90 0.1261 [0.1100,0.1423] 0.1344 [0.1160,0.1528] 0.1437 [0.1173,0.1700] 0.2399 [0.1627,0.3170]
150 0.1165 [0.1013,0.1318] 0.1117  [0.0960,0.1274] 0.1301 [0.1143,0.1459] 0.1716 [0.1218,0.2215]
300 0.1088 [0.0943,0.1232] 0.1070 [0.0927,0.1214] 0.1214 [0.1083,0.1346] 0.1326 [0.1118,0.1535]
1200 0.1071 [0.0935,0.1225] 0.1076  [0.0929,0.1223] 0.1178 [0.1044,0.1312] 0.1197 [0.1059,0.1136]

(HD) (Redelings et al., 2010), meaning that the model allows
for heterogeneity in health outcomes across HDs. The trans-
mission rates between HDs is also allowed to vary. The dis-
ease dynamics for HD i are then described as follows:

i+1 = Si - Zj ﬁjiSiIJt
I, = If + Zj‘ﬂjisjtli' -0
R, =R +7L

We use f3; to represent the transmission rate from HD i
to HD j, and all HDs are assumed to have the same clear-
ance rate. We consider whether to implement a lockdown
policy at each decision epoch, At, which has a duration of
one week. Decisions need to be made over a total time hori-
zon of 60 weeks (N=60). If lockdown is implemented,
transmission will be reduced (ff decreases 80%).

We assume there were 1000 infections (0.01% of the total
population) at the initial time epoch. This is consistent with
the early stage of the COVID-19 epidemic in LAC where

the proportion of the population infected remains a small
proportion of the overall population. To «calibrate the
parameters of the stratified SIR model, we used empirical
COVID-19 data of case counts to calibrate transmission rate
p and recovery rate y (City of Los Angeles Public Health,
2023). LAC mobility data are also used to help capture the
heterogeneity in transmission rate among HDs (Caltrans,
2023; Yu et al., 2024).

We let the stage costs be the proportion of the population
infected plus the dis-utility if lockdown is implemented. We
assume that the dis-utility without a policy intervention is
zero. However, determining the dis-utility associated with a
lockdown is challenging. If the dis-utility is excessively low,
the optimal choice consistently leans toward implementing
the lockdown, which ignores the potential economic and
social burden brought by the lockdown. On the contrary, if
the dis-utility proves to be excessively burdensome, it will
never be enforced. To better reflect this tradeoff, we assume
the dis-utility of implementing a one-week lockdown is
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Figure 7. Proportions of the population that is susceptible/infected over time.

o

0.005, implying it equates to the dis-utility of 0.5% of the
population infected per epoch.

We create three discretized MDPs with 150 discretization
regions using the GreedyCut discretization method and
compare outcomes against those of the InverseProportional,
expert, and uniform discretization methods. This will guar-
antee the completion of model construction within an hour
for all discretization methods. In this COVID-19 example,
the brute force results cannot be generated within a reason-
able time as there are 2 different cases compared to only
210 different cases in the previous example. Therefore, we
directly compare the MDP objective values generated by
using the identified policies on the true disease model to
evaluate each algorithm’s performance.

5.2.2. MDP results

We compared the optimal action recommended by the discre-
tized state MDP from the GreedyCut, InverseProportional,
expert, and uniform discretization methods. We find that our
GreedyCut algorithm outperforms the other discretization
methods by identifying a better MDP optimal solution with a
smaller cumulative proportion of the population infected.
Figure 7 shows a comparison of disease dynamics across differ-
ent policies. Compared with no lockdown, the empirical policy
in LAC (lockdown from week 2 to week 10) does not prevent
but rather postpones infections (the total cumulative propor-
tion of the population infected over time is 0.7504 in the empir-
ical policy, and 0.7508 if no intervention is used). All uniform,
InverseProportional, expert, and GreedyCut discretized MDPs
are able to reduce the cumulative proportion of infections and
the peak of infections. The GreedyCut discretization method
outperforms the uniform discretization method in terms of the
overall reduction in the proportion of the population infected
by 0.4793 over the 60-week time horizon.

GreedyCut outperforms uniform, InverseProportional,
expert, empirical, and ‘do nothing’ policies by achieving the
lowest objective value (proportion of infected people over
time plus lockdown disutility). Figure 8 compares the object-
ive value among different models evaluated on the ground-
truth disease (compartmental) model. The 8-week empirical
lockdown policy LAC imposed has a lower objective value
than doing nothing after considering the cost of lockdown,
as it was not able to reduce infections while incurring lock-
down disutility costs. Both uniform and GreedyCut MDPs
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Figure 8. Comparison between objective values across policies from GreedyCut
MDP, InverseProportional MDP, uniform MDP, empirical policy, and no policy.

provide a better solution. GreedyCut MDP is able to
improve the objective value from doing nothing by 67%,
from InverseProportional by 34%, and outperforms the uni-
form MDP outcome by 57%.

This example demonstrates that the GreedyCut algorithm
is able to provide a solution that has a smaller total cost
compared to the empirical lockdown policy in LAC and the
policy generated by the other discretized MDPs. Even when
the number of discretization regions is limited for each
compartment (for example, a stratified compartmental
model includes death, hospitalizations, exposed, etc.), the
GreedyCut discretization method can generate quality solu-
tions with low total discounted costs. Moreover, we found
that the uniform discretization method is not able to gener-
ate a near-optimal solution as its optimal value exceeds
twice the objective value of the GreedyCut discretized MDP.

5.2.3. Sensitivity analysis: Uncertainty in transmission rate
We calibrated the transmission rate of a COVID-19 com-
partmental model using empirical COVID-19 data and traf-
fic data as a proxy for the contact matrix. However, these
rates may be subject to measurement uncertainty. We, there-
fore, perform sensitivity analysis where the discretization is
based on the original calibrated values, but the actual



transmission rate is (1) 30% lower and (2) 30% higher to
understand the performance of the discretization methods
when input parameters are erroneous. The MDP solutions
are generated using the actual transmission rate, while the
discretization uses the original calibrated value. This allows
us to compare the robustness and reliability of different dis-
cretization regions. In each case, we found that GreedyCut
was still able to generate the best policy with the lowest
objective value (details shown in Appendix Figure 3). This
demonstrates that discretization regions generated by
GreedyCut are robust to variations in the disease variables.

5.2.4. Extension: MDP with at most two policy switches

In Section 5.2.2, all discretized MDPs recommended a policy
with many policy switches where lockdown would be imposed
for many short durations. For example, the policy from the
uniform discretized MDP recommends lockdown every few
weeks in weeks 9-23 (shown in Fig. 9). This is not practical, as
inconsistency in policies can lead to poor adherence or even
psychological issues (Pedrozo-Pupo et al., 2020; Webster
et al., 2020). In this section, we consider the same problem
with additional constraints where we allow the policy to
switch at most twice (once from no lockdown to lockdown,
and once from lockdown to no lockdown). We set up the
COVID-19 dynamics in the same way as in Section 5.2.2.
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With at most two policy switches (one lockdown dur-
ation), the GreedyCut discretized MDP recommends a
shorter lockdown duration than the uniform discretized
MDP and an earlier lockdown initiation date. Figure 9
shows the lockdown policy outcomes given the disease
dynamics of the ground-truth model. The GreedyCut discre-
tized MDP recommends starting the lockdown on week 7
for a duration of 42 weeks. The InverseProportional discre-
tized MDP recommends starting the lockdown at the same
time as GreedyCut but with a longer lockdown duration.
The expert and uniform discretized MDP recommend ini-
tiating the lockdown in weeks 8 and 9, lasting for a duration
of 50 weeks. Due to the highly transmissible nature of
COVID-19, a lockdown of over 40 weeks is needed to
reduce transmission. Figure 10 compares the trajectories
using policies from the uniform discretized MDP and
GreedyCut discretized MDP. The GreedyCut discretized
MDP is able to generate a policy that reduces the cumulative
proportion of the population infected by 0.0864 while using
fewer weeks of lockdowns compared to the uniform discre-
tized MDP. Additionally, we observed that most countries
do not impose prolonged lockdowns. Therefore, we consid-
ered an 11-week lockdown using the different discretized
MDPs. The GreedyCut discretized MDP recommends start-
ing the lockdown from week 12, resulting in a cumulative
infection proportion of 0.458. The uniform, expert, and
InverseProportional discretized MDPs recommend starting
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Figure 10. Proportion of the population susceptible/infected over time for different MDPs with policy constraints.
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the lockdown in weeks 10, 13, and 16, respectively, resulting
in cumulative infection proportions of 0.5834, 0.5399, and
0.7012. All these values are higher than those achieved by
implementing longer lockdown policies, confirming the
necessity of imposing longer lockdowns.

With the additional constraint on the policy switches, the
GreedyCut discretized MDP consistently generates a better
solution than other discretized MDPs and other policies we
considered in this analysis. In addition, the GreedyCut dis-
cretized MDP recommends a shorter lockdown duration
compared with other discretized MDPs which could reduce
the economic and societal burden brought by the lockdown.

6. Conclusions

In this article, we introduce a novel algorithm for formulating
an MDP framework tailored for continuous or large state-space
problems in repeated decision-making for infected disease con-
trol. In our numerical analyses, we found that our algorithm
provides better MDP solutions than the other discretized MDPs
for the models we evaluated. Our approach better approximates
the true value function than the uniform discretized MDP,
therefore leading to a better policy with a lower optimality gap.
Compared to other discretization regions, our method demon-
strates better performance across different discretization budgets,
particularly showing notable benefits when the number of dis-
cretization regions is small. This may be particularly pertinent
for a compartmental model with many compartments, as the
resultant number of discretization regions for each compartment
may be extremely limited. In this case, a uniform discretization
method may result in a poor estimation of disease dynamics.

We found that our algorithm is able to provide a better state
discretization than the uniform discretization method in
approximating disease dynamics for the examples considered.
Our approach generates smaller regions for states with a higher
likelihood of being visited, while also preserving some regions
for states with a lower but still possible likelihood, leading to a
robust and reliable discretization. Using the GreedyCut method
would substantially improve the approximation quality, thus
resulting in an improved decision-making process.

With a small number of discretization regions, the time
spent discretizing the state using our approach is consider-
ably smaller than the time required to produce transition
probability matrices. In our examples, the time needed to
formulate the discretized MDP using our approach is nearly
equivalent to the time necessary for the construction of a
uniform discretized MDP or other benchmark methods.
Therefore, our approach could offer an improvement to the
MDP solution without substantially increasing computa-
tional expense under limited budgets.

We provide numeric examples to demonstrate the effi-
ciency and effectiveness of our algorithm in discretizing con-
tinuous-state decision-making problems. Benchmarking the
performance with the different discretization methods, we
demonstrate that our algorithm is able to generate preferable
discretization regions with a limited budget that is a good
proxy of the ground truth system. We also demonstrate that
our algorithm can generate better policies in both synthetic

examples and a COVID-19 example. In the synthetic example,
our algorithm outperforms other discretization regions in all
metrics for different discretization budgets. In the COVID-19
example, our algorithm improves the objective by nearly
100% from the uniform discretization.

Our numerical analysis also generated policy implications for
social distancing policy during COVID-19 in LAC. The first pol-
icy implication is that the threshold of implementing the lock-
down depends on the proportions of susceptible and infected
(recommending implementing the lockdown if the proportions
of infected and susceptible are above certain numbers). When the
proportion of the population infected increases, the threshold of
implementing the lockdown on the proportion of the susceptible
population decreases. This is because a less susceptible population
is needed to spread the disease as the infected population grows.
Similarly, when the proportion of the susceptible population
increases, the threshold of implementing the lockdown on the
proportion of the infected population decreases. Secondly, a short
lockdown interval may not effectively reduce the total number of
cases, instead only delays the epidemic peak. To more effectively
control cases, a prolonged lockdown period is needed.

We must acknowledge several limitations of this work. The
GreedyCut algorithm may not find the discretization that glo-
bally minimizes the cost function. The performance gap
between the GreedyCut and the uniform discretization meth-
ods is small with a large discretization budget. The GreedyCut
algorithm may have computational difficulty if there is a large
action space and does not consider continuous action spaces;
this leaves an interesting optimization direction for future
studies. The output of the GreedyCut algorithm may be sensi-
tive to the choice of cost function; different choices may result
in widely different discretization choices, thus requiring
reevaluation of the objective function.

Despite these limitations, we believe that this work pro-
vides an effective and easy-to-handle scheme for dealing
with decision-making problems in large or continuous state
spaces. Our article provides insight into future work on
improving the discretization of solving large-scale MDPs.
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Appendix A

1.1. SAA algorithm for constructing transition

matrices

Algorithm 2 Generating Transition matrix

1: procedure GeNERATE(f(Xy, ), G) > f(Xy, my) is the ground-truth
discrete time model, G is the discretization
2: LetPbea |/?| x |X| x |A| transition matrix with all zeros and
each state represents a discretized state from the discretized
state space X defined by G
3:  for each policy intervention m; € A do

4: for each discretized state i from X' do

5: Uniformly draw ¢ number of samples (Xo) within the
region that contains i (including a centroid in this region)

6: for each sample X, do

7: Compute X; = f(Xo, )

8: Find the discretized state j such that the discretized

region containing j also contains X,
9: P(jli, n;) = P(jli,m) + 1
10: Normalize P to make it a stochastic matrix

11:  return P

1.2 Total runtime by different algorithms

Table A1. Total runtime by different algorithms, including discretization, gen-
eration of the transition probability matrix, and solving the MDP (in seconds).

Uniform GreedyCut InverseProportional ExpertOpinion
920 434 436 436 434
150 1226 1236 1228 1226
300 3625 3660 3630 3625
1200 10,560 10,721 10,568 10,560

1.3. MDP solutions of GreedyCut using different
cost functions

Table A2. Comparison on MDP solutions between sum of the squared error
and mean absolute error.

ACC MSE
GreedyCut GreedyCut
(Sum of GreedyCut (Sum of GreedyCut
B Squared Error) (MAE) Squared Error) (MAE)
90 0.9657 0.9457 4.323% — 04 8.5366e — 04
150 0.9850 0.9357 1.7896e — 04 6.6263e — 04
300 0.9787 0.9733 6.5032e — 05 1.7771e — 04
1200 0.9893 0.9900 3.0731e - 06 1.8360e — 05
E2 Opt. Gap
B GreedyCut GreedyCut GreedyCut GreedyCut
(Sum of (MAE) (Sum of (MAE)
Squared Error) Squared Error)
90 0.0689 0.0905 0.0033 0.0060
150 0.0435 0.0839 0.0011 0.0089
300 0.0233 0.0457 0.0018 0.0017
1200 0.0048 0.0126 4.5576e — 04 4.1921e — 04
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1.4. Matrix Convergence over number of samples
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Figure A1. Matrix convergence over time.

1.5. Distribution of discretization regions generated
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Figure A2. The GreedyCut algorithm allocated most of its cuts to states that
are more likely to be visited based on sample trajectories. Unlike the
InverseProportional method, which focuses solely on frequently visited states,
GreedyCut also made cuts in less frequently visited but still possible regions,
potentially offering a more reliable and robust discretization.
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1.6. MDP outcomes using different numbers of state time pairs

Table A3. Comparison on MDP solutions.

ACC MSE

B GreedyCut (3000 pairs) GreedyCut (6000 pairs) GreedyCut (3000 pairs) GreedyCut (6000 pairs)
90 0.9657 0.9597 43239 - 04 3.1057e — 04

150 0.9850 0.9711 1.7896e — 04 1.3284e — 04

300 0.9787 0.9772 6.5032e — 05 5.4063e — 05
1200 0.9893 0.9927 3.0731e - 06 2.3932e — 06

E2 Opt. Gap

B GreedyCut (3000 pairs) GreedyCut (6000 pairs) GreedyCut (3000 pairs) GreedyCut (6000 pairs)
90 0.0689 0.0546 0.0033 0.0036

150 0.0435 0.0350 0.0011 0.0019

300 0.0233 0.0212 0.0018 0.0019

1200 0.0048 0.0041 4.5576e — 04 2.8458e — 04

1.7. Sensitivity analysis: Uncertainty in transmission rate

Objective Across Different Models
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Figure A3. The objective of MDP solutions. (1) The actual transmission rate is 30% less than the calibrated values used in the discretization generation. (2) The
actual transmission rate is 30% more than the calibrated values used in the discretization generation.
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