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Abstract—In integrated circuit design, analysis of wafer map
patterns is critical to enhance yield and detect manufacturing
issues. With the emergence of novel wafer map patterns, there is
increasing need for robust artificial intelligence models that can
both accurately classify seen patterns and while also detecting
ones not seen during training, a capability known as open world
classification. We develop a novel solution to this problem: Wafer-
Cap, a Deep Capsule Network designed for wafer map pattern
classification and equipped with a rejection mechanism. When
evaluated using the WM-811k dataset, WaferCap significantly
surpasses existing methods, achieving 99% accuracy for fully
seen patterns while demonstrating robust performance in open-
world settings by effectively detecting unseen wafer map patterns.

Index Terms—wafer map pattern classification, capsule net-
work, open world classification

I. INTRODUCTION

Analysis of wafer map patterns enables early detection and
elimination of defective chips during integrated circuit (IC)
design, leading to cost savings. This analysis also offers vital
visual insights that are essential to pinpoint process-related
errors. Automated techniques for wafer map pattern analysis
based on machine learning (ML) have been developed.

Supervised learning using the K-nearest neighbor algorithm
has been used to obtain ML models to classify defective wafer
maps using features derived from spatial signatures [1], [2].
Support vector machines have been used for classification, in
which the machine is trained using features extracted through
radon and various geometric transformations [3], [4]. More
recently, the image recognition capabilities of convolutional
neural networks (CNNs) have been used to identify wafer map
patterns, achieving state-of-the-art results [5]–[8].

Unsupervised learning techniques that cluster wafer maps
based on defect patterns have also been developed [9]–[12].
Once the wafer map collections are obtained, test engineers
manually label each map according to its defect pattern. Nero
et al. propose an unsupervised approach using generative ad-
versarial networks to train a set of recognizers to identify wafer
map patterns [13]. However, this method requires substantial
manual tuning during the learning process.

The supervised wafer map pattern classification approaches
described above make the closed-world assumption: defect
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classes appearing in the test data must also have appeared
in the training data. However, real-world scenarios frequently
challenge this assumption. As the IC design cycle progresses
and wafer map patterns are continually analyzed to improve
the yield, a classifier trained on seen patterns may not be effi-
cacious enough to classify new (unseen) patterns, because over
time, new wafer map patterns evolve [5]. Thus, in practice, a
classifier should accurately categorize the patterns of the wafer
map seen based on the classes observed during training, while
also identifying the unseen patterns that do not belong to any
existing class, a problem called open classification [14], [15].

We develop a novel ML-based approach to address open
wafer pattern classification. Our architecture called WaferCap
uses a deep capsule network with dynamic routing in an open
world setting, equipped with rejection capability. In addition
to achieving state-of-the-art results compared to existing meth-
ods, our approach also addresses two critical challenges.

Rejecting unseen patterns. Occasionally, wafers may present
patterns not previously seen by the model during training.
WaferCap is designed to reject these new patterns, which may
be further inspected by test engineers to find insights. This
capability relates to lifelong learning; without the ability to
identify & adapt to new wafer map patterns, a model is limited
in its potential for continual self-improvement [14], [16].

Handling data imbalance. Wafer map patterns can vary in
frequency of occurrence, leading to imbalanced datasets.
Stable manufacturing processes often produce wafer maps
that are predominantly pattern-free. Maps exhibiting defect
patterns comprise only a tiny portion of the entire dataset. This
imbalance can skew the predictions of the model, favoring the
more common patternless wafers. Thus, rarer but potentially
problematic patterns might be overlooked, allowing systematic
failures to go undetected. We address this imbalance using
proposed WaferCap with a dynamic routing algorithm, which
effectively captures spatial relationships in patterns and fo-
cuses on subtle features for enhanced recognition, achieving
a 97% classification accuracy, which further improves to 99%
with our data augmentation method.

As noted earlier, there is a large amount of recent work us-
ing CNNs for wafer map pattern classification, which achieves
high accuracy. Our choice of deep capsule network addresses
a basic limitation of CNNs. While they excel at feature de-
tection, CNNs are poor at capturing hierarchical relationships979-8-3503-6378-4/24$31.00 ©2024 IEEE



among features. They are invariant of translation, meaning that
they can recognize patterns regardless of their position within
the image. In contrast, capsule networks can discern the po-
sition of objects, capturing relative positioning and spatial in-
formation. Unlike CNNs, which may lose information through
pooling operations, dynamic routing capsule networks can
effectively extract spatial attributes such as size, orientation,
and relative position, all while requiring fewer training data.
WaferCap draws inspiration from the advancements achieved
by capsule networks in diverse applications, including image
recognition and natural language processing [17]–[19].
Key contributions of our paper include:

• Domain-specific application of a dynamic routing capsule
network to capture spatial information between features
for better recognition of wafer-map patterns.

• Rejection capability that can be helpful in identifying new
wafer-map patterns or dealing with data drift problems.

• Domain-specific data augmentation, which allows for
automated generation of a desired amount of data, es-
pecially for underrepresented wafer map patterns. The
augmentation step preserves the structural properties of
the original wafer patterns.

The accuracy achieved by WaferCap under both closed & open
world classifications is evaluated on WM-811k dataset [3].
For closed-world classification, WaferCap outperforms current
state-of-the-art approaches: without any data augmentation,
WaferCap achieves an average classification accuracy of 97%,
which improves to 99% with the proposed data augmentation
method. It achieves superior accuracy on underrepresented pat-
terns compared to existing methods. The results also demon-
strate the efficacy of WaferCap in open classification when
some fraction of the patterns belong to unseen classes.

The WaferCap code repository and the datasets used to
obtain the reported results are publicly available at https:
//github.com/abhishekkumarm98/WaferCap.

The paper is organized as follows. Section II formulates the
problem. Section III develops WaferCap and Section IV elab-
orates on the data augmentation technique. Section V presents
the key results and we conclude the paper in Section VI.

II. OPEN CLASSIFICATION OF WAFER MAP PATTERNS

We formulate the wafer map pattern classification problem
and introduce basic concepts related to capsule networks.

A. Problem Formulation

Consider wafer datasets W = {W1,W2, . . . ,Wn} and
classes C = {C1, C2, · · · , Cn} where every instance within
Wi ∈ W is labeled with the same class Ci ∈ C. Figure 1
shows the wafer map patterns or classes of interest: Center,
Donut, Edge-Location, Edge-Ring, Random, Location, Near-
Full, Scratch, and No-Pattern. Grey pixels signify a good
die that has successfully passed all wafer tests, yellow pix-
els indicate a bad die that has failed some test, and blue
pixels represent regions outside the wafer. The training set
T = {(wi, Ci)}N1 , contains N examples; wi is an example
from the wafer dataset associated with label Ci. The number

Fig. 1: Examples of different wafer pattern types.

of training (seen) pattern classes within T is n. The testing
set Te, however, contains classes {C ∪ Crej}, where Crej is
the collection of all novel or unseen pattern classes.

We wish to train a classifier M(w) using the training set
T and evaluate its performance on the testing set Te. This
classifier should either assign a pattern from Te to one of the
seen classes from C or reject the pattern by assigning it to the
unseen class Crej . Therefore, our aim is to construct a (n+1)
classifier M(w) with classes {C1, C2, ..., Cn, Crej}, allowing
it to perform open-world classification.

B. Capsule Network With Dynamic Routing
WaferCap is a variation of a capsule network with dynamic

routing [17]. A capsule network captures crucial information
related to the spatial and relative positioning of patterns within
the wafer map for better recognition performance. The cap-
sule network was originally proposed to overcome limitations
inherent to CNNs where the pooling operations reduce the
feature map’s spatial dimensions, resulting in information loss.
Also, pooling layers without learning parameters limits the
ability to model complex interactions between features. Thus,
a CNN may not be able to identify small objects since the
corresponding details are too fine to be captured at the reduced
spatial resolution of the feature maps (due to pooling).

Capsule networks are a neural network architecture com-
posed of a series of layers, called capsule layers, consisting of
many capsules. Each capsule is a set of neurons sensitive to a
particular feature of the input image, such as the presence of an
edge or a specific shape, and captures both the likelihood and
parameters of a feature. The output of the capsules (features)
in a given layer is then passed on to the next layer, where
they are combined and passed up the hierarchy to higher-level
capsules, which extract more abstract concepts such as the
identity of an object. It uses vector-based capsules instead of
scalar-based neurons in CNNs. The output vector of a capsule
is called the activity vector, whose magnitude represents the
probability of detecting a feature and its orientation represents
its properties. The structure of the network is stratified, where
capsules are attached in layers, beginning with the primary
capsule layer representing basic features, and then passing
through dynamic routing-by-agreement layers that represent
complex features and objects. Here, dynamic routing serves
as a parallel attention mechanism that allows each capsule at
one level to attend to some active capsules at the lower level
and to ignore others. This allows the model to pay attention
to subtle or small objects within the image.

https://github.com/abhishekkumarm98/WaferCap
https://github.com/abhishekkumarm98/WaferCap


Fig. 2: Architecture of WaferCap.

III. THE WAFERCAP ARCHITECTURE

This section describes in greater detail the WaferCap archi-
tecture, shown in Fig. 2.

A. Convolutional Layer

The input wafer map is reshaped to the dimension of
(1, 36, 36) and processed using a 9 × 9 kernel with a stride
length of one and no padding to extract 256 feature maps.
Each point within the feature map is computed as∑

d

∑
m

∑
n

IWd(cx −m, cy − n)Kd(m,n), (1)

where d iterates over the depth of both the input (IW ) and the
learnable filter (K). The coordinates of a specific point within
the wafer are given by cx and cy , and Kd(m,n) is the filter
element at position (m,n) at depth d. The convolutional layer
extracts salient features from the input and provides an output
of dimension (batch size, 256, 28, 28). The ReLU activation
function is subsequently applied element-wise, introducing
nonlinearity to the extracted features. Since the wafer map
is a grayscale image, the depth is set to d = 1.

B. Capsule Layer

Features extracted by the convolutional layer are fed into
the primary capsule layer which plays an important role in
transitioning from the scalar-output feature detectors (typical
of CNNs) to vector-output capsules. The aim is to preserve
instantiated parameters such as the local order of pattern fea-
tures. This layer retains the relative positioning and sequencing
of features, capturing the inherent spatial structure of wafer
map patterns, such as the pixel arrangements. For instance, in
the Center wafer map pattern type, the bad dies are centrally
clustered with respect to the pattern’s edge. This spatial
relationship is conserved by the capsule layer. Preserving these
features’ local order accurately identifies the pattern type while
also ensuring that the model uses the hierarchical relationships
within the data to improve its predictions.

Capsule networks automatically learn child-parent (part-
whole) relationships, which refers to the hierarchical relation-
ship between simpler (child or part) and more complex (parent
or whole) features in the data. In the Edge-Ring pattern, for
example, distinct features such as the ring-like bad dies at
the edge and the randomly distributed bad dies throughout
the pattern are simpler features (parts) that collectively form
the more complex Edge-Ring pattern feature (whole). The

capacity of capsule networks to discern these child-parent rela-
tionships captures these hierarchical structures within the data.
The capsule layer encodes not only the presence of specific
features, but also their spatial orientation and relationship to
other features. It inherently understands that certain features
(e.g., ring at the edge and random features spread over pattern)
must be present in specific spatial relationships to one another
for a pattern to be recognized as a specific pattern type (eg.,
Edge-Ring). This provides a more nuanced understanding of
the data and results in better generalization, especially in
scenarios where traditional CNNs may fail. In simpler terms,
while traditional networks may just look for the presence of
certain features, capsule networks try to understand how these
features fit together in a larger picture, making them more
adept at understanding the holistic nature of data.

Dynamic routing ensures that the output of each primary
capsule is sent to the appropriate capsule in the higher-level
layer and is formulated mathematically as follows. The total
output to a high-level capsule j, xj, is a weighted sum over
all prediction vectors ûj|i from the primary capsules in the
preceding layer. It is produced by multiplying the output ui

of each primary capsule by a weight matrix Kij as

ûj|i = Kijui + b̂j|i ∈ Rd, xj =
∑
i=1

cij ûj|i, (2)

where b̂j|i a bias term and cij are coupling coefficients deter-
mined by the iterative routing process. The prediction vector
ûj|i can be intuitively understood as encoding the spatial rela-
tionship between features extracted by primary capsules. The
coefficients cij , calculated by the dynamic routing mechanism
shown in Algorithm 1, determine the contribution of each pre-
diction vector ûj|i to xj. This decides the degree of influence
of capsule i on capsule j based on how aligned their outputs
are. In essence, these equations describe the mechanism by
which lower-level capsules send their output (transformed by
learned weight matrices) to higher-level capsules, where the
weights are determined by the dynamic routing process. The
goal is to ensure that the information is sent to the capsules
in the next layer in a way that preserves the hierarchical and
spatial relationships present in the data.

WaferCap uses dynamic routing between the primary-
capsule layer and the high-level fully-connected capsule layer.
The mechanism is shown in Algorithm 1 which is adopted
from Sabour et al. [17]. The input argument Loij stands for



Algorithm 1 Dynamic routing between capsules.
Input: ûj|i, Loij , R, l
for all capsule i in layer l and capsule j in layer l + 1 do

Loij ← 0
end for
/*Routing iterations*/
for r = 1, . . . , R do

for all capsule i in layer l do
cij ←

exp(Loij)∑
k exp(Loik)

end for
for all capsule j in layer l + 1 do

xj ←
∑

i cij ûj|i
vj ← Squash(xj)

end for
for all capsule i in layer l and capsule j in layer l + 1 do

Loij ← Loij + ûj|i · vj
end for

end for
Output: vj

initial logits (before softmax) needed for routing and R is
a number of routing iterations. Dynamic routing generates a
nonlinear mapping in an iterative fashion, ensuring that the
output from each capsule is properly routed to its appropriate
parent capsule in the subsequent layer. Another advantage
is the ability to modulate the connection strength between
capsules. This flexible connectivity proves more effective
compared to earlier routing methods such as max-pooling in
CNN that detects whether a feature is present in any position,
but loses spatial information about the feature.

The primary-capsule layer has seven capsules, where each
capsule itself is a convolutional layer with 32 channels and a
9×9 kernel with a stride of 2 and no padding. This results in an
output dimension of (32×10×10). Thus, the combined output
from this layer layer has shape (batch size, 7, 32, 10, 10). The
Squash function introduces non-linearity, modulates vector
magnitude between 0 and 1 to represent feature presence
probability, preserves the vector’s orientation which encodes
feature properties, and limits the vector length. It is defined as

Squash(xj) = vj =
∥xj∥2

1 + ∥xj∥2
· xj

∥xj∥
(3)

where ||xj|| is the magnitude of the vector xj of capsule j.

C. High-Level Fully-Connected Capsule Layer

This layer consists of one 16-dimensional capsule
and accepts an input of shape (batch size, 7, 32, 10, 10)
from the primary capsule layer, producing an output of
(batch size,Nc, 16). Each capsule receives input from all
capsules in the preceding layer and generates an activity vector
whose length captures a condensed representation. Here, Nc

denotes the total number of capsules in the layer, which has
been set to 10 based on model tuning. Subsequently, the input
(batch size,Nc, 16) is flattened and fed into a fully connected
layer, undergoing a linear transformation.

D. Fully-Connected Layer

The fully-connected layer performs two operations on the
flattened 1D data: a linear transformation and a nonlin-

Algorithm 2 Bijective-function based data augmentation.
TP ← { } /* Initialize new wafer-pattern set */
for j = 1 : n do

for template in WCj do
angle← random(0, 360)
i← random(1, k)
I ← τi(template, angle)
TP ← TP ∪ I /* Add new pattern to the set */

end for
end for

ear transformation. These transformations combine features
learned by previous layers, allowing the network to recog-
nize complex and nonlinear patterns during training to better
approximate the desired function. We first perform a linear
transformation, followed by a non-linear one as

z1 = ReLU(Wfcxfc + bfc), (4)

where xfc represent the input vector to the fully connected
layer. The weight matrix for this layer is denoted by Wfc,
where each column corresponds to the weights associated with
a specific neuron in the layer. The bias vector is represented by
bfc. After applying the linear and nonlinear transformations,
the layer outputs a vector z1.

E. One-Versus-All Sigmoid Layer

Conventional multi-class classifiers often employ softmax
for the final output layer [20]–[22]. However, this approach
lacks a rejection capability since the predicted probability for
each class is normalized over all training or seen classes.
In contrast, we employ a one-versus-all sigmoid layer as the
output layer, consisting of n sigmoid functions for the n seen
classes. For the i-th sigmoid function associated with class Ci,
the proposed capsule network treats all the examples where
y = Ci as positive and all other examples where y ̸= Ci as
negative. Each label Ci corresponds to a one-versus-all binary
classification task, leveraging shared representations derived
from the capsule network. The one-vs-all sigmoid layer offers
a nuanced representation of all classes (including both seen
and unseen ones) and enables the one class to form a good
decision boundary. Following the receipt of input z1 from the
fully connected layer, this layer yields n probabilistic outputs,
each ranging between 0 and 1.

IV. DATA AUGMENTATION

During manufacturing, wafer maps that do not show patterns
are produced much more frequently than those exhibiting
patterns. Thus, certain patterns occur with varying frequencies,
leading to an imbalanced dataset. This can skew the model
predictions, causing it to favor the more common No-Pattern
wafer while often misclassifying the more problematic pat-
terns [23]–[25].

To mitigate the imbalance issue, we use a domain-specific
data enhancement approach based on bijective functions,
summarized in Algorithm 2. The algorithm is inspired from
[26]–[28], that can generate a desired number of analogous
data from underrepresented patterns while preserving the un-
derlying properties of the original pattern. From each class



of underrepresented patterns, we randomly select template
images, and to introduce diversity, subject these templates
to various geometric transformations, generating new patterns
in the process. Here, n represents the number of classes of
interest, T denotes the set of training wafer map patterns,
and WCi ⊂ T indicates the set of templates used for
each class. Let {τ1, τ2, . . . , τk} represent k distinct geometric
transformations. Each transformation, τi, employs a bijective
function defined as τi : template −→ I . We use the following
affine transformations: random rotation, horizontal flip, and
vertical flip. We also combine these transformations. Since a
geometric transformation is any bijection of the set of template
images to itself or to another such set with some salient
geometrical underpinning, this one-to-one mapping between
template images and the corresponding transformed images
generates diverse array of new and unique wafer map patterns.

V. RESULTS

WaferCap is implemented in Pytorch. Its performance is
evaluated using the WM-811k dataset which consists of
811,457 wafer maps collected from 46,293 lots. The dataset
exhibits nine distinct wafer map patterns: Center, Donut, Edge-
Location, Edge-Ring, Random, Location, Near-Full, Scratch,
and No-Pattern, which were previously shown in Fig. 1. Each
pattern in the dataset comes with varying image sizes, but
consistently contains three pixel levels: 2 for bad dies, 1 for
good dies, and 0 for absent dies. Given this variety in sizes,
we resize all patterns to a uniform dimension of 36×36 pixels.
Referring back to Fig. 1, gray pixels represent good dies that
pass all wafer tests, yellow pixels signify bad dies failing one
or more tests, while blue pixels denote areas outside the wafer.

The WM-811k dataset contains 172,950 wafer maps labeled
by domain experts. Thus, for a fair comparison against state-
of-the-art (SOTA) approaches [3], [5], [8], [29], [30], only
labeled data is used in this work and are grouped into different
sets based on various training/test ratios.

In our experiments, the training batch size is set to 256. All
routing logits Loij are initialized to zero, and the number of
iterations is kept to 3. We use the AdamW optimizer which
has a learning rate of 1e-3 and the loss function

n∑
i=1

N∑
j=1

− IDF(yj = Ci) log p(yj = Ci)

− IDF(yj ̸= Ci) log(1− p(yj = Ci)),

(5)

where IDF is the indicator function and p(yj = Ci) =
Sigmoid(zj,i) represents the probability output from ith sig-
moid function on the jth wafer map pattern sample’s ith-
dimension of z. During testing, predictions from n sigmoid
functions are reinterpreted to achieve rejection capability:

ŷ =

reject, if Sigmoid(zi) < thi, ∀Ci ∈ C

argmax
Ci∈Yn

Sigmoid(zi), otherwise

The predicted probability Sigmoid(zi) from the ith sigmoid
function is compared to a threshold thi for class Ci. If all

predicted probabilities for a sample fall below their respective
thresholds, it is rejected. Otherwise, its class prediction is
determined by the sigmoid function with the highest prob-
ability. In simpler terms, if none of the seen classes yields
a probability above its respective threshold, the sample is
classified as new or unseen; otherwise, it is classified to the
seen class with the highest probability.

To determine an optimal threshold thi for each seen class
Ci, we use concepts from outlier detection theory [20], [31].
Assume this the predicted probabilities p(y = Ci|xj , yj = Ci)
for all training data of class i adhere to one side of a Gaussian
distribution. We then synthetically generate the complementary
half of the Gaussian distributed points (≥ 1). For every present
point, p(y = Ci|xj , yj = Ci), a mirrored point, 1 + (1 −
p(y = Ci|xj , yj = Ci)) is created, reflecting about a mean
of one. Subsequently, the standard deviation σi is estimated
using both the original and the mirrored points. In statistical
terms, a point lying a α of standard deviations from the mean
is deemed an outlier. Thus, the probability threshold is set as
thi = max(0.5, 1 − ασi). Importantly, due to this Gaussian
fit, different classes, Ci, might possess unique classification
thresholds, thi. The optimal value of α is obtained during
experimentation based on the specific characteristics of the
data and the WaferCap model.

The accuracy and macro-average F1 score serve as the
primary evaluation metrics. Accuracy evaluates classification
performance across all wafer map patterns and is defined as
the fraction of correctly classified samples to the total num-
ber of samples. However, data imbalance can influence this
metric. For individual patterns, the macro-average F1 score
F1macro = 1

n

∑n
i=1 F1i is the chosen metric. To evaluate open-

world classification performance, we reserve certain classes as
unseen during training and reintroduce them during testing.
The fraction of classes used for training is varied between
25%, 50%, 75%, and 100% of the total classes, whereas testing
uses all available classes. Using 100% of classes for training
equals closed classification. For the WM-811K dataset, the
25% configuration involves training with 2 classes and testing
against all 9 (with 7 being unseen during training). The
evaluation metric relies on the average accuracy across the
2 trained classes and an additional one for rejection. Instances
from the unseen classes are excluded from the validation set.

Table I shows the results of the open classification. Observe
that as the proportion of classes used for training increases,
average accuracy improves noticeably, ranging from 80% for
25% of seen classes to 99% when all classes are seen. Interest-
ingly, the accuracy for seen classes initially drops from 98% to
83% as more classes are introduced, before rebounding to 99%
in a conventional closed-world setting where all classes are
seen. In contrast, the accuracy for unseen classes consistently
improves. This behavior can be attributed to the changing
balance between seen and unseen class examples during
testing. In the 25% setting, testing involves examples from 2
seen classes (Center, Donut) and 7 unseen classes. Similarly,
the 50% setting comprises test examples from 4 seen classes
and 5 unseen ones. Since most test examples in the 25% and



TABLE I: Accuracy results under open classification (S: seen classes, US: unseen classes).

Percent of Average Seen Classes Unseen Classes Wafer Map Patterns
Seen Classes Accuracy Accuracy Accuracy Center Donut Edge-Loc Edge-Ring Local Random Scratch Near-Full No Pattern

25% 80% 98% 78% S S US US US US US US US

50% 84% 85% 83% S S S S US US US US US

75% 91% 83% 95% S S S S S S S US US

100% 99% 99% NA S S S S S S S S S

TABLE II: Accuracy achieved by WaferCap (under 100% seen wafer map patterns) compared to SOTA approaches.

Reference Model Split Ratio Avg. Accuracy No Pattern Center Donut Edge-Loc Edge-Ring Local Random Scratch Near-Full

[5] CNN 8:2 94% 98% 96% 73% 70% 96% 64% 57% 29% 40%

[5] SVM [3]C 8:2 91% 100% 79% 36% 50% 96% 2% 0% 38% 80%

[29] MC32+MLP 8:2 96% 98% 96% 89% 87% 98% 70% 90% 17% 90%

Ourswoa WaferCap 8:2 97% 100% 100% 79% 81% 100% 82% 95% 2% 0%

Ourswa WaferCap 8:2 99% 100% 100% 96% 96% 100% 86% 95% 86% 100%
Ourswa WaferCap 8:2 99% F1100% F1100% F196% F195% F1100% F190% F198% F182% F1100%

[8] CNN 7:3 94% 98% 93% 83% 84% 98% 79% 84% 61% 93%

[29] MC32+MLP 7:3 95% 99% 87% 89% 71% 94% 50% 71% 12% 95%

Ourswoa WaferCap 7:3 96% 100% 100% 68% 75% 100% 82% 1% 0% 0%

Ourswa WaferCap 7:3 99% 100% 100% 96% 94% 100% 90% 99% 75% 75%

[30] P2-Net 8:1:1 96% R99% R93% R81% R73% R97% R60% R91% R29% R90%

Ourswoa WaferCap 8:1:1 95% R100% R98% R50% R68% R98% R58% R11% R0% R0%

Ourswa WaferCap 8:1:1 97% R100% R98% R96% R65% R97% R72% R85% R81% R100%

* Under the Split Ratio column, the value before the colon indicates the training set ratio, while the value after the colon represents the
ratio of either the test set or a validation and test set. Samples are randomly selected to populate each set. R: Recall, F1: F1 score
* woa: without augmentation, wa: with augmentation, C: The authors of [5] used [3]’s methodology with their own training set.

50% settings come from unseen classes, that is why, for 25%
setting, the seen class accuracy is high because it has only
two classes whereas, for unseen classes, it has 78% accuracy.
However, as more seen classes are introduced with unseen
ones, the decision boundaries become more intertwined; in
addition to differentiating between multiple seen classes, the
model also has to detect the presence of any unseen class,
leading to decreasing seen class accuracy. In the 100% setting,
the absence of unseen classes to consider allows for higher
accuracy in seen class predictions. Using Gaussian fitting helps
to find better probability thresholds when many unseen classes
are present (under 25% and 50% settings).

We benchmarked WaferCap against leading SOTA methods
on the WM-811k dataset, as shown in Table II, under tradi-
tional closed classification. With data augmentation, WaferCap
surpasses all other SOTA techniques across every pattern. Even
without data augmentation, for an 8:2 split ratio, it surpasses
the performance of [3], [5], [29] for the Center, Edge-Ring,
Local, and Random patterns. For a 7:3 ratio, it surpasses [8],
[29] for the No-Pattern, Center, Edge-Ring, and Local patterns.
Finally, with an 8:1:1 split, WaferCap outpaces [30] for the
No-Pattern, Center, and Edge-Ring patterns.

Methods such as [8], [29], [30], [32] resize wafer map
patterns to 64 × 64, while [5] adjusts them to 256 × 256. In
contrast, WaferCap operates on a more compact size of 36×36,
which emphasizes its efficiency and superior capability in
capturing the spatial relationships within wafer maps.

Al Rahman et al. use the original Capsule Network proposed
by Sabour et al. to classify eight defect patterns — without
including No Pattern — with 91.4% accuracy [32]. WaferCap
targets all nine patterns, which is more reflective of real-world

TABLE III: Execution-time and storage overhead.
Reference Average (ms/wafer) Storage
SVM [3] 0.5P N/A

CNN [8] 40 N/A

MC32+MLP [29] 1.5P N/A

P2-Net [30] 0.01-0.02 N/A

WaferCap 0.81P 31.8MB

scenarios, and with appropriate modifications to the Capsule
Network achieves significantly higher classification accuracy.
Furthermore, WaferCap can perform classification in an open-
world setting, whereas the approach developed by Al Rahman
et al. does not have this capability.

Table III lists the execution-time and storage costs incurred
by the various approaches. Some implementations are paral-
lelized (P ). Though the hardware platforms are different, we
report WaferCap’s execution time using a comparable system
(2.30GHz Intel Xeon CPU with an NVIDIA Tesla T4 GPU).

VI. CONCLUSION

This paper has developed WaferCap, a deep capsule
network-based ML architecture for wafer map pattern classi-
fication. The results obtained using the WM-811k benchmark
confirm that WaferCap outperforms existing SOTA methods
for closed classification. It also demonstrates superior perfor-
mance under open classification. We have released WaferCap
in the open-source domain so that other researchers can
reproduce our results and also improve upon its design. Future
work will focus on classification of mixed wafer maps and
improving WaferMap’s computational efficiency.
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