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A method for capturing dynamic
spectral coupling in resting fMRI
reveals domain-specific patterns
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Deniz Alacam'?*, Robyn Miller!, Oktay Agcaoglu?, Adrian Preda?®,
Judith Ford*® and Vince Calhoun?

Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia
State, Georgia Tech, Emory, Atlanta, GA, United States, 2Department of Mathematics, Bursa Uludag
University, Bursa, Turkiye, *Department of Psychiatry and Human Behavior, University of California,
Irvine, Irvine, CA, United States, “San Francisco VA Medical Center, University of California, San Francisco,
San Francisco, CA, United States, *Department of Psychiatry, University of California, San Francisco, San
Francisco, CA, United States

Introduction: Resting-state functional magnetic resonance imaging (rs-fMRI) is
a powerful tool for assessing functional brain connectivity. Recent studies have
focused on shorter-term connectivity and dynamics in the resting state. However,
most of the prior work evaluates changes in time-series correlations. In this
study, we propose a framework that focuses on time-resolved spectral coupling
(assessed via the correlation between power spectra of the windowed time
courses) among different brain circuits determined via independent component
analysis (ICA).

Methods: Motivated by earlier work suggesting significant spectral differences in
people with schizophrenia, we developed an approach to evaluate time-resolved
spectral coupling (trSC). To do this, we first calculated the correlation between the
power spectra of windowed time-courses pairs of brain components. Then, we
subgrouped each correlation map into four subgroups based on the connectivity
strength utilizing quartiles and clustering techniques. Lastly, we examined clinical
group differences by regression analysis for each averaged count and average
cluster size matrices in each quartile. We evaluated the method by applying it
to resting-state data collected from 151 (114 males, 37 females) people with
schizophrenia (SZ) and 163 (117 males, 46 females) healthy controls (HC).

Results: Our proposed approach enables us to observe the change of connectivity
strength within each quartile for different subgroups. People with schizophrenia
showed highly modularized and significant differences in multiple network
domains, whereas males and females showed less modular differences. Both
cell count and average cluster size analysis for subgroups indicate a higher
connectivity rate in the fourth quartile for the visual network in the control group.
This indicates increased trSC in visual networks in the controls. In other words, this
shows that the visual networks in people with schizophrenia have less mutually
consistent spectra. It is also the case that the visual networks are less spectrally
correlated on short timescales with networks of all other functional domains.

Conclusions: The results of this study reveal significant differences in the degree
to which spectral power profiles are coupled over time. Importantly, there are
significant but distinct differences both between males and females and between
people with schizophrenia and controls. We observed a more significant coupling
rate in the visual network for the healthy controls and males in the upper
quartile. Fluctuations over time are complex, and focusing on only time-resolved
coupling among time-courses is likely to miss important information. Also, people
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with schizophrenia are known to have impairments in visual processing but the
underlying reasons for the impairment are still unknown. Therefore, the trSC
approach can be a useful tool to explore the reasons for the impairments.
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resting state—fMRI, dynamic spectral coupling, schizophrenia, visual network, FBIRN

1. Introduction

Over the last decade, noninvasive neuroimaging based on
blood oxygenation-level dependent (BOLD) functional magnetic
resonance (fMRI) has become a dominant technique for studying
brain function in human subjects. There is now considerable
evidence (Demirtas et al., 2016; Du et al., 2020; Xu et al., 2022)
that aberrant functional connectivity plays a role in multiple
neuropsychiatric disorders. Both the clinical specificity of such
findings and their prospects for yielding actionable insights into
disease mechanisms can be enhanced by studying new features
of the fMRI signal. Various methods have been developed to
study functional connectivity (FC). Early work on FC focused on
so-called “static” connectivity analysis, which does not capture
changes in the signals’ correlative relationships through time
(Friston, 1998; Saha et al., 2005). These changes over time are
captured by a dynamic connectivity analysis method, which is
typically evaluated on relatively short sliding windows through
a more extended fMRI scan (Sakoglu et al., 2010; Hutchison
et al, 2013; Calhoun et al, 2014; Damaraju et al., 2014).
The results of these analysis have been highly informative
on distinguishing the differences between healthy controls and
patients. Most neuropsychiatric disorders can be distinguished
from healthier brain conditions via connectivity analysis during
the resting state. Resting-state dynamics, ie., the functional
brain dynamics in the absence of any stimulus or task, has
become an important experimental protocol in clinical imaging
research, and fMRI is a technology that has been widely used
for brain mapping, connectivity, and for investigating resting-
state dynamics in schizophrenia (Friston, 1998; Deco et al., 2013).
While the link between mental disorders and connectivity is heavily
studied within the clinical fMRI research community, brain-based
underpinnings and the functional characteristics of schizophrenia
remain unclear.

Besides the analysis in the time domain, several studies have
shown that spectral analysis of the fMRI signals can also provide
information about differences in connectivity (Miller et al., 2015;
Agcaoglu et al., 2022), and recently few studies focused on the
frequency domain of functional connectivity (Calhoun et al,
2012; Yaesoubi et al., 2017a; Tan et al.,, 2018). In addition to the
studies suggesting significant spectral differences in the people with
schizophrenia (Yaesoubi et al., 2017b; Li et al., 2022), more recent
work has also shown that the differences in spectral manifest over
time and across brain regions (Thompson and Fransson, 2015).
Previous work has examined the correlation between whole-signal
power spectra (Beer and Norton, 1988; Overath et al., 2008; Friston,
2011).
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In this study, we introduce a novel method that adapts the
sliding-window technique to analyze the time-resolved spectral
coupling between distinct brain networks. To illustrate our
motivation and benefit of the proposed method better, we present
a “toy" example, we generated two artificial signals representing
random network time courses, signal A and signal B (Figure 1).
Signals have the same frequencies and a phase shift of /2. While
these signals are poorly correlated in the time domain, they are
highly correlated in the frequency domain which shows that the
spectral analysis can also provide features which are neglected
in the time domain analysis such as time courses with delay.
We observed that the power spectra of brain circuits during
the resting state are dynamic in time. We then investigated the
pairwise correlation between the time-varying power spectra of
brain circuits. These observations led us to develop a novel
method of analyzing the spectral coupling in the subgroups of data
composed of the resting-state fMRI recordings from people with
schizophrenia (SZ) and healthy controls (HC). Our method is based
on a time-resolved dynamic spectral connectivity analysis approach
using the spectral correlation between windowed time-courses
of paired brain circuits identified via independent component
analysis (ICA).

The primary goal here is to develop a new method for
analyzing the dynamics of resting-state fMRI scans and finding
biomarkers for clinical groups for diagnosis and gender. Our results
showed that the HCs exhibit robust connectivity in visual networks
compared to SZ.

2. Methods and materials

As illustrated in Figure 2, we developed a novel method for
capturing transient spectral coupling based on a sliding window
approach. First, we evaluated time-resolved spectral coupling
(trSC) by calculating the correlation between power spectra of
windowed time course pairs of brain circuits. We then estimated
the spectral coupling as described below and, finally, evaluated
differences in these measures in the schizophrenia subjects vs.
healthy controls and between males and females. The steps are
explained in detail in the following section.

2.1. Participants and preprocessing
Data used in this work is a collection of resting fMRI data

collected from 151 (114 males, 37 females; mean age 37.8)
schizophrenia subjects (SZ) and 163 (117 males, 46 females;
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FIGURE 1
A toy example: (A) Two artificial-time courses with the same frequency and a phase shift of /2. (B) The power density spectrum of the artificial
signals.
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Summary of steps involved in time-resolved spectral coupling analysis. (A) Three hundred fourteen subjects in total 151 (114 males, 37 females) SZ
and 163 (117 males, 46 females) HC. (B) For each subject, there are 47 components and each of them is associated with a windowed time-course.
(C) Power spectra of windowed time-courses. The sizes of the matrices are S by T where S is the half of window length and T is the number of
windows. (D) Correlation matrices of windowed power spectra for all possible component pairs. The sizes of the matrices are T by T. (E) By
collapsing all WW matrices for all subjects, global quartile values are computed. By using these quartile values, four binary matrices are defined for
each WW matrix. The sizes of each matrix are the same as WW matrices. (F) Average cluster size and the average count of cells in each quartile. (G)
Regression analysis results for each averaged count and average cluster size matrices in each quartile to examine the group differences.

Correlation Matrices

E

Binary matrices for each quartile

mean age 36.9) healthy controls (HC), which is a part of the
Functional Imaging Biomedical Informatics Research Network
(FBIRN) project (Potkin and Ford, 2008). The participants were
selected from seven different locations in the United States.
Acquisition and preprocessing are explained in detail in Damaraju
et al. (2014). Resting fMRI data were collected at eyes closed
condition using 3 Tesla scanners with a resolution of 3.4375 x
3.4375 x 4 (including a 1 mm gap) mm?, a repeat time (TR) of 2's,
and an echo time (TE) of 30 ms, over a five-minute period, resulting
in 159 timepoints. Briefly, fMRI data were processed through
an SPM pipeline, including slice-timing and motion correction,
spatial normalization to the Montreal Neurological Institute (MNI)

Frontiersin Neuroscience

03

template, resampling to 3 x 3 x 3 mm? data, and spatial smoothing
with a 6 x 6 x 6 mm? full width at half maximum (FWHM)
Gaussian kernel. Group independent component analysis (gICA)
(Du et al., 2020) was used to estimate 100 circuits, out of which 47
distinct intrinsic networks were identified and ordered in a previous
study (Damaraju et al., 2014). Single subject maps and time-courses
were back-reconstructed. Each component is associated with a time
course for each subject. These 47 components were grouped into
seven distinct networks: subcortical (SC), auditory (AUD), visual
(VIS), sensorimotor (SM), cognitive control (CC), default mode
network (DM), and cerebellar (CB). These distinct networks are
illustrated in Figure 3.
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FIGURE 3

unique component.

Spatial maps of the 47 identified brain components, grouped into seven subcategories. Each color in the maps within each domain corresponds to a

2.2. Dynamic spectral connectivity

To evaluate changes over time in the spectral coupling, we
use a sliding window approach. The time courses were split
into overlapping windows of length 50 TRs, and windows were
shifted 1 TR over the entire time-course. The time domain
includes 159 samples (2 s each) for each time course, resulting
in 109 overlapping windows for each component. All analyses
were performed using MATLAB (MAT, 2021). We first computed
a spectrogram for each time course via a windowed Fourier
transform (FFT). The fluctuations over the frequencies were
observed via the spectrograms through the variations of windows
in each time course. The spectogram calculation resulted in 47
window-by-frequency matrices for each of 314 subjects. Next,
we computed window by window (WW) spectral coupling of
the power spectra for each pair of components throughout all
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subjects. We obtained 1,081 WW correlation maps for each subject
during this computation. These WW maps were then averaged over
subgroups to observe the coupling properties.

2.3. Clustering

We presented our results using two summary measures, cluster
size and cell counts, for each quartile. In addition, global quartile
values were computed using WW correlation maps throughout
all subjects and all possible component pairs. Using the global
quartiles of the system, we calculated the number of cells in each
quartile for each WW map. Four binary matrices for the count of
cells in each quartile are computed for each WW correlation map.
These maps were averaged over the subgroups. Also, using binary

frontiersin.org



Alagam et al.

quartile matrices, we calculated the average cluster size within the
various subgroup of interest. Clusters are composed of vertically
and horizontally adjacent cells within the binary quartile matrices.
In order to keep the analysis distinctive, we did not consider the
diagonally adjacent cells as part of the clusters. We calculated the
cluster size for each quartile of the WW matrices, followed by a
similar cell count analysis protocol, and averaged them over the
subgroups. We summarize the findings in the results section.

2.4. Statistical analysis

We performed regression analysis on average cluster size and
cell counts between healthy control vs. patient and male vs. female
groups in each quartile to examine the group differences. The
significance level was set to 0.05 for p-value, corrected using
Benjamini-Hochberg method for multiple comparisons using a
false discovery rate (FDR) approach (Benjamini and Hochberg,
1995).

3. Results

Following previous studies of functional brain connectivity,
time courses were computed through the independent component
analysis (Salman et al., 2019). We developed a new method with
two measures, cell-count, and average cluster size, to investigate
the dynamic spectral coupling strength for healthy controls,
schizophrenia subjects, males, and females within each quartile.
Both measures showed a higher connectivity rate for the visual
network in the last quartile for the males and the control groups.
This indicates that trSCs are more robust in the visual network
for controls or a less correlated visual network for schizophrenia
subjects compared to the control group. Also, we performed
a multiple regression analysis for both measures to observe
statistical differences between subgroups. Here, we present our
detailed results for the cluster size and cell-count analyses in
this section and for the analysis results for lower quartiles; see
Supplementary material 1.1.1.

3.1. Cluster size

Our observations show that the comparison of the HC-SZ and
male-female show the greatest differences in the upper quartile, so
we primarily highlight aspects of the upper quartile. A 1,081, 109
by 109, WW correlation maps are computed for each pair of 47
components. Global quartiles are calculated for the vector formed
by collapsing all WW maps and lastly, four binary matrices for
each WW correlation map are calculated for each quartile. The
clusters in each quartile are composed of vertically and horizontally
adjacent cells. While defining the clusters, discrete single cells are
also considered as clusters. We calculated the average cluster size
for all WW correlation maps in every quartile and averaged them
over each pair of components for males, females, SZ subjects,
and healthy controls. Figure 4 shows the average cluster size for
the subgroups. The maps show that the average cluster size is
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significantly higher for the visual network in males and the control
group compared to females and SZ subjects.

In Figure 5, we present the group difference matrices for
female-male, SZ-HC groups and their interactions. The upper
triangles of all three matrices represent the p-values thresholded at
p < 0.05 multiplied by — log,(p)sign(t) via regression analysis.
The lower triangle of the matrices represents FDR corrected via
Benjamini-Hochberg method multiplied by — log, ,(p)sign(t). The
statistics are obtained via multiple regression analysis. There are
just two significant pairs for the HC-SZ comparison while there
are none for gender and interaction cases. Similar outcomes can
be observed for the lower quartiles.

3.2. Cell counts

Both measures used the same set of quartiles for the analysis.
Figure 6 illustrates average cell-counts for the subgroups. The
number of cells, or cell counts, was calculated for the binary
matrices in every quartile and averaged over subgroups. Here, like
the cluster size analysis, our results are focused on the aspects of
the last quartile. Compared to the first three quartiles, we observed
more significant results in the last quartiles. We also observed that
in the lower quartiles the dominance of the groups reverses. In
other words, in the lower quartiles the people with schizophrenia
and female are more dominant while there is no significance for the
interactions; see Supplementary material 1.1.1. As seen in Figure 6,
comparing SZ and HC groups, we observed that the HC group
has higher cell counts or trSC in the visual network, similar to
the cluster size analysis. In addition to the visual network, we also
observed higher coupling strength in the sensorimotor. We again
analyzed the group differences for the female-male and SZ-HC via
a regression analysis with a significance level p < 0.05 which is
presented in the upper triangular parts of the matrices and FDR
corrected results are presented in the lower triangular parts of
matrices in Figure 7.

The results demonstrate a higher connectivity rate for the
visual network in the HC case in the fourth quartile compared
to other quartiles and SZ subjects. We also observe significant
differences in the gender comparison however they are much
more widespread across multiple brain networks and do not have
the same characteristics as the diagnosis contrast. The increased
connectivity rate in the last quartile implies that high-frequency
spectral fluctuations are associated with greater correlation in the
visual network.

4. Discussion

Information is conducted through the brain regions in various
ways. Frequency differences in communication of brain networks
based on function and on mental health seem likely but have not
been well-studied (Daitch et al., 2013). This study investigated
the differences in time-resolved spectral coupling for resting-
state fMRI between controls and schizophrenia subjects and
between genders. Our results contribute to the limited literature
on functional spectral coupling in schizophrenia. Previous studies
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FIGURE 4
The average cluster size is calculated throughout all WW correlation maps for each quartile within the subgroups. In the figure, each cell of the
matrices represents the average cluster size of a particular component pair for the subgroups. The matrices represent the average cluster size of the
male, female, healthy controls and people with schizophrenia in the last quartile from (A—D). The thick white lines split the map into regions for seven
distinct networks defined in the methods section.

(Damaraju et al., 2014; Sendi et al., 2021) have shown that the
visual network has a higher correlation rate for HC compared to the
SZ. Here, the results are extending certain earlier findings arising
from different methods to a time-resolved spectral coupling for
resting-state fMRI between controls and schizophrenia subjects and
between genders.
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Another method proposed in earlier studies for a similar
purpose is coherence (Chang and Glover, 2010; Yang et al., 2018;
Hsu et al., 2022). The purpose of coherence and correlation is
similar, but they diverge in detail. One advantage of trSC method
is its narrower sensitivity to linear frequency coupling over the
full spectrum and the lack of any underlying assumption about
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stationarity. Coherence will identify strong frequency-specific
spectral coupling but averaging across frequencies — the most
natural scalar summary measure characterizing full spectrum
coherence between two time-series—can blur the shape of the
relationship between the spectra; see Supplementary material 1.1.2.
To ensure that the measure is specifically identifying linear
common patterning in the (windowed) power spectral densities
(PSDs) of two time-series, the correlation is a more direct approach,
less likely to blur different ways that windowed PSDs might exhibit
co-spectral properties.

While not exactly the same as what we present here, correlation
is a commonly used connectivity measure in frequency studies with
, 2022) and

amplitude of low-frequency fluctuations (ALFF) and full spectral

combination of other studies such as PSD (Li et al.

comparisons (Calhoun et al., 2012; Di et al., 2013; Fu et al., 2018;
Wang et al., 2019).

Our primary aim was to develop a method for analyzing the
spectral coupling between brain components and networks. Our
results are focused on the upper quartile, where the coupling rate
or connectivity level is higher relative to the lower quartiles. The
cell-count analysis showed a higher connectivity level in the visual
network observed among males and among controls compared to
females and schizophrenia subjects whereas the cluster size analysis
showed much fewer differences for the group comparisons. The
lower connectivity level in the visual networks among people with
schizophrenia for the fourth quartile indicates decreased trSC, i.e.,
less mutually consistent spectra, in visual networks among people
with schizophrenia. It is also the case that the visual networks are
less spectrally correlated in SZs on short timescales with non-visual
functional domains.
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The visual network in schizophrenia is not an intensively-
investigated area in resting-state fMRI research. Still, it is known
that people with schizophrenia have visual processing impairments,
and visual networks are likely to play a significant role in the
disorder (Sendi et al., 2021). It also is known clinically that all is not
well with visual processing in schizophrenia, which in turn results
in impaired social cognition and social deficits (Javitt, 2009). There
is hyperawareness for selective visual stimuli at the price of selective
suppression of others — usually misclassifying background noise
as significant. Visual mis-processing seems to be one component
leading to impaired social cognition and social deficits and all the
2011).

The cell-count analysis demonstrated significant differences in

way to paranoid delusions (Taylor et al.

visual networks between HC and SZ, while the significant difference
between the gender groups is scattered along the component pairs
with male dominance. In addition to the group differences in the
visual network trSC, we also observed significant differences in
the sensorimotor network in cell-count analysis (Cadenhead et al.,
2013
provide the same results in the VIS and SM networks. Also, in

; Yaesoubi et al,, 2017a). The cluster size analysis did not
both analyses, there is no significant difference in the interaction of
diagnosis and gender. A possible interpretation of visual network-
related coupling differences is more elaborated between patients,
and control can be related to data being collected in eyes closed
conditions. Eyes closed condition is a less controlled condition
compared to eyes open studies and more sustainable to drowsiness
and mind wandering, hallucination which may affect people with
schizophrenia more dramatically compared to the control, but
further studies are needed to conclude this (Agcaoglu et al., 2019;

Weng et al., 2020).
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The average cell count is calculated throughout all WW correlation maps for each quartile within the subgroups. In the figure, each cell of the
matrices represents the average cell count of a particular component pair for the subgroups. The matrices represent the average cell count of the
male, female, healthy controls and people with schizophrenia in quartile four from (A-D). The thick white lines split the map into regions for seven
distinct networks defined in the methods section.

Another interesting outcome of our results is that while in all
other networks, both cluster size and cell count are higher in control
compared to patients, DM-DM and DM-CC coupling are higher in
patients. DM is a well-studied network in schizophrenia research,
and schizophrenia is usually associated with altered activity, and
altered connectivity of DM (Guo et al., 2017).

Frontiersin Neuroscience

5. Limitations

We should mention some limitations of the method. In this
study, the window length is 50 TR and the time shift is 1 TR.
Variations in the window length and the time shift can be decided
according to the purpose of the study. E.g., smaller window length
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Group differences in (A) Healthy control—patient, (B) Male-female, (C) Diagnosis-gender interactions for average cell-count. Values are plotted for
thresholded p-values*—log; O(p-value) sign (t-statistic) where p-values masked for significance at p < 0.05 in the upper triangular matrices and
thresholded FDR corrected p-values* —log;0 (p-value) sign (t-statistic) where FDR corrected p-values are masked for significance via
Benjamini-Hochberg procedure in the lower triangular matrices. Statistics are obtained via linear regression analysis (red shades represent the
dominance of HC or F and the blue shades represent the dominance of SZ or M).

Diagnosis-Gender Interaction

would be more sensitive to more rapid changes over time. For
small variations in the window length, we did not observe dramatic
changes in averaged cluster size and cell count measures; see
Supplementary material 1.2. Since our focus in this study is not
the window length, we chose a window length relatively large.
Ultimately, the window size is a filtering choice, prior work (Faghiri
et al., 2020) provides a unified framework to evaluate filters across
the entire available range, which we plan to investigate in a
future study.

6. Conclusion

The brain networks communicate with each other in different
ways. In this study, we proposed a frequency domain method to
measure this network communication and we found significant
differences in the degree to which spectral power profiles are
coupled over time. The results showed significant but distinct
differences between males vs. females and schizophrenia subjects
vs. controls. The results might suggest that the information is
conducted through the brain via different spectral scales. The
results also showed reduced visual/sensorimotor coupling in SZ
vs. HC and also reduced multi-network subcortical coupling in
females vs. males. Fluctuations over time are complex, and focusing
on only time-resolved coupling among time-courses is likely to
miss important information. The trSC approach should be further
studied in future work.

Data availability statement

The data analyzed in this study is subject to the following
licenses/restrictions. The FBIRN dataset can be made available

Frontiersin Neuroscience

upon a reasonable request made to the corresponding author and
contingent upon IRB approval. Requests to access these datasets
should be directed at: info@trendscenter.org.

Author contributions

DA: conceptualization, methodology, investigation, formal
analysis, writing original draft and review, software, and
visualization. RM: conceptualization, methodology, and review.
OA: methodology, data visualization, and review. AP and JF: data
curation. VC: supervision, conceptualization, methodology, and
review. All authors contributed to manuscript revision, read, and
approved the submitted version.

Funding
VC acknowledges the support from NIH grants ROIMH118695,
ROIMHI123610, and NSF grant 2112455. Also, JF was funded

by the Department of Veterans Affairs (Senior Research
Career Scientist).

Acknowledgments

We thank the FBIRN project members for sharing experimental
data and suggestions.

Conflict of interest

The authors declare that the research was conducted
in the absence of any commercial or financial relationships

frontiersin.org



Alagam et al.

that could be construed as a conflict

of interest.

potential

Publisher’s note

All claims expressed in this article are solely those
of the authors and do not necessarily represent those of
their those of the publisher,

the editors and the reviewers. Any product that may be

affiliated organizations, or

References

Agcaoglu, O., Wilson, T., Wang, Y.-P., Stephen, J., Fu, Z., Calhoun, V., et
al. (2022). Altered resting fmri spectral power in data-driven brain networks
during development: a longitudinal study. J. Neurosci. Methods 372, 109537.
doi: 10.1016/j.jneumeth.2022.109537

Agcaoglu, O., Wilson, T. W., Wang, Y.-P., Stephen, J., and Calhoun, V. D. (2019).
Resting state connectivity differences in eyes open versus eyes closed conditions. Hum.
Brain Mapp. 40, 2488-2498. doi: 10.1002/hbm.24539

Beer, R., and Norton, R. H. (1988). Analysis of spectra using correlation functions.
Appl. Opt. 27, 1255-1261. doi: 10.1364/A0.27.001255

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a
practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B. 57, 289-300.
doi: 10.1111/§.2517-6161.1995.tb02031.x

Cadenhead, K., Dobkins, K., McGovern, J., and Shafer, K. (2013). Schizophrenia
spectrum participants have reduced visual contrast sensitivity to chromatic
(red/green) and luminance (light/dark) stimuli: new insights into information
processing, visual channel function, and antipsychotic effects. Front. Psychol. 4, 535.
doi: 10.3389/fpsyg.2013.00535

Calhoun, V., Sui, J., Kiehl, K., Turner, J., Allen, E., Pearlson, G., et al.
(2012). Exploring the psychosis functional connectome: aberrant intrinsic
networks in schizophrenia and bipolar disorder. Front. Psychiatry 2, 75.
doi: 10.3389/fpsyt.2011.00075

Calhoun, V. D., Miller, R., Pearlson, G., and Adali, T. (2014). The chronnectome:
time-varying connectivity networks as the next frontier in fmri data discovery. Neuron
84, 262-274. doi: 10.1016/j.neuron.2014.10.015

Chang, C., and Glover, G. H. (2010). Time-frequency dynamics of
resting-state brain connectivity measured with fmri. Neuroimage 50, 81-98.
doi: 10.1016/j.neuroimage.2009.12.011

Daitch, A., Sharma, M., Roland, J., Astafiev, S., Bundy, D., Gaona, C,, et al. (2013).
Frequency-specific mechanism links human brain networks for spatial attention. Proc.
Natl. Acad. Sci. U.S.A. 110, 19585-19590. doi: 10.1073/pnas.1307947110

Damaraju, E., Allen, E., Belger, A., Ford, J., McEwen, S., Mathalon, D., et al. (2014).
Dynamic functional connectivity analysis reveals transient states of dysconnectivity in
schizophrenia. Neuroimage Clin. 5, 298-308. doi: 10.1016/j.nic.2014.07.003

Deco, G., Ponce-Alvarez, A., Mantini, D., Romani, G. L., Hagmann, P., Corbetta,
M., et al. (2013). Resting-state functional connectivity emerges from structurally
and dynamically shaped slow linear fluctuations. J. Neurosci. 33, 11239-11252.
doi: 10.1523/JNEUROSCI.1091-13.2013

Demirtas, M., Tornador, C., Falcén, C., Lopez-Sola?, M., Hernandez-Ribas, R.,
Pujol, J., et al. (2016). Dynamic functional connectivity reveals altered variability in
functional connectivity among patients with major depressive disorder. Hum Brain
Mapp. 37, 2918-2930. doi: 10.1002/hbm.23215

Di, X,, Kim, E. H., Huang, C.-C,, Lin, C.-P., and Biswal, B. (2013). The influence of
the amplitude of low-frequency fluctuations on resting-state functional connectivity.
Front. Hum. Neurosci. 7, 118. doi: 10.3389/fnhum.2013.00118

Du, Y., Fu, Z., Suj, J., Gao, S., Xing, Y., Lin, D., et al. (2020). Neuromark: an
automated and adaptive ica based pipeline to identify reproducible fmri markers of
brain disorders. Neuroimage Clin. 28, 102375. doi: 10.1016/j.nicl.2020.102375

Faghiri, A., Iraji, A., Damaraju, E., Turner, J., and Calhoun, V. (2020). A unified
approach for characterizing static/dynamic connectivity frequency profiles using filter
banks. Netw. Neurosci. 5, 1-51. doi: 10.1162/netn_a_00155

Friston, K. (2011). Functional and effective connectivity: a review. Brain Connect. 1,
13-36. doi: 10.1089/brain.2011.0008

Friston, K. J. (1998). The disconnection hypothesis. Schizophr. Res. 30, 115-125.
doi: 10.1016/50920-9964(97)00140-0

Frontiersin Neuroscience

10.3389/fnins.2023.1078995

evaluated in this article, or claim that may be made by
its manufacturer, is not guaranteed or endorsed by the
publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.2023.
1078995/full#supplementary-material

Fu, Z,, Tu, Y., Di, X,, Du, Y., Pearlson, G., Turner, J., et al. (2018). Characterizing
dynamic amplitude of low-frequency fluctuation and its relationship with dynamic
functional connectivity: an application to schizophrenia. Neuroimage 180, 619-631.
doi: 10.1016/j.neuroimage.2017.09.035

Guo, W,, Liu, F,, Chen, J., Wu, R,, Li, L., Zhang, Z., et al. (2017). Family-based case-
control study of homotopic connectivity in first-episode, drug-naive schizophrenia at
rest. Sci. Rep. 7, 43312. doi: 10.1038/srep43312

Hsu, A.-L., Li, C.-W,, Qin, P, Lo, M.-T., and Wu, C. W. (2022). Localizing spectral
interactions in the resting state network using the Hilbert-Huang transform. Brain Sci.
12, 140. doi: 10.3390/brainsci12020140

Hutchison, R. H., Womelsdorf, T., Allen, E., Bandettini, P., Calhoun, V., Corbetta,
M, et al. (2013). Dynamic functional connectivity: promise, issues, and interpretations.
Neuroimage 80, 360-378. doi: 10.1016/j.neuroimage.2013.05.079

Javitt, D. (2009). Sensory processing in schizophrenia: neither simple nor intact.
Schizophr. Bull. 35, 1059-1064. doi: 10.1093/schbul/sbp110

Li, M., Gao, Y., Anderson, A. W., Ding, Z, and Gore, J. C. (2022). Dynamic
variations of resting-state bold signal spectra in white matter. Neuroimage 250, 118972.
doi: 10.1016/j.neuroimage.2022.118972

MAT (2021). MATLAB version 9.10.0.1613233 (R2021a). Natick, MA: The
Mathworks, Inc.

Miller, R. L., Erhardt, E. B, Agcaoglu, O., Allen, E. A., Michael, A. M., Turner, J. A.,
et al. (2015). Multidimensional frequency domain analysis of full-volume fmri reveals
significant effects of age, gender, and mental illness on the spatiotemporal organization
of resting-state brain activity. Front. Neurosci. 9, 203. doi: 10.3389/fnins.2015.00203

Overath, T., Kumar, S., von Kriegstein, K., and Griffiths, T. D. (2008). Encoding
of spectral correlation over time in auditory cortex. J. Neurosci. 28, 13268-13273.
doi: 10.1523/]NEUROSCI.4596-08.2008

Potkin, S. G., and Ford, J. M. (2008). Widespread cortical dysfunction
in schizophrenia: the FBIRN imaging consortium. Schizophr. Bull. 35, 15-18.
doi: 10.1093/schbul/sbn159

Saha, S., Chant, D., Welham, J., and McGrath, J. (2005). A systematic
review of the prevalence of schizophrenia. PLOS Med, 2, €0020141.
doi: 10.1371/journal.pmed.0020141

Sakoglu, U., Pearlson, G., Kiehl, K., Wang, Y. M., Michael, A., Calhoun, V.,
et al. (2010). A method for evaluating dynamic functional network connectivity
and task modulation: application to schizophrenia. Magma 23, 351-366.
doi: 10.1007/s10334-010-0197-8

Salman, M. S., Du, Y., Lin, D., Fu, Z., Fedorov, A., Damaraju, E., et al. (2019). Group
ICA for identifying biomarkers in schizophrenia: *’Adaptive’ networks via spatially
constrained ICA show more sensitivity to group differences than spatio-temporal
regression. Neuroimage Clin. 22, 101747. doi: 10.1016/j.nicl.2019.101747

Sendi, M. S., Pearlson, G. D., Mathalon, D. H., Ford, J. M., Preda, A., van Erp, T. G.,
et al. (2021). Multiple overlapping dynamic patterns of the visual sensory network in
schizophrenia. Schizophr. Res. 228, 103-111. doi: 10.1016/j.schres.2020.11.055

Tan, G., Xiao, F., Chen, S., Wang, H., Chen, D., Zhu, L., et al. (2018). Frequency-
specific alterations in the amplitude and synchronization of resting-state spontaneous
low-frequency oscillations in benign childhood epilepsy with centrotemporal spikes.
Epilepsy Res. 145, 178-184. doi: 10.1016/j.eplepsyres.2018.07.007

Taylor, S., Chen, A., Tso, I, Liberzon, L, and Welsh, R. (2011). Social appraisal in
chronic psychosis: role of medial frontal and occipital networks. J. Psychiatr. Res. 45,
526-538. doi: 10.1016/j.jpsychires.2010.08.004

Thompson, W. H., and Fransson, P. (2015). The frequency dimension of fmri
dynamic connectivity: network connectivity, functional hubs and integration in the
resting brain. Neuroimage 121, 227-242. doi: 10.1016/j.neuroimage.2015.07.022

frontiersin.org



Alagam et al.

Wang, P., Yang, J., Yin, Z., Duan, J., Zhang, R, Sun, J., et al. (2019).
Amplitude of low-frequency fluctuation (alff) may be associated with cognitive
impairment in schizophrenia: a correlation study. BMC Psychiatry 19, 30.
doi: 10.1186/512888-018-1992-4

Weng, Y., Liu, X,, Hu, H., Huang, H., Zheng, S., Chen, Q,, et al. (2020). Open
eyes and closed eyes elicit different temporal properties of brain functional networks.
Neuroimage 222, 117230. doi: 10.1016/j.neuroimage.2020.117230

Xu, J., Yu, M., Wang, H,, Li, Y, Li, L, Ren, ], et al. (2022). Altered dynamic
functional connectivity in de novo Parkinson’s disease patients with depression. Front.
Aging Neurosci. 13, 789785. doi: 10.3389/fnagi.2021.789785

Frontiersin Neuroscience

11

10.3389/fnins.2023.1078995

Yaesoubi, M., Miller, R., Bustillo, J., Lim, K., Vaidya, J., Calhoun, V., et al.
(2017a). A joint time-frequency analysis of resting-state functional connectivity
reveals novel patterns of connectivity shared between or unique to schizophrenia
patients and healthy controls. Neuroimage Clin. 15, 761-768. doi: 10.1016/j.nicl.2017.
06.023

Yaesoubi, M., Miller, R. L., and Calhoun, V. D. (2017b). Time-varying spectral
power of resting-state fmri networks reveal cross-frequency dependence in dynamic
connectivity. PLOS ONE, 12, 1-14. doi: 10.1371/journal.pone.0171647

Yang, A. C,, Peng, C.-K., and Huang, N. (2018). Causal decomposition in the mutual
causation system. Nat. Commun. 9, 3378. doi: 10.1038/s41467-018-05845-7

frontiersin.org



	A method for capturing dynamic spectral coupling in resting fMRI reveals domain-specific patterns in schizophrenia
	1. Introduction
	2. Methods and materials 
	2.1. Participants and preprocessing 
	2.2. Dynamic spectral connectivity
	2.3. Clustering
	2.4. Statistical analysis

	3. Results
	3.1. Cluster size
	3.2. Cell counts

	4. Discussion
	5. Limitations
	6. Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


