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Introduction: Resting-state functional magnetic resonance imaging (rs-fMRI) is

a powerful tool for assessing functional brain connectivity. Recent studies have

focused on shorter-term connectivity and dynamics in the resting state. However,

most of the prior work evaluates changes in time-series correlations. In this

study, we propose a framework that focuses on time-resolved spectral coupling

(assessed via the correlation between power spectra of the windowed time

courses) among di�erent brain circuits determined via independent component

analysis (ICA).

Methods: Motivated by earlier work suggesting signiûcant spectral di�erences in

people with schizophrenia, we developed an approach to evaluate time-resolved

spectral coupling (trSC). To do this, we ûrst calculated the correlation between the

power spectra of windowed time-courses pairs of brain components. Then, we

subgrouped each correlation map into four subgroups based on the connectivity

strength utilizing quartiles and clustering techniques. Lastly, we examined clinical

group di�erences by regression analysis for each averaged count and average

cluster size matrices in each quartile. We evaluated the method by applying it

to resting-state data collected from 151 (114 males, 37 females) people with

schizophrenia (SZ) and 163 (117 males, 46 females) healthy controls (HC).

Results: Our proposed approach enables us to observe the change of connectivity

strength within each quartile for di�erent subgroups. People with schizophrenia

showed highly modularized and signiûcant di�erences in multiple network

domains, whereas males and females showed less modular di�erences. Both

cell count and average cluster size analysis for subgroups indicate a higher

connectivity rate in the fourth quartile for the visual network in the control group.

This indicates increased trSC in visual networks in the controls. In other words, this

shows that the visual networks in people with schizophrenia have less mutually

consistent spectra. It is also the case that the visual networks are less spectrally

correlated on short timescales with networks of all other functional domains.

Conclusions: The results of this study reveal signiûcant di�erences in the degree

to which spectral power proûles are coupled over time. Importantly, there are

signiûcant but distinct di�erences both between males and females and between

people with schizophrenia and controls. We observed a more signiûcant coupling

rate in the visual network for the healthy controls and males in the upper

quartile. Fluctuations over time are complex, and focusing on only time-resolved

coupling among time-courses is likely to miss important information. Also, people
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with schizophrenia are known to have impairments in visual processing but the

underlying reasons for the impairment are still unknown. Therefore, the trSC

approach can be a useful tool to explore the reasons for the impairments.
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1. Introduction

Over the last decade, noninvasive neuroimaging based on

blood oxygenation-level dependent (BOLD) functional magnetic

resonance (fMRI) has become a dominant technique for studying

brain function in human subjects. There is now considerable

evidence (Demirtas et al., 2016; Du et al., 2020; Xu et al., 2022)

that aberrant functional connectivity plays a role in multiple

neuropsychiatric disorders. Both the clinical specificity of such

findings and their prospects for yielding actionable insights into

disease mechanisms can be enhanced by studying new features

of the fMRI signal. Various methods have been developed to

study functional connectivity (FC). Early work on FC focused on

so-called “static” connectivity analysis, which does not capture

changes in the signals’ correlative relationships through time

(Friston, 1998; Saha et al., 2005). These changes over time are

captured by a dynamic connectivity analysis method, which is

typically evaluated on relatively short sliding windows through

a more extended fMRI scan (Sakoglu et al., 2010; Hutchison

et al., 2013; Calhoun et al., 2014; Damaraju et al., 2014).

The results of these analysis have been highly informative

on distinguishing the differences between healthy controls and

patients. Most neuropsychiatric disorders can be distinguished

from healthier brain conditions via connectivity analysis during

the resting state. Resting-state dynamics, i.e., the functional

brain dynamics in the absence of any stimulus or task, has

become an important experimental protocol in clinical imaging

research, and fMRI is a technology that has been widely used

for brain mapping, connectivity, and for investigating resting-

state dynamics in schizophrenia (Friston, 1998; Deco et al., 2013).

While the link betweenmental disorders and connectivity is heavily

studied within the clinical fMRI research community, brain-based

underpinnings and the functional characteristics of schizophrenia

remain unclear.

Besides the analysis in the time domain, several studies have

shown that spectral analysis of the fMRI signals can also provide

information about differences in connectivity (Miller et al., 2015;

Agcaoglu et al., 2022), and recently few studies focused on the

frequency domain of functional connectivity (Calhoun et al.,

2012; Yaesoubi et al., 2017a; Tan et al., 2018). In addition to the

studies suggesting significant spectral differences in the people with

schizophrenia (Yaesoubi et al., 2017b; Li et al., 2022), more recent

work has also shown that the differences in spectral manifest over

time and across brain regions (Thompson and Fransson, 2015).

Previous work has examined the correlation between whole-signal

power spectra (Beer and Norton, 1988; Overath et al., 2008; Friston,

2011).

In this study, we introduce a novel method that adapts the

sliding-window technique to analyze the time-resolved spectral

coupling between distinct brain networks. To illustrate our

motivation and benefit of the proposed method better, we present

a “toy" example, we generated two artificial signals representing

random network time courses, signal A and signal B (Figure 1).

Signals have the same frequencies and a phase shift of π/2. While

these signals are poorly correlated in the time domain, they are

highly correlated in the frequency domain which shows that the

spectral analysis can also provide features which are neglected

in the time domain analysis such as time courses with delay.

We observed that the power spectra of brain circuits during

the resting state are dynamic in time. We then investigated the

pairwise correlation between the time-varying power spectra of

brain circuits. These observations led us to develop a novel

method of analyzing the spectral coupling in the subgroups of data

composed of the resting-state fMRI recordings from people with

schizophrenia (SZ) and healthy controls (HC). Ourmethod is based

on a time-resolved dynamic spectral connectivity analysis approach

using the spectral correlation between windowed time-courses

of paired brain circuits identified via independent component

analysis (ICA).

The primary goal here is to develop a new method for

analyzing the dynamics of resting-state fMRI scans and finding

biomarkers for clinical groups for diagnosis and gender. Our results

showed that the HCs exhibit robust connectivity in visual networks

compared to SZ.

2. Methods and materials

As illustrated in Figure 2, we developed a novel method for

capturing transient spectral coupling based on a sliding window

approach. First, we evaluated time-resolved spectral coupling

(trSC) by calculating the correlation between power spectra of

windowed time course pairs of brain circuits. We then estimated

the spectral coupling as described below and, finally, evaluated

differences in these measures in the schizophrenia subjects vs.

healthy controls and between males and females. The steps are

explained in detail in the following section.

2.1. Participants and preprocessing

Data used in this work is a collection of resting fMRI data

collected from 151 (114 males, 37 females; mean age 37.8)

schizophrenia subjects (SZ) and 163 (117 males, 46 females;
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FIGURE 1

A toy example: (A) Two artiûcial-time courses with the same frequency and a phase shift of π/2. (B) The power density spectrum of the artiûcial

signals.

FIGURE 2

Summary of steps involved in time-resolved spectral coupling analysis. (A) Three hundred fourteen subjects in total 151 (114 males, 37 females) SZ

and 163 (117 males, 46 females) HC. (B) For each subject, there are 47 components and each of them is associated with a windowed time-course.

(C) Power spectra of windowed time-courses. The sizes of the matrices are S by T where S is the half of window length and T is the number of

windows. (D) Correlation matrices of windowed power spectra for all possible component pairs. The sizes of the matrices are T by T. (E) By

collapsing all WW matrices for all subjects, global quartile values are computed. By using these quartile values, four binary matrices are deûned for

each WW matrix. The sizes of each matrix are the same as WW matrices. (F) Average cluster size and the average count of cells in each quartile. (G)

Regression analysis results for each averaged count and average cluster size matrices in each quartile to examine the group di�erences.

mean age 36.9) healthy controls (HC), which is a part of the

Functional Imaging Biomedical Informatics Research Network

(FBIRN) project (Potkin and Ford, 2008). The participants were

selected from seven different locations in the United States.

Acquisition and preprocessing are explained in detail in Damaraju

et al. (2014). Resting fMRI data were collected at eyes closed

condition using 3 Tesla scanners with a resolution of 3.4375 ×

3.4375× 4 (including a 1 mm gap) mm3, a repeat time (TR) of 2 s,

and an echo time (TE) of 30ms, over a five-minute period, resulting

in 159 timepoints. Briefly, fMRI data were processed through

an SPM pipeline, including slice-timing and motion correction,

spatial normalization to theMontreal Neurological Institute (MNI)

template, resampling to 3× 3× 3mm3 data, and spatial smoothing

with a 6 × 6 × 6 mm3 full width at half maximum (FWHM)

Gaussian kernel. Group independent component analysis (gICA)

(Du et al., 2020) was used to estimate 100 circuits, out of which 47

distinct intrinsic networks were identified and ordered in a previous

study (Damaraju et al., 2014). Single subject maps and time-courses

were back-reconstructed. Each component is associated with a time

course for each subject. These 47 components were grouped into

seven distinct networks: subcortical (SC), auditory (AUD), visual

(VIS), sensorimotor (SM), cognitive control (CC), default mode

network (DM), and cerebellar (CB). These distinct networks are

illustrated in Figure 3.
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FIGURE 3

Spatial maps of the 47 identiûed brain components, grouped into seven subcategories. Each color in the maps within each domain corresponds to a

unique component.

2.2. Dynamic spectral connectivity

To evaluate changes over time in the spectral coupling, we

use a sliding window approach. The time courses were split

into overlapping windows of length 50 TRs, and windows were

shifted 1 TR over the entire time-course. The time domain

includes 159 samples (2 s each) for each time course, resulting

in 109 overlapping windows for each component. All analyses

were performed using MATLAB (MAT, 2021). We first computed

a spectrogram for each time course via a windowed Fourier

transform (FFT). The fluctuations over the frequencies were

observed via the spectrograms through the variations of windows

in each time course. The spectogram calculation resulted in 47

window-by-frequency matrices for each of 314 subjects. Next,

we computed window by window (WW) spectral coupling of

the power spectra for each pair of components throughout all

subjects. We obtained 1,081 WW correlation maps for each subject

during this computation. TheseWWmaps were then averaged over

subgroups to observe the coupling properties.

2.3. Clustering

We presented our results using two summary measures, cluster

size and cell counts, for each quartile. In addition, global quartile

values were computed using WW correlation maps throughout

all subjects and all possible component pairs. Using the global

quartiles of the system, we calculated the number of cells in each

quartile for each WW map. Four binary matrices for the count of

cells in each quartile are computed for each WW correlation map.

These maps were averaged over the subgroups. Also, using binary
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quartile matrices, we calculated the average cluster size within the

various subgroup of interest. Clusters are composed of vertically

and horizontally adjacent cells within the binary quartile matrices.

In order to keep the analysis distinctive, we did not consider the

diagonally adjacent cells as part of the clusters. We calculated the

cluster size for each quartile of the WW matrices, followed by a

similar cell count analysis protocol, and averaged them over the

subgroups. We summarize the findings in the results section.

2.4. Statistical analysis

We performed regression analysis on average cluster size and

cell counts between healthy control vs. patient and male vs. female

groups in each quartile to examine the group differences. The

significance level was set to 0.05 for p-value, corrected using

Benjamini–Hochberg method for multiple comparisons using a

false discovery rate (FDR) approach (Benjamini and Hochberg,

1995).

3. Results

Following previous studies of functional brain connectivity,

time courses were computed through the independent component

analysis (Salman et al., 2019). We developed a new method with

two measures, cell-count, and average cluster size, to investigate

the dynamic spectral coupling strength for healthy controls,

schizophrenia subjects, males, and females within each quartile.

Both measures showed a higher connectivity rate for the visual

network in the last quartile for the males and the control groups.

This indicates that trSCs are more robust in the visual network

for controls or a less correlated visual network for schizophrenia

subjects compared to the control group. Also, we performed

a multiple regression analysis for both measures to observe

statistical differences between subgroups. Here, we present our

detailed results for the cluster size and cell-count analyses in

this section and for the analysis results for lower quartiles; see

Supplementary material 1.1.1.

3.1. Cluster size

Our observations show that the comparison of the HC-SZ and

male-female show the greatest differences in the upper quartile, so

we primarily highlight aspects of the upper quartile. A 1,081, 109

by 109, WW correlation maps are computed for each pair of 47

components. Global quartiles are calculated for the vector formed

by collapsing all WW maps and lastly, four binary matrices for

each WW correlation map are calculated for each quartile. The

clusters in each quartile are composed of vertically and horizontally

adjacent cells. While defining the clusters, discrete single cells are

also considered as clusters. We calculated the average cluster size

for all WW correlation maps in every quartile and averaged them

over each pair of components for males, females, SZ subjects,

and healthy controls. Figure 4 shows the average cluster size for

the subgroups. The maps show that the average cluster size is

significantly higher for the visual network in males and the control

group compared to females and SZ subjects.

In Figure 5, we present the group difference matrices for

female-male, SZ-HC groups and their interactions. The upper

triangles of all three matrices represent the p-values thresholded at

p < 0.05 multiplied by − log10(p)sign(t) via regression analysis.

The lower triangle of the matrices represents FDR corrected via

Benjamini–Hochberg method multiplied by − log10(p)sign(t). The

statistics are obtained via multiple regression analysis. There are

just two significant pairs for the HC-SZ comparison while there

are none for gender and interaction cases. Similar outcomes can

be observed for the lower quartiles.

3.2. Cell counts

Both measures used the same set of quartiles for the analysis.

Figure 6 illustrates average cell-counts for the subgroups. The

number of cells, or cell counts, was calculated for the binary

matrices in every quartile and averaged over subgroups. Here, like

the cluster size analysis, our results are focused on the aspects of

the last quartile. Compared to the first three quartiles, we observed

more significant results in the last quartiles. We also observed that

in the lower quartiles the dominance of the groups reverses. In

other words, in the lower quartiles the people with schizophrenia

and female are more dominant while there is no significance for the

interactions; see Supplementary material 1.1.1. As seen in Figure 6,

comparing SZ and HC groups, we observed that the HC group

has higher cell counts or trSC in the visual network, similar to

the cluster size analysis. In addition to the visual network, we also

observed higher coupling strength in the sensorimotor. We again

analyzed the group differences for the female–male and SZ-HC via

a regression analysis with a significance level p < 0.05 which is

presented in the upper triangular parts of the matrices and FDR

corrected results are presented in the lower triangular parts of

matrices in Figure 7.

The results demonstrate a higher connectivity rate for the

visual network in the HC case in the fourth quartile compared

to other quartiles and SZ subjects. We also observe significant

differences in the gender comparison however they are much

more widespread across multiple brain networks and do not have

the same characteristics as the diagnosis contrast. The increased

connectivity rate in the last quartile implies that high-frequency

spectral fluctuations are associated with greater correlation in the

visual network.

4. Discussion

Information is conducted through the brain regions in various

ways. Frequency differences in communication of brain networks

based on function and on mental health seem likely but have not

been well-studied (Daitch et al., 2013). This study investigated

the differences in time-resolved spectral coupling for resting-

state fMRI between controls and schizophrenia subjects and

between genders. Our results contribute to the limited literature

on functional spectral coupling in schizophrenia. Previous studies
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FIGURE 4

The average cluster size is calculated throughout all WW correlation maps for each quartile within the subgroups. In the ûgure, each cell of the

matrices represents the average cluster size of a particular component pair for the subgroups. The matrices represent the average cluster size of the

male, female, healthy controls and people with schizophrenia in the last quartile from (A3D). The thick white lines split the map into regions for seven

distinct networks deûned in the methods section.

(Damaraju et al., 2014; Sendi et al., 2021) have shown that the

visual network has a higher correlation rate for HC compared to the

SZ. Here, the results are extending certain earlier findings arising

from different methods to a time-resolved spectral coupling for

resting-state fMRI between controls and schizophrenia subjects and

between genders.

Another method proposed in earlier studies for a similar

purpose is coherence (Chang and Glover, 2010; Yang et al., 2018;

Hsu et al., 2022). The purpose of coherence and correlation is

similar, but they diverge in detail. One advantage of trSC method

is its narrower sensitivity to linear frequency coupling over the

full spectrum and the lack of any underlying assumption about
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FIGURE 5

Group di�erences in (A) Healthy control4patient, (B) Male3female, (C) Diagnosis-gender interactions for average cluster size. Values are plotted for

thresholded p-values* -log10 (p-value) sign (t-statistic) where p-values masked for signiûcance at p ≤ 0.05 in the upper triangular matrices and

thresholded FDR corrected p-values* 3log10 (p-value) sign (t-statistic) where FDR corrected p-values are masked for signiûcance via

Benjamini3Hochberg procedure in the lower triangular matrices. Statistics are obtained via linear regression analysis (red shades represent the

dominance of HC or F and the blue shades represent the dominance of SZ or M).

stationarity. Coherence will identify strong frequency-specific

spectral coupling but averaging across frequencies — the most

natural scalar summary measure characterizing full spectrum

coherence between two time-series—can blur the shape of the

relationship between the spectra; see Supplementary material 1.1.2.

To ensure that the measure is specifically identifying linear

common patterning in the (windowed) power spectral densities

(PSDs) of two time-series, the correlation is amore direct approach,

less likely to blur different ways that windowed PSDs might exhibit

co-spectral properties.

While not exactly the same as what we present here, correlation

is a commonly used connectivity measure in frequency studies with

combination of other studies such as PSD (Li et al., 2022) and

amplitude of low-frequency fluctuations (ALFF) and full spectral

comparisons (Calhoun et al., 2012; Di et al., 2013; Fu et al., 2018;

Wang et al., 2019).

Our primary aim was to develop a method for analyzing the

spectral coupling between brain components and networks. Our

results are focused on the upper quartile, where the coupling rate

or connectivity level is higher relative to the lower quartiles. The

cell-count analysis showed a higher connectivity level in the visual

network observed among males and among controls compared to

females and schizophrenia subjects whereas the cluster size analysis

showed much fewer differences for the group comparisons. The

lower connectivity level in the visual networks among people with

schizophrenia for the fourth quartile indicates decreased trSC, i.e.,

less mutually consistent spectra, in visual networks among people

with schizophrenia. It is also the case that the visual networks are

less spectrally correlated in SZs on short timescales with non-visual

functional domains.

The visual network in schizophrenia is not an intensively-

investigated area in resting-state fMRI research. Still, it is known

that people with schizophrenia have visual processing impairments,

and visual networks are likely to play a significant role in the

disorder (Sendi et al., 2021). It also is known clinically that all is not

well with visual processing in schizophrenia, which in turn results

in impaired social cognition and social deficits (Javitt, 2009). There

is hyperawareness for selective visual stimuli at the price of selective

suppression of others — usually misclassifying background noise

as significant. Visual mis-processing seems to be one component

leading to impaired social cognition and social deficits and all the

way to paranoid delusions (Taylor et al., 2011).

The cell-count analysis demonstrated significant differences in

visual networks betweenHC and SZ, while the significant difference

between the gender groups is scattered along the component pairs

with male dominance. In addition to the group differences in the

visual network trSC, we also observed significant differences in

the sensorimotor network in cell-count analysis (Cadenhead et al.,

2013; Yaesoubi et al., 2017a). The cluster size analysis did not

provide the same results in the VIS and SM networks. Also, in

both analyses, there is no significant difference in the interaction of

diagnosis and gender. A possible interpretation of visual network-

related coupling differences is more elaborated between patients,

and control can be related to data being collected in eyes closed

conditions. Eyes closed condition is a less controlled condition

compared to eyes open studies and more sustainable to drowsiness

and mind wandering, hallucination which may affect people with

schizophrenia more dramatically compared to the control, but

further studies are needed to conclude this (Agcaoglu et al., 2019;

Weng et al., 2020).
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FIGURE 6

The average cell count is calculated throughout all WW correlation maps for each quartile within the subgroups. In the ûgure, each cell of the

matrices represents the average cell count of a particular component pair for the subgroups. The matrices represent the average cell count of the

male, female, healthy controls and people with schizophrenia in quartile four from (A3D). The thick white lines split the map into regions for seven

distinct networks deûned in the methods section.

Another interesting outcome of our results is that while in all

other networks, both cluster size and cell count are higher in control

compared to patients, DM-DM and DM-CC coupling are higher in

patients. DM is a well-studied network in schizophrenia research,

and schizophrenia is usually associated with altered activity, and

altered connectivity of DM (Guo et al., 2017).

5. Limitations

We should mention some limitations of the method. In this

study, the window length is 50 TR and the time shift is 1 TR.

Variations in the window length and the time shift can be decided

according to the purpose of the study. E.g., smaller window length
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FIGURE 7

Group di�erences in (A) Healthy control4patient, (B) Male3female, (C) Diagnosis-gender interactions for average cell-count. Values are plotted for

thresholded p-values*3log10(p-value) sign (t-statistic) where p-values masked for signiûcance at p ≤ 0.05 in the upper triangular matrices and

thresholded FDR corrected p-values* 3log10 (p-value) sign (t-statistic) where FDR corrected p-values are masked for signiûcance via

Benjamini3Hochberg procedure in the lower triangular matrices. Statistics are obtained via linear regression analysis (red shades represent the

dominance of HC or F and the blue shades represent the dominance of SZ or M).

would be more sensitive to more rapid changes over time. For

small variations in the window length, we did not observe dramatic

changes in averaged cluster size and cell count measures; see

Supplementary material 1.2. Since our focus in this study is not

the window length, we chose a window length relatively large.

Ultimately, the window size is a filtering choice, prior work (Faghiri

et al., 2020) provides a unified framework to evaluate filters across

the entire available range, which we plan to investigate in a

future study.

6. Conclusion

The brain networks communicate with each other in different

ways. In this study, we proposed a frequency domain method to

measure this network communication and we found significant

differences in the degree to which spectral power profiles are

coupled over time. The results showed significant but distinct

differences between males vs. females and schizophrenia subjects

vs. controls. The results might suggest that the information is

conducted through the brain via different spectral scales. The

results also showed reduced visual/sensorimotor coupling in SZ

vs. HC and also reduced multi-network subcortical coupling in

females vs. males. Fluctuations over time are complex, and focusing

on only time-resolved coupling among time-courses is likely to

miss important information. The trSC approach should be further

studied in future work.

Data availability statement

The data analyzed in this study is subject to the following

licenses/restrictions. The FBIRN dataset can be made available

upon a reasonable request made to the corresponding author and

contingent upon IRB approval. Requests to access these datasets

should be directed at: info@trendscenter.org.

Author contributions

DA: conceptualization, methodology, investigation, formal

analysis, writing original draft and review, software, and

visualization. RM: conceptualization, methodology, and review.

OA: methodology, data visualization, and review. AP and JF: data

curation. VC: supervision, conceptualization, methodology, and

review. All authors contributed to manuscript revision, read, and

approved the submitted version.

Funding

VC acknowledges the support fromNIH grants R01MH118695,

R01MH123610, and NSF grant 2112455. Also, JF was funded

by the Department of Veterans Affairs (Senior Research

Career Scientist).

Acknowledgments

We thank the FBIRN project members for sharing experimental

data and suggestions.

Conüict of interest

The authors declare that the research was conducted

in the absence of any commercial or financial relationships

Frontiers inNeuroscience 09 frontiersin.org



Alaçam et al. 10.3389/fnins.2023.1078995

that could be construed as a potential conflict

of interest.

Publisher9s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those of

their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fnins.2023.

1078995/full#supplementary-material

References

Agcaoglu, O., Wilson, T., Wang, Y.-P., Stephen, J., Fu, Z., Calhoun, V., et
al. (2022). Altered resting fmri spectral power in data-driven brain networks
during development: a longitudinal study. J. Neurosci. Methods 372, 109537.
doi: 10.1016/j.jneumeth.2022.109537

Agcaoglu, O., Wilson, T. W., Wang, Y.-P., Stephen, J., and Calhoun, V. D. (2019).
Resting state connectivity differences in eyes open versus eyes closed conditions.Hum.
Brain Mapp. 40, 2488–2498. doi: 10.1002/hbm.24539

Beer, R., and Norton, R. H. (1988). Analysis of spectra using correlation functions.
Appl. Opt. 27, 1255–1261. doi: 10.1364/AO.27.001255

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a
practical and powerful approach tomultiple testing. J. R. Stat. Soc. Series B. 57, 289–300.
doi: 10.1111/j.2517-6161.1995.tb02031.x

Cadenhead, K., Dobkins, K., McGovern, J., and Shafer, K. (2013). Schizophrenia
spectrum participants have reduced visual contrast sensitivity to chromatic
(red/green) and luminance (light/dark) stimuli: new insights into information
processing, visual channel function, and antipsychotic effects. Front. Psychol. 4, 535.
doi: 10.3389/fpsyg.2013.00535

Calhoun, V., Sui, J., Kiehl, K., Turner, J., Allen, E., Pearlson, G., et al.
(2012). Exploring the psychosis functional connectome: aberrant intrinsic
networks in schizophrenia and bipolar disorder. Front. Psychiatry 2, 75.
doi: 10.3389/fpsyt.2011.00075

Calhoun, V. D., Miller, R., Pearlson, G., and Adalı, T. (2014). The chronnectome:
time-varying connectivity networks as the next frontier in fmri data discovery. Neuron
84, 262–274. doi: 10.1016/j.neuron.2014.10.015

Chang, C., and Glover, G. H. (2010). Time–frequency dynamics of
resting-state brain connectivity measured with fmri. Neuroimage 50, 81–98.
doi: 10.1016/j.neuroimage.2009.12.011

Daitch, A., Sharma, M., Roland, J., Astafiev, S., Bundy, D., Gaona, C., et al. (2013).
Frequency-specific mechanism links human brain networks for spatial attention. Proc.
Natl. Acad. Sci. U.S.A. 110, 19585–19590. doi: 10.1073/pnas.1307947110

Damaraju, E., Allen, E., Belger, A., Ford, J., McEwen, S., Mathalon, D., et al. (2014).
Dynamic functional connectivity analysis reveals transient states of dysconnectivity in
schizophrenia. Neuroimage Clin. 5, 298–308. doi: 10.1016/j.nicl.2014.07.003

Deco, G., Ponce-Alvarez, A., Mantini, D., Romani, G. L., Hagmann, P., Corbetta,
M., et al. (2013). Resting-state functional connectivity emerges from structurally
and dynamically shaped slow linear fluctuations. J. Neurosci. 33, 11239–11252.
doi: 10.1523/JNEUROSCI.1091-13.2013

Demirtas, M., Tornador, C., Falcón, C., López-Solà?, M., Hernàndez-Ribas, R.,
Pujol, J., et al. (2016). Dynamic functional connectivity reveals altered variability in
functional connectivity among patients with major depressive disorder. Hum Brain
Mapp. 37, 2918–2930. doi: 10.1002/hbm.23215

Di, X., Kim, E. H., Huang, C.-C., Lin, C.-P., and Biswal, B. (2013). The influence of
the amplitude of low-frequency fluctuations on resting-state functional connectivity.
Front. Hum. Neurosci. 7, 118. doi: 10.3389/fnhum.2013.00118

Du, Y., Fu, Z., Sui, J., Gao, S., Xing, Y., Lin, D., et al. (2020). Neuromark: an
automated and adaptive ica based pipeline to identify reproducible fmri markers of
brain disorders. Neuroimage Clin. 28, 102375. doi: 10.1016/j.nicl.2020.102375

Faghiri, A., Iraji, A., Damaraju, E., Turner, J., and Calhoun, V. (2020). A unified
approach for characterizing static/dynamic connectivity frequency profiles using filter
banks. Netw. Neurosci. 5, 1–51. doi: 10.1162/netn_a_00155

Friston, K. (2011). Functional and effective connectivity: a review. Brain Connect. 1,
13–36. doi: 10.1089/brain.2011.0008

Friston, K. J. (1998). The disconnection hypothesis. Schizophr. Res. 30, 115–125.
doi: 10.1016/S0920-9964(97)00140-0

Fu, Z., Tu, Y., Di, X., Du, Y., Pearlson, G., Turner, J., et al. (2018). Characterizing
dynamic amplitude of low-frequency fluctuation and its relationship with dynamic
functional connectivity: an application to schizophrenia. Neuroimage 180, 619–631.
doi: 10.1016/j.neuroimage.2017.09.035

Guo, W., Liu, F., Chen, J., Wu, R., Li, L., Zhang, Z., et al. (2017). Family-based case-
control study of homotopic connectivity in first-episode, drug-naive schizophrenia at
rest. Sci. Rep. 7, 43312. doi: 10.1038/srep43312

Hsu, A.-L., Li, C.-W., Qin, P., Lo, M.-T., and Wu, C. W. (2022). Localizing spectral
interactions in the resting state network using the Hilbert–Huang transform. Brain Sci.
12, 140. doi: 10.3390/brainsci12020140

Hutchison, R. H., Womelsdorf, T., Allen, E., Bandettini, P., Calhoun, V., Corbetta,
M., et al. (2013). Dynamic functional connectivity: promise, issues, and interpretations.
Neuroimage 80, 360–378. doi: 10.1016/j.neuroimage.2013.05.079

Javitt, D. (2009). Sensory processing in schizophrenia: neither simple nor intact.
Schizophr. Bull. 35, 1059–1064. doi: 10.1093/schbul/sbp110

Li, M., Gao, Y., Anderson, A. W., Ding, Z., and Gore, J. C. (2022). Dynamic
variations of resting-state bold signal spectra in white matter.Neuroimage 250, 118972.
doi: 10.1016/j.neuroimage.2022.118972

MAT (2021). MATLAB version 9.10.0.1613233 (R2021a). Natick, MA: The
Mathworks, Inc.

Miller, R. L., Erhardt, E. B., Agcaoglu, O., Allen, E. A., Michael, A. M., Turner, J. A.,
et al. (2015). Multidimensional frequency domain analysis of full-volume fmri reveals
significant effects of age, gender, and mental illness on the spatiotemporal organization
of resting-state brain activity. Front. Neurosci. 9, 203. doi: 10.3389/fnins.2015.00203

Overath, T., Kumar, S., von Kriegstein, K., and Griffiths, T. D. (2008). Encoding
of spectral correlation over time in auditory cortex. J. Neurosci. 28, 13268–13273.
doi: 10.1523/JNEUROSCI.4596-08.2008

Potkin, S. G., and Ford, J. M. (2008). Widespread cortical dysfunction
in schizophrenia: the FBIRN imaging consortium. Schizophr. Bull. 35, 15–18.
doi: 10.1093/schbul/sbn159

Saha, S., Chant, D., Welham, J., and McGrath, J. (2005). A systematic
review of the prevalence of schizophrenia. PLOS Med, 2, e0020141.
doi: 10.1371/journal.pmed.0020141

Sakoglu, U., Pearlson, G., Kiehl, K., Wang, Y. M., Michael, A., Calhoun, V.,
et al. (2010). A method for evaluating dynamic functional network connectivity
and task modulation: application to schizophrenia. Magma 23, 351–366.
doi: 10.1007/s10334-010-0197-8

Salman, M. S., Du, Y., Lin, D., Fu, Z., Fedorov, A., Damaraju, E., et al. (2019). Group
ICA for identifying biomarkers in schizophrenia: ’Adaptive’ networks via spatially
constrained ICA show more sensitivity to group differences than spatio-temporal
regression. Neuroimage Clin. 22, 101747. doi: 10.1016/j.nicl.2019.101747

Sendi, M. S., Pearlson, G. D., Mathalon, D. H., Ford, J. M., Preda, A., van Erp, T. G.,
et al. (2021). Multiple overlapping dynamic patterns of the visual sensory network in
schizophrenia. Schizophr. Res. 228, 103–111. doi: 10.1016/j.schres.2020.11.055

Tan, G., Xiao, F., Chen, S., Wang, H., Chen, D., Zhu, L., et al. (2018). Frequency-
specific alterations in the amplitude and synchronization of resting-state spontaneous
low-frequency oscillations in benign childhood epilepsy with centrotemporal spikes.
Epilepsy Res. 145, 178–184. doi: 10.1016/j.eplepsyres.2018.07.007

Taylor, S., Chen, A., Tso, I., Liberzon, I., and Welsh, R. (2011). Social appraisal in
chronic psychosis: role of medial frontal and occipital networks. J. Psychiatr. Res. 45,
526–538. doi: 10.1016/j.jpsychires.2010.08.004

Thompson, W. H., and Fransson, P. (2015). The frequency dimension of fmri
dynamic connectivity: network connectivity, functional hubs and integration in the
resting brain. Neuroimage 121, 227–242. doi: 10.1016/j.neuroimage.2015.07.022

Frontiers inNeuroscience 10 frontiersin.org



Alaçam et al. 10.3389/fnins.2023.1078995

Wang, P., Yang, J., Yin, Z., Duan, J., Zhang, R., Sun, J., et al. (2019).
Amplitude of low-frequency fluctuation (alff) may be associated with cognitive
impairment in schizophrenia: a correlation study. BMC Psychiatry 19, 30.
doi: 10.1186/s12888-018-1992-4

Weng, Y., Liu, X., Hu, H., Huang, H., Zheng, S., Chen, Q., et al. (2020). Open
eyes and closed eyes elicit different temporal properties of brain functional networks.
Neuroimage 222, 117230. doi: 10.1016/j.neuroimage.2020.117230

Xu, J., Yu, M., Wang, H., Li, Y., Li, L., Ren, J., et al. (2022). Altered dynamic
functional connectivity in de novo Parkinson’s disease patients with depression. Front.
Aging Neurosci. 13, 789785. doi: 10.3389/fnagi.2021.789785

Yaesoubi, M., Miller, R., Bustillo, J., Lim, K., Vaidya, J., Calhoun, V., et al.
(2017a). A joint time-frequency analysis of resting-state functional connectivity
reveals novel patterns of connectivity shared between or unique to schizophrenia
patients and healthy controls. Neuroimage Clin. 15, 761–768. doi: 10.1016/j.nicl.2017.
06.023

Yaesoubi, M., Miller, R. L., and Calhoun, V. D. (2017b). Time-varying spectral
power of resting-state fmri networks reveal cross-frequency dependence in dynamic
connectivity. PLOS ONE, 12, 1–14. doi: 10.1371/journal.pone.0171647

Yang, A. C., Peng, C.-K., andHuang, N. (2018). Causal decomposition in themutual
causation system. Nat. Commun. 9, 3378. doi: 10.1038/s41467-018-05845-7

Frontiers inNeuroscience 11 frontiersin.org


	A method for capturing dynamic spectral coupling in resting fMRI reveals domain-specific patterns in schizophrenia
	1. Introduction
	2. Methods and materials 
	2.1. Participants and preprocessing 
	2.2. Dynamic spectral connectivity
	2.3. Clustering
	2.4. Statistical analysis

	3. Results
	3.1. Cluster size
	3.2. Cell counts

	4. Discussion
	5. Limitations
	6. Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


