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The past 10 years have seen an explosion of approaches that focus on the study of time-resolved change in
functional connectivity (FC). FC characterization among networks at a whole-brain level is frequently termed
functional network connectivity (FNC). Time-resolved or dynamic functional network connectivity (dFNC) fo-
cuses on the estimation of transient, recurring, whole-brain patterns of FNC. While most approaches in this area
have attempted to capture dynamic linear correlation, we are particularly interested in whether explicitly
nonlinear relationships, above and beyond linear, are present and contain unique information. This study thus
proposes an approach to assess explicitly nonlinear dynamic functional network connectivity (EN dFNC) derived
from the relationship among independent component analysis time courses. Linear relationships were removed
at each time point to evaluate, typically ignored, explicitly nonlinear dFNC using normalized mutual information
(NMI). Simulations showed the proposed method estimated explicitly nonlinearity over time, even within
relatively short windows of data. We then, applied our approach on 151 schizophrenia patients, and 163 healthy
controls fMRI data and found three unique, highly structured, mostly long-range, functional states that also
showed significant group differences. In particular, explicitly nonlinear relationships tend to be more widespread
than linear ones. Results also highlighted a state with long range connections to the visual domain, which were
significantly reduced in schizophrenia. Overall, this work suggests that quantifying EN dFNC may provide a
complementary and potentially valuable tool for studying brain function by exposing relevant variation that is
typically ignored.

1. Introduction 2011; Bastos and Schoffelen, 2016; Friston, 2011; Sala-Llonch et al.,

2015; van den Heuvel and Hulshoff Pol, 2010).

Functional connectivity (FC) and its network analog, functional
network connectivity (FNC), are widely used to study whole brain
resting brain function. These methods study the relationship between
time courses (TC) from different brain regions or networks (Allen et al.,
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While most studies attempt to capture linear correlation, though a
few studies have evaluated nonlinear brain activity modeling (Lahaye
et al., 2003; Stam, 2005; Su et al., 2013; Wismidiller et al., 2014). There
are few known reasons to expect observing nonlinearity in brain activity


mailto:motlaghian86@gmail.com
www.sciencedirect.com/science/journal/01650270
https://www.elsevier.com/locate/jneumeth
https://doi.org/10.1016/j.jneumeth.2023.109794
https://doi.org/10.1016/j.jneumeth.2023.109794

S.M. Motlaghian et al.

such as nonlinear effects of hemodynamic responses in fMRI data
(Deneux and Faugeras, 2006; Miller et al., 2001; Obata et al., 2004),
which, crucially, can also vary with time (and location) and changes
from subject to subject (de Zwart et al., 2009). Beyond that, the link
between neural activity and large-scale brain networks as well as that
between networks are extremely complex. Given this there is still
considerable work to be done to study the degree of nonlinearity that
manifests among brain networks. Our prior work in this direction,
identify modular explicitly nonlinear FNC among whole brain networks
(Motlaghian et al., 2021). One of the challenges in studying nonlinearity
is the linear relationship in FNC often dominants the nonlinear de-
pendencies. As a result, approaches that study the overall relationships
(linear + explicitly nonlinear) may not enable us to study the properties
of the nonlinear effects (e.g., are they modular, manipulable). To
address this in our prior work, we canceled the linear relationship and
measured the remaining dependencies (explicitly nonlinear de-
pendencies) using normalized mutual information (NMI) (Motlaghian
et al., 2021).

The work mentioned thus far is focused on static measures of func-
tional connectivity, that is measuring temporal coherence averaged
across the entire experiment. More recent studies have focused on
assessing the dynamics in FNC (dFNC) over time to capture additional
insight into the underlying properties of brain activity with the goal to
reveal how different areas of the brain interact with each other tran-
siently in a time-resolved analysis. One way to approach this is to divide
the time courses into smaller windows and measure the temporal
coherence between signals within each successive window. This method
is known as the sliding window approach (Allen et al., 2014; Hindriks
et al., 2016; Lindquist et al., 2014; Sakoglu et al., 2010) and is widely
used in the field. However, virtually all time-resolved whole brain ap-
proaches have focused on changes in the linear dependencies among
networks or regions.

The current work is motivated by our prior work (Motlaghian et al.,
2021) which identified informative and highly structured explicitly
nonlinear relationships in static FNC. Here, our focus is to extend our
previous approach to study the dynamic of explicitly nonlinear (EN)
dependencies between ICN’s time courses and evaluate the properties of
these relationships. That is, we are interested in studying the dynamic
nonlinear information above and beyond the linear effects, i.e., what is
typically ignored in a dynamic linear analysis. We first propose an
approach to capture explicitly nonlinear information by removing the
linear relationships identified within a sliding window approach, then
analyzing the residual, explicitly nonlinear relationships, using
normalized mutual information (NMI). To find the appropriate size that
suits the sliding window approach, we first show our approach works
well within simulated data, including the estimation of NMI over rela-
tively short windows of time. For real fMRI data, we extract the transient
nonlinear patterns of FNC and then we evaluate whether these activities
show meaningful differences in controls (HC) and patients with
schizophrenia (SZ). We present the approach in Section 2.3, then
demonstrate it via simulation in Section 2.4. Section 2.5 explained how
the proposed method is applied to resting-state fMRI data, including 163
controls and 151 patients. We also compute the linear dFNC and analyze
the combination of linear and explicitly nonlinear dFNC findings in
Section 2.6. Beyond this, we also validate the results on independent
subsets of data to evaluate the replicability of the result. We performed
our approach on random subsets of size 100 and 150 (each had 50% HC)
individuals to evaluate stability. This assessment shows that state pat-
terns and group effects are consistent and homogenous regardless of the
order of subjects and sample subset.

Results showed three distinctive and highly structured EN dynamic
states. Several evaluations, such as fractional occupancy, dwell time are
performed to study how brain contributes to each state (Section 3.2).
The interpretation of these analyses indicates a high level of linear and
nonlinear dependency coefficients within and between networks in
controls compared to individuals with schizophrenia. We also find
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significant differences in the concurrence of the linear and explicitly
nonlinear states, again highlighting the importance of capturing such,
typically ignored, information.

2. Materials and methods

2.1. Quantifying explicitly nonlinear dependency via a normalized mutual
information approach

The main aim of this work is to estimate the dynamic of EN de-
pendencies among ICNs, using a sliding window analysis approach
(Allen et al., 2014; Hutchison et al., 2013; Hutchison et al., 2013; Saha
et al., 2020). For each pair x and y of ICNs, we first estimate the linear
correlation measured by a linear model y = ax + f, where ¥y is the best
linear fit predicting y given x, a is the slope and f is the vertical intercept.
Next, the linear effect is removed by calculating z =y —y. Then de-
pendencies between x and z is measured by normalized mutual infor-
mation (NMI). There are multiple options to standardize the mutual
information, as (Kvalseth, 2017) discussed: 1) min(H(x), H(y)), 2) H(x)
+ H(y), and 3) max(H(x), H(y)). We employ the latter that is also a
(normalized) similarity metric (Horibe, 1985). The formula we use for
calculating the value of NMI is

H(x) + H(z) — H(x, z)
max[H(x),H(z)] ’

NMI(x,z) =

where H(x) and, H(z) are marginal entropies and H(x,z) is the joint
entropy. The NMI measurement can have values between 0 and 1, if it
has a value of 0 this means there is no dependency between x and z, and
1 indicates an absolute dependence of two variables.

We apply the same method for assessing the EN dFNC. Let x, and
yrepresent samples of x and y in the window t. Then by linear regression
¥, = %X, + P, we estimate linear relation between x, and y,.Next, the
linear effect is removed by calculating z, =y, — ¥,. Lastly, dependencies
between x, and z, is measured by NMI. Swapping x, and y, may result in a
slightly different value. Thus, we consider the average of both results to
ensure symmetry.

2.2. Simulated experiment

The length of the sliding window (number of time points in the
window) needed to be wide enough to ensure a reliable estimation of
nonlinear dependencies. This size is selected by measuring dependencies
in simulated data by NMI. The length was determined using a criterion
where NMI can successfully distinguish nonlinear dependency from
linear dependency. The impact of the type of the relationship and the
number of sample points on NMI are studied in this simulation.

Our focus for the type was on linear and nonlinear dependencies. To
do so, we modeled three types of relationships. We created a vector x of
size 1000 x 1 where its components are generated from a random uni-
form distribution on [0 1], for three cases as follows:

I: Vector y; has a purely linear relationship with x.

II: Vector y, has a quadratic relationship and no linear correlation
with x. That is x and y, have only a nonlinear dependency.

III: Vector y; has a combination of linear and nonlinear correlation
with x.

Gaussian noise of zero mean is added to each equation and plotted in
Fig. 1.

We need to ensure the NMI estimation is robust because we are using
windowed NMI, which involves a smaller number of time points. To
study the impact of the number of data points in the NMI estimation, in
each case, we took sample points x; and y; of size 35, 50, 75, 100 and
measured their relationship before and after removing linear correla-
tion. The dependency before removing linear correlation is represented
as MI;, and dependence after removing linear correlation is measured
and represented by MI, (Table 1).
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Fig. 1. Three simulations to display linear-only, explicitly nonlinear and linear+nonlinear relationship between two vectors. Vector x is randomly derived from a
uniform distribution [0 1]. From left to right, Case I, y; = 2x +¢ exhibits an example of a linear-only relationship between x andy;. In Case II, y, = 5(x — 0.5) +¢

which represents an example of an explicitly nonlinear relationship between x andy,. Case III, y5 = 5(x — 0.5)> 4+2x -+& shows a combination of linear and nonlinear
relationships between x and ys. Noise ¢ is a Gaussian distribution with a mean of zero.

Table 1

Assessing NMI performance on several samples with 35, 50, 75, and 100 elements in each set for linear-only, explicitly nonlinear, and combination dependencies.
Normalized mutual information (NMI) applied on the simulatetion cases represented in Fig. 1. NMI; denotes the dependence before linear relationship removal, and
NMI, represents dependency after linear relationship removal. As the number of sample points gets smaller, the result goes further from ground truth, but the dif-
ferences between before and after linear removal are still distinguishable. The difference between NMI; and NMI,, and whether these values are near zero is one the
identofier of the relationship type.

T=235 T =50 T=75 T =100 T = 10,000 (ground truth)
Casel:y; =2x +¢& NMI; = 0.2399 NMI; = 0.2765 NMI,; = 0.2875 NMI; = 0.3183 NMI; = 0.3305
(Linear-only relationship) NMI, = 0.0088 NMI,; = 0.0276 NMI, = 0.0206 NMI, = 0.0133 NMI, = 0.0127
NMI; > > NMIx~ 0
Casell: y, = 5(x—0.5)” +¢ NMI; = 0.1211 NMI; = 0.1633 NMI; = 0.1515 NMI; = 0.1754 NMI; = 0.2404
(Explicitly Nonlinear relationship) NMI, = 0.1216 NMI, = 0.1591 NMI, = 0.1535 NMI, = 0.1758 NMI, = 0.2402
NMI; ~NMI,
Case Il y; = 5(x —0.5)> + 2x + ¢ NMI; = 0.1558 NMI; = 0.1748 NMI; = 0.2431 NMI; = 0.2419 NMI; = 0.3001
(Linear and Nonlinear relationships) NMI,, = 0.1176 NMI, = 0.1385 NMI, = 0.1606 NMI,, = 0.1777 NMI, = 0.2357

NMI; > NMI,# 0

2.3. Participants and preprocessing

We used the fBIRN dataset analyzed previously used in (Damaraju
et al.). The final curated dataset consisted of 163 healthy participants
(mean age 36.9, 117 males; 46 females) and 151 age- and gender-
matched patients with schizophrenia (mean age 37.8; 114 males, 37
females). Eyes-closed rsfMRI data were collected at seven sites across the
United States (Keator et al., 2016). Informed consent was obtained from
all subjects before scanning by the Internal Review Boards of affiliated
institutions. Imaging data of one site was captured on a 3-Tesla General
Electric Discovery MR750 scanner, and the rest of the six sites were
collected on 3-Tesla Siemens Tim Trio scanners. Resting-state fMRI
(rsfMRI) scans were acquired using a standard gradient-echo echo-pla-
nar imaging paradigm: FOV of 220 x 220 mm (64 x 64 matrices), TR
=2s, TE =30 ms, FA =770, 162 volumes, 32 sequential ascending
axial slices of 4 mm thickness and 1 mm skip.

Data preprocessed by using several toolboxes such as AFNI, SPM,
GIFT. Rigid body motion correction was applied using the INRIAlign
(Freire and Mangin, 2001) toolbox in SPM to correct head motion. To
remove the outliers, the AFNI3s 3dDespike algorithm was performed.
The rsfMRI data were resampled to 3 mm® isotropic voxels. Then data
were smoothed to 6 mm full width at half maximum (FWHM) using
AFNI3s BlurToFWHM algorithm, and each voxel time course was vari-
ance normalized. Subjects with larger movements were excluded from
the analysis to mitigate motion effects during the curation process.

2.4. ICA Analysis

The group ICA of fMRI toolbox (GIFT, http://trendscenter.org/

software/gift) implementation of Group-level Spatial ICA was used to
estimate intrinsic connectivity networks (ICNs). A subject-specific data
reduction step was first used to reduce 162 time point data into 100
directions of maximal variability using principal component analysis.
After PCA, the infomax approach (Bell and Sejnowski, 1995) was used to
estimate 100 maximally independent components from the group PCA
reduced matrix. To ensure the stability of the estimation, the ICA algo-
rithm was repeated 20 times, and the most central run was selected as
representative (Du et al., 2014). Subject-specific spatial maps (SMs) and
time courses (TCs) were obtained using the spatiotemporal regression
back reconstruction approach (Calhoun et al., 2001; Erhardt et al.,
2011) implemented in the GIFT software.

To label the components, regions of peak activation for each specific
spatial map were obtained. After ICA processing, to acquire regions of
peak activation, one sample t-test maps are taken for each SM across all
subjects and then thresholded; also, mean power spectra of the corre-
sponding TCs were computed. An independent component was identi-
fied as an intrinsic connectivity network (ICN) if its peak activation fell
within gray matter and has low spatial overlap with known vascular,
susceptibility, ventricular, and edge components corresponding to head
motion. This results in 47 ICNs out of the 100 independent components.

The ICN time courses were detrended by removing linear, quadratic,
and cubic trends and orthogonalized with respect to estimated subject
motion parameters. Spikes were detected by AFNI3s 3dDespike algo-
rithm and replaced by values of third-order spline fit. For more detail see
(Allen et al., 2012; Damaraju et al., 2014). The fBIRN dataset obtained
after processing resulted in a matrix of 159 time points x 47 ICNs x 314
subjects, including 163 Control and 151 SZ subjects. For more details,
please see (Damaraju et al.).
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2.5. Quantifying (Explicitly Nonlinear) dynamic connectivity in fMRI
data

We compared HCs and SZs’ states of dynamic functional connectivity
(dFNC), using both linear (Pearson correlation) and nonlinear (NMI
approach as described in Section 0) dependencies. There are 47 ICN time
courses of length 159 time points for each subject. From each time
course x, a set of sliding windows x,, each of length 50 time points, is
derived, that is 110 windows in total. To obtain linear dFNC, Pearson
correlation between x; and y, is evaluated and resulted to 110 symmetric
windowed-FNC matrices per individual. To quantify EN dFNC, for each
t, the nonlinear dependency of pairs (x, y,) are evaluated as described in
Section 2.1, the linear dependency between x; and y, removed and then
residual dependency is calculated by NMI. This procedure also resulted
in 110 symmetric windowed-FNC matrices for each subject (Fig. 2).

We applied the k-means clustering method (using correlation dis-
tance) to obtain states for linear and nonlinear dFNC for cluster sizes of
k = 2-10. The optimal number of distinct 3 dFNC states was estimated
by conducting the elbow method. Final states are achieved by 100
repetitions, as shown in Fig. 3.

After obtaining states, we assessed the group differences. Several
quantities are computed at the level of individual’s window set and their
corresponding K-means indices:

1) Fractional Occupancy (FO)- the percentage of overall time spent
in each state.

2) Dwell Time (DT)- average duration of time spent in each state.

Next, we compute a two-sample t-test to compare the differences of
these results between controls and schizophrenia patients.

2.6. Relation between linear and nonlinear states

The purpose of this section is to validate the relationship between the
three linear and nonlinear states. We first calculated contingency table
of simultaneously being in each pair of states for all individuals and then
separated the HC’s frequencies from SZ. The chi-square test rejects the
null hypothesis that the linear and nonlinear dFNC’s states are inde-
pendent (likewise in HC and SZ).

To further evaluate the group differences between the linear and
nonlinear state vectors, a contingency table is computed for everyone.
Then for each pair of linear and nonlinear states (9 pairs), the differences
between HC and SZ are compared by a two-sample t-test.
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3. Results
3.1. Simulated experiment

We examined 35, 50, 75, and 100 sample points on simulated data to
find an applicable window length that captures nonlinear dependency
by implementing the NMI method (Table 1).

In this work, we select 50-time points (100 s) from the result on
simulation data (Table 1). This selection is based on two factors. The
outcome of using sliding window analysis is sensitive to the length of the
sliding window; the length most commonly used in prior studies is be-
tween 30 s and 60 s (Allen et al., 2014; Damaraju et al., 2014; Leonardi
and Van De Ville, 2015), and in some cases longer (Leonardi and Van De
Ville, 2015; Vergara et al., 2019). The other factor to consider is how
small this length can be chosen. A small window size may make it
difficult to accurately estimate the nonlinearity. The NMI performance
on various sample points in Table 1 shows that by taking 50 sample
points, NMI can successfully distinguish between the linear-only,
explicitly nonlinear and combination relationships as the difference
between NMI; and NMI, are preserved for each case.

3.2. Results from fMRI data

We measured linear and EN dynamic functional connectivity
network (dFNC) of 163 healthy controls and 151 schizophrenia patients.
The implementation of sliding window analysis and k-means clustering
resulted in three states for each linear and nonlinear dFNC. Fig. 3 shows
dFNC states and their connectograms for better visualization of the na-
ture of each state.

T-tests were used to identify group differences in several quantities of
each linear and nonlinear states between controls and schizophrenic
patients. The average fraction occupancy (FO) across healthy controls
and schizophrenic patients of each state is calculated and listed in
Table 2. The average dwell time (DT) across healthy controls and
schizophrenic patients of each state is calculated and reported in
Table 3.

Linear states show a high level of positive correlation within net-
works, and correlation between other networks fluctuates between
negative and positive in each linear state. The graphical representations
of linear dFNC states show dense interconnectivity within clusters but
sparse (or negative in directed graphs) connections between nodes in
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Fig. 2. An overview of the linear and explicitly nonlinear dynamic FNC process. To achieve dFNC states, we took the following steps: 1) Group independent
component analysis (ICA) is used to decompose resting-state data from 314 subjects into 100 components, 47 of which are identified as intrinsic connectivity
networks (ICNs). Subject-specific spatial maps (SMs) and time courses (TCs) are estimated by the spatiotemporal regression back reconstruction method. 2) Sliding
windows of length 50 time points are taken for each subject. 3) (Linear) Dynamic FNC is analyzed. First, the correlation matrices from subject’s TCs windows are
assessed. Then the matrices are aggregated across all subjects and clustered by k-means clustering. Lastly, to probe the group differences between HC and SZ states
are performed. 4) Nonlinear dynamic FNC is analyzed. Steps are identical as (3) except that linear correlation is removed for each window, and the remaining
explicitly nonlinear dependencies are assessed by NMI before concatenating step.
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A. Linear dFNC States
State 1 State 2 State 3
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B. Explicitly Nonlinear dFNC States
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Fig. 3. Linear and explicitly nonlinear states are acquired from the K-means clustering approach for k = 3. Linear and explicitly nonlinear states demonstrate a
structured and distinctive contribution in and between networks. The rows of dFNC matrices were partitioned into sub-cortical (SC), auditory (AUD), visual (VIS),
sensori-motor (SM), a broad set of regions involved in cognitive control (CC) and attention, default-mode network (DMN) regions, and cerebellar (CB) components.
Note that the magnitudes are not the same for states. A) States achieved from clustering windows’ Pearson correlation of ICNs. The connectograms are thresholded at
0.3. State 2 shows a clear structure with heist magnitude in correlation while state 3 is less structured and shows a lower magnitude of correlation. B) States derived
from clustering windows’ explicitly nonlinear dependencies of ICN’s. The connectograms are scaled by 1: 0.01 and thresholded at 0.025. Unlike linear states, the
structure of explicitly nonlinear states are unique for each states and exhibits a ‘star like’ pattern.
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Table 2
Fraction Occupancy of HC and SZ in linear and nonlinear dFNC. All linear states
and nonlinear state 1 and 3 show highly significant group differences.

Fraction Occupancy of HC and SZ in Linear dFNC State

State 1 State 2 State 3
Average across HC %30 %43 %27
Average across SZ %14 %21 %65
p-value 6.5383 x 10°° 2.5613 x 107 1.7319 x 1014

Fraction Occupancy of HC and SZ in Nonlinear dFNC

State 1 State 2 State 3
Average across HC %22 %30 %49
Average across SZ %34 %37 %29
p-value 1.2635 x 10 0.0425 7.3181 x 10
Table 3

Statical analysis of dwell time for linear and nonlinear states in HC and SZ. SZ
spends significantly longer in linear state 3.

Dwell Time for HC and SZ in Linear dFNC State

State 1 State 2 State 3
Average across HC 54.69 59.08 68.35
Average across SZ 42.16 47.41 151.98
p-value 0.0177 0.0310 5.096 x 1072
Dwell Time for HC and SZ in Nonlinear dFNC

State 1 State 2 State 3

Average across HC 13.15 12.98 19.52
Average across SZ 17.72 18.23 15.60
p-value 0.0147 0.0051 0.03244

different clusters. State 1 (L.1) shows a considerable level of correlation
within SC, AUD, VIS, SM, CC, DM networks, and between AUD, VIS, SM
networks. However, State 2 (L2) shows a uniformly negative correlation
between (AUD, VIS, SM) sets of networks and (CC) but a high level of
positive correlation within networks and between AUD, VIS, and SM.
State 3 (L3) shows a noticeably smaller range of correlation among all
networks.

In the nonlinear dFNC states, we observe a high level of explicitly
nonlinear dependencies within a specific network that contributes with
broadly all other ICNs. Analogous graphical representations of states 2
and 3 are close to a star graph where only the center node is connected to
other nodes. State 1 (NL1) shows high EN dependency in SM and CC
(based on the connectogram). State 2 (NL2) shows the EN dependency
between DM and other networks, and State 3 (NL3) signifies substantial
EN dependencies within VIS and SM and between other networks.

As it is shown in Table 2 and Table 3, HCs spend more time in the VIS
and SM system (linear state 2 and nonlinear state 3) compared to pa-
tients that spend more frequently and longer in a low range of correla-
tion (linear state 3) in SM, CC and DM networks (nonlinear state 1 and 2)
where VIS network’s EN dependency has almost vanished.

With this view in Fig. 5, HCs tend to spend longer with a higher
probability to EN state 3, which has higher explicitly nonlinear de-
pendencies in VIS and SM. SZ spends longer in higher EN dependency of
DM (state 2). The average fraction occupancy for SZ in three explicitly
nonlinear states is close to equal, while HC are comparably distributed
uniformly. Unlike EN states, the average fraction occupancy of SZ is
much higher in linear state 3.

4. Discussion

Dynamic FNC provides a more natural way to analyze uncontrolled
resting fMRI data and provide additional insight into brain activity
(Hindriks et al., 2016; Hutchison et al., 2013). However, virtually all
research in this area, at least at the whole brain/connectome level, has
focused on the linear correlation among time courses (Allen et al., 2012;
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Damaraju et al., 2014; Hutchison et al., 2013; Obata et al., 2004).
However, there is considerable evidence of nonlinearity in fMRI data (de
Zwart et al., 2009; Sheth et al., 2004; Wan et al., 2006), though very
little work has focused on studying the properties of the nonlinear effects
after accounting for the largely dominant linear effects. Given that, in
this work, we focus on the dynamics of explicitly nonlinear dependency
among brain regions.

We measured explicitly nonlinear dFNC and dFNC between TCs
obtained from processed fMRI data collected from HC and SZ in this
work. Using a k-means classifier, each set of concatenated windows of
either Pearson correlation or explicitly nonlinear dependencies are
grouped into three integrated patterns of linear dFNC and explicitly
nonlinear dFNC (Fig. 3). These states are analyzed, and the differences
between HC and SZ in each linear and EN state are compared and
studied.

Results suggest that EN states and linear states complement each
other as their behavior has basic differences. For example, the average
EN dwell time is considerably shorter than the linear dwell time (Fig. 5).
These unique aspects can also be observed in the average fraction
occupancy.

In the linear states, we observe a strong positive correlation within
networks such as (SC), (AUD, VIS, and SM), (CC), (DM), and (CB). For
the relation between these networks, it is noted that the correlation
swings between negative and positive in each linear state (Fig. 3). Linear
state 2 shows a sharp, clear, and intense pattern in terms of correlation
between the networks. This pattern fades as moving to linear state 1 and
becomes lowest in linear state 3.

For the explicitly nonlinear dFNC states, we measured NMI after
removing linear correlation at each window. NMI takes values between
0 and 1. So, we lose the positivity and negativity interpretation here.
Multi-network connections were observed in the EN compared to linear
dFNC, one predominantly SM (with less but considerable level within CC
and DM), one predominantly DM, one predominantly VIS and SM.

Our results (Fig. 4, Fig. 5) indicate that HC tend to have a high level
of linear and EN dependencies (linear state 1, 2, and nonlinear state 3).
At the same time, SZ tend to stay not only in a lower level of de-
pendencies overall brain networks (linear state 3) but also in the absence
of EN dependency in the VIS network (nonlinear state 1 and 2). How-
ever, SZ tend to have higher EN dependencies in CC and DM than HC.

These results agree with our earlier findings in evaluating (static) EN
FNC (Motlaghian et al., 2021), which indicated significant differences in
EN dependencies within and between AUD, VIS, CC, and DM networks
in HC and SZ over the entire run. Studying explicitly nonlinear de-
pendencies in dynamic FNC helps unpack the informative structure of
how temporally VIS and AUD networks are more active and CC is less
involved in HC.

We also analyzed the relationship between fraction occupancy, dwell
time of EN states, and symptoms of SZs, and didn’t find a significant
relationship.

A minor change that would make measuring explicitly nonlinearity
more accurate, is the approach for canceling the linear relationship. The
best line of fit is not the same when dependent and independent factors
switch in linear regression model. Thus, measuring explicitly nonlinear
dependencies by canceling linear regression is not symmetric. However,
the preference is for being symmetric because we expect to observe the
same amount of dependency regardless of the order of inputs. In this
work, we found the difference of switching dependent and independent
factor to be neglectable, so we addressed non symmetry by taking the
average of two results. One can improve the estimation by implementing
symmetric linear regression or similar method. Another limitation of
using NMI is that the interpretation of positivity and negativity is missed
compared to correlation (nonlinear relationships do not always have an
interpretable slope as in a linear relationship).

For future work, more investigation of the impact of the window size
on the sliding window analysis may drive more information about the
dynamic states. The simulation demonstrated NMI showed good
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values from comparing HC-SZ. Significant level indicated by red pointer for alpha= 0.05. HCs are observed significantly more in pairs (2,3) and (1,3), while SZs tend

to be in (3,1) and (3,2) of linear-nonlinear states.

performance before and after removing the linear correlation with as
few as 35 sample points. In our work, we used 50 time points which can
be reduced without losing the NMI sensibility. It would also be inter-
esting to utilize a filter bank approach to cover a larger range of window
sizes/frequencies (Faghiri et al., 2021).
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