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A B S T R A C T   

The past 10 years have seen an explosion of approaches that focus on the study of time-resolved change in 
functional connectivity (FC). FC characterization among networks at a whole-brain level is frequently termed 
functional network connectivity (FNC). Time-resolved or dynamic functional network connectivity (dFNC) fo-
cuses on the estimation of transient, recurring, whole-brain patterns of FNC. While most approaches in this area 
have attempted to capture dynamic linear correlation, we are particularly interested in whether explicitly 
nonlinear relationships, above and beyond linear, are present and contain unique information. This study thus 
proposes an approach to assess explicitly nonlinear dynamic functional network connectivity (EN dFNC) derived 
from the relationship among independent component analysis time courses. Linear relationships were removed 
at each time point to evaluate, typically ignored, explicitly nonlinear dFNC using normalized mutual information 
(NMI). Simulations showed the proposed method estimated explicitly nonlinearity over time, even within 
relatively short windows of data. We then, applied our approach on 151 schizophrenia patients, and 163 healthy 
controls fMRI data and found three unique, highly structured, mostly long-range, functional states that also 
showed signi昀椀cant group differences. In particular, explicitly nonlinear relationships tend to be more widespread 
than linear ones. Results also highlighted a state with long range connections to the visual domain, which were 
signi昀椀cantly reduced in schizophrenia. Overall, this work suggests that quantifying EN dFNC may provide a 
complementary and potentially valuable tool for studying brain function by exposing relevant variation that is 
typically ignored.   

1. Introduction 

Functional connectivity (FC) and its network analog, functional 
network connectivity (FNC), are widely used to study whole brain 
resting brain function. These methods study the relationship between 
time courses (TC) from different brain regions or networks (Allen et al., 

2011; Bastos and Schoffelen, 2016; Friston, 2011; Sala-Llonch et al., 
2015; van den Heuvel and Hulshoff Pol, 2010). 

While most studies attempt to capture linear correlation, though a 
few studies have evaluated nonlinear brain activity modeling (Lahaye 
et al., 2003; Stam, 2005; Su et al., 2013; Wismüller et al., 2014). There 
are few known reasons to expect observing nonlinearity in brain activity 
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such as nonlinear effects of hemodynamic responses in fMRI data 
(Deneux and Faugeras, 2006; Miller et al., 2001; Obata et al., 2004), 
which, crucially, can also vary with time (and location) and changes 
from subject to subject (de Zwart et al., 2009). Beyond that, the link 
between neural activity and large-scale brain networks as well as that 
between networks are extremely complex. Given this there is still 
considerable work to be done to study the degree of nonlinearity that 
manifests among brain networks. Our prior work in this direction, 
identify modular explicitly nonlinear FNC among whole brain networks 
(Motlaghian et al., 2021). One of the challenges in studying nonlinearity 
is the linear relationship in FNC often dominants the nonlinear de-
pendencies. As a result, approaches that study the overall relationships 
(linear + explicitly nonlinear) may not enable us to study the properties 
of the nonlinear effects (e.g., are they modular, manipulable). To 
address this in our prior work, we canceled the linear relationship and 
measured the remaining dependencies (explicitly nonlinear de-
pendencies) using normalized mutual information (NMI) (Motlaghian 
et al., 2021). 

The work mentioned thus far is focused on static measures of func-
tional connectivity, that is measuring temporal coherence averaged 
across the entire experiment. More recent studies have focused on 
assessing the dynamics in FNC (dFNC) over time to capture additional 
insight into the underlying properties of brain activity with the goal to 
reveal how different areas of the brain interact with each other tran-
siently in a time-resolved analysis. One way to approach this is to divide 
the time courses into smaller windows and measure the temporal 
coherence between signals within each successive window. This method 
is known as the sliding window approach (Allen et al., 2014; Hindriks 
et al., 2016; Lindquist et al., 2014; SakoÚglu et al., 2010) and is widely 
used in the 昀椀eld. However, virtually all time-resolved whole brain ap-
proaches have focused on changes in the linear dependencies among 
networks or regions. 

The current work is motivated by our prior work (Motlaghian et al., 
2021) which identi昀椀ed informative and highly structured explicitly 
nonlinear relationships in static FNC. Here, our focus is to extend our 
previous approach to study the dynamic of explicitly nonlinear (EN) 
dependencies between ICN’s time courses and evaluate the properties of 
these relationships. That is, we are interested in studying the dynamic 
nonlinear information above and beyond the linear effects, i.e., what is 
typically ignored in a dynamic linear analysis. We 昀椀rst propose an 
approach to capture explicitly nonlinear information by removing the 
linear relationships identi昀椀ed within a sliding window approach, then 
analyzing the residual, explicitly nonlinear relationships, using 
normalized mutual information (NMI). To 昀椀nd the appropriate size that 
suits the sliding window approach, we 昀椀rst show our approach works 
well within simulated data, including the estimation of NMI over rela-
tively short windows of time. For real fMRI data, we extract the transient 
nonlinear patterns of FNC and then we evaluate whether these activities 
show meaningful differences in controls (HC) and patients with 
schizophrenia (SZ). We present the approach in Section 2.3, then 
demonstrate it via simulation in Section 2.4. Section 2.5 explained how 
the proposed method is applied to resting-state fMRI data, including 163 
controls and 151 patients. We also compute the linear dFNC and analyze 
the combination of linear and explicitly nonlinear dFNC 昀椀ndings in 
Section 2.6. Beyond this, we also validate the results on independent 
subsets of data to evaluate the replicability of the result. We performed 
our approach on random subsets of size 100 and 150 (each had 50% HC) 
individuals to evaluate stability. This assessment shows that state pat-
terns and group effects are consistent and homogenous regardless of the 
order of subjects and sample subset. 

Results showed three distinctive and highly structured EN dynamic 
states. Several evaluations, such as fractional occupancy, dwell time are 
performed to study how brain contributes to each state (Section 3.2). 
The interpretation of these analyses indicates a high level of linear and 
nonlinear dependency coef昀椀cients within and between networks in 
controls compared to individuals with schizophrenia. We also 昀椀nd 

signi昀椀cant differences in the concurrence of the linear and explicitly 
nonlinear states, again highlighting the importance of capturing such, 
typically ignored, information. 

2. Materials and methods 

2.1. Quantifying explicitly nonlinear dependency via a normalized mutual 
information approach 

The main aim of this work is to estimate the dynamic of EN de-
pendencies among ICNs, using a sliding window analysis approach 
(Allen et al., 2014; Hutchison et al., 2013; Hutchison et al., 2013; Saha 
et al., 2020). For each pair x and y of ICNs, we 昀椀rst estimate the linear 
correlation measured by a linear model y = αx + β, where y is the best 
linear 昀椀t predicting y given x, α is the slope and β is the vertical intercept. 
Next, the linear effect is removed by calculating z = y−y. Then de-
pendencies between x and z is measured by normalized mutual infor-
mation (NMI). There are multiple options to standardize the mutual 
information, as (Kvalseth, 2017) discussed: 1) min(H(x), H(y)), 2) H(x) 
+ H(y), and 3) max(H(x), H(y)). We employ the latter that is also a 
(normalized) similarity metric (Horibe, 1985). The formula we use for 
calculating the value of NMI is 

NMI(x, z) =
H(x) + H(z) − H(x, z)

max[H(x),H(z)]
,

where H(x) and, H(z) are marginal entropies and H(x, z) is the joint 
entropy. The NMI measurement can have values between 0 and 1, if it 
has a value of 0 this means there is no dependency between x and z, and 
1 indicates an absolute dependence of two variables. 

We apply the same method for assessing the EN dFNC. Let xt and 
ytrepresent samples of x and y in the window t. Then by linear regression 
yt = αtxt + βt, we estimate linear relation between xt and yt.Next, the 
linear effect is removed by calculating zt = yt − yt. Lastly, dependencies 
between xt and zt is measured by NMI. Swapping xt and yt may result in a 
slightly different value. Thus, we consider the average of both results to 
ensure symmetry. 

2.2. Simulated experiment 

The length of the sliding window (number of time points in the 
window) needed to be wide enough to ensure a reliable estimation of 
nonlinear dependencies. This size is selected by measuring dependencies 
in simulated data by NMI. The length was determined using a criterion 
where NMI can successfully distinguish nonlinear dependency from 
linear dependency. The impact of the type of the relationship and the 
number of sample points on NMI are studied in this simulation. 

Our focus for the type was on linear and nonlinear dependencies. To 
do so, we modeled three types of relationships. We created a vector x of 
size 1000 × 1 where its components are generated from a random uni-
form distribution on [0 1], for three cases as follows: 

I: Vector y1 has a purely linear relationship with x. 
II: Vector y2 has a quadratic relationship and no linear correlation 

with x. That is x and y2 have only a nonlinear dependency. 
III: Vector y3 has a combination of linear and nonlinear correlation 

with x. 
Gaussian noise of zero mean is added to each equation and plotted in  

Fig. 1. 
We need to ensure the NMI estimation is robust because we are using 

windowed NMI, which involves a smaller number of time points. To 
study the impact of the number of data points in the NMI estimation, in 
each case, we took sample points xi and yi of size 35, 50, 75, 100 and 
measured their relationship before and after removing linear correla-
tion. The dependency before removing linear correlation is represented 
as MI1, and dependence after removing linear correlation is measured 
and represented by MI2 (Table 1). 
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2.3. Participants and preprocessing 

We used the fBIRN dataset analyzed previously used in (Damaraju 
et al.). The 昀椀nal curated dataset consisted of 163 healthy participants 
(mean age 36.9, 117 males; 46 females) and 151 age- and gender- 
matched patients with schizophrenia (mean age 37.8; 114 males, 37 
females). Eyes-closed rsfMRI data were collected at seven sites across the 
United States (Keator et al., 2016). Informed consent was obtained from 
all subjects before scanning by the Internal Review Boards of af昀椀liated 
institutions. Imaging data of one site was captured on a 3-Tesla General 
Electric Discovery MR750 scanner, and the rest of the six sites were 
collected on 3-Tesla Siemens Tim Trio scanners. Resting-state fMRI 
(rsfMRI) scans were acquired using a standard gradient-echo echo-pla-
nar imaging paradigm: FOV of 220 × 220 mm (64 × 64 matrices), TR 
= 2 s, TE = 30 ms, FA = 770, 162 volumes, 32 sequential ascending 
axial slices of 4 mm thickness and 1 mm skip. 

Data preprocessed by using several toolboxes such as AFNI, SPM, 
GIFT. Rigid body motion correction was applied using the INRIAlign 
(Freire and Mangin, 2001) toolbox in SPM to correct head motion. To 
remove the outliers, the AFNI3s 3dDespike algorithm was performed. 
The rsfMRI data were resampled to 3 mm3 isotropic voxels. Then data 
were smoothed to 6 mm full width at half maximum (FWHM) using 
AFNI3s BlurToFWHM algorithm, and each voxel time course was vari-
ance normalized. Subjects with larger movements were excluded from 
the analysis to mitigate motion effects during the curation process. 

2.4. ICA Analysis 

The group ICA of fMRI toolbox (GIFT, http://trendscenter.org/ 

software/gift) implementation of Group-level Spatial ICA was used to 
estimate intrinsic connectivity networks (ICNs). A subject-speci昀椀c data 
reduction step was 昀椀rst used to reduce 162 time point data into 100 
directions of maximal variability using principal component analysis. 
After PCA, the infomax approach (Bell and Sejnowski, 1995) was used to 
estimate 100 maximally independent components from the group PCA 
reduced matrix. To ensure the stability of the estimation, the ICA algo-
rithm was repeated 20 times, and the most central run was selected as 
representative (Du et al., 2014). Subject-speci昀椀c spatial maps (SMs) and 
time courses (TCs) were obtained using the spatiotemporal regression 
back reconstruction approach (Calhoun et al., 2001; Erhardt et al., 
2011) implemented in the GIFT software. 

To label the components, regions of peak activation for each speci昀椀c 
spatial map were obtained. After ICA processing, to acquire regions of 
peak activation, one sample t-test maps are taken for each SM across all 
subjects and then thresholded; also, mean power spectra of the corre-
sponding TCs were computed. An independent component was identi-
昀椀ed as an intrinsic connectivity network (ICN) if its peak activation fell 
within gray matter and has low spatial overlap with known vascular, 
susceptibility, ventricular, and edge components corresponding to head 
motion. This results in 47 ICNs out of the 100 independent components. 

The ICN time courses were detrended by removing linear, quadratic, 
and cubic trends and orthogonalized with respect to estimated subject 
motion parameters. Spikes were detected by AFNI3s 3dDespike algo-
rithm and replaced by values of third-order spline 昀椀t. For more detail see 
(Allen et al., 2012; Damaraju et al., 2014). The fBIRN dataset obtained 
after processing resulted in a matrix of 159 time points × 47 ICNs × 314 
subjects, including 163 Control and 151 SZ subjects. For more details, 
please see (Damaraju et al.). 

Fig. 1. Three simulations to display linear-only, explicitly nonlinear and linear+nonlinear relationship between two vectors. Vector x is randomly derived from a 
uniform distribution [0 1]. From left to right, Case I, y1 = 2x+ε exhibits an example of a linear-only relationship between x andy1. In Case II, y2 = 5(x − 0.5)2 +ε 

which represents an example of an explicitly nonlinear relationship between x andy2. Case III, y3 = 5(x − 0.5)2 +2x+ε shows a combination of linear and nonlinear 
relationships between x and y3. Noise ε is a Gaussian distribution with a mean of zero. 

Table 1 
Assessing NMI performance on several samples with 35, 50, 75, and 100 elements in each set for linear-only, explicitly nonlinear, and combination dependencies. 
Normalized mutual information (NMI) applied on the simulatetion cases represented in Fig. 1. NMI1 denotes the dependence before linear relationship removal, and 
NMI2 represents dependency after linear relationship removal. As the number of sample points gets smaller, the result goes further from ground truth, but the dif-
ferences between before and after linear removal are still distinguishable. The difference between NMI1 and NMI2, and whether these values are near zero is one the 
idento昀椀er of the relationship type.   

T = 35 T = 50 T = 75 T = 100 T = 10,000 (ground truth) 
Case I: y1 = 2x + ε 

(Linear-only relationship) 
NMI1 = 0.2399 
NMI2 = 0.0088 

NMI1 = 0.2765 
NMI2 = 0.0276 

NMI1 = 0.2875 
NMI2 = 0.0206 

NMI1 = 0.3183 
NMI2 = 0.0133 

NMI1 = 0.3305 
NMI2 = 0.0127 
NMI1 > > NMI2> 0 

Case II: y2 = 5(x − 0.5)2 + ε 

(Explicitly Nonlinear relationship) 
NMI1 = 0.1211 
NMI2 = 0.1216 

NMI1 = 0.1633 
NMI2 = 0.1591 

NMI1 = 0.1515 
NMI2 = 0.1535 

NMI1 = 0.1754 
NMI2 = 0.1758 

NMI1 = 0.2404 
NMI2 = 0.2402 
NMI1>NMI2 

Case III: y3 = 5(x − 0.5)2 + 2x + ε 

(Linear and Nonlinear relationships) 
NMI1 = 0.1558 
NMI2 = 0.1176 

NMI1 = 0.1748 
NMI2 = 0.1385 

NMI1 = 0.2431 
NMI2 = 0.1606 

NMI1 = 0.2419 
NMI2 = 0.1777 

NMI1 = 0.3001 
NMI2 = 0.2357 
NMI1 > NMI27= 0  
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2.5. Quantifying (Explicitly Nonlinear) dynamic connectivity in fMRI 
data 

We compared HCs and SZs’ states of dynamic functional connectivity 
(dFNC), using both linear (Pearson correlation) and nonlinear (NMI 
approach as described in Section 0) dependencies. There are 47 ICN time 
courses of length 159 time points for each subject. From each time 
course x, a set of sliding windows xt, each of length 50 time points, is 
derived, that is 110 windows in total. To obtain linear dFNC, Pearson 
correlation between xt and yt is evaluated and resulted to 110 symmetric 
windowed-FNC matrices per individual. To quantify EN dFNC, for each 
t, the nonlinear dependency of pairs (xt, yt) are evaluated as described in 
Section 2.1, the linear dependency between xt and yt removed and then 
residual dependency is calculated by NMI. This procedure also resulted 
in 110 symmetric windowed-FNC matrices for each subject (Fig. 2). 

We applied the k-means clustering method (using correlation dis-
tance) to obtain states for linear and nonlinear dFNC for cluster sizes of 
k = 2–10. The optimal number of distinct 3 dFNC states was estimated 
by conducting the elbow method. Final states are achieved by 100 
repetitions, as shown in Fig. 3. 

After obtaining states, we assessed the group differences. Several 
quantities are computed at the level of individual’s window set and their 
corresponding K-means indices: 

1) Fractional Occupancy (FO)- the percentage of overall time spent 
in each state. 

2) Dwell Time (DT)- average duration of time spent in each state. 
Next, we compute a two-sample t-test to compare the differences of 

these results between controls and schizophrenia patients. 

2.6. Relation between linear and nonlinear states 

The purpose of this section is to validate the relationship between the 
three linear and nonlinear states. We 昀椀rst calculated contingency table 
of simultaneously being in each pair of states for all individuals and then 
separated the HC’s frequencies from SZ. The chi-square test rejects the 
null hypothesis that the linear and nonlinear dFNC’s states are inde-
pendent (likewise in HC and SZ). 

To further evaluate the group differences between the linear and 
nonlinear state vectors, a contingency table is computed for everyone. 
Then for each pair of linear and nonlinear states (9 pairs), the differences 
between HC and SZ are compared by a two-sample t-test. 

3. Results 

3.1. Simulated experiment 

We examined 35, 50, 75, and 100 sample points on simulated data to 
昀椀nd an applicable window length that captures nonlinear dependency 
by implementing the NMI method (Table 1). 

In this work, we select 50-time points (100 s) from the result on 
simulation data (Table 1). This selection is based on two factors. The 
outcome of using sliding window analysis is sensitive to the length of the 
sliding window; the length most commonly used in prior studies is be-
tween 30 s and 60 s (Allen et al., 2014; Damaraju et al., 2014; Leonardi 
and Van De Ville, 2015), and in some cases longer (Leonardi and Van De 
Ville, 2015; Vergara et al., 2019). The other factor to consider is how 
small this length can be chosen. A small window size may make it 
dif昀椀cult to accurately estimate the nonlinearity. The NMI performance 
on various sample points in Table 1 shows that by taking 50 sample 
points, NMI can successfully distinguish between the linear-only, 
explicitly nonlinear and combination relationships as the difference 
between NMI1 and NMI2 are preserved for each case. 

3.2. Results from fMRI data 

We measured linear and EN dynamic functional connectivity 
network (dFNC) of 163 healthy controls and 151 schizophrenia patients. 
The implementation of sliding window analysis and k-means clustering 
resulted in three states for each linear and nonlinear dFNC. Fig. 3 shows 
dFNC states and their connectograms for better visualization of the na-
ture of each state. 

T-tests were used to identify group differences in several quantities of 
each linear and nonlinear states between controls and schizophrenic 
patients. The average fraction occupancy (FO) across healthy controls 
and schizophrenic patients of each state is calculated and listed in  
Table 2. The average dwell time (DT) across healthy controls and 
schizophrenic patients of each state is calculated and reported in  
Table 3. 

Linear states show a high level of positive correlation within net-
works, and correlation between other networks 昀氀uctuates between 
negative and positive in each linear state. The graphical representations 
of linear dFNC states show dense interconnectivity within clusters but 
sparse (or negative in directed graphs) connections between nodes in 

Fig. 2. An overview of the linear and explicitly nonlinear dynamic FNC process. To achieve dFNC states, we took the following steps: 1) Group independent 
component analysis (ICA) is used to decompose resting-state data from 314 subjects into 100 components, 47 of which are identi昀椀ed as intrinsic connectivity 
networks (ICNs). Subject-speci昀椀c spatial maps (SMs) and time courses (TCs) are estimated by the spatiotemporal regression back reconstruction method. 2) Sliding 
windows of length 50 time points are taken for each subject. 3) (Linear) Dynamic FNC is analyzed. First, the correlation matrices from subject’s TCs windows are 
assessed. Then the matrices are aggregated across all subjects and clustered by k-means clustering. Lastly, to probe the group differences between HC and SZ states 
are performed. 4) Nonlinear dynamic FNC is analyzed. Steps are identical as (3) except that linear correlation is removed for each window, and the remaining 
explicitly nonlinear dependencies are assessed by NMI before concatenating step. 
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Fig. 3. Linear and explicitly nonlinear states are acquired from the K-means clustering approach for k = 3. Linear and explicitly nonlinear states demonstrate a 
structured and distinctive contribution in and between networks. The rows of dFNC matrices were partitioned into sub-cortical (SC), auditory (AUD), visual (VIS), 
sensori-motor (SM), a broad set of regions involved in cognitive control (CC) and attention, default-mode network (DMN) regions, and cerebellar (CB) components. 
Note that the magnitudes are not the same for states. A) States achieved from clustering windows’ Pearson correlation of ICNs. The connectograms are thresholded at 
0.3. State 2 shows a clear structure with heist magnitude in correlation while state 3 is less structured and shows a lower magnitude of correlation. B) States derived 
from clustering windows’ explicitly nonlinear dependencies of ICN’s. The connectograms are scaled by 1: 0.01 and thresholded at 0.025. Unlike linear states, the 
structure of explicitly nonlinear states are unique for each states and exhibits a ‘star like’ pattern. 
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different clusters. State 1 (L1) shows a considerable level of correlation 
within SC, AUD, VIS, SM, CC, DM networks, and between AUD, VIS, SM 
networks. However, State 2 (L2) shows a uniformly negative correlation 
between (AUD, VIS, SM) sets of networks and (CC) but a high level of 
positive correlation within networks and between AUD, VIS, and SM. 
State 3 (L3) shows a noticeably smaller range of correlation among all 
networks. 

In the nonlinear dFNC states, we observe a high level of explicitly 
nonlinear dependencies within a speci昀椀c network that contributes with 
broadly all other ICNs. Analogous graphical representations of states 2 
and 3 are close to a star graph where only the center node is connected to 
other nodes. State 1 (NL1) shows high EN dependency in SM and CC 
(based on the connectogram). State 2 (NL2) shows the EN dependency 
between DM and other networks, and State 3 (NL3) signi昀椀es substantial 
EN dependencies within VIS and SM and between other networks. 

As it is shown in Table 2 and Table 3, HCs spend more time in the VIS 
and SM system (linear state 2 and nonlinear state 3) compared to pa-
tients that spend more frequently and longer in a low range of correla-
tion (linear state 3) in SM, CC and DM networks (nonlinear state 1 and 2) 
where VIS network’s EN dependency has almost vanished. 

With this view in Fig. 5, HCs tend to spend longer with a higher 
probability to EN state 3, which has higher explicitly nonlinear de-
pendencies in VIS and SM. SZ spends longer in higher EN dependency of 
DM (state 2). The average fraction occupancy for SZ in three explicitly 
nonlinear states is close to equal, while HC are comparably distributed 
uniformly. Unlike EN states, the average fraction occupancy of SZ is 
much higher in linear state 3. 

4. Discussion 

Dynamic FNC provides a more natural way to analyze uncontrolled 
resting fMRI data and provide additional insight into brain activity 
(Hindriks et al., 2016; Hutchison et al., 2013). However, virtually all 
research in this area, at least at the whole brain/connectome level, has 
focused on the linear correlation among time courses (Allen et al., 2012; 

Damaraju et al., 2014; Hutchison et al., 2013; Obata et al., 2004). 
However, there is considerable evidence of nonlinearity in fMRI data (de 
Zwart et al., 2009; Sheth et al., 2004; Wan et al., 2006), though very 
little work has focused on studying the properties of the nonlinear effects 
after accounting for the largely dominant linear effects. Given that, in 
this work, we focus on the dynamics of explicitly nonlinear dependency 
among brain regions. 

We measured explicitly nonlinear dFNC and dFNC between TCs 
obtained from processed fMRI data collected from HC and SZ in this 
work. Using a k-means classi昀椀er, each set of concatenated windows of 
either Pearson correlation or explicitly nonlinear dependencies are 
grouped into three integrated patterns of linear dFNC and explicitly 
nonlinear dFNC (Fig. 3). These states are analyzed, and the differences 
between HC and SZ in each linear and EN state are compared and 
studied. 

Results suggest that EN states and linear states complement each 
other as their behavior has basic differences. For example, the average 
EN dwell time is considerably shorter than the linear dwell time (Fig. 5). 
These unique aspects can also be observed in the average fraction 
occupancy. 

In the linear states, we observe a strong positive correlation within 
networks such as (SC), (AUD, VIS, and SM), (CC), (DM), and (CB). For 
the relation between these networks, it is noted that the correlation 
swings between negative and positive in each linear state (Fig. 3). Linear 
state 2 shows a sharp, clear, and intense pattern in terms of correlation 
between the networks. This pattern fades as moving to linear state 1 and 
becomes lowest in linear state 3. 

For the explicitly nonlinear dFNC states, we measured NMI after 
removing linear correlation at each window. NMI takes values between 
0 and 1. So, we lose the positivity and negativity interpretation here. 
Multi-network connections were observed in the EN compared to linear 
dFNC, one predominantly SM (with less but considerable level within CC 
and DM), one predominantly DM, one predominantly VIS and SM. 

Our results (Fig. 4, Fig. 5) indicate that HC tend to have a high level 
of linear and EN dependencies (linear state 1, 2, and nonlinear state 3). 
At the same time, SZ tend to stay not only in a lower level of de-
pendencies overall brain networks (linear state 3) but also in the absence 
of EN dependency in the VIS network (nonlinear state 1 and 2). How-
ever, SZ tend to have higher EN dependencies in CC and DM than HC. 

These results agree with our earlier 昀椀ndings in evaluating (static) EN 
FNC (Motlaghian et al., 2021), which indicated signi昀椀cant differences in 
EN dependencies within and between AUD, VIS, CC, and DM networks 
in HC and SZ over the entire run. Studying explicitly nonlinear de-
pendencies in dynamic FNC helps unpack the informative structure of 
how temporally VIS and AUD networks are more active and CC is less 
involved in HC. 

We also analyzed the relationship between fraction occupancy, dwell 
time of EN states, and symptoms of SZs, and didn’t 昀椀nd a signi昀椀cant 
relationship. 

A minor change that would make measuring explicitly nonlinearity 
more accurate, is the approach for canceling the linear relationship. The 
best line of 昀椀t is not the same when dependent and independent factors 
switch in linear regression model. Thus, measuring explicitly nonlinear 
dependencies by canceling linear regression is not symmetric. However, 
the preference is for being symmetric because we expect to observe the 
same amount of dependency regardless of the order of inputs. In this 
work, we found the difference of switching dependent and independent 
factor to be neglectable, so we addressed non symmetry by taking the 
average of two results. One can improve the estimation by implementing 
symmetric linear regression or similar method. Another limitation of 
using NMI is that the interpretation of positivity and negativity is missed 
compared to correlation (nonlinear relationships do not always have an 
interpretable slope as in a linear relationship). 

For future work, more investigation of the impact of the window size 
on the sliding window analysis may drive more information about the 
dynamic states. The simulation demonstrated NMI showed good 

Table 2 
Fraction Occupancy of HC and SZ in linear and nonlinear dFNC. All linear states 
and nonlinear state 1 and 3 show highly signi昀椀cant group differences.  

Fraction Occupancy of HC and SZ in Linear dFNC State  
State 1 State 2 State 3 

Average across HC %30 %43 %27 
Average across SZ %14 %21 %65 
p-value 6.5383 × 10-5 2.5613 × 10-7 1.7319 × 10-14  

Fraction Occupancy of HC and SZ in Nonlinear dFNC  
State 1 State 2 State 3 

Average across HC %22 %30 %49 
Average across SZ %34 %37 %29 
p-value 1.2635 × 10-4 0.0425 7.3181 × 10-8  

Table 3 
Statical analysis of dwell time for linear and nonlinear states in HC and SZ. SZ 
spends signi昀椀cantly longer in linear state 3.  

Dwell Time for HC and SZ in Linear dFNC State  
State 1 State 2 State 3 

Average across HC  54.69  59.08 68.35 
Average across SZ  42.16  47.41 151.98 
p-value  0.0177  0.0310 5.096 × 10-12  

Dwell Time for HC and SZ in Nonlinear dFNC  
State 1 State 2 State 3 

Average across HC  13.15  12.98  19.52 
Average across SZ  17.72  18.23  15.60 
p-value  0.0147  0.0051  0.03244  
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performance before and after removing the linear correlation with as 
few as 35 sample points. In our work, we used 50 time points which can 
be reduced without losing the NMI sensibility. It would also be inter-
esting to utilize a 昀椀lter bank approach to cover a larger range of window 
sizes/frequencies (Faghiri et al., 2021). 

Funding sources 

This study was funded in part by NIH grants R01MH118695, 
R01MH123610, and R01EB006841 and NSF grant 2112455. 

Fig. 4. A) Contingency table of linear and nonlinear dFNC’s states for each group shows co-occurrence of states are different between HC and SZ. B) FDR- adjusted p- 
values from comparing HC-SZ. Signi昀椀cant level indicated by red pointer for alpha= 0.05. HCs are observed signi昀椀cantly more in pairs (2,3) and (1,3), while SZs tend 
to be in (3,1) and (3,2) of linear-nonlinear states. 
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Fig. 5. A) Another representation that shows differences between HC and SZ of fraction occupancy and dwell time. Asterisks denote signi昀椀cant p-values. B) Linear 
and nonlinear states that HC (left) and SZ (right) spend signi昀椀cantly more time in them. The VIS and SC networks are more active in HC than SZ. Also, in SZ, DM, 
SM+SC are anticorrelated and the explicitly nonlinear dependency is more activated compared to HC. 
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