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C H E M I S T R Y

Applying statistical modeling strategies to sparse 
datasets in synthetic chemistry
Brittany C. Haas1, Dipannita Kalyani2, Matthew S. Sigman1*

The application of statistical modeling in organic chemistry is emerging as a standard practice for probing structure-
activity relationships and as a predictive tool for many optimization objectives. This review is aimed as a tutorial 
for those entering the area of statistical modeling in chemistry. We provide case studies to highlight the consider-
ations and approaches that can be used to successfully analyze datasets in low data regimes, a common situation 
encountered given the experimental demands of organic chemistry. Statistical modeling hinges on the data (what 
is being modeled), descriptors (how data are represented), and algorithms (how data are modeled). Herein, we 
focus on how various reaction outputs (e.g., yield, rate, selectivity, solubility, stability, and turnover number) 
and data structures (e.g., binned, heavily skewed, and distributed) influence the choice of algorithm used for con-
structing predictive and chemically insightful statistical models.

INTRODUCTION
The application of data science and statistical modeling in organic 
chemistry has emerged as a modern approach to reaction optimiza-
tion and probing structure-activity relationships. This has encour-
aged a continually evolving landscape of strategies and questions 
regarding when to deploy a certain algorithm and the applicability 
of various types of molecular features. These two challenges are ex-
plicitly dependent on the experimental data available, including the 
number of experiments, the data distribution, and the identity of the 
output(s) measured. There have been many reviews on machine 
learning (ML) in synthetic chemistry (1, 2), and we have recently 
presented perspectives on the history of these topics (3) as well as 
protocols for designing datasets amenable to ML (4, 5). Herein, we 
describe the tactics by which our group and others construct and 
interpret statistical models for chemical systems with an aim to de-
scribe the details to those that are just entering this exciting field.

In our experience, for most statistical modeling campaigns, an 
experimentalist has already collected much of the data intended for 
several downstream applications, including mechanistic interroga-
tion, improving reaction performance, and understanding the scope 
and limitations of a reaction. These datasets are usually difficult to 
expand considerably for various practical reasons (e.g., cost, re-
sources, and experimental burden such as measuring rates). Ideally, 
intentional dataset design (3) is implemented regardless of the 
amount of data anticipated to be collected, but this is not always 
feasible. In other words, most data collected in both academia and 
industry are generally sparse, whether intentionally designed or not. 
We describe several practical considerations in handling and ana-
lyzing real-world chemistry challenges associated with sparse ex-
perimental data using examples mainly from our group. Specifically, 
we detail the strategies of statistical modeling efforts to glean valu-
able insights from low data regimes.

Statistical modeling of chemical reactivity, most often defined by 
selectivity, yield, and/or rates, is dependent on three pillars (Fig. 
1A): data (what is being modeled), representation (how the chemi-
cal structures involved are described), and algorithm (how the data 

are processed as a function of the representation). All three pillars 
are interdependent and must be considered together to develop the 
best approach for a specific objective. Furthermore, if the goal is in-
terpretability (i.e., mechanism or hypothesis generation), then ML 
in chemistry will also require grounding in physical measures (e.g., 
quantum mechanical calculations to understand electron distribu-
tions and/or potential energy surfaces that directly influence the 
reaction output). Below, we describe considerations for each pillar.

Data
Many statistical modeling approaches are relevant regardless of the 
dataset size under study. However, the scope of this review is con-
fined to modest to medium-sized datasets, which often limit em-
ployable methods and present unique statistical challenges (2,  6). 
Here, we loosely define, from a data chemist’s perspective, small to 
be fewer than 50 experimental data points, medium to be up to 1000 
data points, and large to be >1000 data points. Although these rang-
es are not definitive, they reflect the amount of data achieved from 
common experimental campaigns: Small datasets typically result 
from substrate/catalyst scope exploration, while medium datasets 
usually use high-throughput experimentation (HTE), and large da-
tasets may also use HTE or can be mined from the literature.

Furthermore, the composition of the dataset is perhaps the most 
important consideration and will be discussed further in the next 
section. However, it is worth noting that we have largely found de-
veloping statistical models using data collected under a single set of 
reaction conditions (e.g., solvent and temperature) to be effective for 
elucidating substrate and/or catalyst reactivity trends, a common 
precept in developing linear free energy relationships. If the reaction 
conditions change, then statistical models can often still be con-
structed if the underlying mechanism is conserved. However, when 
reaction conditions lead to different interactions that affect reactiv-
ity, it becomes necessary to parameterize the reaction conditions 
and use nonlinear fitting techniques (7, 8).

Representation
The molecular representation used to construct models is a key con-
sideration. Molecules can be represented by descriptors that range 
from simplistic and computationally inexpensive to specifically de-
signed and computationally expensive. No matter the level of 
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complexity, molecular descriptors serve to quantify molecular fea-
tures using mathematical relationships. The most common include 
quantitative structure activity relationships (QSAR) (9), fingerprint 
(10–12), graphs (13,  14), semiempirical (15), density functional 
theory (16–18), and designer descriptors (19), which have all been 
successfully used for statistical modeling. Specifically, we often use 
modern computationally derived molecular descriptors for model-
ing efforts (17) and emphasize that the collection of descriptors spe-
cific to the reactive moiety lends itself to more mechanistically 
grounded models. Collecting descriptors at an appropriate level of 
theory can be computationally intensive and challenging, but the 
community has been reporting automated workflows (20) as well as 
descriptor libraries for common substrates (21) and ligands (22, 23). 
The evolution of these descriptors is tied to effectively building pre-
dictive and interpretable statistical models (4, 6, 17, 24).

Algorithms
Last, largely dependent on its inputs (data and representation), the 
choice of algorithm is often nuanced and a result of the best perfor-
mance for a particular objective. Herein, we address various algo-
rithms commonly used by our group and others for analyzing sparse 
datasets. Often, we find that the most rudimentary statistical model-
ing approaches provide sufficient chemical interpretability.

DATA FACTORS TO CONSIDER WHEN CHOOSING A 
MODELING ALGORITHM
Before discussing the details of various commonly used algorithms, 
it is worth noting data factors that can provide important insight 
into a choice of algorithm for sparse datasets. The distribution of the 
data is arguably the most important determinant of how one de-
ploys ML (Fig. 1B). Additionally, the reaction output itself (e.g., 
yield versus selectivity) and the range of the reaction output used, 
which are often interconnected, provide insights into the type of al-
gorithm that best suits the objective. These factors will be recalled in 
discussions of algorithm selection.

Distribution of the reaction output
A histogram of the measured reaction output versus the number of 
examples should be used to elucidate the distribution of the dataset 
to be (i) reasonably distributed, (ii) binned (e.g., high versus low), 
(iii) skewed, or (iv) comprised of essentially one output value. These 
data structures are likely tied to the diversity of the inputs evaluated 
[e.g., substrate(s), catalyst, and conditions]. The ideal dataset for sta-
tistical modeling is well distributed and is often well suited for re-
gression tasks. This allows the resulting model to have a wider 
domain of applicability, in which predictions can be made with 
greater confidence, and extrapolation becomes justifiable. Binned 
data, commonly bimodal but could have any number of data group-
ings, lend themselves to classification algorithms. Last, datasets that 
are heavily skewed or exhibit only a singular output may require the 
acquisition of a better-distributed dataset before modeling. Data ac-
quisition campaigns strictly for reaction optimization purposes are 
outside the scope of this review, but Bayesian optimization (25, 26), 
other active learning techniques (27, 28), or dataset design princi-
ples (3,  29,  30) should be used to obtain a more distributed data 
structure. Particularly in cases of only poor performance data (e.g., 
<10% yield or poor selectivity), a search algorithm, such as a Bayesian 
optimizer, could improve the diversity of reaction outputs.

Identity of the measured reaction output
Many reaction measurements have been successfully modeled in re-
cent years and include yield, rate, selectivity, solubility, stability, and 
turnover number (4, 5, 17, 24). Several reaction outputs, including 
∆∆G‡ as a measure of selectivity and rate, are akin to linear free 
energy relationships and can be modeled linearly (31). Yield, how-
ever, is a variable that is confounded by many aspects including re-
activity, purification, and product stability (3). Additionally, the 
assay by which a reaction output is measured can affect modeling 
efforts. In particular, the time point at which the reaction is assayed 
(32) and whether the crude reaction or the isolated product is as-
sayed can affect the data used to train a model. These factors will be 
highlighted when relevant within the case studies presented below.

Range of measured reaction output
Furthermore, the range of the reaction output can affect the effec-
tiveness of model performance especially when considering extrap-
olation (Fig. 1B). It is critical to have examples of both “good” and 
“bad” results; all accurately collected data should be used in model 
training. Historically, results that have been construed as negative 
are underreported but are essential to modeling efforts, aiming to 
understand the full range of reactivity/selectivity (33). Some reac-
tion outputs are bounded (e.g., yield is 0 to 100%), while others are 
unbounded (e.g., rate and ∆∆G‡). The necessary range for modeling 

Fig. 1. Statistical modeling in chemistry. (A) Pillars of data science. (B) Consid-
erations for the data necessary to take into account when choosing a modeling 
algorithm.
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varies by the identity of the reaction output; in any case, even if the 
range is sufficient, having only a single example at extrema can sub-
stantially bias the resultant statistical model and convolute the sta-
tistical measures.

Data quality
The quality of data can be affected by assay scale (e.g., HTE, small-
scale laboratory experiments, and mole-scale experiments), mea-
surement precision (e.g., detection limit and number of significant 
digits), and the number of replicates performed. Additional accu-
racy in the data can serve to better differentiate the data and is 
particularly advantageous for regression modeling tasks. For ex-
ample, using a rounded enantiomeric ratio (er) versus an er with 
an extra significant digit (if the assay is accurate) in the case of 
99:1 versus 98.5:1.5 represents ~0.25 kcal/mol difference (at 25°C). 
Together, prospectively establishing the goals for statistical mod-
eling can serve to guide the data collection and modeling efforts 
efficiently, as ideal outcomes may look different when striving spe-
cifically for mechanistic insight versus reaction optimization or 
predictive capacity.

COMMON ALGORITHMS
Choosing a suitable algorithm for a given dataset is critical. This re-
view will define and provide examples of several commonly used 
algorithms, although not an exhaustive list, it will include those that 
facilitate interpretability while also highlighting the additional con-
siderations discussed above. Given the focus on sparse datasets, the 
algorithms discussed here are curated to the ones that are less sus-
ceptible to overfitting: when a model is too complex and begins to fit 
the inherent noise in the data, severely limiting the generality of the 
model (34–36). There is likely more than one algorithm that would 
be applicable for most datasets; the study objective, statistical valida-
tion of the model, and trial and error all contribute to the model 
ultimately deemed “best.”

STATISTICAL MODEL EVALUATION
To conduct statistical analysis of models, regardless of the algorithm 
used to generate it, the dataset is first divided into training, test, and, 
if possible, external validation sets. Often with small datasets, we use 
only training and test sets, and, taking into account the dataset size 
and diversity, it is split in any proportion (e.g., 50:50, 80:20, and even 
no split for very small datasets that rely on leave-one-out cross vali-
dations) using one of several common algorithms as a prevention 
measure for introducing bias: random, based on the distribution 
of data points (y-equidistant), or based on descriptor variance 
[Kennard-Stone; (37)]. The training set is the data used to build the 
model and serves to determine the dependent molecular descrip-
tors. The test set is the data used to assess the predictive ability of the 
trained model, as it has not been seen in the model construction 
process. The most rigorous way to prevent data leakage and protect 
against overfitting is to select a model based on the training and test 
set statistics and then conduct external validation, but this can be 
difficult in small data regimes. Thus, for sparse datasets, we com-
monly rely on the training/test set split to assess the model’s robust-
ness/generalizability and predictive power. Various statistics (e.g., 
R2, Q2, and test R2) useful for evaluating models trained on small 
and large datasets alike have been defined in past reviews (6, 17).

CLASSIFICATION
Classification algorithms are the most rudimentary modeling ap-
proaches that can often elucidate key physical organic insights. They 
are particularly well suited for binned data structures and sparse da-
tasets. Generally, reaction outputs such as yield and conversion lend 
themselves well to classification tasks, in addition to reaction out-
puts that are inherently binary (e.g., on/off and site selectivity), as 
demonstrated by the examples presented in Figs. 2 and 3.

Decision trees
Decision trees are nonlinear algorithms that function by classifying 
each data point based on a user-defined cutoff. The relationship be-
tween the reaction output being modeled and the descriptor(s) used 
does not need to assume a linear relationship. The data are parti-
tioned recursively into nodes (Fig. 2B) based on values of the de-
scriptors provided to the algorithm, with the aim of increasing the 
purity of each node. Decision trees can be used to accommodate 
more than two classes; however, binary classification will be high-
lighted here, as often a chemist’s goal is to classify reactions as 
active/inactive (or high/low selectivity). The result of this analysis is 
represented using a confusion matrix that dissects the data into four 
quadrants: namely, true positives (prediction for the desired activity/
selectivity matches the ground truth), true negatives (prediction for 
the undesired activity/selectivity matches the ground truth), false 
positives (prediction of the desired activity/selectivity does not 
match the ground truth), and false negatives (prediction of the un-
desired activity/selectivity does not match the ground truth). Figure 
2A depicts a confusion matrix specific to single-node decision trees 
(vide infra) for bimodal classification. Accuracy is used to quantify 
the number of predictions made by the classification algorithm that 
match the ground-truth value. F1 score integrates both precision 
(accuracy of positive predictions) and recall (sensitivity and ability 
to find all true positives within a dataset) into a single metric that 
can be used to better understand model performance. Achieving an 
accuracy of 1.0 is ideal, but, if a data point is misclassified, then we 
prefer false positives, to ensure that a potential hit (e.g., reaction 
corresponding to high reactivity or selectivity) is not missed when 
the model is used for virtual screening. Although decision trees are 
not poised for extrapolative predictions (i.e., predictions outside the 
domain of the training data), they can be a helpful tool when the 
training data permit a sufficiently wide domain of applicability.

The simplest form of a decision tree algorithm involves only a 
single node, which we refer to as a threshold or reactivity cliff. It has 
been leveraged effectively to identify and understand reactivity and 
selectivity cliffs for several reaction types (38–40). In an example, a 
reactivity cliff was identified for four distinct Ni-catalyzed Suzuki-
Miyaura cross-coupling reactions, one of which is shown in Fig. 2B 
(41). These reactions were evaluated against 90 phosphine ligands 
that represented the chemical diversity of the recently reported 
monodentate phosphine descriptor library (Kraken) (22), and the 
reaction was defined by the user to be active at 10% yield (horizontal 
boundary or y-cut). The y-cut value can be defined on the basis of a 
natural split in the data, a mechanistic hypothesis (e.g., one catalytic 
turnover), and/or to facilitate the utility of the model (e.g., the reac-
tion can be further optimized). In this example, the most robust (ex-
hibiting nearly no false negatives) threshold (vertical dashed line) 
was determined using the percent buried volume of the ligand con-
former with the lowest buried volume [%Vbur(min)] from Kraken. 
At the algorithm-determined threshold value, ligands are classified 
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as active or inactive. The identified descriptor led to mechanistic in-
sights related to the Ni ligation state. Specifically, ligands with a 
%Vbur(min) value of >32% exhibited monoligated (L1Ni) complex-
es, while phosphines with values of <32% were bisligated (L2Ni) 
complexes, resulting in high-yielding reactions. Notably, other simi-
lar descriptors, such as the Boltzmann averaged %Vbur, did not 
achieve the same statistical robustness, reinforcing the importance 
of suitable molecular descriptors as inputs for statistical modeling.

For larger datasets, more nodes in the decision tree can be war-
ranted (42), but small datasets are prone to overfitting and bias to-
ward overrepresented reaction outcomes when using more extensive 
decision trees (43). In an effort to confront the intrinsic unpredict-
ability of Ullman C─N coupling reactions, HTE was used to evalu-
ate 720 reactions, resulting in a 3.5:1 ratio between off and on 
reactivity as defined by a 20% yield cutoff (Fig. 2B). A decision tree 
(nodes = 3) was used to predict the effect of substrate (i.e., amine 
and aryl bromide) and ligand structural features on reaction yield 
with 88% accuracy. This decision tree allows reactions to be classi-
fied while simultaneously accounting for three factors (i.e., ligand, 
amine, and aryl bromide) that do not have a direct linear relation-
ship to the measured yield, similar to how multivariate linear 
regression (MLR) accounts for multiple factors when modeling a 
continuous variable (vide infra).

Logistic regression
In contrast to decision trees, which predict discrete outcomes based 
on splits in the feature space, logistic regression predicts the proba-
bility of a sample being of a certain designation (e.g., active or inac-
tive) using a logistic (i.e., sigmoid) function based on molecular 
descriptor(s). The decision boundary must be linear in feature space 
[i.e., between the reaction output and descriptor(s) that defines the 
decision boundary]. The accuracy of these models is evaluated sim-
ilar to decision trees by the number of samples assigned to each cat-
egory in the confusion matrix. We have only recently been using 
logistic regression (44), but it is gaining traction in the field (45). 
Logistic regression was recently used to assess the regioselectivity of 
a Rh-catalyzed coupling of N-alkyl nicotinate salts with aryl boronic 
esters (Fig. 3A) (46). Twenty bisphosphine ligands were selected, 
evaluated, and determined to lead to either C2- or C6-arylated 
products, which were then required to be converted to a binary vari-
able (1 or 0, respectively). The sigmoidal function (plotted with a 
black line) that resulted from this analysis revealed a correlation be-
tween the bisphosphine bite angle and site selectivity, elucidating 
the mechanistic underpinning that small bite angle phosphines fa-
vored C2 arylation. It is admittedly difficult to determine whether a 
simple decision tree or logistic regression should be used for a given 
dataset. However, logistic regression provides a probability of 

Fig. 2. Classification algorithms. (A) Statistical evaluation metrics and (B) decision trees [single node: adapted with permission from (41). Copyright 2021 The American 
Association for the Advancement of Science; multi-node: adapted from (42). Copyright 2024 The American Association for the Advancement of Science]. TP, true positive; 
TN, true negative; FP, false positive; FN, false negative.
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success associated with its predictions, which can be very useful to 
convey a degree of confidence for the success/failure of a suggested 
reaction. Thus, the evaluation of both model architectures, together 
with the goals for the project, can facilitate the model selection.

Logistic regression is also not restricted to one parameter, such 
as the example illustrated in Fig. 3A. In an example, a two-parameter 
logistic regression was used to identify the bisphosphine ligands 
that induced high conversion for hydroformylation of a dihydrofu-
ran (23). A two-parameter logistic regression model involving li-
gand dipole and a quadrant buried volume [%Vbur(SE)] elucidated 
the most probabilistically optimal ligand features to catalyze the re-
action in high conversion. Ligands falling in the teal region have a 
higher probability of being active, while those falling in the orange 
region are estimated to be inactive.

Trends in chemical space
A visual classification of reaction outcomes can be achieved by overlay-
ing the reaction outcome on a representation of chemical space. Quali-
tative trends can be elucidated using a two-descriptor plot [informed by 
a decision tree (47) or other algorithms] or a map of many descriptors 

that have been visualized using a dimensionality reduction technique 
[e.g., principal components analysis (48) and uniform manifold ap-
proximation and projection (49)]. This often lends itself to nearest 
neighbor analysis to glean further insights or make predictions (50, 51). 
An example of a small-dataset–guided reaction optimization campaign 
was reported in the context of a Ni-catalyzed diastereoconvergent 
cross-coupling of enol tosylates with pinacol boronates (Fig. 3B) (52). 
HTE was used to evaluate 47 representative monophosphine ligands 
selected from the Kraken library (22). Overlaying the observed yield on 
a ligand steric [Vbur(min)] versus an electronic [Vmin(Boltz)] descriptor 
plot revealed a region of the chemical space that was active (i.e., >10% 
yield). Subsequent analysis of the active region allowed for visualization 
of the (E)- and (Z)-selective regions. Effective data visualization (43) of 
the reaction output on a chemical space representation can provide 
valuable mechanistic insight and facilitate rapid reaction optimization.

REGRESSION
To model continuous reaction outputs that are well distributed, it is 
better to define a regression task to make continuous predictions. 

Fig. 3. Classification algorithms continued. (A) Logistic regression [one-parameter: adapted with permission from (46). Copyright 2023 American Chemical Society; 
two-parameter: adapted with permission from (23). Copyright 2023 American Chemical Society] and (B) trends in chemical space [adapted with permission from (52). 
Copyright 2021 American Chemical Society]. h, hours.
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Regression is commonly used to model unbounded reaction 
outputs like selectivity and reaction rate, as demonstrated by 
the examples presented in Fig. 4. Linear regression is more 
sensitive to outliers, especially in small/sparse datasets, fur-
ther emphasizing the importance of well-designed datasets 
and quality experimental data. We will also briefly mention 

nonlinear regression methods and their challenges when con-
sidering sparse datasets.

Linear regression
The most basic form of linear regression is directly correlating mo-
lecular descriptors to the experimental reaction output, resulting 

Fig. 4. Regression algorithms. (A) Linear regression, both univariate [adapted with permission from (39). Copyright 2023 Elsevier Inc.] and multivariate [adapted from 
(56). Copyright 2018 The American Association for the Advancement of Science] and (B) nonlinear regression approaches highlighting kernel ridge [adapted with permis-
sion from (64). Copyright 2024 American Chemical Society]. rt, room temperature.
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in a univariate correlation. The most notable and historical uni-
variate correlation in organic chemistry is Hammett analysis (31). 
Similar to Hammett values (22), publicly available tabular data like 
descriptor libraries [e.g., Kraken (22), carboxylic acids (53), alkyl 
amines (53), and aryl bromides (21)] allow for facile univariate 
analysis without the need for computational resources or model 
training. Univariate trends are particularly helpful if the dataset 
can be fragmented into groups that systematically modulate only 
one reaction component (e.g., substrate or catalyst) (5). This al-
lows for interpretation of the impact that a single molecular de-
scriptor has on the reaction output, isolated from the remainder of 
the reaction variables. For example, in analyzing adaptable chiral 
phosphoric acid catalysts for the enantioselective transfer hydro-
genation of 8-aminoquinoline, unique univariate selectivity cor-
relations were found for the sulfonamide and amide catalyst 
subclasses (Fig. 4A) (39). These distinct correlations for each cata-
lyst subclass suggested the differences in the hydrogen bonding 
networks of the active catalyst conformer that are ultimately re-
sponsible for selectivity.

Multivariate linear regression
When the reaction output being modeled is too complex to be de-
scribed by only one descriptor, a situation often encountered in the 
modern chemistry enterprise, MLR can be used. Even in cases with 
one independent variable (e.g., substrate or catalyst), MLR may be 
necessary to capture several steric and/or electronic factors at play 
that cannot be adequately conveyed by one descriptor (54). More 
often, MLR is used when several reaction components [e.g., 
substrate(s) and catalyst] simultaneously affect the reaction output, 
requiring multiple molecular descriptors to sufficiently correlate the 
observation. MLR has been used to successfully build statistical 
models for many reaction outputs, including reaction rate (55), en-
antioselectivity (56, 57), regioselectivity (58–60), and solubility (61).

When constructing MLR models with a forward stepwise algo-
rithm, molecular descriptors are added sequentially to generate bi-, 
tri-, and multivariate correlations. Models that minimize the sum of 
squared errors are kept at each step (17). Alternatively, a backward 
stepwise algorithm ensures that all possible models are built, but it is 
much more computationally demanding. Models for which the 
training Q2 or test R2 is substantially diminished compared to the 
training R2 indicate that the model is not generalizable, will lack pre-
dictive power, and is not statistically valid. We caution these are in-
dications of overfitting (34–36) and note that spurious correlations 
can result from including an excessive number of descriptors for the 
algorithm to choose from (62). Models can also be evaluated for in-
terpretability by examining the molecular descriptors included in 
the model equation, which are connected to the underlying phe-
nomena that lead to effective reactions. Given descriptors are first 
normalized, the relative signs and magnitudes of the descriptor co-
efficients in the model equation can also provide insight.

In Fig. 4A, MLR was used to correlate the ligand-dependent se-
lectivity of an enantiodivergent Pd-catalyzed Suzuki cross-coupling 
using an enantioenriched alkylboron nucleophile and aryl electro-
phile (56). The four monophosphine ligand parameters in this mod-
el were found to be mechanistically insightful, as the electronic 
descriptors (teal) discriminate between stereoretentive and stereo-
invertive transmetalation pathways, while the steric descriptors 
(red) indicate the extent of competitive β-hydride elimination (red).

Nonlinear regression
As the size of a dataset increases, nonlinear modeling becomes a vi-
able and sometimes necessary approach to capture all factors con-
tributing to the observed reaction output. Most are familiar with 
fitting the rate of enzymatic reactions with the Michaelis-Menten 
model, which is an example of nonlinear fitting of data. Applications 
of nonlinear regression methods to sparse chemistry datasets are 
less common in reported studies.

Kernel ridge regression
Kernel ridge regression (63) is suited to handle nonlinear relation-
ships between reaction output and molecular descriptors and is 
uniquely poised to prevent overfitting by accounting for multicol-
linearity in the loss function (63). As a recent example, the rate of 
frontal ring-opening metathesis polymerization using the Grubbs 
generation II catalyst and various phosphine inhibitors was success-
fully modeled using nonlinear kernel ridge regression (Fig. 4B) (64). 
Notably, this is a larger dataset (504 data points), but the diminished 
performance of the external validation set (orange) indicates the 
model is on the cusp of overfitting. However, the small number of 
descriptors (4) used in the model to predict front rate in tandem with 
Shapley analysis (65) allowed for chemical interpretation of the model.

There are many other nonlinear algorithms for both classifica-
tion and regression including support vector machines, k-nearest 
neighbors, random forest (ensemble of decision trees), gradient 
boosting (builds an ensemble of trees sequentially), and neural net-
works (66). Most nonlinear algorithms tend to be more data hungry, 
difficult to glean mechanistic insight from, and highly susceptible to 
overfitting and often exhibit poor generalizability. When applied to 
sparse datasets, although nonlinear algorithms may account for 
more complex relationships, these pitfalls are amplified. Examples 
of nonlinear algorithms can be found in the literature, including 
Doyle and coworkers’ employment of a random forest model for the 
prediction of C─N cross-coupling reaction yields (67). However, 
this model was trained on 4608 data points, a much larger dataset 
than defined in the scope of this Review. Alternatively, neural net-
works were used by Newhouse and coworkers, who reported a feed-
forward neural network trained on 17 computationally expensive 
transition states for the prediction of enantioselectivity of a Negishi 
cross-coupling reaction with P-chiral–hindered phosphines (68). 
We emphasize that a great deal of caution needs to be exercised 
when using these more data-hungry nonlinear algorithms. This 
means paying particular attention to the evaluation metrics that 
probe the extent of the model’s generalizability (e.g., Q2 and test R2).

SEQUENTIAL APPROACHES
Sequential deployment of classification and regression algorithms 
has been successfully leveraged for a range of downstream tasks. 
Classification is often used first to curate the dataset, making it more 
amenable to regression tasks. Classification can serve to intention-
ally reduce the number of zeros in a dataset attributed to poor solu-
bility, excessively slow rate, incompatible functional groups, etc. 
Alternatively, it can provide a mechanistically grounded curation of 
the data, when a reactivity cliff is identified to group the data into 
reactions that are hypothesized to follow the same reaction mecha-
nism. For example, if a reaction is only viable with monoligated 
complexes, then a ligand steric descriptor may remove the ligands 
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that are more likely to form bisligated complexes, which enforces a 
different mode of reactivity. Provided that the remaining data are 
still distributed well across the range of the measured reaction out-
come, then regression algorithms can be used to glean more nu-
anced mechanistic insight into the reaction.

Work by Dotson et al. (23) demonstrated two examples of apply-
ing this strategy with the aim of optimizing two steps of a process 
chemistry route to an active pharmaceutical ingredient for the treat-
ment of asthma. A reactivity cliff for the catalyst was first identified 
for a Hayashi-Heck reaction, and, then, MLR was used to build a 
predictive model for selectivity. As a second example, logistic regres-
sion was used to classify ligands that achieved >20% conversion in a 
site selective hydroformylation reaction before building a MLR mod-
el for selectivity. In cases like this, preliminary classification model-
ing blurs the line between dataset design and statistical modeling, 
emphasizing the malleability of a general data-driven workflow.

UNMODELABLE DATA
When many algorithms have been deployed without success, a data-
set can be deemed unmodelable with the available tools. It can often 
be attributed to poor dataset distribution, meaning the dataset was 
undistributed (i.e., all one reaction output value) or the dataset 
spanned a very narrow range of the reaction output. For example, a 
data science workflow was recently used to optimize a chiral bispho-
sphine ligand and determine “diverse” substrates for scope evaluation 
in a Pd-catalyzed aryl-carbonylation of sulfonimidamides. Statistical 
modeling efforts were performed to elucidate the structure-activity 
relationship as a function of the aryl iodide substrate. This was not 
successful likely due to data skewed toward generally high perform-
ing examples, even with proper substrate selection using the princi-
ples of dataset design (69). We often also consider another pillar of 
data science when we reach an impasse in modeling that insufficient 
molecular representation or molecular features are being deployed, 
which can inspire next-generation descriptor development (4). Fur-
thermore, the other reaction variables (i.e., solvent, temperature, and 
additives), which are present in many datasets collected without the 
intent of modeling, can affect model performance.

At the outset of projects, initial data collection campaigns, espe-
cially when not intentionally designed, often exhibit attributes of un-
modelable datasets. In this case, additional data can be collected to 
create a more well-distributed dataset that makes statistical modeling 
achievable. For the Ullmann coupling reaction presented above, a 
form of active learning was used to build a more comprehensive data-
set that was better suited for predictive purposes (42). The data from 
the original HTE screen were highly skewed toward inactive ligands. 
Therefore, classification models were used to determine an important 
parameter for reaction success. The model was subsequently applied 
for the prediction of other active ligands to supplement further data 
collection, improving the overall distribution of data.

Although more data are a common suggestion to improve models, 
using more informed molecular descriptors can also serve to reduce 
the number of model parameters necessary and increase the model 
interpretability. In more extreme cases, advancements in descriptors, 
modeling approaches, and/or collection of more data may warrant re-
evaluation of statistical models years later. For example, the enantiose-
lectivity of an oxidative amination of tetrahydroisoquinolines under 
chiral-anion phase-transfer catalysis originally modeled in 2015 (70) 
was remodeled in 2017 using transition state surrogates (71) that 

better quantified important noncovalent interactions, resulting in a 
more simplistic and readily interpretable model.

CONSIDERATIONS FOR INTERPRETABILITY
If model interpretability is an objective, then there are additional con-
siderations besides statistics that are necessary for model selection. Sta-
tistics of models trained on small datasets, although important to 
determine generalizability, may be substituted for greater chemical in-
terpretability. In other words, a model with modestly reduced statistical 
performance may provide the researcher opportunities to better for-
mulate a mechanistic hypothesis. In this case, the molecular descrip-
tors from which the model is built must be chemically interpretable 
themselves. As a result, when constructing a model, we tend to favor 
simplicity of the parameters used in the model (e.g., exclude cross 
terms). An interesting and related aspect is how to navigate changes in 
mechanism in statistical modeling. This has been previously discussed 
in another review (4). However, the project objective may assist in de-
termining when to model data together to develop a general model 
versus separating a dataset to build mechanism-specific models.

Another important factor to consider when modeling sparse data-
sets, no matter the algorithm used, is how many model parameters are 
warranted to avoid overfitting (34, 36). This is subjectively determined 
by the number of training data points. Based on our experience, ~8 to 
10 data points per parameter in a model (e.g., MLR and decision tree) 
is reasonable in the sparse data regime. However, this can be increased 
or decreased depending on the complexity of the reaction under study 
(e.g., a second order reaction should need at least two parameters to 
describe, one for each reaction component), the interpretability of the 
model, and the stage of the project (e.g., we are much more willing to 
accept overfit preliminary models and use the descriptor in active 
learning pursuits). We have found that, for decision trees, it is more 
important to exercise prudence in cases where only a small percentage 
of the data points belong to one class, regardless of the size of the da-
taset. Additionally, pruning can be used for tree-based methods to 
lessen the number of nodes and improve model generalizability. Some 
algorithms (e.g., random forest) use more descriptors, but the number 
of descriptors should not exceed the number of data points, to avoid 
overfitting. To achieve the most robust statistical model with the few-
est number of descriptors, we reemphasize the importance of quality, 
interpretable molecular descriptors (vide supra).

Last, valuable mechanistic insights can be gleaned by connecting 
statistical models to transition state structures (4). The computa-
tional cost of computing transition states makes statistical models 
especially helpful for translating interactions of one representative 
transition state to that of different substrate-catalyst combinations, 
for which it may be prohibitive to compute transition states (57, 72). 
Recently, we reported a mechanistic picture for an enantioselective 
cinchona alkaloid catalyzed sulfonimidamide acylation by decon-
structing a MLR model in conjunction with transition state struc-
tures (57). By plotting the continuous descriptors (i.e., non-classifiers) 
in the MLR model, the catalyst-substrate steric matching necessary 
for enantioinduction was easily deciphered and readily mapped 
onto the transition state structures.

CONCLUSION
In summary, as detailed herein, many considerations are necessary to 
model sparse datasets, and neither the process of statistical modeling 
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nor the selection of the best model is trivial. Often, our decisions are 
determined with the practicing chemist “in the loop” by applying 
their chemical intuition; depending on the project objective, we may 
opt to sacrifice statistical performance or predictive capacity of a 
model to ease interpretability. Although statistical modeling for 
chemical reactivity has largely been used by academic labs, it can be 
advantageous to industrial chemists, as demonstrated by many suc-
cessful industrial-academic collaborations (23, 55, 57, 67, 69). Anec-
dotally, we have observed that the generality of classification lends 
itself to discovery chemistry, whereas regression can be more precise 
and used by process chemists. Ultimately, achieving the best possible 
statistical model for a sparse dataset requires a balance of pushing the 
bounds of traditional statistical modeling (i.e., ML) approaches while 
staying grounded in physical organic chemistry.
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