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Brain Relevant to Psychiatric Problems,
Cognition, and Age

Rekha Saha, Debbrata K. Saha, Md Abdur Rahaman, Zening Fu, Jingyu Liu, and Vince D. Calhoun

Abstract

Aim: To develop an approach to evaluate multiple overlapping brain functional change patterns (FCPs) in func-
tional network connectivity (FNC) and apply to study developmental changes in brain function.
Introduction: FNC, the network analog of functional connectivity (FC), is commonly used to capture the intrin-
sic functional relationships among brain networks. Ongoing research on longitudinal changes of intrinsic FC
across whole-brain functional networks has proven useful for characterizing age-related changes, but to date,
there has been little focus on capturing multivariate patterns of FNC change with brain development.
Methods: In this article, we introduce a novel approach to evaluate multiple overlapping FCPs by utilizing FNC
matrices. We computed FNC matrices from the large-scale Adolescent Brain Cognitive Development data using
fully automated spatially constrained independent component analysis (ICA). We next evaluated changes in
these patterns for a 2-year period using a second-level ICA on the FNC change maps.
Results: Our proposed approach reveals several highly structured (modular) FCPs and significant results includ-
ing strong brain FC between visual and sensorimotor domains that increase with age. We also find several FCPs
that are associated with longitudinal changes of psychiatric problems, cognition, and age in the developing brain.
Interestingly, FCP cross-covariation, reflecting coupling between maximally independent FCPs, also shows sig-
nificant differences between upper and lower quartile loadings for longitudinal changes in age, psychiatric prob-
lems, and cognition scores, as well as baseline age in the developing brain. FCP patterns and results were also
found to be highly reliable based on analysis of data collected in a separate scan session.
Conclusion: In sum, our results show evidence of consistent multivariate patterns of functional change in emerg-
ing adolescents and the proposed approach provides a useful and general tool to evaluate covarying patterns of
whole-brain functional changes in longitudinal data.

Keywords: ICA; longitudinal study; resting-state fMRI; resting-state FNC

Impact Statement

In this article, we introduce a novel approach utilizing functional network connectivity (FNC) matrices to esti-
mate multiple overlapping brain functional change patterns (FCPs). The findings demonstrate several well-
structured FCPs that exhibit significant changes for a 2-year period, particularly in the functional connectivity
between the visual and sensorimotor domains. In addition, we discover several FCPs that are associated with
psychopathology, cognition, and age. Finally, our proposed approach for studying age-related FCPs represents
a pioneering method that provides a valuable tool for assessing interconnected patterns of whole-brain functional
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changes in longitudinal data and may be useful to study change over time with applicability to many other areas,
including the study of longitudinal changes within diagnostic groups, treatment effects, aging effects, and more.

Introduction

T
he resting-state human brain can be used to reveal
time-varying functional connectivity (FC) dynamics

(Calhoun et al., 2014; Chang and Glover, 2010; Saha et al.,
2020; Saha et al., 2019), which have been associated with
cognition (Park and Friston, 2013) and various neurological
(Greicius, 2008) and mental (Arbabshirani et al., 2017;
Arbabshirani et al., 2013) disorders. There are various estab-
lished neuroimaging techniques that can be used to quantify
FC.

Among them, functional magnetic resonance imaging
(fMRI) paradigms are the most commonly used technique
for the computation of the temporal coherence between dif-
ferent brain regions (Craddock et al., 2013). The FC among
spatially distant brain regions from resting-state fMRI data
can be defined through a measure of pairwise statistical de-
pendency (most commonly Pearson correlation) between
their time courses (TCs).

Among different types of analytic tools, (i) seed-based
analysis (Biswal et al., 1995; Greicius et al., 2003) and (ii)
purely data-driven methods, such as independent component
analysis (ICA) (Calhoun and Adali, 2012; Calhoun et al.,
2009; Calhoun et al., 2001; Damoiseaux et al., 2006; Fox
and Raichle, 2007; Hyvärinen and Oja, 2000) are widely
used and can be applied to resting-state fMRI data to delin-
eate brain FC.

Data-driven decomposition techniques such as ICA are
typically used to extract temporally coherent brain networks.
TCs that are obtained from ICA can be used to calculate the
functional network connectivity (FNC) ( Jafri et al., 2008),
which is FC between whole brain networks as opposed to lo-
calized regions. Age-related brain connectivity changes have
recently been studied in many articles using data-driven ap-
proaches.

There is a growing research interest in estimating age-
related anatomical and functional changes and their relation-
ships with cognition. A great advance to understand human
brain function came with the observation of spontaneous
blood-oxygenation level dependent fMRI (Biswal et al.,
1995) signals, which have been frequently used to identify
regional FC and investigate the changes in a variety of neu-
rological and psychiatric disorders (Chen et al., 2011).

Many studies have considered the human brain as a large
number of complex connectivity networks (Bressler and
Menon, 2010; Sporns, 2014; Sporns, 2012). During the ado-
lescence period, the human brain exhibits remarkable
changes both in function (Stevens, 2016; Vértes and Bull-
more, 2015) and structure (Váša et al., 2018; Whitaker
et al., 2016). Brain networks undergo substantial maturation
(Casey et al., 2005; Di Martino et al., 2014; Grayson and
Fair, 2017), and this factor leads us to understand the parallel
changes in the brain in cognition and other behavior.

Another study has found rapid improvement of cognitive
abilities in the human brain during the early adolescence pe-
riod (Luna et al., 2004). Several studies have shown links be-
tween cognitive performance and communication between

brain regions, including extrinsic interactions between func-
tional networks, which also exhibit changes with age (Fjell
et al., 2016; Fox et al., 2005; Onoda et al., 2012; Perry
et al., 2017).

Several studies have reported age-related FC changes dur-
ing the adolescence period, but the obtained results are some-
what inconsistent (Váša et al., 2020). Small data size, the
absence of longitudinal data, variation in fMRI data prepro-
cessing, and the choice of different analysis methods might
contribute to this inconsistency. In a longitudinal study, re-
cent findings exhibit that early adolescence is a significant
period for the maturation of the brain’s functional architec-
ture specifically for the default mode network (DMN) and
the central executive network (Sherman et al., 2014).

Another longitudinal study has found an FC link between
the default mode and control networks, which increases over
time and greater declines over age (Ng et al., 2016). Longi-
tudinal changes in whole brain FC strength, as well as cogni-
tive performance scores, are associated with age and have
been investigated (Li et al., 2020). Váša et al. (2020) inves-
tigated the changes in human brain function during adoles-
cence and found two distinct modes (disruptive and
conservative) of age-related change in the FC.

Age-related changes in FC have been studied and show a
progressive reduction in FC among different age groups
(Farras-Permanyer et al., 2019). The impact of aging on
functional networks has also been reported in (Geerligs
et al., 2015). However, most of these studies focus on
voxel-wise or region-wise changes over time, there has
been little work in evaluating whether whole-brain multivar-
iate pattern changes in functional (network) connectivity are
observable during development. In addition, no studies have
attempted to link whole brain change patterns to cognitive
development, early psychosis problems, and other behavioral
changes at an early age.

In our study, we propose a new method to visualize whole-
brain FNC changes with increased age by using FNCmatrices
from the Adolescent Brain Cognitive Development (ABCD)
data. Our data set consists of 3489 adolescent subjects and
it includes multiple MRI scans collected longitudinally. We
analyzed resting-state fMRI from baseline and year 2. We es-
timate functional change patterns (FCPs) by first computing
cell-wise difference within the individual (delta FNC
[DFNC] matrix) and then estimating the covarying multivar-
iate patterns through ICA from the DFNC matrices.

The statistical analysis of the loading parameters (obtained
from the infomax algorithm) reveals that several FCPs show
significant longitudinal differences. We found several FCPs
that are linked with longitudinal changes of psychopathol-
ogy, cognition, and age; and functional change pattern co-
variation (FCPC) shows significant differences between
upper and lower FCPC for the age difference, psychopathol-
ogy scores difference, cognition scores difference, and base-
line age in the developing brain.

To the best of our knowledge, our proposed method is the
first approach to estimate multiple overlapping brain FCPs
for a 2-year period in the developing brain. The remainder
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of the research article is organized as follows. In the materi-
als and methods section, we introduce the data preprocessing
and the analysis procedures. Next, in the result section, we
show brain functional coupling changes with age. We also
show the links between the FCPs and age difference, psycho-
pathology scores difference, cognition scores difference, and
baseline age. Finally, we discuss the findings in the discus-
sion and conclusion section.

Materials and Methods

Introduction to ABCD data

In this study, we used the ABCD data set that comes from
the ABCD study (https://abcdstudy.org/). To track human
brain development from childhood through adolescence, the
ABCD study collected a wide range of data to help determine
biological and environmental factors that impact brain de-
velopmental trajectories. This study is the largest long-term
study of brain development and child health in the United
States. The ABCD study includes multi-session MRI scans
for >11,800 children enrolled at age between 9 and 11 years at
baseline. Table 1 presents the demographic details of the
ABCD data.

The subject information of the ABCD data set includes so-
cial, emotional, and cognitive development, gender identity,
physical and mental health assessments, and health back-
grounds. The parent’s full written informed consent and
the child’s assent were taken for each participant, and it
was approved by the Institutional Review Board. The
ABCD data set is shared by the National Institute of Mental
Health Data Archive (NDA; https://nda.nih.gov/). NDA has
made the ABCD data as an open-source data set after col-
lecting from a wide range of research projects across many
scientific domains to enable collaborative science and
discovery.

The data quality was ensured by standard fMRI prepro-
cessing pipeline and through a robust ICA-based framework
called Neuromark, which can identify brain networks by
comparing across subjects while adapting single-subject var-
iability with the networks (Du et al., 2020). In this data set,
total number of subjects with baseline and 2-year rest
fMRI scanned data are 11,244 and 3678, respectively. In
this study, we utilized 3489 subjects who have both baseline
and 2-year follow-up scanned data that passed the quality
control. Both baseline and 2-year sessions have 1–8 scans.
In our analysis, we selected the first scan from both baseline
and 2-year data.

Data preprocessing

We acquired the raw fMRI data from the NDA and prepro-
cessed it through a combination of the FMRIB Software
Library v6.0 (FSL) toolbox and the Statistical Parametric
Mapping 12 toolbox under the MATLAB 2019b environ-

ment. The subject’s head motion was corrected by rigid
body motion correction using the FSL Motion Correction
FMRIB’s Linear Image Registration Tool. After the head
motion correction, distortion correction in the fMRI images
was corrected using the field map files by acquiring phase
encoding in the anterior–posterior direction and volumes
with phase encoding in the posterior–anterior direction
from the FSL tool topup.

The distortion in the fMRI volume was corrected by using
the output field map coefficients that use the FSL tool apply-
topup. Then, 10 initial scans have been discarded after distor-
tion correction (those have large signal changes) to allow the
tissue to reach a steady state of radiofrequency excitation.
Finally, fMRI data were subsequently warped with the stan-
dard Montreal Neurological Institute space with 3 · 3 · 3
spatial resolution and smoothed using a Gaussian kernel
with a full width at half maximum = 6mm.

Neuromark framework

In this study, we used the Neuromark_fMRI_1.0 network
templates to extract intrinsic connectivity networks (ICNs)
and their corresponding TCs across subjects, through a
fully automated spatially constrained ICA approach. The
Neuromark_fMRI_1.0 templates/priors were derived based
on replicated networks estimated from two healthy control
data sets, the human connectome project (823 subjects
after subject selection) and the genomics super struct project
(1005 subjects after subject selection).

Details of the Neuromark framework and templates can be
found in the Group ICA of fMRI Toolbox (GIFT) and at
http://trendscenter.org/data (Du et al., 2020). The selected
spatial priors have also been demonstrated to be highly re-
liable between pipelines and across adult and adolescent data
sets and populations (Ramus et al., 2021). Applying this
approach yields 53 ICNs for each subject. The resulting ICNs
are highly corresponding and comparable across subjects,
sessions, and scans. Children’s data can contain additional
confounding effects such as larger head motions.

To address this, we included four additional postprocess-
ing steps to control the remaining noise in the TCs of
ICNs. The steps included (1) detrend linear, quadratic, and
cubic trends, (2) remove detected outliers, (3) apply multiple
regression on the head motion parameters (3 rotations and 3
translations) and their temporal derivatives, and (4) bandpass
filtering using a cutoff frequency of 0.01–0.15Hz. After the
postprocessing, we calculated Pearson correlation coeffi-
cients between postprocessed TCs to estimate the static
FNC for each scan.

Analysis of longitudinal changes in FCP

In this study, FNC from subject-wise baseline and 2-year
data were analyzed. To focus on changes within subjects for
the 2-year period, the cell-wise difference between the

Table 1. Demographic Information of Adolescent Brain Cognitive Development Data

Event name Total subjects Age (months) Sex (male/female) Height (meter) Weight (kg) Race (W/B/H/A/O)

Baseline 11,244 119– 8 5833/5347 1.41 – 0.08 37.42 – 10.75 4771/1325/1863/181/929
Follow-up 3678 143– 8 1875/1589 1.53 – 0.1 48.35 – 14.24 1631/317/629/57/284

A, Asian; B, Black; H, Hispanic; O, others/unknown; W, White.
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baseline and 2-year FNC data was first computed to create
the FNC difference matrices (DFNCs), which are then
being decomposed into independent components using ICA
(infomax algorithm; Bell and Sejnowski, 1995). ICA aims
to separate higher-order information by maximizing the sta-
tistical independence of the estimated components.

We then evaluated the covariation in brain functional cou-
pling among brain networks. In our experiment, five compo-
nents were estimated based on elbow criteria. More
specifically the ICA model equation can be written as
X = A:S, in which X= subjects (3489) ·DFNC cells (1378
cells from the upper triangle of the symmetric matrix);
A = subjects (3489) · component numbers (5) and S = com-
ponent numbers (5) ·DFNC cells (1378). This effectively
models the input data, for each subject j as

DFNCj = +
5

i= 1

aijFCP :

Here DFNC = F0 � F2, F0 is the baseline FNC data, F2 is
the 2-year FNC data, FCP is the source matrix, represents
maximally independent FCPs and aij are the subject-specific
loading parameters for the ith component. The sources repre-
sent maximally independent covarying patterns of functional
changes.

We further evaluated the loading parameters and source
matrix after the ICA estimation to identify FCPs. We
found significant longitudinal change relative to zero for
the FCPs. We conduct a one-sample t-test on the loading pa-
rameters and calculate the statistical significance with a 95%

significance threshold, corrected for multiple comparisons.
We also computed the kurtosis of the loading parameters
for the five components to evaluate whether the longitudinal
change was more concentrated at the mean or spread out in
the tails.

We visualize the FCPs through the connectivity matrix
and connectograms. We also performed a two-sample t-test
on each loading parameter using sex (biological sex assigned
at birth) information. In our study, the number of male
and female subjects was 1841 and 1569, respectively. A
block diagram of the analysis workflow is shown in Figure 1.
We also evaluated the reliability of the result by apply-
ing our method to data collected in a separate scan ses-
sion and computing the intraclass correlation coefficients
(ICCs).

Correlation with composite cognition

and psychiatric problems

To minimize the number of comparisons, we computed
the composite measures for cognitive and psychopathology
scores. In this study, we combined the relevant ABCD scores
(see Supplementary Data for individual variables) by nor-
malizing each variable (i.e., subtracting the mean and divid-
ing by the standard deviation) and then adding up the scores
within each of the two categories (cognition and psychiatric
problems) to create two new composite variables. We com-
puted the subject-wise difference between the baseline and
2-year cognitive and psychopathology scores to create cogni-
tive score difference and psychopathology score difference

FIG. 1. Block diagram of the FCP analysis workflow. The subject-wise changed FNC matrix has been constructed by tak-
ing the difference between preprocessed baseline and 2-year FNC data. Group ICA was applied on the new FNC matrices to
detect covarying multivariate patterns. DFNC, delta functional network connectivity; FCP, functional change pattern; FCPC,
functional change pattern covariation; fMRI, functional magnetic resonance imaging; FNC, functional network connectivity;
ICA, independent component analysis.
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data. Then, we computed the correlation between these var-
iables and the loading parameters for each component.

Quartile analysis of pattern changes through correlation

The overall results showed significant age-related pattern
changes for all components. Fu et al. (2022) performed a
large-scale analysis on cross-scan FC stability using ABCD
data and found that to infer early cognitive and psychiatric be-
haviors in children, the intra-subject connection stability may
be a useful biomarker. Based on this observation, we were in-
terested in evaluating the relation of age-related brain FCPs
with psychopathology and cognitive scores difference.

To compute the relationship of the subset of subjects
showing the largest change patterns with increased age, we
computed the correlation for the lower and upper quartile
of loading parameters with the variables of age difference,
psychopathology score difference, and cognitive score dif-
ference, respectively. Specifically, we first computed the
subject-wise difference between the baseline and 2-year val-
ues for age, composite psychopathology score, and compos-
ite cognitive score data to create scores for the age
difference, psychopathology score difference, and cognitive
score difference, respectively.

Next, we identified the subjects with loading parameter
values in the lower and upper quartiles. After that, we corre-
lated the age difference, psychopathology score difference,
and cognitive score difference data subject-wise with the
loading parameter, respectively. In addition, we also com-
puted the correlation for the lower and upper quartile of load-
ing parameters with the prodromal psychosis scale (number
of yes responses summed [pps_y_ss_num]) difference fol-
lowing the aforementioned procedures. All results were cor-
rected for multiple comparisons using the false discovery
rate (FDR) (Benjamini and Hochberg, 1995).

FCPC analysis and relationship to subject measures

To analyze the covariation and interactions between the
FCPs, we computed the cross-correlation between the load-
ing parameters to obtain a 5 · 5 correlation matrix. To eval-
uate the relationship of this FCPC to psychopathology score
difference, cognitive score difference, baseline age, and age
difference, we compared FCPC of the lower quartile versus
upper quartile of psychopathology score difference, cogni-
tive scores difference, baseline age, and age difference,
respectively.

Specifically, we selected subjects whose psychopathology
score difference values are less than or equal to the lower
quartile. Then, we calculated the correlation among the load-
ing parameters of FCPs in the selected subjects to create a
5 · 5 matrix as the lower FCPC. Following the same proce-
dure for the upper quartile we created the upper FCPC as
well. Finally, we computed the difference between the corre-
lation of upper FCPC and lower FCPC. We applied the same
approach to evaluate cognitive score difference, baseline
age, and age difference.

Results

Overall effects on longitudinal change patterns

Fifty-three replicable networks were included in the Neu-
romark_fMRI_1.0 template, which are divided into seven
domains based on anatomical and functional properties (sub-
cortical, auditory, sensorimotor, visual, cognitive control,
default mode, and cerebellar; Du et al., 2020). The brain net-
work template is shown in Figure 2. In each subplot, the
ICNs are represented by different colors in the composite
maps.

In our analysis, as the 2-year FNC data (older time point,
F2) has been subtracted from the baseline FNC data (younger

FIG. 2. Visualization of the Neuromark_fMRI_1.0 network template (Du et al., 2020).
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time point, F0; F0 – F2), a high negative T value represents an
increase, whereas a positive T value represents a decrease in
the given FCP’s expression with age. In the case of a nega-
tive T value, positive functional network pairs are negative,
indicating increased connectivity, whereas for a positive T

value, positive functional network pairs are positive, signify-
ing reduced connectivity.

In summary, negative T values indicate heightened con-
nectivity coupling among positive FNC pairs (in red) and di-
minished connectivity coupling among negative FNC pairs
(in blue) as individuals age. Conversely, positive T values in-
dicate reduced connectivity coupling among positive FNC
pairs (depicted in red) and enhanced connectivity coupling
among negative FNC pairs (depicted in blue) with advancing
age.

We present our experimental results of FCPs components
in Figure 3. In our study, we estimated five components, and
the optimal component numbers were selected based on the
elbow criterion. In Figure 3, each component and the associ-
ated T value indicate its relationship to the null distribution
of zero, meaning no contribution on average across subjects
to change in structure between baseline and year 2. The
associations of FCPs components with age are depicted by
the upper and lower arrow.

Here the upper arrow indicates the increasing expression
of FCPs components with age, whereas the lower arrow indi-
cates decreasing expression of FCPs components with age.
All components exhibit structured change patterns however,
in component 4, we observe the largest negative FC coupling
between the visual domain (VSN)-sensorimotor domain
(SMN) and cerebellar domain (CBN)—subcortical domain
(SCN) for the 2-year period. The associated T value for com-
ponent 4 is negative (�14.02).

We also see the largest positive functional coupling for
component 4 between the VSN-CBN and SMN-SCN regions
in Figure 3. In the figure, we see that component 2 has the
largest positive T value as 11.47. In the plot, the default
mode domain (DMN) and SMN exhibit the largest positive
values and CBN and DMN domains show the largest nega-
tive FC coupling for component 2 for the 2-year period.
From the figure, we also observe highly structured (modular)
patterns. The T value, P value, kurtosis, and skewness of the
loading parameters is presented in Table 2.

All five loading parameters are super-Gaussian (kurtosis is
above 3.0). Here, loading parameter 4 shows the highest kur-
tosis value (5.3466) and exhibits the largest age change ef-
fect. In addition, component 2 is right-skewed, indicating
that the expression of FCPs is reduced at the older time
point. Finally, we tested for sex differences through a two-
sample t-test on each loading parameter. Components 4
and 5 show significant differences between males and fe-
males, with the directionality being the opposite (males
show larger FCP changes for component 4 and females
show larger FCP changes for component 5). This suggests
these two distinct components might play a role in brain de-
velopment in the male and female populations.

To examine the reliability of our method, we also ran our
analysis on the second scan session data. Results showed the
FCPs from the reliability analysis are consistent with the
FCPs from the first scanned data (i.e., they show the same direc-
tion and relative effect size). We also performed a two-sample
t-test on each second scan’s loading parameter differentiated

by sex. We observed that males and females generally mani-
fest FCP in the same direction.

We computed ICCs for (1) FCP patterns, (2) one-sample
t-test results, and (3) two-sample t-test results through com-
parison of the analysis in the article with that from the second
scan session. Results show good to excellent reliability. FCP
patterns were highly similar (all correlations ‡0.96), two-
sample ICCs were *0.95, and one-sample ICCs were
*0.75.

Correlation with composite psychopathology and cognitive

scores difference

To further explore the relation of age-related brain FCPs
with psychopathology and cognitive scores difference, we
conducted a comparative analysis. The loading parameter
for component 2 was significantly correlated (Pearson’s co-
efficient, r = 0.048, p= 0.0043) with the psychopathology
score change between baseline and year 2. We did not find
a significant correlation between cognitive score difference
and loading parameters for any component.

The ABCD data were acquired from 22 scanners with
three types: GE, Philips, and Siemens. We also considered
scanner effects to further validate our findings from psycho-
pathology and cognitive scores. We conducted multiple re-
gression analyses, including nuisance regressors for each
scanner. The results showed no significant influence of scan-
ner type on our findings, that is, the reported results were
consistent in both cases.

Evaluation of subjects showing change patterns

We computed the correlation between the lower and upper
quartile of loading parameters of the whole-brain functional
network with the variables age difference, psychopathology
score difference, and cognitive score difference. We found
a positive correlation (Pearson’s coefficient, r = 0.0926,
FDR-corrected, and p = 0.0067) between the age difference
and the lower quartile of loading parameter 5. The psychopa-
thology score difference is also weakly positively correlated
with the lower quartile of loading parameter 1 (Pearson’s co-
efficient, r = 0.0639, FDR-corrected, and p= 0.049) and neg-
atively correlated with the lower quartile of loading
parameter 3 (Pearson’s coefficient, r =�0.0671, FDR-
corrected, and p = 0.06).

The cognitive score difference is showing a positive corre-
lation (Pearson’s coefficient, r = 0.077, FDR-corrected, and
p = 0.024) with the upper quartile of loading parameter 4.
The pps_y_ss_num difference is weakly negatively corre-
lated (Pearson’s coefficient, r =�0.0654, FDR-corrected,
p = 0.055) with the upper quartile of loading parameter 3.
We also ran a two-sample t-test on the upper and lower quar-
tile of each loading parameter using sex information of age
difference data. We observed that females show smaller
FCP changes for the upper quartile of component 4 with in-
creased age ( p = 0.0365).

Functional change pattern covariation

We next computed the FCPC between the loading param-
eters. We find a high positive covariation between loading 4
and 5 and the correlation value is 0.357 (T4 =�14.0222 and
T5 =�7.4531). We also find a large negative covariation
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FIG. 3. FNC component plot.
In the figure, we observe the
FCPs for components 2 and 4
have the highest positive (com-
ponent 2) and negative (compo-
nent 4) T values. The positive T
values (F0 – F2) indicate de-
creased connectivity coupling
between positive FNC pairs
(represented in red) and in-
creased connectivity coupling
between negative FNC pairs
(represented in blue), whereas
the negative T values indicate
increased connectivity coupling
between positive FNC pairs
(represented in red) and de-
creased connectivity coupling
between negative FNC pairs
(represented in blue) with in-
creased age. We also marked the
associated relation of FCPs
components with increased age
by the upper and lower arrows.
Here the upper arrow indicates
the increasing expression of
FCPs components with age,
whereas the lower arrow indi-
cates the decreasing expression
of FCPs components with age.
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between loading 4 and loading 2 (r =�0.3836 [T2 = 11.4683
and T4 =�14.0222]). The t value of components 4 and 5 are
both negative, thus the FCP is more expressed at the older
time point, and thus they exhibit positive covariation. The t

value of component 2 is positive meaning these FCPs are
less expressed at the older time point, whereas the t value
of component 4 is negative, thus components 2 and 4 show
negative covariation.

Association of FCPC with psychopathology score

difference, cognitive score difference, baseline age,

and age difference

We investigated the relationship of FCPC to subject mea-
sures (psychopathology scores difference, cognitive scores
difference, baseline age, and age difference). From our results,
we find at least one significant difference in each variable.
Age difference showed the largest relationship in loading 2
and loading 5 (Pearson’s coefficient difference Dr= 0.0840,
and p= 5· 10�4). The highest difference lies between loading
1 and loading 4 for baseline age (Pearson’s coefficient differ-
ence Dr=�0.177, and p= 1.97· 10�13), between loading 3
and loading 5 for psychopathology score (Pearson’s coeffi-
cient difference Dr=�0.1106, and p= 4.48· 10�6) and load-
ing 1 and loading 4 for cognitive score (Pearson’s coefficient
difference Dr=�0.0863, and p= 3.67· 10�4).

Discussion

Longitudinal investigations provide valuable insights into
age-related connectivity changes within individuals
(Kraemer et al., 2000), but there has been limited exploration
of this using resting-state fMRI data to capture age-related
whole-brain FCPs. In our study, we present an innovative
method for comprehensively capturing changes in whole-
brain FNC with age. We employ FNC matrices, identifying
noteworthy longitudinal patterns of functional change. Nota-
bly, we observe a strengthening of brain FC between VSN
and SMN with increasing age. Furthermore, our study un-
covers associations between these FCPs and variables of in-
terest, making it the first to investigate multiple overlapping
brain FCPs longitudinally across the entire brain with age.

Our analysis reveals that component 2 and 4’s FCPs have
the highest positive and negative T values, respectively. For
component 4, we observed an increasing FC coupling be-
tween the VSN and the SMN and between the CBN and
the SCN for the 2-year period. This evidence indicates that
the developing brain begins to establish connections among
different regions, while simultaneously adapting its neural
and cognitive systems to respond to external stimuli.

It is reasonable to infer that these connections among neu-
ral circuitry in the developing brain play a critical role in cre-
ating distinctions between regular and irregular neural
dynamics. The T value associated with component 4 is neg-
ative (�14.02), indicating that this FCP is strongly nega-
tively expressed in the data. We also observed a decreasing
functional coupling between the VSN and CBN and SMN
and SCN regions with age, which exhibited the largest pos-
itive T values.

In addition, component 2 exhibits a notably large positive
T value of 11.47, signifying its strong positive expression in
the data. This component is characterized by decreasing
brain functional coupling with age, primarily observed in
the DMN and SMN. Furthermore, CBN and DMN domains
showed increasing brain FCPs for the 2-year period. The
DMN, a crucial component of functional hubs involved in
a variety of functional processes, has been a central focus
in studies of age-related changes in FC (Raichle et al., 2001).

Ferreira and Busatto (2013) have reported that age-related
declines in FC primarily impact the DMN and the dorsal at-
tentional network. Our findings are further supported by re-
cent studies similar to that of Park et al. (2022), which also
observed reduced FC between sensory/unimodal networks
and the DMN in the context of aging, as evidenced by Neuro-
science in Psychiatry Network longitudinal data (Park
et al., 2022).

We observed an interesting pattern in the loading param-
eters for all components, where the distribution of the load-
ing parameters is super-Gaussian, which indicates a larger
proportion of subjects show large positive or negative ex-
pressions of these components, potentially characterizing a
healthy brain. A previous study utilized reduced super-
Gaussianity as a biomarker to differentiate between progres-
sive neurodegenerative diseases such as Parkinson’s disease
and amyotrophic lateral sclerosis compared with a healthy
control group (Kodrasi and Bourlard, 2019). We hypothesize
that super-Gaussianity could serve as a criterion for identify-
ing healthy individuals who display significant positive or
negative expressions with the components.

We acknowledge that certain correlation values although
low, are statistically significant, due to the large cohorts.
Many previous studies of large N population-based studies
such as ABCD and UKBiobank tend to show small effects,
*0.1, for many of the behavioral measures. This may well
be the actual effect size. Our analysis revealed a significant
correlation between the difference in psychopathology
scores and the loading parameters for component 2, indicat-
ing that the decreasing functional coupling between DMN
and SMN or increasing FC coupling between CBN and
DMN during brain development are associated with compos-
ite psychopathology scores.

Although previous studies have attempted to link particular
brain circuits to specific symptoms, dimensions, or behavioral
measures across diagnostic categories, their design focusing
only on a single behavioral measure or symptom domain pre-
vents the discovery of continuous dimensions that span multi-
ple categories (Adleman et al., 2012; Cole et al., 2014; Dichter
et al., 2012; Drysdale et al., 2017; Kaczkurkin et al., 2016;
Satterthwaite et al., 2016; Satterthwaite et al., 2015a; Sat-
terthwaite et al., 2015b; Sharma et al., 2017). Our findings
based on composite features overcome this limitation, sug-
gesting an avenue for further studies on the developing brain.

Table 2. T Value, p Value, Kurtosis Value, and

Skewness of Loading Parameters

T value p value
Kurtosis
value Skewness

Component1 4.9668 7.13e-07 4.2784 0.2733
Component2 11.4683 6.50e-30 4.5345 0.4898
Component3 8.4506 4.19e-17 4.3572 �0.0738
Component4 �14.0222 1.69e-43 5.3466 �0.3679
Component5 �7.4531 1.14e-13 4.6517 �0.0869
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We did not find any significant correlation between load-
ing parameters and the difference in cognitive scores. Pre-
vious research has demonstrated that brain connectivity is
positively correlated with both adult and child performance
on cognitive tests (Langeslag et al., 2013; Li and Tian,
2014; Sherman et al., 2014; Song et al., 2008). These find-
ings imply that complex multivariate pattern changes are oc-
curring and that cognitive scores are related to the
coordinated changes in these multivariate patterns.

One possibility that we did not observe significant connec-
tions is that studying the whole brain change in connection
patterns, rather than focusing on specific brain regions or
subnetworks, may have reduced sensitivity in this case. It
is plausible that the complete network may not be sufficiently
mature to perceive this relationship on a global level in chil-
dren aged 9–10 years. Furthermore, we found a significant
positive correlation between the cognitive score and compo-
nent 4 in the upper quartile samples of loading parameter 4.

This finding suggests that subjects who have the largest
changes in the functional connectivity pattern (FCP 4)
show the closest association between the FCP and cognitive
improvement. We also observed a significant positive corre-
lation between age difference and the lower quartile of load-
ing parameter 5. This finding suggests that subjects who
contribute less to the FCP of the brain are associated with
age differences.

In addition, we investigated the covariation of FCPs between
the loading parameters of each component. Our results reveal a
strong positive association between loading parameters 4 and
5, and a significant negative association between loading pa-
rameters 4 and 2. As is well-known, co-activated brain net-
works, that is, FNC, can be extracted from TCs acquired
through ICA that show covariation between multiple TCs
across different brain regions. In our case, we used a unique sta-
tistical approach to visualize the maximum independent com-
ponents of brain functional pattern change covariation that
show how components covary with each other across subjects.

We found significant differences in at least one domain for
each of the variables under investigation: psychopathology
scores difference, cognitive scores difference, baseline age,
and age difference. Specifically, for age difference, the
upper FCPC was greater than the lower FCPC. Furthermore,
we observed that the lower FCPC was greater than the upper
FCPC for baseline age, psychopathology scores difference,
and cognitive scores difference.

Our proposed approach has some limitations that must be
noted. First, throughout the process, we used ICA where the
captured brain functional pattern changes are assumed to be
linear. However, recent work by Motlaghian et al. (2021) has
shown that functional networks can exhibit nonlinear rela-
tionships, which are typically ignored in the linear analysis.
It would be useful to explore some nonlinear approaches to
investigate the age-related FCPs in the developing brain.

Second, we studied FCPs for a 2-year period, but our ob-
served results can remain unchanged or vary with an increased
age difference. As theABCD data study continues, we can use
more time points to capture multiple overlapping brain FCPs
in the developing brain. Third, we conducted the analysis on
the association between sex (biological sex assigned at
birth) and FCPs but not with gender identity in this study.

However, we plan to perform this analysis in the future.
Finally, this study used 9- to 10-year-old youth data, and sub-

jects may have relatively low levels of psychiatric symptom-
atology (Escrichs et al., 2021), although it is expected that
their psychopathology load will rise during adolescence
(Paus et al., 2008). The relationship between the brain and
behavior could be stronger, weaker, or otherwise change,
which can be directly tested in future waves of longitudinal
ABCD data, allowing us to make a clear hypothesis.

Conclusion

In this study, we introduced a novel approach that uses
FNC matrices to compute multiple overlapping brain FCPs
over age. By examining changes in FC over time, we gain in-
sights into how the developing brain adapts its connectivity
to enhance rational information processing. Our results
showed several significant FCPs for a 2-year period. From
FCPs, we observed the increasing and decreasing FC, includ-
ing increased coupling between the VSN and SMN domains
and decreasing anticorrelation between sensorimotor and
cognitive/DMN domains with increasing age.

We also found several FCPs that are associated with psy-
chopathology, cognition, and age in the developing brain.
Finally, our proposed approach to investigating the age-
related FCPs in the developing brain is the first approach
that can be a useful tool to evaluate covarying patterns of
whole-brain functional changes in longitudinal data. We be-
lieve this sort of study would be helpful to look into the ab-
erration of FC in the developing brain. It will enrich our
knowledge about overall brain circuitry and the alteration re-
quired for information processing.
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