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ABSTRACT

There is growing interest in extracting multivariate patterns
(covarying networks) from structural magnetic resonance
imaging (sMRI) data to analyze brain morphometry. Con-
strained source-based morphometry (constrained SBM) is a
hybrid approach which provides a fully automated strategy
for extracting subject-specific parameters characterizing gray
matter networks. In constrained SBM, constrained indepen-
dent component analysis (ICA) is used to compute maximally
independent sources and statistical analysis is used to iden-
tify sources significantly associated with variables of interest.
However, constrained SBM is built on the assumption that
the data are locally accessible. As such, it cannot take advan-
tage of decentralized (i.e., federated) data. While open data
repositories have grown in recent years, there are various rea-
sons (e.g., privacy concerns for rare disease data, institutional
or IRB policies, etc.) that restrict a large amount of exist-
ing data to local access only. To overcome this limitation,
we introduce a novel approach: decentralized constrained
source-based morphometry (dcSBM). In our approach, data
samples are located at different sites and each site operates
the constrained ICA in a distributed manner. Finally, a mas-
ter node simply aggregates result estimates from each local
site and runs the statistical analysis centrally. We apply our
method to UK Biobank sMRI data and validate our results by
comparing to centralized constrained SBM results.

Index Terms— sMRI, SBM, Federated System, UK
Biobank

1. INTRODUCTION

Structural magnetic resonance imaging (sMRI) is a powerful
tool to analyze brain morphometry. A common approach
to capture the brain structure changes is to divide the brain
into regions of interest (ROI) and estimate the differences
between groups. Voxel based morphometry (VBM) is an-
other approach to identify the voxel-wise differences across
the whole brain [1]. VBM, as a massive univariate approach,
does not utilize the information of the relationship across
voxels. Source based morphometry (SBM), a multivaiate
data-driven approach was introduced to detect the whole
brain structure automatically by utilizing the information

across voxels [2]. SBM computes the spatially independent
sources by using the combined techniques of ICA and VBM;
and performs statistical analysis to identify the dominant
sources to distinguish patients from healthy controls. SBM
has been utilized to successfully examine different disorders
[3] such as autism spectrum disorders [4], and Parkinson’s
[5].

Constrained source-based morphometry (constrained
SBM) was proposed [6] as a hybrid approach that possesses
the inherent advantages of SBM while also allowing for cor-
respondence among datasets and automation. Unlike SBM,
constrained SBM uses constrained-independent component
analysis [ICA] [7]. In constrained SBM, a whole brain com-
ponent template is incorporated as a prior constraint and the
algorithm jointly optimizes independence to update the tem-
plate as well as for similarity to the template. Constrained
SBM can thus be used to compute structural networks across
the whole brain in a fully automated manner.

Both SBM and constrained SBM approaches are built on
the assumption that data are locally accessible. But collect-
ing neuroimaging data is expensive and time consuming [8].
While open data have offered great benefits, in many cases
there are challenges associated with data sharing and pool-
ing related to regulatory concerns or to de-identification. Re-
cent studies have shown that it is possible to identify specific
subjects from a dataset consisting of patients with rare dis-
eases [9, 10]. In the past few years, there has been extensive
research to leverage data across multiple sites [11, 12, 13, 14,
15]. In this paper, we introduce a novel method: decentral-
ized constrained source-based morphometry (dcSBM). In our
approach, we perform decentralized constrained ICA across
multiple sites. In dcSBM, we compute the most significant
loading parameters from a linear regression model. Our re-
sults show one source in the somatomotor domain and another
in the cognitive control domain. To the best of our knowledge,
our proposed method is the first approach to implement con-
strained SBM in a decentralized manner.

2. METHODS

Constrained SBM is a multivariate alternative to the voxel-
based morphometry (VBM) approach to investigate gray mat-
ter differences between patients and healthy controls. It uti-
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lizes a set of prior/reference maps to guide the source esti-
mation. To deploy such approach on data located at different
sites, we propose decentralized constrained SBM (dcSBM).

In the centralized case, we are tasked with finding gray
matter differences using constrained SBM from a dataset
X = [x1...,oxn]", where z; € RY is the i-th subject’s
V -dimensional vector of real-valued features, with N sub-
jects. In the decentralized setting with L sites, each site ¢ has
dataset Dy = {(z;,vy;) : i € {1,2,...,Np}}, where y; € R
is the subject age. First, each local site £ runs constrained
ICA separately on their local data X and obtains mixing and
source matrices, Ay and Sy, respectively. A master node then
aggregates all A, centrally for further analysis.

2.1. Data Acquisition and Preprocessing

T1 structural MRI data is acquired using straight sagittal
orientation. By using the results of population brain size
and shape from [16], the imaging matrix is automatically
angled such a way that the front of the brain is tilted down
by 16°, with respect to the anterior commissure - posterior
commissure line. The T1-weighted structural image consists
of following parameters: Resolution: 1 x 1 x 1mm, Field-
of-view: 208 x 256 x 256 matrix, Duration: 5 minutes, 3D
MPRAGE, sagittal, in-plane acceleration iPAT=2, prescan-
normalise. To include reasonable amounts of neck/mouth, the
superior-inferior field-of-view is defined as 256mm.

In our analysis, 3000 unaffected subjects are selected
from the UK Biobank study. For subject-level preprocessing
of T1-weighted sMRI data, the modulated gray matter proba-
bilistic segmentation maps were generated from T1-weighted
images using SPM12 !. These were smoothed using a Gaus-
sian kernel with FWHM = 10mm.

2.2. Spatially Constrained ICA

Constrained ICA is an enhanced ICA model that incorporates
prior information into the decomposition process and extracts
one or several desired independent sources S. A reference
R is chosen to carry the prior information of the desired
sources. Using a fast fixed-point algorithm, constrained ICA
was performed on the subject-volume matrix X [7], which
is embedded in the group ICA toolbox GIFT 2. Based on
the reference vector R, the source matrix S was extracted
from the matrix X. The mixing matrix was also computed
during this process. Thirty replicable spatial references (R)
were identified based on separate group ICA results from
two independent sMRI datasets in: 1) the human connectome
project (HCP) and 2) the genomics superstruct project (GSP),
each containing about 3500 unaffected subjects [17]. We then
used sMRI data from 3000 consented subjects participating
in the UK Biobank study. In our decentralized setting, we

Uhttps://www.fil.ion.ucl.ac.uk/spm/software/spm12/
Zhttp://trendscenter.org/software/gift
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Fig. 1. Flow diagram of decentralized constrained SBM

assigned N, = 1000 subjects to each local site. The data
on each site were processed by spatially constrained ICA.
A one-dimensional vector of V in-brain gray matter voxels
from each subject formed a N, x V matrix X,.

Local processing by ICA resulted in local mixing and
source matrices. In the mixing matrix, the scores in each
column (also called loading parameters) represent how each
component contributes to each subject. In the source matrix,
the scores in each row represent statistically independent spa-
tial configurations that highlight areas of coherent variability
across subjects. We perform the same analysis to each local
site and, finally, concatenate the mixing matrix from each site
by means of simple aggregation to simplify the ensuing linear
regression step (Section 2.4). We refer the reader to [18] for a
fully decentralized regression approach that produces identi-
cal results as our simple aggregator. Strictly for the purposes
of quality assessment of the proposed approach, we also ag-
gregated the source matrices from each site. The procedure is
shown in Figure 1.

To compare with the decentralized statistical results, we
also run constrained ICA in a centralized setting. We pool
all datasets together and run spatially constrained ICA on
3000 subjects. We collect the decomposed mixing matrix and
source matrix and compare with the decentralized outputs.

2.3. Pairwise Correlation

In our statistical analysis, we computed the pairwise correla-
tion coefficients between columns in the centralized and de-
centralized loading parameters. We also computed the pair-
wise correlation coefficients between rows of the centralized
and average decentralized source matrices.

Authorized licensed use limited to: Georgia State University. Downloaded on February 03,2025 at 20:27:18 UTC from IEEE Xplore. Restrictions apply.



2.4. Linear Regression

We run linear regression on both centralized and decentral-
ized SBM models. We setup the predictor matrix Z with di-
mensions 3000 x 33, where variables 1 to 30 are the load-
ing parameters from the mixing matrix. Column 31 is gender
and the remaining columns contain site information. We used
subject age as the response variable. Finally, we fit the data
matrix Z with a linear regression model. From the analysis,
we extracted the p value for each variable. We also created an
effects plot of the predictors from our regression model using
the plotEffects function in Matlab. The effect plot demon-
strates the estimated main effect on the response variable by
changing each predictor value. We also created the same anal-
ysis for the centralized constrained SBM to compare with our
decentralized results.

3. RESULTS

Using spatially constrained ICA, we estimated thirty indepen-
dent components in decentralized SBM. To compare with the
decentralized case, we also estimated thirty components from
the pooled dataset, and used centralized SBM.

We computed the correlation between the centralized and
decentralized loading parameters. We present the correlation
plot in Figure 2. In subplot (A), we present the correlations
between columns of the loading matrix in centralized SBM.
In subplot (B), we demonstrate the correlation between the
centralized and decentralized loadings. From the centralized
vs decentralized correlation plot, we observe the highest cor-
relation across the diagonals. This observation demonstrates
that the scores in loading parameter 7 in centralized SBM and
loading parameter j (where ¢ == j) in decentralized SBM
are highly similar (c.f. the high correlation across the diago-
nal). We also evaluated the correlations between the central-
ized and average decentralized source matrix and presented
the results in subplot (C) and (D). We also observe similar be-
haviour between the centralized and aggregate decentralized
sources where we get the high correlations across the diag-
onal. To check the reliability of our algorithm, we repeated
this experiment 10 times while randomly shuffling subjects
across sites each time. We present the experimental results in
Figure 3, where the correlation, Mean Square Error (MSE),
Max Absolute Error (MaxAE), and Median Absolute Error
(MedianAE) are between the correlation matrices in Fig. 2(A)
and Fig. 2(B) for each of the 10 shuffled runs (similarly for
Figs. 2(C) and (D)). Each boxplot contains 10 points from
10 shuffled runs, and we observe that all 10 values are very
similar, indicating high reliability.

We then computed the p value for all the variables from
the linear regression model for both centralized and decen-
tralized experiments. Finally, we visualized the scatter plot
of centralized versus decentralized p values. The results are
presented in Figure 4. We only plotted the p values of loading
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Fig. 2. Correlation plots of loading parameters and sources.
(A) Correlation among centralized loadings only, (B) cor-
relation between centralized vs decentralized loadings. (C)
Correlation among centralized sources only, (D) correlation
between centralized vs decentralized sources. (A,C) the ex-
pected similarity structure among loadings and sources, re-
spectively, for the centralized case; (B,D) the recovered sim-
ilarity structure between centralized and decentralized esti-
mates, with near-1 correlations along the main diagonal.

parameters. Note that centralized and decentralized p values
for the same number of loading parameters are very similar.
We also generated an effect plot to show the main effect
on the response variable (age) while changing each predic-
tor value (30 loading parameters, sex, and site). The exper-
imental results of the effect plots for the centralized and de-
centralized cases are presented in Figure 5. In the figure, a
horizontal line across the effect value implies the 95% confi-
dence interval for the effect value. In the plot, we observe the
similar effect of each variable in both centralized and decen-
tralized cases. From visual inspection, we found the loading
parameters 12 and 22 to have the largest effects on the re-
sponse variable. We show the adjusted response plot using the
Matlab function plotAdjustedResponse for variables 12 and
22 in the linear regression model. An adjusted response func-
tion describes the relationship between the fitted response and
a single predictor, with the other predictors averaged out by
averaging the fitted values over the data used in the fit. The
results are presented in Figure 7. Panels (A) and (B) repre-
sent the relationship between the fitted response and predictor
variables 12 and 22, respectively. Finally. we show the spatial
maps of components 12 and 22 in Figure 6. Notice that one
source is found within the somatomotor domain and the other
one highlights the cognitive control domain. The expression
level of these sources across subjects is associated with age.
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Fig. 3. Similarity metrics for (A) loading parameters and (B)
sources. The left Yaxis is used for correlation. The right Yaxis
is used for the remaining three metrics.
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Fig. 4. Scatter plot of centralized and decentralized p values
(log-log scale) indicating high consistency and overall agree-
ment between centralized and decentralized estimates.
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Fig. 5. Results for centralized and decentralized regression
analysis. Panel (A) depicts the effect sizes for each load-
ing estimated with the centralized approach, and (B) depicts
the effect sizes for each loading estimated with the decentral-
ized approach. Here, we observe very similar effect sizes in
both centralized and decentralized analysis, suggesting con-
sistency between the two approaches.

4. CONCLUSION

In this work, we have proposed a novel approach to perform
constrained SBM in a distributed manner. We have identified
and visualized two gray matter sources that are significantly
associated with subject age. We compared our decentralized
approach with the traditional (centralized) constrained SBM

P

Fig. 6. Visual summary of sources 12 (supplementary motor
area) and 22 (insula + caudate), which are typical of somato-
motor and cognitive control domains, respectively. The pan-
els to the left depict cross-sectional views while the panels to
the right depict “glass brain” views.
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Fig. 7. Adjusted response plot for loadings corresponding
to sources 12 (supplementary motor area) and 22 (insula +
caudate). The plots depict the association between loading
values (subject-specific expression levels) and age (adjusted
variable).

and showed that our results very closely approximate the cen-
tralized estimates but without any raw data sharing. The use
of decentralized or federated approaches provides a power-
ful way to 1) leverage existing data which is required to stay
locally private, and 2) integrate such data with openly avail-
able datasets. Decentralized approaches can also democratize
computational resources, i.e., a single research group may not
have the computational resources to analyze all datasets at a
centralized location, but a larger federated consortium permits
such analyses to be carried out and advance large-scale scien-
tific studies. Although our demonstration artificially emulates
sites, we fully expect that future work on real multi-site data
will achieve the same performance, despite potential presence
of site effects. We will also investigate the performance of
dcSBM for group comparison in decentralized patient data.
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