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ABSTRACT

There is growing interest in extracting multivariate patterns

(covarying networks) from structural magnetic resonance

imaging (sMRI) data to analyze brain morphometry. Con-

strained source-based morphometry (constrained SBM) is a

hybrid approach which provides a fully automated strategy

for extracting subject-specific parameters characterizing gray

matter networks. In constrained SBM, constrained indepen-

dent component analysis (ICA) is used to compute maximally

independent sources and statistical analysis is used to iden-

tify sources significantly associated with variables of interest.

However, constrained SBM is built on the assumption that

the data are locally accessible. As such, it cannot take advan-

tage of decentralized (i.e., federated) data. While open data

repositories have grown in recent years, there are various rea-

sons (e.g., privacy concerns for rare disease data, institutional

or IRB policies, etc.) that restrict a large amount of exist-

ing data to local access only. To overcome this limitation,

we introduce a novel approach: decentralized constrained

source-based morphometry (dcSBM). In our approach, data

samples are located at different sites and each site operates

the constrained ICA in a distributed manner. Finally, a mas-

ter node simply aggregates result estimates from each local

site and runs the statistical analysis centrally. We apply our

method to UK Biobank sMRI data and validate our results by

comparing to centralized constrained SBM results.

Index Terms— sMRI, SBM, Federated System, UK

Biobank

1. INTRODUCTION

Structural magnetic resonance imaging (sMRI) is a powerful

tool to analyze brain morphometry. A common approach

to capture the brain structure changes is to divide the brain

into regions of interest (ROI) and estimate the differences

between groups. Voxel based morphometry (VBM) is an-

other approach to identify the voxel-wise differences across

the whole brain [1]. VBM, as a massive univariate approach,

does not utilize the information of the relationship across

voxels. Source based morphometry (SBM), a multivaiate

data-driven approach was introduced to detect the whole

brain structure automatically by utilizing the information

across voxels [2]. SBM computes the spatially independent

sources by using the combined techniques of ICA and VBM;

and performs statistical analysis to identify the dominant

sources to distinguish patients from healthy controls. SBM

has been utilized to successfully examine different disorders

[3] such as autism spectrum disorders [4], and Parkinson’s

[5].

Constrained source-based morphometry (constrained

SBM) was proposed [6] as a hybrid approach that possesses

the inherent advantages of SBM while also allowing for cor-

respondence among datasets and automation. Unlike SBM,

constrained SBM uses constrained-independent component

analysis [ICA] [7]. In constrained SBM, a whole brain com-

ponent template is incorporated as a prior constraint and the

algorithm jointly optimizes independence to update the tem-

plate as well as for similarity to the template. Constrained

SBM can thus be used to compute structural networks across

the whole brain in a fully automated manner.

Both SBM and constrained SBM approaches are built on

the assumption that data are locally accessible. But collect-

ing neuroimaging data is expensive and time consuming [8].

While open data have offered great benefits, in many cases

there are challenges associated with data sharing and pool-

ing related to regulatory concerns or to de-identification. Re-

cent studies have shown that it is possible to identify specific

subjects from a dataset consisting of patients with rare dis-

eases [9, 10]. In the past few years, there has been extensive

research to leverage data across multiple sites [11, 12, 13, 14,

15]. In this paper, we introduce a novel method: decentral-

ized constrained source-based morphometry (dcSBM). In our

approach, we perform decentralized constrained ICA across

multiple sites. In dcSBM, we compute the most significant

loading parameters from a linear regression model. Our re-

sults show one source in the somatomotor domain and another

in the cognitive control domain. To the best of our knowledge,

our proposed method is the first approach to implement con-

strained SBM in a decentralized manner.

2. METHODS

Constrained SBM is a multivariate alternative to the voxel-

based morphometry (VBM) approach to investigate gray mat-

ter differences between patients and healthy controls. It uti-
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lizes a set of prior/reference maps to guide the source esti-

mation. To deploy such approach on data located at different

sites, we propose decentralized constrained SBM (dcSBM).

In the centralized case, we are tasked with finding gray

matter differences using constrained SBM from a dataset

X = [x1 . . . , xN ]¦, where xi ∈ R
V is the i-th subject’s

V -dimensional vector of real-valued features, with N sub-

jects. In the decentralized setting with L sites, each site ℓ has

dataset Dℓ = {(xi, yi) : i ∈ {1, 2, ..., Nℓ}}, where yi ∈ R

is the subject age. First, each local site ℓ runs constrained

ICA separately on their local data X and obtains mixing and

source matrices, Aℓ and Sℓ, respectively. A master node then

aggregates all Aℓ centrally for further analysis.

2.1. Data Acquisition and Preprocessing

T1 structural MRI data is acquired using straight sagittal

orientation. By using the results of population brain size

and shape from [16], the imaging matrix is automatically

angled such a way that the front of the brain is tilted down

by 16◦, with respect to the anterior commissure - posterior

commissure line. The T1-weighted structural image consists

of following parameters: Resolution: 1 × 1 × 1mm, Field-

of-view: 208 × 256 × 256 matrix, Duration: 5 minutes, 3D

MPRAGE, sagittal, in-plane acceleration iPAT=2, prescan-

normalise. To include reasonable amounts of neck/mouth, the

superior-inferior field-of-view is defined as 256mm.

In our analysis, 3000 unaffected subjects are selected

from the UK Biobank study. For subject-level preprocessing

of T1-weighted sMRI data, the modulated gray matter proba-

bilistic segmentation maps were generated from T1-weighted

images using SPM12 1. These were smoothed using a Gaus-

sian kernel with FWHM = 10mm.

2.2. Spatially Constrained ICA

Constrained ICA is an enhanced ICA model that incorporates

prior information into the decomposition process and extracts

one or several desired independent sources S. A reference

R is chosen to carry the prior information of the desired

sources. Using a fast fixed-point algorithm, constrained ICA

was performed on the subject-volume matrix X [7], which

is embedded in the group ICA toolbox GIFT 2. Based on

the reference vector R, the source matrix S was extracted

from the matrix X . The mixing matrix was also computed

during this process. Thirty replicable spatial references (R)

were identified based on separate group ICA results from

two independent sMRI datasets in: 1) the human connectome

project (HCP) and 2) the genomics superstruct project (GSP),

each containing about 3500 unaffected subjects [17]. We then

used sMRI data from 3000 consented subjects participating

in the UK Biobank study. In our decentralized setting, we

1https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
2http://trendscenter.org/software/gift

Fig. 1. Flow diagram of decentralized constrained SBM

assigned Nℓ = 1000 subjects to each local site. The data

on each site were processed by spatially constrained ICA.

A one-dimensional vector of V in-brain gray matter voxels

from each subject formed a Nℓ × V matrix Xℓ.

Local processing by ICA resulted in local mixing and

source matrices. In the mixing matrix, the scores in each

column (also called loading parameters) represent how each

component contributes to each subject. In the source matrix,

the scores in each row represent statistically independent spa-

tial configurations that highlight areas of coherent variability

across subjects. We perform the same analysis to each local

site and, finally, concatenate the mixing matrix from each site

by means of simple aggregation to simplify the ensuing linear

regression step (Section 2.4). We refer the reader to [18] for a

fully decentralized regression approach that produces identi-

cal results as our simple aggregator. Strictly for the purposes

of quality assessment of the proposed approach, we also ag-

gregated the source matrices from each site. The procedure is

shown in Figure 1.

To compare with the decentralized statistical results, we

also run constrained ICA in a centralized setting. We pool

all datasets together and run spatially constrained ICA on

3000 subjects. We collect the decomposed mixing matrix and

source matrix and compare with the decentralized outputs.

2.3. Pairwise Correlation

In our statistical analysis, we computed the pairwise correla-

tion coefficients between columns in the centralized and de-

centralized loading parameters. We also computed the pair-

wise correlation coefficients between rows of the centralized

and average decentralized source matrices.
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2.4. Linear Regression

We run linear regression on both centralized and decentral-

ized SBM models. We setup the predictor matrix Z with di-

mensions 3000 × 33, where variables 1 to 30 are the load-

ing parameters from the mixing matrix. Column 31 is gender

and the remaining columns contain site information. We used

subject age as the response variable. Finally, we fit the data

matrix Z with a linear regression model. From the analysis,

we extracted the p value for each variable. We also created an

effects plot of the predictors from our regression model using

the plotEffects function in Matlab. The effect plot demon-

strates the estimated main effect on the response variable by

changing each predictor value. We also created the same anal-

ysis for the centralized constrained SBM to compare with our

decentralized results.

3. RESULTS

Using spatially constrained ICA, we estimated thirty indepen-

dent components in decentralized SBM. To compare with the

decentralized case, we also estimated thirty components from

the pooled dataset, and used centralized SBM.

We computed the correlation between the centralized and

decentralized loading parameters. We present the correlation

plot in Figure 2. In subplot (A), we present the correlations

between columns of the loading matrix in centralized SBM.

In subplot (B), we demonstrate the correlation between the

centralized and decentralized loadings. From the centralized

vs decentralized correlation plot, we observe the highest cor-

relation across the diagonals. This observation demonstrates

that the scores in loading parameter i in centralized SBM and

loading parameter j (where i == j) in decentralized SBM

are highly similar (c.f. the high correlation across the diago-

nal). We also evaluated the correlations between the central-

ized and average decentralized source matrix and presented

the results in subplot (C) and (D). We also observe similar be-

haviour between the centralized and aggregate decentralized

sources where we get the high correlations across the diag-

onal. To check the reliability of our algorithm, we repeated

this experiment 10 times while randomly shuffling subjects

across sites each time. We present the experimental results in

Figure 3, where the correlation, Mean Square Error (MSE),

Max Absolute Error (MaxAE), and Median Absolute Error

(MedianAE) are between the correlation matrices in Fig. 2(A)

and Fig. 2(B) for each of the 10 shuffled runs (similarly for

Figs. 2(C) and (D)). Each boxplot contains 10 points from

10 shuffled runs, and we observe that all 10 values are very

similar, indicating high reliability.

We then computed the p value for all the variables from

the linear regression model for both centralized and decen-

tralized experiments. Finally, we visualized the scatter plot

of centralized versus decentralized p values. The results are

presented in Figure 4. We only plotted the p values of loading
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Fig. 2. Correlation plots of loading parameters and sources.

(A) Correlation among centralized loadings only, (B) cor-

relation between centralized vs decentralized loadings. (C)

Correlation among centralized sources only, (D) correlation

between centralized vs decentralized sources. (A,C) the ex-

pected similarity structure among loadings and sources, re-

spectively, for the centralized case; (B,D) the recovered sim-

ilarity structure between centralized and decentralized esti-

mates, with near-1 correlations along the main diagonal.

parameters. Note that centralized and decentralized p values

for the same number of loading parameters are very similar.

We also generated an effect plot to show the main effect

on the response variable (age) while changing each predic-

tor value (30 loading parameters, sex, and site). The exper-

imental results of the effect plots for the centralized and de-

centralized cases are presented in Figure 5. In the figure, a

horizontal line across the effect value implies the 95% confi-

dence interval for the effect value. In the plot, we observe the

similar effect of each variable in both centralized and decen-

tralized cases. From visual inspection, we found the loading

parameters 12 and 22 to have the largest effects on the re-

sponse variable. We show the adjusted response plot using the

Matlab function plotAdjustedResponse for variables 12 and

22 in the linear regression model. An adjusted response func-

tion describes the relationship between the fitted response and

a single predictor, with the other predictors averaged out by

averaging the fitted values over the data used in the fit. The

results are presented in Figure 7. Panels (A) and (B) repre-

sent the relationship between the fitted response and predictor

variables 12 and 22, respectively. Finally. we show the spatial

maps of components 12 and 22 in Figure 6. Notice that one

source is found within the somatomotor domain and the other

one highlights the cognitive control domain. The expression

level of these sources across subjects is associated with age.
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Fig. 3. Similarity metrics for (A) loading parameters and (B)

sources. The left Yaxis is used for correlation. The right Yaxis

is used for the remaining three metrics.

Fig. 4. Scatter plot of centralized and decentralized p values

(log-log scale) indicating high consistency and overall agree-

ment between centralized and decentralized estimates.

(A) (B)

Fig. 5. Results for centralized and decentralized regression

analysis. Panel (A) depicts the effect sizes for each load-

ing estimated with the centralized approach, and (B) depicts

the effect sizes for each loading estimated with the decentral-

ized approach. Here, we observe very similar effect sizes in

both centralized and decentralized analysis, suggesting con-

sistency between the two approaches.

4. CONCLUSION

In this work, we have proposed a novel approach to perform

constrained SBM in a distributed manner. We have identified

and visualized two gray matter sources that are significantly

associated with subject age. We compared our decentralized

approach with the traditional (centralized) constrained SBM
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Fig. 6. Visual summary of sources 12 (supplementary motor

area) and 22 (insula + caudate), which are typical of somato-

motor and cognitive control domains, respectively. The pan-

els to the left depict cross-sectional views while the panels to

the right depict “glass brain” views.

Variable 12

A
d
ju

s
te

d
 v

a
ri
a
b
le

s

Variable 22

(A) (B)

Fig. 7. Adjusted response plot for loadings corresponding

to sources 12 (supplementary motor area) and 22 (insula +

caudate). The plots depict the association between loading

values (subject-specific expression levels) and age (adjusted

variable).

and showed that our results very closely approximate the cen-

tralized estimates but without any raw data sharing. The use

of decentralized or federated approaches provides a power-

ful way to 1) leverage existing data which is required to stay

locally private, and 2) integrate such data with openly avail-

able datasets. Decentralized approaches can also democratize

computational resources, i.e., a single research group may not

have the computational resources to analyze all datasets at a

centralized location, but a larger federated consortium permits

such analyses to be carried out and advance large-scale scien-

tific studies. Although our demonstration artificially emulates

sites, we fully expect that future work on real multi-site data

will achieve the same performance, despite potential presence

of site effects. We will also investigate the performance of

dcSBM for group comparison in decentralized patient data.
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