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Abstract— There remains an open question about whether
and in what context brain function varies in adolescence and
adulthood. In this work, we systematically study the functional
brain networks of adolescents and adults, outlining the
significant differences in the developing brain detected via time-
resolved functional network connectivity (trFNC) derived from
a fully automated independent component analysis pipeline
applied to resting-state fMRI data in over 50K individuals. We
then statistically analyze the transient, recurrent, and robust
brain state profiles in both groups. We confirmed the results in
independent replication datasets for both groups. Our findings
indicate a strengthening of a state reflecting functional coupling
within the visual, motor, and auditory domains and
anticorrelation with all other domains in a unique adult state
profile, a pattern consistently less modular in adolescents. This
new insight into possible integration, strengthening, and
modularization of resting-state brain connections beyond
childhood convergently indicates that the highlighted temporal
dynamics likely reflect robust differences in brain function in
adolescents versus adults.

I. INTRODUCTION

Adolescence is the transitory period between childhood and
adulthood, characterized by crucial physical, psychological,
neurobiological, sexual, social, cognitive, and emotional
changes. Understanding how functional brain systems mature
over the course of development in this crucial phase of life is
vital to understanding healthy brain function and
neuropsychiatric disorders [1]. In addition to this general
evolution in the global network architecture of the brain,
strengths of functional connections within brain networks also
undergo substantial modifications with development.
However, there remains an open question about whether and
in what context the functional connections are expected to
evolve from adolescence to adulthood.

Neuroimaging modalities such as magnetic resonance
imaging (MRI) [2] and resting-state blood oxygenation level
dependent (BOLD) functional MRI (fMRI) [3] are now
increasingly used to study neurodevelopment. In the brain's
resting state, individuals may typically engage in some form
of unconstrained mental activity that alters the brain's
functional connectivity and modular organization. Resting-
state fMRI studies explore the resting brain’s large-scale
functional organization by viewing the brain as a complex,
integrative network composed of spatially distributed but
functionally interacting sub-networks that continually share
and process information. The high-dimensional fMRI data is
reduced in space, typically using region of interest (ROI) or

atlas-based techniques or data-driven parcellation methods
such as group independent component analysis (gICA) [4]. In
this work, we study whole-brain functional network
connectivity (FNC) amongst spatially distinct resting-state
networks (RSNs) of the brain. This approach reveals how
different brain networks couple to establish a specific function
of the brain, typically focused on synchronous co-activation
quantified through various statistical measures, including
correlation, mutual information, and coherence at a static or
time-varying scale.

Whole-brain FNC has traditionally been estimated using
time-averaged connectivity metrics, but a more recent
paradigm shift involves studies increasingly exploring the
time-varying nature of these underlying fluctuations [5].
Intuitively, brain dynamics can be reasonably assumed to be
even more prominent at rest as the mental activity is
unconstrained. Recent evidence shows that time-resolved FNC
(rFNC) is related to ongoing cognition, behavior, and
phenotypic traits, and alterations in trFNC have been linked to
several neurological and psychiatric conditions. trFNC
approaches thus may have a great potential in characterizing
differences in adolescent and adult brains, a topic that we
explore in the current work.

While there are several ways to summarize the temporal
dynamics of brain connectivity [6], here we focus on a data-
driven approach [7] to evaluate trFNC differences in
adolescents vs. adults. The approach is based on established
signal processing and machine learning methods, including a
fully automated group independent component analysis
(gICA) approach [8] to compute RSN that are both specific
to individuals as well as comparable across datasets and
subjects. We next use sliding window correlation to quantify
trENC between the RSNs, and k-means clustering to
characterize the recurring, transient brain state profiles. We
pursue this approach as the trFNC brain state patterns
estimated with this approach are primarily reproducible across
individuals and robust against variations in data attributes, as
confirmed in our previous work [9]. a

In this work, we systematically investigate trFNC
differences in adolescents and adults, outlining significant
differences in the adolescents versus adults brain detected by
our trFNC analyses on both discovery resting-state fMRI data
and in replication data for both groups. Additionally, we
statistically analyze the transient, recurrent, and robust brain
state profiles in both groups and determine the associated
summary measures to gain further complementary insights
into the temporal dynamics of the developing brain. Figure 1
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describes an overview of the experimental design. We discuss
the materials and methods in Section II, demonstrate our
critical results in Section I1I, discuss the key outcomes of this
study in Section I'V and present our conclusion in Section V.

II. MATERIALS AND METHODS

A. Functional MRI Data

Resting-state fMRI scans (eyes open: passive crosshair
viewing) from the UK Biobank (UKB: #n=36461,
F:M=19474:16987) [10] and the Adolescent Brain Cognitive
Development (ABCD: n=9617, F:M=4722:4895) [11] studies
were used for the original analyses (discovery) in this work,
whereas the Human Connectome Project (HCP: »n=833,
F:M=439:394) [12] and the Developmental Chronnecto-
Genomics (Dev-CoG: n=191; F:M=96:98) [13] studies were
used for confirmatory analyses (replication). Data acquisition
details can be found on the above referenced work for these
datasets, and any acquisition differences were mitigated by
implementing standard, thoroughly tested preprocessing, and
feature extraction pipelines as detailed next. The experimental
procedures involving human subjects were approved by the
respective institutional review boards of all participating
centers.

B. Data Preprocessing

All datasets underwent preprocessing using standard fMRI
practices, including normalization to the standard Montreal
Neurological Institute (MNI) template, and smoothing using
a Gaussian kernel with a full width at half maximum
(FWHM) = 6mm. Quality control (QC) of the preprocessed
fMRI datasets included discarding the images exhibiting a
low correlation with individual and/or group level masks,
shorter scan lengths, and high head motion to rule out
potential spurious differences in functional connectivity. The
above-stated numbers are post-QC sample sizes; only one
image was used per subject in all conducted research.

C. RSN Estimation

The next experimentation stage involved extracting
resting-state networks (RSNs) and associated regional
activity time-courses from the fMRI data. For that objective,
we decomposed the preprocessed fMRI time-courses using
spatially constrained group independent component analysis
(SC-gICA) [14] using the Neuromark [8] template as
reference maps (n=53 brain regions). This approach has
successfully discovered shared and distinct biomarkers in
several clinical populations [15] and allows us to estimate
RSNs that are both specific to individual subjects and
comparable to one another.

D. Time-Resolved FNC Feature Extraction

Subsequently, we calculated the trFNC features between all
(n=>C»=1378) brain connections using a tapered sliding
window. Lastly, we identified the recurring, transient brain
state profiles for each dataset by modularizing that dataset’s
windowed correlations using the classical k-means clustering
algorithm [7] and computed statistical state summary
measures (as detailed in the following sub-section) for

gaining further insights into the brain states in adolescence
and adulthood.

E. Statistical Measures

Characterizing trFNC states and summarizing statistical
state measures provides insights into various aspects,
including the temporal state dynamics and state transition
behavior. To quantify the similarities and differences in the
brain states of adolescents and adults, we computed cross-
correlation between the brain state profiles estimated for both
groups in the discovery and replication datasets. Additionally,
we computed several state summary measures, including
mean dwell times, fractional occupancy times, and state
transition probabilities.

Mean dwell times are computed as the mean period of
temporally consecutive runs of each state. In contrast,
fractional occupancy times are calculated as the percentage of
windows assigned to each state for that given scan. Finally,
we captured the state transition behavior using a first-order
Markov model that explains the propagation of probability
transitions associated with entering and exiting the brain
states.
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Figure 1: Study Workflow. This figure describes an overview of the
experimental design. All considered datasets were decomposed using
spatially-constrained group-ICA. trFNC features were estimated using the
sliding window correlation approach, and then the recurring brain states were
characterized using the k-means clustering algorithm. trFNC state profiles
and derived statistical state summary measures were compared across
adolescents and adults for the discovery and replication datasets.

III. RESULTS

A. Brain state profiles in adolescence and adulthood

The estimated trFNC state profiles in the adolescent and
adult datasets were sorted using Pearson’s correlation metric.
Figure 2 shows the sorted state profiles for the considered
discovery and replication datasets. Of particular relevance,
findings indicate strengthening of brain connections within
the visual, motor, and auditory domains and anticorrelation
with all other domains in State 4 for adults (Figure 2: State 4
for UKB and HCP datasets). Notably, this state profile was
absent in adolescents for all clustering model orders (k=2 to
k=5).

In parallel with these changes, the adults also showed strong
correlation within subcortical (SC) and between SC and
cerebellar (CB) regions, and anticorrelation of the SC and CB
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domains with visual (VIS), motor (SM), and auditory (AU)
domains. This unique adult state also showed a higher
correlation strength between the SC and certain regions in the
cognitive control (CC) domain involving the Medial
Cingulate Cortex (MCC), Inferior and Middle Frontal Gyrus
(IFG and MiFG), and Hippocampus (Hipp), and likewise
some default-mode regions such as the Anterior and Posterior
Cingulate Cortex (ACC and PCC). Overall, the corresponding
patterns were less modular for adolescents, with a visibly
lower correlation strength within the VIS and SM domains
and disjointed CB and SC domains.

State 1
Adults: UKB

State 2 State 3 State 4

HE:

Adults: HCP

Adolescents: ABCD

Adolescents : DEVCOG

Figure 2: A comparison of time-resolved functional connectivity state
profiles in adolescents and adults in multiple data sets. Of particular
relevance, findings indicate a strengthening of brain connections in a unique
adult brain state (State 4, top right, in the UKB and HCP panels); this pattern
was consistently absent in adolescents.

B. Cross-correlation of brain state profiles

Each brain state profile was correlated across both groups'
discovery and replication datasets to quantify the observed
similarities and differences in the state patterns and confirm
the patterns inferred visually in the previous sub-section. As
seen in Figure 3, this particular result highlights highly
consistent differences between adolescence and adulthood in
state 4. Highly similar patterns were observed across the
groups for states 1 and 3. State 2 showed intermediate
correlations across the groups.

C. Effect of difference in sample size

Results were effectively validated for similar group sizes to
reject the confound due to higher adult samples in both
replication and discovery datasets. More specifically, we
compared the state profiles from a random subset (#=9617) of
the UKB dataset with those from the ABCD data (n=9617),
and likewise a random subset (#=191) of HCP data with those
from the Dev-CoG dataset (n=191). All results were held for

this validatory check, and no significant effect of the
difference in sample size was reported in this analysis.
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Figure 3: Pair-wise correlations of the sorted brain states. This graph
distinctly highlights the low correlations in State 4 between adolescents and
adults.
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Figure 4: Temporal dynamics of functional connectivity were characterized
by brain state summary measures such as average state frequency, mean
dwell times, and state transition probability matrices and compared in the
adolescent and adult brains.
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D. State profile statistical summary measures

State 1 was consistently the most prevalent, recording the
highest average frequency and dwell-times in adults and
adolescents, a trend confirmed in the replication dataset
likewise. Remarkably, this state showed a flattened (i.e.,
disconnected) global pattern and was the most similar to the
static FC patterns for all datasets. Furthermore, the other three
states occurred comparably and lesser frequently than State 1.
Additionally, the probability of transitioning to the unique
adult state (state 4) was lowest from State 1 in both adult
datasets.

IV. DISCUSSION

The highly modular, elevated connectivity between the
visual, motor, and auditory domains and anticorrelation with
all other domains in one of the trFNC state profiles in adults
and lack of this pattern in adolescence altogether supports the
notion of strengthened motor-visual functional integration
from adolescence into adulthood. Notably, a previous study
[16] confirmed reduced static FC in the sensorimotor and
visual systems in children as well as young adults, whereas
none of the trFNC states estimated in another recent study
[17] revealed elevated connectivity between these domains in
adolescence. Collectively, these results provide a cohesive
view into possible integration, strengthening, and
modularization of sensorimotor and visual resting-state brain
connections beyond childhood, signaling a change in the
broader organization of the brain’s functional architecture.
Our results also suggest that the estimated trFNC state profiles
and summary measures are robust, especially since these are
highly comparable within each group and replicate in the
discovery and replication datasets in most states.

Overall, findings can be perceived as convergently
indicating that functional connectivity evolves during
adolescence and that the highlighted temporal dynamics are
likely reflective of the maturation process of human brain
development in adolescence. Future work will link functional
connectivity measures to anatomical measures and clinical
assessments. Exploring age and gender-related effects and the
role of other possible confounders, e.g., the anatomical
differences in the two studied groups that may complicate the
comparison, are exciting topics for future work in the domain.

V. CONCLUSION

To conclude, it is evident from the current results that the
highlighted temporal dynamics are different substantially and
consistently in at least one of the trFNC state profiles in
adults. This observation rationally reflects the evolving
functional connectivity and a maturation process of human
brain development in adolescence. Such conceptual findings
can help us understand how the human brain develops and
functions, providing invaluable inputs to identify biomarkers
of brain disorders and diseased conditions.
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