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Abstract

With the growth of decentralized/federated analysis approaches in neuroimaging, the opportunities to study brain disorders 

using data from multiple sites has grown multi-fold. One such initiative is the Neuromark, a fully automated spatially con-

strained independent component analysis (ICA) that is used to link brain network abnormalities among different datasets, 

studies, and disorders while leveraging subject-specific networks. In this study, we implement the neuromark pipeline in 

COINSTAC, an open-source neuroimaging framework for collaborative/decentralized analysis. Decentralized exploratory 

analysis of nearly 2000 resting-state functional magnetic resonance imaging datasets collected at different sites across two 

cohorts and co-located in different countries was performed to study the resting brain functional network connectivity changes 

in adolescents who smoke and consume alcohol. Results showed hypoconnectivity across the majority of networks including 

sensory, default mode, and subcortical domains, more for alcohol than smoking, and decreased low frequency power. These 

findings suggest that global reduced synchronization is associated with both tobacco and alcohol use. This proof-of-concept 

work demonstrates the utility and incentives associated with large-scale decentralized collaborations spanning multiple sites.

Keywords COINSTAC  · Decentralized analysis · Neuromark · IMAGEN · CVEDA · Adolescent health

Introduction

In the past decade, the field of neuroimaging has seen a rapid 

growth in data pooling/sharing initiatives (Eickhoff et al., 

2016). This, in turn, has resulted in a major transformation in 

our understanding of brain disorders as well as accelerating 

studies to identify brain-based markers for potential use in 

clinical settings (Wilcox et al., 2020). However, open data 

sharing can be limited by policy or proprietary restrictions 

or data re-identification concerns (Shringarpure & Bus-

tamante, 2015; Sweeney, 2002; White et al., 2020). Such 

difficulties are further compounded in the case of sensitive 

patient data that cannot be easily shared or accessed. Yet 

another challenge is pooling the data centrally can require 

significant computational resources which may not be avail-

able at a given site.

Harshvardhan Gazula and Kelly Rootes-Murdy contributed equally 

to this work.

 * Harshvardhan Gazula 

 hvgazula@umich.edu

 * Bharath Holla 

 hollabharath@gmail.com

Extended author information available on the last page of the article

http://orcid.org/0000-0001-9318-8871
http://crossmark.crossref.org/dialog/?doi=10.1007/s12021-022-09604-4&domain=pdf


288 Neuroinformatics (2023) 21:287–301

1 3

The aforementioned barriers can be offset by embracing 

federated analysis of neuroimaging data. Federated analy-

sis does not require moving the data from the original sites 

but can generate results similar to pooled data. It can also be 

implemented with varying degrees of privacy, ranging from 

sharing of derived results only to full encryption. Towards this 

end, Plis et al. (2016) introduced a federated analysis frame-

work and platform called the COllaborative Informatics and 

Neuroimaging Suite Toolkit for Anonymous Computation 

(COINSTAC; http:// coins tac. trend scent er. org). There is no 

sharing of individual-level data in COINSTAC and thus the 

privacy of individual datasets is preserved while still allow-

ing analyses to be performed. Multiple neuroimaging algo-

rithms have been federated and can be run in COINSTAC. 

Examples of implemented algorithms include decentralized 

voxel-based morphometry (Gazula et al., 2018), decentral-

ized t-distributed stochastic neighbor embedding (Saha et al., 

2017, 2021), decentralized dynamic functional network con-

nectivity (Baker et al., 2020), and decentralized support vector 

machine with differential privacy (Sarwate et al., 2014).

For the purpose of this study, we focus on decentralized 

variants of independent component analysis. Independent 

component analysis (ICA) is a versatile and powerful data-

driven approach that can be used to analyze group fMRI data 

(Calhoun et al., 2009) to study the spatio-temporal structure 

of the fMRI signal. One of the earliest decentralized versions 

of ICA developed, for use with functional magnetic reso-

nance imaging (fMRI) data, was the decentralized temporal 

ICA algorithm (Baker et al., 2015). More recently, (Baker 

et al., 2020) presented a decentralized group ICA algorithm 

to enable decentralized dynamic functional network con-

nectivity analysis. Group ICA (Calhoun et al., 2009) enables 

group-level inferences while allowing for cross-subject vari-

ability. However, implementing group ICA within a decen-

tralized context presents some challenges due to its fully 

data-driven output. For example, results typically require 

labelling of the output components, and while there are 

options for automated labelling (Salman et al., 2021) within 

the GIFT software (http:// trend scent er. org/ softw are/ gift) the 

use of a data-driven approach involves considerable user 

interactions which can be inefficient in a federated environ-

ment. In addition, separate group ICA results may be chal-

lenging to compare with one another, hindering replication 

and cross-study comparison. To address this issue, Du et al. 

(2020) proposed the NeuroMark pipeline, an a priori driven 

and fully automated ICA approach informed by reliable net-

work templates to achieve linked analyses among different 

datasets, studies, and disorders.

The decentralized Neuromark approach will be the sub-

ject of discussion in this work. Our focus is on the impact of 

substance use on adolescent brain functional network con-

nectivity. Recently, Gazula et al. (2021) performed a large-N 

decentralized voxel-based morphometry analysis of structural 

magnetic resonance imaging data across two cohorts from 

14 different sites to understand the structural changes in the 

brain as linked to age, body mass index and smoking. How-

ever, there has not yet been a large-N analysis of functional 

MRI data with ICA within a decentralized framework. In this 

work, we extend the aforementioned structural MRI results 

by presenting an exploratory analysis of functional network 

connectivity (FNC) and spectral analysis derived from inde-

pendent component analysis on resting fMRI data. Our con-

tributions in this paper can be summarized as follows. 

1. Decentralized ICA on large datasets across multiple 

sites, IMAGEN from the Europe and cVEDA from 

India, in the COINSTAC framework and sharing obser-

vations.

2. Evaluating the association of smoking and alcohol use 

on functional network connectivity in the adolescent 

brain.

3. Decentralized MANCOVAN and univariate testing of 

ICA output.

The outline of the current paper is as follows: In “Methods”, 

we discuss the Decentralized NeuroMark pipeline. In “Data”, 

we describe the IMAGEN and cVEDA data used in this study. 

In “Results” and “Discussion”, we present the results and dis-

cuss our experience implementing the Neuromark pipeline in 

COINSTAC. We conclude the paper in “Conclusion”.

Methods

As mentioned earlier, the goal of group ICA is to enable 

group level inferences by allowing for subject-level vari-

ability. However, due to the data-driven nature of ICA, these 

inferences can turn out to be inconsistent when compared 

across different studies containing data from similar disor-

ders. It is possible to systematically integrate these findings 

across studies and disorders by interlinking the estimation 

of subject-level spatial maps using a common set of spatial 

priors and Neuromark (Du et al., 2020) precisely achieves 

this objective. The goal of Neuromark is to fully automate 

the estimation and labeling of individual subject connectiv-

ity features using spatial network priors derived from inde-

pendent large samples. Another advantage of Neuromark is 

that the ICA estimates are computed on individual subjects, 

which completely avoids data leakage, facilitating cross-

validation and independent analysis. The estimation of sub-

ject specific networks is performed by leveraging spatially-

constrained ICA (Lin et al., 2010; Du & Fan, 2013).

The Neuromark pipeline leverages component pri-

ors derived from replicable spatial maps estimated from 

large independent datasets. For this purpose, resting-state 

fMRI datasets from the Human Connectome Project (HCP, 

http://coinstac.trendscenter.org
http://trendscenter.org/software/gift
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http:// www. human conne ctome proje ct. org/ data/) and the 

Genomics Superstruct Project (Holmes et al., 2015) were 

utilized. Group ICA was applied separately to the two 

datasets, followed by a greedy spatial correlation analy-

sis (coupled with expert inspection) to identify and label 

intrinsic connectivity networks (ICNs) that showed high 

replicability across the two separate group ICA analyses 

(Du et al., 2020) see Figs. 1 and 2.

For the Neuromark pipeline, these ICNs are used as 

network templates (aka priors) to estimate subject-spe-

cific functional networks and their associated time-courses 

(TCs) via an adaptive spatially constrained ICA method. 

Here we used multi-objective optimization ICA where one 

objective is to optimize the independence of networks (for 

the subject), while the other is to optimize the similarity 

between one subject-specific network and its related net-

work template.

Once this is accomplished, various network features can 

be extracted from both static and dynamic perspectives. 

One such example of a measure is the static FNC (sFNC) 

which is computed as the Pearson correlations between 

TCs of ICNs to yield an sFNC matrix reflecting the inter-

action between any two networks. While the spatial map 

of each ICN reflects intra-connectivity within brain func-

tional network, sFNC matrix represents inter-connectivity 

strengths between different ICNs. The obtained network 

features and time courses can be further analysed statisti-

cally via decentralized MANCOVA for making inferences.

Decentralized ICA stats

Once the network features are derived from Neuromark, 

the researcher/user can perform any statistical analysis 

in a decentralized fashion. This helps in speeding up the 

analysis enabling multiple research groups to participate in 

larger studies, preserving their data privacy without sharing 

the actual data. Fig. 3 shows how the Neuromark pipeline 

is performed in a centralized way. There are two ways in 

which the decentralized statistics can be performed. Here 

we implement the MANCOVAN toolbox in GIFT (https:// 

Fig. 1  Domains identified in 

Du et al. Briefly, these seven 

identified network templates 

were divided based on anatomi-

cal and functional properties. In 

each subfigure, one color in the 

composite maps corresponds 

to an intrinsic connectivity 

network (ICN)

http://www.humanconnectomeproject.org/data/
https://trendscenter.org/software/gift/
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trend scent er. org/ softw are/ gift/), which provides both 

MANCOVAN omnibus tested as well as univariate regres-

sion tests. In this work, we utilize the univariate regression 

functionality, though the MANCOVAN toolbox (MTB) 

is fully implemented. The first approach, dMANCOVAN 

(decentralized MANCOVA), involves pooling all the time 

courses within a private aggregator (the application) and 

running the MTB on these pooled data. The results are then 

shared with every local site (Algorithm 1 and Fig. 4). The 

second and more secure approach dMANCOVApa (decen-

tralized MANCOVA with private aggregator) involves per-

forming an MTB analysis at each local site separately on 

its corresponding timecourses and covariate data. From the 

local MTB results generated, relevant stats such as residual 

errors, contrast mean images, and other metadata (such as 

number of subjects) are extracted and sent to the private 

aggregator to compute global sum of squares residual errors 

and average beta weights. From these, the corresponding 

t-values and p-values are computed and sent back to all the 

local sites. Alg. 2 and Fig. 5 show the algorithm and pipeline 

corresponding to the improved decentralized MTB approach 

respectively. Alg. 2 is a decentralized multivariate analysis 

of covariance (a type of generalized linear model). 

Fig. 2  Correlation map showing average correlation, across par-

ticipants, for each domain. Cool colors represent anticorrelation and 

warm colors represent positive correlation. In general, there was 

high positive (r > .5) correlation within the visual, sensorimotor, 

and default mode network domains across all participants. Of note. 

SC: sub-cortical domain, AUD: auditory domain, SM: sensorimotor 

domain, VIS: visual domain, CC: cognitive-control domain, DMN: 

default-mode domain, CR: cerebellar domain

https://trendscenter.org/software/gift/
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COINSTAC 

For this project, the entire analysis, neuromark and the 

decentralized statistical analysis, was performed in COIN-

STAC. In brief, COINSTAC (Gazula et al., 2020; Ming 

et al., 2017; Plis et al., 2016) is a fully open-source, fed-

erated learning platform geared towards neuroimaging 

research enabling researchers to perform decentralized anal-

ysis of neuroimaging data in a secure and privacy-preserving 

environment via a message-passing infrastructure. More spe-

cific instructions on how to install the application and run 

an example analysis can be found online at https:// github. 

com/ trend scent er/ coins tac- instr uctio ns. In COINSTAC, sites 

perform computations on their local data and intermediate 

results are collected by a cloud-based “private aggregator” 

which synthesizes the results and returns them to the sites.

Data

Cohort

The data from two large multi-centric adolescent cohorts 

in India and Europe were used for the present analysis. The 

Consortium on Vulnerability to Externalising Disorders and 

Fig. 3  Pipeline of GIFT frame-

work computed in a centralized 

way

Fig. 4  Decentralized GICA 

and mancova implemented 

in COINSTAC using GIFT 

toolbox. This approach involves 

pooling all the time courses 

within a private aggregator and 

running the MTB on this pooled 

data following which the results 

are shared with every local site

https://github.com/trendscenter/coinstac-instructions
https://github.com/trendscenter/coinstac-instructions
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Addiction (cVEDA) is an accelerated longitudinal cohort in 

India (Sharma et al., 2020) that covers an age span of 5-24 

years. Participants who provided brain imaging data were 

recruited at six study sites (see Zhang et al. (2020) for cohort 

profile and Sharma et al. (2020) for study protocol). The 

IMAGEN project is a longitudinal study of adolescent brain 

development and mental health in Europe (Schumann et al., 

2010). Participants were recruited from eight study sites in 

England, Ireland, France, and Germany at the age of 14, with 

follow-up assessments at ages 16, 19, and 22. Each study 

site obtained ethical approval from the local research eth-

ics committee. For both studies written consent (or verbal) 

assent were acquired from all the participants and parents 

prior to participation.

In this research, we used resting functional neuroimaging, 

and smoking and drinking assessments from the baseline 

cVEDA cohort (n=1140) and the second follow-up wave in 

IMAGEN (n=839), acquired at age 19. See Table 1 for the 

cohort description.

MRI Dataset Acquisition and Preprocessing

Although COINSTAC also implements fMRI preprocessing, 

for this study data was previously preprocessed by each site 

separately outside of COINSTAC, and we focused on using 

COINSTAC to implement a group ICA + stats analysis. The 

preprocessing steps are briefly described below. For a com-

plete description of the preprocessing of the IMAGEN data-

set see Schumann et al. (2010) and for the cVEDA dataset 

see (Sharma et al., 2020; Zhang et al., 2020).

For IMAGEN, data preprocessing was performed using the 

statistical parametric mapping (SPM) tool (http:// www. fil. ion. 

ucl. ac. uk/ spm/) toolbox. fMRI BOLD images were first rea-

ligned, corrected for head motion and slice timing (to account 

for timing difference in slice acquisition) and co-registered to 

T1w (MPRAGE) images. The fMRI data were normalized 

to the EPI template and resampled to 3 mm3 isotropic vox-

els. Images were spatially smoothed using a Gaussian kernel 

with a 6 mm full width at half maximum. Subjects with head 

Table 1  Sample Characteristics

Variable cVEDA (N=1140) IMAGEN (N=839) Total (N=1979) t �
2 p

Age [y, Mean (SD)] 15.677 (4.346) 18.998 (0.718) 17.085 (3.714) -3.321 < 0.001

Sex [Male, n (%)] 638 (56.0%) 389 (46.4%) 1027 (51.9%) 17.8429 2.4e-5

BMI [kg/m2, Mean (SD)] 19.237 (4.509) 22.836 (3.946) 20.763 (4.634) -3.599 < 0.001

Smoking Risk, n (%): 0 1073 (94.1%) 242 (28.8%) 1315 (66.4%) 923.7725 < 0.00001

1 67 (5.9%) 597 (71.2%) 664 (33.6%)

Alcohol Risk, n (%): 0 1088 (95.4%) 224 (26.7%) 1312 (66.3%) 1022.0692 < 0.00001

1 43 (3.8%) 516 (61.5%) 559 (28.2%)

2 9 (0.8%) 99 (11.8%) 108 (5.5%)

Fig. 5  This version of decentralized Mancova involves performing 

an MTB analysis at each local site separately on its corresponding 

timecourses and covariate data. From the local MTB results gener-

ated, relevant stats information such as residual errors, contrast mean 

images, and other metadata (such as number of subjects) are extracted 

and sent to the master site. At the master site, these stats and meta-

data from all the local sites are combined to compute global sum of 

squares residual errors and average beta weights. From these, t-values 

and p-values are computed and these results are sent to all the local 

sites

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
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motion < 0.25 mm (frame-wise displacement) and with func-

tional data providing near full brain successful normalization 

(by comparing the individual mask with the group mask) were 

selected for further analysis.

For cVEDA, the parameters and acquisition protocols 

were similar to those described above in IMAGEN. More 

detailed information can be found at https:// cveda- proje ct. 

org/ stand ard- opera ting- proce dures/. The functional data 

processing for cVEDA in brief included the following 

steps. Motion correction by applying a rigid body regis-

tration of each volume to the middle volume (FSL MCF-

LIRT). Slice-timing correction to account for timing dif-

ference in slice acquisition. Non-brain tissue removal (FSL 

BET) and co-registration to high-resolution T1 image 

(FSL FLIRT using the BBR algorithm). Motion correcting 

transformations, BOLD-to-T1w transformation and T1w-

to-template (MNI) warp were concatenated and applied 

in a single step using Advanced Normalization Toolbox 

(ANTs v2.1.0) and Lanczos interpolation. An ICA-based 

Automatic Removal Of Motion Artifacts (AROMA) 

was used to generate non-aggressively denoised data. 

And finally these data were resampled to 3mm isotropic 

and smoothed using a 6mm non-linear filter using FSL 

SUSAN. Only those subjects who had head motion FD of 

<0.25mm were retained.

Measure of Tobacco and Alcohol use

For IMAGEN, measures of tobacco smoking were 

obtained from self-reports in the Fagerstrom test for 

nicotine dependence (FTND) questionnaire (Heatherton 

et al., 1991). The answer to the question regarding life-

time smoking experience was used to create a binary vari-

able, indicating whether the participant had ever smoked 

(labeled as 1) or not (labeled as 0). For alcohol risk, the 

Alcohol Use Disorders Identification Test–Consumption 

(AUDIT-C) score < 3 for females or < 4 for males were 

labeled as 0 (low risk), score of 3–7 for females or 4–7 for 

males were labeled 1 (moderate risk) and score ≥ 8 was 

labelled as 2 (high risk).

For cVEDA, measures of tobacco smoking and alcohol 

use were obtained from the World Health Organization’s 

Alcohol, Smoking and Substance Involvement Screening 

Test (ASSIST) questionnaire, which provides a specific 

substance involvement score indicating the risk levels. 

For smoking risk, a tobacco involvement score of > 3 was 

labeled as 1 (present) and a score of ≤ 3 was labeled as 0 

(absent). For alcohol risk, an involvement score of ≤ 3 was 

labeled 0 (low risk), a score 4–26 was labeled 1 (moderate 

risk) and ≥ 27 was labeled as 2 (high risk).

Other covariates from both the cohorts were mean-

centered indices of head motion during resting state 

functional MRI (measured as framewise displacement in 

mm), body mass (BMI) (weight in kilograms divided by 

the squared height in meters), age in years, and dummy-

codes for site and sex. (refer to Table  1 for sample 

characteristics).

Results

We provide a summary of the results here and then discuss 

them further in the following section. Please note that all 

the maps have been thresholded with a false discovery rate 

(FDR) correction of 0.05 (Benjamini & Hochberg, 1995).

FNC for Alcohol

Lifetime risk for alcohol showed more mean functional con-

nectivity strengths than lifetime risk for tobacco. Across 

the seven domains (default mode network (DMN), sub-

cortical (SC), auditory (AUC), sensorimotor (SM), visual 

(VIS), cognitive-control (CC), & cerebellar (CR)), there 

were roughly 27 positive pairs and 48 negative pairs, the 

SC domain was most positively associated with the other 

domains (8 positive pairs) and the SM domain and the CC 

domains were the most negatively associated with the other 

domains (20 and 21 pairs, respectively). Increased functional 

connectivity was observed between the DMN and cognitive 

control. See Fig. 6 for more details.

FNC for Tobacco

In addition to less overall connectivity strength, lifetime risk 

for tobacco showed almost exclusive negative connectiv-

ity pairs across the seven domains. To a lesser extent than 

alcohol, the DMN domain had increased functional con-

nectivity with the cognitive control domain, a total of four 

positive connectivity pairs. The DMN also had one positive 

connectivity pair with the cerebellar domain and the visual 

domain had one positive connectivity pair with the senso-

rimotor domain. All of the other 27 connectivity pairs were 

negatively associated. See Fig. 7 for more details.

For both lifetime risk of alcohol and tobacco, there was a 

predominant decrease in a number of the connections, sug-

gesting a common reduction of connection effect for both 

substances. Taken together, there was a decreased functional 

network connectivity observed in the sensorimotor, auditory, 

and visual networks in both alcohol and tobacco use.

The univariate results showed reduced power in the high 

frequency region for lifetime alcohol and tobacco use (both 

above 0.15 Hz) with larger changes for alcohol than tobacco. 

Alcohol use also showed increased power in the mid/BOLD 

https://cveda-project.org/standard-operating-procedures/
https://cveda-project.org/standard-operating-procedures/
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frequency range, see Figs. 8 and 9 for more details. As a 

whole, alcohol use indicated two sets of signal frequencies, 

reduced power (roughly 0.2 Hz) at high frequency and high 

power (between 0.05 - 0.1 Hz) at low frequency.

Decentralized MANCOVA

We test our approach using the subset of the fMRI dataset 

used in Allen et al. (2011). Since, it is a large dataset, we 

select a subset of 50 subjects and run mancova algorithm as 

shown in Fig. 3. The same data is partitioned into two sub-

sets to test our decentralized mancova analysis using algo-

rithms Alg. 1 and Alg. 2. In our results, we compare FNC 

correlations and significant effects of gender outputs across 

different algorithms.

Figures 10, 11 and 12 show the FNC correlations, sig-

nificant effects of gender and effect sizes per gender. These 

are the general studies performed using mancova analysis. 

From the figures, it can be seen that Alg. 1 has same out-

put as the GIFT interface in all the figures. Alg. 2 has the 

same output for FNC correlations (Fig. 10b, c) but varies 

slightly in terms of significant effects of gender (Figs. 11b, 

c and 12b, c). This is because the mancova output from all 

the local sites were used in computing mancova output in 

Alg. 2 rather than computing mancova at the remote site as 

in Alg. 1. This improvisation in Alg. 2 reduces running time 

by 50% as compared to Alg. 1.

Discussion

The goal of this paper was two-fold: to demonstrate the fea-

sibility of COINSTAC (Gazula et al., 2018) for perform-

ing decentralized analysis on large datasets present across 

multiple sites, compare the results of the decentralized ICA 

and Neuromark, and to use this experiment to evaluate the 

Fig. 6  Connectogram showing group mean connectivity across 

domains for alcohol users. Cool colors represent reduced connec-

tivity and warm colors represent increased connectivity. In alcohol 

users, there was increased connectivity mostly linked to the DMN 

domains and to a lesser extent, the cognitive control and sub-cortical 

domains. Of note. SC: sub-cortical domain, AUD: auditory domain, 

SM: sensorimotor domain, VIS: visual domain, CC: cognitive-control 

domain, DMN: default-mode domain, CR: cerebellar domain
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relationships of both smoking and tobacco use with functional 

connectivity changes. Using a large sample of tobacco and 

alcohol users, this study investigated resting state functional 

connectivity in seven brain networks (SC, AUD, SM, VIS, 

CC, DMN, & CR). Using previously-defined networks (Du 

et al., 2020) we identified a trend of general decreased connec-

tivity across all networks in both tobacco and alcohol users.

Starting with tobacco users, there was decreased con-

nectivity in most of the pairings but the most prominent 

result was hypoconnectivity between the auditory and 

Fig. 7  Connectogram showing 

group mean connectivity across 

domains for tobacco users. 

Cool colors represent reduced 

connectivity and warm colors 

represent increased connectiv-

ity. In tobacco users, there was 

decreased connectivity linked 

to sensorimotor, auditory, and 

visual domains. Of note. SC: 

sub-cortical domain, AUD: 

auditory domain, SM: senso-

rimotor domain, VIS: visual 

domain, CC: cognitive-control 

domain, DMN: default-mode 

domain, CR: cerebellar domain

Fig. 8  Power spectra of each component for alcohol risk (condition 1) 

vs no risk (condition 0) flagged red or blue based on the direction of 

effect for every value where p < 0.05. There is a general increase in 

the mid/BOLD frequency range (between 0.05 - 0.1 Hz) and reduced 

high frequency power above 0.15 Hz
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sensorimotor networks. These findings are in support 

of the reduction of global cortical efficacy in smokers 

(Fedota & Stein, 2015). There was an exception with the 

DMN, that had increased within-network connectivity but 

also with the cognitive control and cerebellar domains. 

The increased connectivity between the DMN, which 

is associated with self-referential processes (Andrews-

Hanna et al., 2010) and the cerebellum may be related to 

associative reward learning and potentially cravings (as 

it relates to these data) as the cerebellar domain has been 

previously associated with encoding of predicted internal 

states (Ebner & Pasalar, 2008; Popa & Ebner, 2019). Addi-

tionally, hyperconnectivity specifically within the DMN 

has been noted before and was hypothesized as an indica-

tion of the body being in a state of withdrawal (Vergara 

et al., 2017). A similar effect was identified in cannabis 

users (Pujol et al., 2014). Therefore, we speculate that 

our results of increased connectivity may indicate some 

states of cravings or withdrawal (e.g., time in the scan-

ner prevented participants from smoking) and not a direct 

connectivity alteration relating to tobacco use. There is a 

possible limitation of the validity of self-reports utilized 

in this study however, these data and protocols have been 

previously reported in multiple publications (Schumann 

et al., 2010; Sharma et al., 2020).

In alcohol users, there was significantly more connectivity 

across all networks when compared to tobacco users. Gener-

ally, there was hyperconnectivity between the DMN, CC, and 

SC domains. One explanation for this increased connectiv-

ity may be compensation related to impaired functionality 

that results from prolonged or excessive alcohol use. In other 

words, the hyperconnectivity may be a sign of overactivation, 

Fig. 9  Power spectra of each component for effect of tobacco risk (condition 1) vs no risk (condition 0) flagged red or blue based on the direc-

tion of effect for every value where p < 0.05. There was reduced BOLD high frequency power (above 0.15 Hz) across all components

Fig. 10  Functional Network 

Connectivity matrices generated 

using GIFT interface, dMAN-

COVA (Alg. 1) and dMANCO-

VApa (Alg. 2)
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or enhanced neural effort, that is needed to achieve the origi-

nal (or baseline) cortical performance in areas that have been 

negatively affected by alcohol (Jansen et al., 2015; Zhu et al., 

2017). As some of these hyper-connections (within DMN 

and DMN and CC) were seen with the tobacco users, another 

potential explanation is the previously stated hypothesis that 

the hyperconnectivity is representing a state of withdrawal 

and not a direct change from alcohol use. However, given 

the limitations of this cross-sectional study, these results 

would benefit from future studies examining how much of 

this connectivity increase is related to the stages (and degree) 

of withdrawal or if this increase is still identified after sub-

stance consumption.

The remainder of the 75 identified pairs in alcohol use 

indicated hypoconnectivity. The negative pairs were across 

all seven domains, showing support for global cortical defi-

cits in alcohol users. The strongest of those were within the 

DMN and between the DMN and AUD domains and between 

AUD and VIS domains. The visual region, specifically the 

middle occipital gyrus (Camchong et al., 2012), has previ-

ously been identified as a primary area of impact in alcohol 

users (Vergara et al., 2017). The hypoconnectivity between 

the DMN and VIS indicate a reduction in domains known 

for self-reference and information processing related to one’s 

own body, aspects that when not functioning properly could 

explain excessive consumption, among other decisions.

Finally, both tobacco and alcohol users had general hypo-

connectivity within the DMN, SM, VIS, AUD, CC, and CR 

domains. Alcohol users had more connections than tobacco 

users, with the majority of those pairs also being negative. 

These findings suggest that global reduced synchronization 

is associated with both tobacco and alcohol use. Specific 

domains, namely the DMN, CC, and VIS domains may 

explain some of the mechanisms behind substance use and 

how addictions are formed.

The results of the decentralized MANCOVA with a pri-

vate aggregrator show that it is possible to obtain results 

similar to results where the analysis is performed locally. 

In fact, it can also be seen that the results also qualitatively 

match the ones from a centralized analysis. This is a good 

indicator of how end-to-end large scale pipelines can be 

successfully implemented in COINSTAC without concerns 

about loss of significance.

There are some limitations to this project. First, the two 

datasets were preprocessed using different softwares and 

approaches. For this analysis we used the Neuromark spa-

tially constrained ICA pipeline, which included templates 

intentionally derived from components that replicated across 

multiple large datasets collected with different parameters. 

The spatial constraint allows for automated single subject 

ICA results, capturing individual differences, and also help-

ing to regularize the results, providing additional robust-

ness to noise and dataset variation (Du et al., 2016, 2020). 

Second, the two datasets did significantly differ on demo-

graphics, see Table 1. However, the purposes of this study 

were to examine the similarities that were present between 

Fig. 11  Significant effects of 

gender generated using GIFT 

interface, dMANCOVA (Alg. 1) 

and dMANCOVApa (Alg. 2)

Fig. 12  Significant effects and 

effect sizes of gender generated 

using GIFT interface, dMAN-

COVA (Alg. 1) and dMANCO-

VApa (Alg. 2)
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the datasets. To evaluate site specific effects, we performed 

an additional analysis of the effects for each site separately 

and results were largely consistent with the pooled analy-

sis (significant pairs were correlated above 0.8 for alcohol 

and tobacco), providing additional support for the reported 

results.

In summary, we proposed an ICA-based framework to 

generalize and standardize the calculation of possible func-

tional connectivity features that leverages the benefits of a 

data-driven approach and also provides comparability across 

multiple analyses. In the current study, the experimental 

conditions for data collection and preprocessing is specific to 

each site thus enabling a straightforward implementation of 

adaptive-ICA for estimation of subject-specific components. 

Future work includes the development of iterative estimation 

schemes for data shared between sites. One of the advan-

tages of decentralized analysis pipelines is that only inter-

mediary statistics are passed between sites, and full patient 

records are never released across the network. These kinds 

of decentralized algorithms are “plausibly private” (Sarwate 

et al., 2014), due to the lack of directly identifiable records 

in the global data network. We believe work presented here 

provides a clear direction for future work in improving our 

understanding of brain disorders by leveraging data from 

different sites.

Conclusion

In this work, we demonstrated the feasibility of perform-

ing a multi-site large-sample ICA-based framework called 

Neuromark. The goal of Neuromark is to generalize and 

standardize the calculation of possible functional connec-

tivity features that leverages the benefits of a data-driven 

approach and also provides comparability across multi-

ple analyses. An exploratory analysis was performed on 

COINSTAC, a decentralized framework, using functional 

MRI data collected in the UK and India. Additionally, we 

also demonstrated the decentralized statistical analysis of 

subject-specific network features for group level-inferences. 

We hope this proof-of-concept will be a useful stepping 

stone towards eventual application of such decentralized 

approaches for analyzing data from different sites and for 

further adoption in the clinical setting.

Information Sharing Statement

More specific details about accessing the datasets used in 
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