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Abstract

With the growth of decentralized/federated analysis approaches in neuroimaging, the opportunities to study brain disorders
using data from multiple sites has grown multi-fold. One such initiative is the Neuromark, a fully automated spatially con-
strained independent component analysis (ICA) that is used to link brain network abnormalities among different datasets,
studies, and disorders while leveraging subject-specific networks. In this study, we implement the neuromark pipeline in
COINSTAC, an open-source neuroimaging framework for collaborative/decentralized analysis. Decentralized exploratory
analysis of nearly 2000 resting-state functional magnetic resonance imaging datasets collected at different sites across two
cohorts and co-located in different countries was performed to study the resting brain functional network connectivity changes
in adolescents who smoke and consume alcohol. Results showed hypoconnectivity across the majority of networks including
sensory, default mode, and subcortical domains, more for alcohol than smoking, and decreased low frequency power. These
findings suggest that global reduced synchronization is associated with both tobacco and alcohol use. This proof-of-concept
work demonstrates the utility and incentives associated with large-scale decentralized collaborations spanning multiple sites.

Keywords COINSTAC - Decentralized analysis - Neuromark - IMAGEN - CVEDA - Adolescent health

Introduction

In the past decade, the field of neuroimaging has seen a rapid
growth in data pooling/sharing initiatives (Eickhoff et al.,
2016). This, in turn, has resulted in a major transformation in
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our understanding of brain disorders as well as accelerating
studies to identify brain-based markers for potential use in
clinical settings (Wilcox et al., 2020). However, open data
sharing can be limited by policy or proprietary restrictions
or data re-identification concerns (Shringarpure & Bus-
tamante, 2015; Sweeney, 2002; White et al., 2020). Such
difficulties are further compounded in the case of sensitive
patient data that cannot be easily shared or accessed. Yet
another challenge is pooling the data centrally can require
significant computational resources which may not be avail-
able at a given site.
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The aforementioned barriers can be offset by embracing
federated analysis of neuroimaging data. Federated analy-
sis does not require moving the data from the original sites
but can generate results similar to pooled data. It can also be
implemented with varying degrees of privacy, ranging from
sharing of derived results only to full encryption. Towards this
end, Plis et al. (2016) introduced a federated analysis frame-
work and platform called the COllaborative Informatics and
Neuroimaging Suite Toolkit for Anonymous Computation
(COINSTAG:; http://coinstac.trendscenter.org). There is no
sharing of individual-level data in COINSTAC and thus the
privacy of individual datasets is preserved while still allow-
ing analyses to be performed. Multiple neuroimaging algo-
rithms have been federated and can be run in COINSTAC.
Examples of implemented algorithms include decentralized
voxel-based morphometry (Gazula et al., 2018), decentral-
ized t-distributed stochastic neighbor embedding (Saha et al.,
2017, 2021), decentralized dynamic functional network con-
nectivity (Baker et al., 2020), and decentralized support vector
machine with differential privacy (Sarwate et al., 2014).

For the purpose of this study, we focus on decentralized
variants of independent component analysis. Independent
component analysis (ICA) is a versatile and powerful data-
driven approach that can be used to analyze group fMRI data
(Calhoun et al., 2009) to study the spatio-temporal structure
of the fMRI signal. One of the earliest decentralized versions
of ICA developed, for use with functional magnetic reso-
nance imaging (fMRI) data, was the decentralized temporal
ICA algorithm (Baker et al., 2015). More recently, (Baker
et al., 2020) presented a decentralized group ICA algorithm
to enable decentralized dynamic functional network con-
nectivity analysis. Group ICA (Calhoun et al., 2009) enables
group-level inferences while allowing for cross-subject vari-
ability. However, implementing group ICA within a decen-
tralized context presents some challenges due to its fully
data-driven output. For example, results typically require
labelling of the output components, and while there are
options for automated labelling (Salman et al., 2021) within
the GIFT software (http://trendscenter.org/software/gift) the
use of a data-driven approach involves considerable user
interactions which can be inefficient in a federated environ-
ment. In addition, separate group ICA results may be chal-
lenging to compare with one another, hindering replication
and cross-study comparison. To address this issue, Du et al.
(2020) proposed the NeuroMark pipeline, an a priori driven
and fully automated ICA approach informed by reliable net-
work templates to achieve linked analyses among different
datasets, studies, and disorders.

The decentralized Neuromark approach will be the sub-
ject of discussion in this work. Our focus is on the impact of
substance use on adolescent brain functional network con-
nectivity. Recently, Gazula et al. (2021) performed a large-N
decentralized voxel-based morphometry analysis of structural
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magnetic resonance imaging data across two cohorts from
14 different sites to understand the structural changes in the
brain as linked to age, body mass index and smoking. How-
ever, there has not yet been a large-N analysis of functional
MRI data with ICA within a decentralized framework. In this
work, we extend the aforementioned structural MRI results
by presenting an exploratory analysis of functional network
connectivity (FNC) and spectral analysis derived from inde-
pendent component analysis on resting fMRI data. Our con-
tributions in this paper can be summarized as follows.

1. Decentralized ICA on large datasets across multiple
sites, IMAGEN from the Europe and cVEDA from
India, in the COINSTAC framework and sharing obser-
vations.

2. Evaluating the association of smoking and alcohol use
on functional network connectivity in the adolescent
brain.

3. Decentralized MANCOVAN and univariate testing of
ICA output.

The outline of the current paper is as follows: In “Methods”,
we discuss the Decentralized NeuroMark pipeline. In “Data”,
we describe the IMAGEN and cVEDA data used in this study.
In “Results” and “Discussion”, we present the results and dis-
cuss our experience implementing the Neuromark pipeline in
COINSTAC. We conclude the paper in “Conclusion”.

Methods

As mentioned earlier, the goal of group ICA is to enable
group level inferences by allowing for subject-level vari-
ability. However, due to the data-driven nature of ICA, these
inferences can turn out to be inconsistent when compared
across different studies containing data from similar disor-
ders. It is possible to systematically integrate these findings
across studies and disorders by interlinking the estimation
of subject-level spatial maps using a common set of spatial
priors and Neuromark (Du et al., 2020) precisely achieves
this objective. The goal of Neuromark is to fully automate
the estimation and labeling of individual subject connectiv-
ity features using spatial network priors derived from inde-
pendent large samples. Another advantage of Neuromark is
that the ICA estimates are computed on individual subjects,
which completely avoids data leakage, facilitating cross-
validation and independent analysis. The estimation of sub-
ject specific networks is performed by leveraging spatially-
constrained ICA (Lin et al., 2010; Du & Fan, 2013).

The Neuromark pipeline leverages component pri-
ors derived from replicable spatial maps estimated from
large independent datasets. For this purpose, resting-state
fMRI datasets from the Human Connectome Project (HCP,
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Fig. 1 Domains identified in
Du et al. Briefly, these seven
identified network templates
were divided based on anatomi-
cal and functional properties. In
each subfigure, one color in the
composite maps corresponds

to an intrinsic connectivity
network (ICN)

X=13 mm

X=49 mm

X =-27 mm

X=-31mm

http://www.humanconnectomeproject.org/data/) and the
Genomics Superstruct Project (Holmes et al., 2015) were
utilized. Group ICA was applied separately to the two
datasets, followed by a greedy spatial correlation analy-
sis (coupled with expert inspection) to identify and label
intrinsic connectivity networks (ICNs) that showed high
replicability across the two separate group ICA analyses
(Du et al., 2020) see Figs. 1 and 2.

For the Neuromark pipeline, these ICNs are used as
network templates (aka priors) to estimate subject-spe-
cific functional networks and their associated time-courses
(TCs) via an adaptive spatially constrained ICA method.
Here we used multi-objective optimization ICA where one
objective is to optimize the independence of networks (for
the subject), while the other is to optimize the similarity
between one subject-specific network and its related net-
work template.

Once this is accomplished, various network features can
be extracted from both static and dynamic perspectives.
One such example of a measure is the static FNC (sFNC)

Sub-cortical Domain (SC: 5)

Y =-19 mm

Y =-26 mm

Y =-34 mm

Y =-61 mm

Auditory Domain (AU: 2)

Z=11mm X =43 mm Y =-7T mm Z=11mm

Visual Domain (VI: 9)

Z=44 mm X=45mm Y = -55 mm

Default-mode Domain (DM: 7)

Y

=-1mm X=-5mm Y =-55 mm Z=33mm

Network templates

which is computed as the Pearson correlations between
TCs of ICNs to yield an sFNC matrix reflecting the inter-
action between any two networks. While the spatial map
of each ICN reflects intra-connectivity within brain func-
tional network, sFNC matrix represents inter-connectivity
strengths between different ICNs. The obtained network
features and time courses can be further analysed statisti-
cally via decentralized MANCOVA for making inferences.

Decentralized ICA stats

Once the network features are derived from Neuromark,
the researcher/user can perform any statistical analysis
in a decentralized fashion. This helps in speeding up the
analysis enabling multiple research groups to participate in
larger studies, preserving their data privacy without sharing
the actual data. Fig. 3 shows how the Neuromark pipeline
is performed in a centralized way. There are two ways in
which the decentralized statistics can be performed. Here
we implement the MANCOVAN toolbox in GIFT (https://
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FNC Correlations (Averaged over subjects)
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Fig.2 Correlation map showing average correlation, across par-
ticipants, for each domain. Cool colors represent anticorrelation and
warm colors represent positive correlation. In general, there was
high positive (r > .5) correlation within the visual, sensorimotor,

trendscenter.org/software/gift/), which provides both
MANCOVAN omnibus tested as well as univariate regres-
sion tests. In this work, we utilize the univariate regression
functionality, though the MANCOVAN toolbox (MTB)
is fully implemented. The first approach, IMANCOVAN
(decentralized MANCOVA), involves pooling all the time
courses within a private aggregator (the application) and
running the MTB on these pooled data. The results are then
shared with every local site (Algorithm 1 and Fig. 4). The
second and more secure approach AMANCOVApa (decen-
tralized MANCOVA with private aggregator) involves per-
forming an MTB analysis at each local site separately on
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and default mode network domains across all participants. Of note.
SC: sub-cortical domain, AUD: auditory domain, SM: sensorimotor
domain, VIS: visual domain, CC: cognitive-control domain, DMN:
default-mode domain, CR: cerebellar domain

its corresponding timecourses and covariate data. From the
local MTB results generated, relevant stats such as residual
errors, contrast mean images, and other metadata (such as
number of subjects) are extracted and sent to the private
aggregator to compute global sum of squares residual errors
and average beta weights. From these, the corresponding
t-values and p-values are computed and sent back to all the
local sites. Alg. 2 and Fig. 5 show the algorithm and pipeline
corresponding to the improved decentralized MTB approach
respectively. Alg. 2 is a decentralized multivariate analysis
of covariance (a type of generalized linear model).
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Fig. 3 Pipeline of GIFT frame-
work computed in a centralized
way

Raw
Data

Perform GICA

Algorithm 1: Decentralized GICA and MANCOVA

Data: X}" € R be raw sMRI/fMRI data of m subjects available at site i € {0,1,2,.., N}

and Y¥ € R representing k covariate information.

/* Local sites
1 for all sites i in 1 .. N do

*/

2 Perform group independent component analysis on the group of subjects (Xi")

3 Send time courses information TCJ", covariate files Y¥ and other metadata to the

aggregator site
4 end
/* aggregator site

if site i == 0 then

© ®w 9@ @

Gather time courses and covariate files from all local sites i=1..N
Combine time courses TCqqgy = Aggregate(TC"),i € {1,2,3,.., N}
Combine covariates Yogy = Aggregate(Y¥),i € {1,2,3,.., N}

Perform mancova analysis Mgy with TCqgg , Yage and other metadata

10 Send the analysis results to all the local sites i € {1,2,.., N}

11 end

Algorithm 2: Decentralized GICA and MANCOVA with Private Aggregator

Data: X" € R be raw sMRI/fMRI data of m subjects available at site i € {0,1,2,.., N},
and Y! € R representing k covariate information.

/* Local sites
1 for all sites i in 1 .. N do

*/

Perform group independent component analysis on the group of subjects (Xj")

Mancova Visualize Results

COINSTAC

For this project, the entire analysis, neuromark and the
decentralized statistical analysis, was performed in COIN-
STAC. In brief, COINSTAC (Gazula et al., 2020; Ming
et al., 2017; Plis et al., 2016) is a fully open-source, fed-
erated learning platform geared towards neuroimaging
research enabling researchers to perform decentralized anal-
ysis of neuroimaging data in a secure and privacy-preserving
environment via a message-passing infrastructure. More spe-
cific instructions on how to install the application and run
an example analysis can be found online at https://github.
com/trendscenter/coinstac-instructions. In COINSTAGC, sites
perform computations on their local data and intermediate
results are collected by a cloud-based “private aggregator”
which synthesizes the results and returns them to the sites.

2

3 Perform MANCOVAN analysis M; with TC; , Y; and other metadata Data

4 Extract stats information (i.e., residual errors, contrast, and mean images) and other

metadata (such as the number of subjects), save it as a file S;, and send it to the
aggregator site.
5 end Cohort
/+ aggregator site /

6 if site i == ( then

7 Gather stats S; files from all local sites, Sqq9 = Aggregate(S;).i € {1,2,3,..,N . .

8 Compute the global sum of squares residuaglgerrors and average beta weights. The data from two 1arge multl'centrlc adOICscent Cohorts

9 Estimate the p - values from the aggregated stats Sq 4. . . .

10 Compute and send the analysis results to all the loca{qsitns ie{1,2,.,N}. m Indla and Europe were uSed for the present analySlS The

1t end Consortium on Vulnerability to Externalising Disorders and
Fig.4 Decentralized GICA Local-0
and mancova implemented ocal-
in COINSTAC using GIFT Raw
toolbox. This approach involves Ba Perform GICA
pooling all the time courses ) Master site
within a private aggregator and
running the MTB on this pooled Local-1
data following which the results Visualize
are shared with every local site Mancova

Y I;a:v Perform GICA Results
ata

Local-n

Raw Perform GICA
Data
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Local-0

;aw Perform GICA H Mancova

ata

Master site

Local-1

Raw Aggregate Visualize

s Perform GICA Mancova tate — Results
Local-n

gaw Perform GICA H Mancova J

a

Fig.5 This version of decentralized Mancova involves performing
an MTB analysis at each local site separately on its corresponding
timecourses and covariate data. From the local MTB results gener-
ated, relevant stats information such as residual errors, contrast mean
images, and other metadata (such as number of subjects) are extracted

Addiction (cVEDA) is an accelerated longitudinal cohort in
India (Sharma et al., 2020) that covers an age span of 5-24
years. Participants who provided brain imaging data were
recruited at six study sites (see Zhang et al. (2020) for cohort
profile and Sharma et al. (2020) for study protocol). The
IMAGEN project is a longitudinal study of adolescent brain
development and mental health in Europe (Schumann et al.,
2010). Participants were recruited from eight study sites in
England, Ireland, France, and Germany at the age of 14, with
follow-up assessments at ages 16, 19, and 22. Each study
site obtained ethical approval from the local research eth-
ics committee. For both studies written consent (or verbal)
assent were acquired from all the participants and parents
prior to participation.

In this research, we used resting functional neuroimaging,
and smoking and drinking assessments from the baseline
cVEDA cohort (n=1140) and the second follow-up wave in
IMAGEN (n=_839), acquired at age 19. See Table 1 for the
cohort description.

Table 1 Sample Characteristics

and sent to the master site. At the master site, these stats and meta-
data from all the local sites are combined to compute global sum of
squares residual errors and average beta weights. From these, t-values
and p-values are computed and these results are sent to all the local
sites

MRI Dataset Acquisition and Preprocessing

Although COINSTAC also implements fMRI preprocessing,
for this study data was previously preprocessed by each site
separately outside of COINSTAC, and we focused on using
COINSTAC to implement a group ICA + stats analysis. The
preprocessing steps are briefly described below. For a com-
plete description of the preprocessing of the IMAGEN data-
set see Schumann et al. (2010) and for the cVEDA dataset
see (Sharma et al., 2020; Zhang et al., 2020).

For IMAGEN, data preprocessing was performed using the
statistical parametric mapping (SPM) tool (http://www.fil.ion.
ucl.ac.uk/spm/) toolbox. fMRI BOLD images were first rea-
ligned, corrected for head motion and slice timing (to account
for timing difference in slice acquisition) and co-registered to
T1w (MPRAGE) images. The fMRI data were normalized
to the EPI template and resampled to 3 mm? isotropic vox-
els. Images were spatially smoothed using a Gaussian kernel
with a 6 mm full width at half maximum. Subjects with head

Variable ¢VEDA (N=1140) IMAGEN (N=839) Total (N=1979) t P p

Age [y, Mean (SD)] 15.677 (4.346) 18.998 (0.718) 17.085 (3.714) -3.321 <0.001
Sex [Male, n (%)] 638 (56.0%) 389 (46.4%) 1027 (51.9%) 17.8429 2.4e-5
BMI [kg/m?, Mean (SD)] 19.237 (4.509) 22.836 (3.946) 20.763 (4.634) -3.599 <0.001
Smoking Risk, n (%): 0 1073 (94.1%) 242 (28.8%) 1315 (66.4%) 923.7725 < 0.00001
1 67 (5.9%) 597 (71.2%) 664 (33.6%)

Alcohol Risk, n (%): 0 1088 (95.4%) 224 (26.7%) 1312 (66.3%) 1022.0692 < 0.00001
1 43 (3.8%) 516 (61.5%) 559 (28.2%)

2 9 (0.8%) 99 (11.8%) 108 (5.5%)
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motion < 0.25 mm (frame-wise displacement) and with func-
tional data providing near full brain successful normalization
(by comparing the individual mask with the group mask) were
selected for further analysis.

For cVEDA, the parameters and acquisition protocols
were similar to those described above in IMAGEN. More
detailed information can be found at https://cveda-project.
org/standard-operating-procedures/. The functional data
processing for cVEDA in brief included the following
steps. Motion correction by applying a rigid body regis-
tration of each volume to the middle volume (FSL MCF-
LIRT). Slice-timing correction to account for timing dif-
ference in slice acquisition. Non-brain tissue removal (FSL
BET) and co-registration to high-resolution T1 image
(FSL FLIRT using the BBR algorithm). Motion correcting
transformations, BOLD-to-T1w transformation and T1w-
to-template (MNI) warp were concatenated and applied
in a single step using Advanced Normalization Toolbox
(ANTs v2.1.0) and Lanczos interpolation. An ICA-based
Automatic Removal Of Motion Artifacts (AROMA)
was used to generate non-aggressively denoised data.
And finally these data were resampled to 3mm isotropic
and smoothed using a 6mm non-linear filter using FSL
SUSAN. Only those subjects who had head motion FD of
<0.25mm were retained.

Measure of Tobacco and Alcohol use

For IMAGEN, measures of tobacco smoking were
obtained from self-reports in the Fagerstrom test for
nicotine dependence (FTND) questionnaire (Heatherton
et al., 1991). The answer to the question regarding life-
time smoking experience was used to create a binary vari-
able, indicating whether the participant had ever smoked
(labeled as 1) or not (labeled as 0). For alcohol risk, the
Alcohol Use Disorders Identification Test—Consumption
(AUDIT-C) score < 3 for females or < 4 for males were
labeled as O (low risk), score of 3—7 for females or 4—7 for
males were labeled 1 (moderate risk) and score > 8 was
labelled as 2 (high risk).

For cVEDA, measures of tobacco smoking and alcohol
use were obtained from the World Health Organization’s
Alcohol, Smoking and Substance Involvement Screening
Test (ASSIST) questionnaire, which provides a specific
substance involvement score indicating the risk levels.
For smoking risk, a tobacco involvement score of > 3 was
labeled as 1 (present) and a score of < 3 was labeled as 0
(absent). For alcohol risk, an involvement score of < 3 was
labeled O (low risk), a score 4-26 was labeled 1 (moderate
risk) and > 27 was labeled as 2 (high risk).

Other covariates from both the cohorts were mean-
centered indices of head motion during resting state

functional MRI (measured as framewise displacement in
mm), body mass (BMI) (weight in kilograms divided by
the squared height in meters), age in years, and dummy-
codes for site and sex. (refer to Table 1 for sample
characteristics).

Results

We provide a summary of the results here and then discuss
them further in the following section. Please note that all
the maps have been thresholded with a false discovery rate
(FDR) correction of 0.05 (Benjamini & Hochberg, 1995).

FNC for Alcohol

Lifetime risk for alcohol showed more mean functional con-
nectivity strengths than lifetime risk for tobacco. Across
the seven domains (default mode network (DMN), sub-
cortical (SC), auditory (AUC), sensorimotor (SM), visual
(VIS), cognitive-control (CC), & cerebellar (CR)), there
were roughly 27 positive pairs and 48 negative pairs, the
SC domain was most positively associated with the other
domains (8 positive pairs) and the SM domain and the CC
domains were the most negatively associated with the other
domains (20 and 21 pairs, respectively). Increased functional
connectivity was observed between the DMN and cognitive
control. See Fig. 6 for more details.

FNC for Tobacco

In addition to less overall connectivity strength, lifetime risk
for tobacco showed almost exclusive negative connectiv-
ity pairs across the seven domains. To a lesser extent than
alcohol, the DMN domain had increased functional con-
nectivity with the cognitive control domain, a total of four
positive connectivity pairs. The DMN also had one positive
connectivity pair with the cerebellar domain and the visual
domain had one positive connectivity pair with the senso-
rimotor domain. All of the other 27 connectivity pairs were
negatively associated. See Fig. 7 for more details.

For both lifetime risk of alcohol and tobacco, there was a
predominant decrease in a number of the connections, sug-
gesting a common reduction of connection effect for both
substances. Taken together, there was a decreased functional
network connectivity observed in the sensorimotor, auditory,
and visual networks in both alcohol and tobacco use.

The univariate results showed reduced power in the high
frequency region for lifetime alcohol and tobacco use (both
above 0.15 Hz) with larger changes for alcohol than tobacco.
Alcohol use also showed increased power in the mid/BOLD
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Fig.6 Connectogram showing group mean connectivity across
domains for alcohol users. Cool colors represent reduced connec-
tivity and warm colors represent increased connectivity. In alcohol
users, there was increased connectivity mostly linked to the DMN

frequency range, see Figs. 8 and 9 for more details. As a
whole, alcohol use indicated two sets of signal frequencies,
reduced power (roughly 0.2 Hz) at high frequency and high
power (between 0.05 - 0.1 Hz) at low frequency.

Decentralized MANCOVA

We test our approach using the subset of the fMRI dataset
used in Allen et al. (2011). Since, it is a large dataset, we
select a subset of 50 subjects and run mancova algorithm as
shown in Fig. 3. The same data is partitioned into two sub-
sets to test our decentralized mancova analysis using algo-
rithms Alg. 1 and Alg. 2. In our results, we compare FNC
correlations and significant effects of gender outputs across
different algorithms.

Figures 10, 11 and 12 show the FNC correlations, sig-
nificant effects of gender and effect sizes per gender. These
are the general studies performed using mancova analysis.

@ Springer

domains and to a lesser extent, the cognitive control and sub-cortical
domains. Of note. SC: sub-cortical domain, AUD: auditory domain,
SM: sensorimotor domain, VIS: visual domain, CC: cognitive-control
domain, DMN: default-mode domain, CR: cerebellar domain

From the figures, it can be seen that Alg. 1 has same out-
put as the GIFT interface in all the figures. Alg. 2 has the
same output for FNC correlations (Fig. 10b, c) but varies
slightly in terms of significant effects of gender (Figs. 11b,
c and 12b, c). This is because the mancova output from all
the local sites were used in computing mancova output in
Alg. 2 rather than computing mancova at the remote site as
in Alg. 1. This improvisation in Alg. 2 reduces running time
by 50% as compared to Alg. 1.

Discussion

The goal of this paper was two-fold: to demonstrate the fea-
sibility of COINSTAC (Gazula et al., 2018) for perform-
ing decentralized analysis on large datasets present across
multiple sites, compare the results of the decentralized ICA
and Neuromark, and to use this experiment to evaluate the
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Fig.7 Connectogram showing
group mean connectivity across
domains for tobacco users.
Cool colors represent reduced
connectivity and warm colors
represent increased connectiv-
ity. In tobacco users, there was
decreased connectivity linked
to sensorimotor, auditory, and
visual domains. Of note. SC:
sub-cortical domain, AUD:
auditory domain, SM: senso-
rimotor domain, VIS: visual
domain, CC: cognitive-control
domain, DMN: default-mode
domain, CR: cerebellar domain

relationships of both smoking and tobacco use with functional et al., 2020) we identified a trend of general decreased connec-
connectivity changes. Using a large sample of tobacco and tivity across all networks in both tobacco and alcohol users.

alcohol users, this study investigated resting state functional Starting with tobacco users, there was decreased con-
connectivity in seven brain networks (SC, AUD, SM, VIS, nectivity in most of the pairings but the most prominent
CC, DMN, & CR). Using previously-defined networks (Du  result was hypoconnectivity between the auditory and

Significant Effects Of alcohol_lifetime_risk (1) - (0) (p < 0.05)

Component
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Fig.8 Power spectra of each component for alcohol risk (condition 1) the mid/BOLD frequency range (between 0.05 - 0.1 Hz) and reduced
vs no risk (condition 0) flagged red or blue based on the direction of high frequency power above 0.15 Hz
effect for every value where p < 0.05. There is a general increase in
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Fig.9 Power spectra of each component for effect of tobacco risk (condition 1) vs no risk (condition 0) flagged red or blue based on the direc-
tion of effect for every value where p < 0.05. There was reduced BOLD high frequency power (above 0.15 Hz) across all components

sensorimotor networks. These findings are in support
of the reduction of global cortical efficacy in smokers
(Fedota & Stein, 2015). There was an exception with the
DMN, that had increased within-network connectivity but
also with the cognitive control and cerebellar domains.
The increased connectivity between the DMN, which
is associated with self-referential processes (Andrews-
Hanna et al., 2010) and the cerebellum may be related to
associative reward learning and potentially cravings (as
it relates to these data) as the cerebellar domain has been
previously associated with encoding of predicted internal
states (Ebner & Pasalar, 2008; Popa & Ebner, 2019). Addi-
tionally, hyperconnectivity specifically within the DMN
has been noted before and was hypothesized as an indica-
tion of the body being in a state of withdrawal (Vergara
et al., 2017). A similar effect was identified in cannabis

Fig. 10 Functional Network
Connectivity matrices generated
using GIFT interface, IMAN-
COVA (Alg. 1) and dMANCO-
VApa (Alg. 2)

i
(a)arrT

@ Springer

users (Pujol et al., 2014). Therefore, we speculate that
our results of increased connectivity may indicate some
states of cravings or withdrawal (e.g., time in the scan-
ner prevented participants from smoking) and not a direct
connectivity alteration relating to tobacco use. There is a
possible limitation of the validity of self-reports utilized
in this study however, these data and protocols have been
previously reported in multiple publications (Schumann
et al., 2010; Sharma et al., 2020).

In alcohol users, there was significantly more connectivity
across all networks when compared to tobacco users. Gener-
ally, there was hyperconnectivity between the DMN, CC, and
SC domains. One explanation for this increased connectiv-
ity may be compensation related to impaired functionality
that results from prolonged or excessive alcohol use. In other
words, the hyperconnectivity may be a sign of overactivation,

£

(€) IMANCOVApa

H £

(b) dMANCOVA
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Fig. 11 Significant effects of
gender generated using GIFT
interface, IMANCOVA (Alg. 1)
and IMANCOVApa (Alg. 2)

l0) - (female) (p < 0.05)

(a) GIrFT

or enhanced neural effort, that is needed to achieve the origi-
nal (or baseline) cortical performance in areas that have been
negatively affected by alcohol (Jansen et al., 2015; Zhu et al.,
2017). As some of these hyper-connections (within DMN
and DMN and CC) were seen with the tobacco users, another
potential explanation is the previously stated hypothesis that
the hyperconnectivity is representing a state of withdrawal
and not a direct change from alcohol use. However, given
the limitations of this cross-sectional study, these results
would benefit from future studies examining how much of
this connectivity increase is related to the stages (and degree)
of withdrawal or if this increase is still identified after sub-
stance consumption.

The remainder of the 75 identified pairs in alcohol use
indicated hypoconnectivity. The negative pairs were across
all seven domains, showing support for global cortical defi-
cits in alcohol users. The strongest of those were within the
DMN and between the DMN and AUD domains and between
AUD and VIS domains. The visual region, specifically the
middle occipital gyrus (Camchong et al., 2012), has previ-
ously been identified as a primary area of impact in alcohol
users (Vergara et al., 2017). The hypoconnectivity between
the DMN and VIS indicate a reduction in domains known
for self-reference and information processing related to one’s
own body, aspects that when not functioning properly could
explain excessive consumption, among other decisions.

Finally, both tobacco and alcohol users had general hypo-
connectivity within the DMN, SM, VIS, AUD, CC, and CR

Fig. 12 Significant effects and
effect sizes of gender generated
using GIFT interface, AIMAN-
COVA (Alg. 1) and dMANCO-
VApa (Alg. 2)

ignificant Effects Of Gender_(male) - (female) (p < 0.05)

) IF

- (female) (p < 0,05)

(b) iMANCOVA (€) IMANCOVApa

domains. Alcohol users had more connections than tobacco
users, with the majority of those pairs also being negative.
These findings suggest that global reduced synchronization
is associated with both tobacco and alcohol use. Specific
domains, namely the DMN, CC, and VIS domains may
explain some of the mechanisms behind substance use and
how addictions are formed.

The results of the decentralized MANCOVA with a pri-
vate aggregrator show that it is possible to obtain results
similar to results where the analysis is performed locally.
In fact, it can also be seen that the results also qualitatively
match the ones from a centralized analysis. This is a good
indicator of how end-to-end large scale pipelines can be
successfully implemented in COINSTAC without concerns
about loss of significance.

There are some limitations to this project. First, the two
datasets were preprocessed using different softwares and
approaches. For this analysis we used the Neuromark spa-
tially constrained ICA pipeline, which included templates
intentionally derived from components that replicated across
multiple large datasets collected with different parameters.
The spatial constraint allows for automated single subject
ICA results, capturing individual differences, and also help-
ing to regularize the results, providing additional robust-
ness to noise and dataset variation (Du et al., 2016, 2020).
Second, the two datasets did significantly differ on demo-
graphics, see Table 1. However, the purposes of this study
were to examine the similarities that were present between

_,Significant Effects Of Gender_(male) - (female) (p < 0.05)

(b) iMANCOVA (€) dMANCOVApa
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the datasets. To evaluate site specific effects, we performed
an additional analysis of the effects for each site separately
and results were largely consistent with the pooled analy-
sis (significant pairs were correlated above 0.8 for alcohol
and tobacco), providing additional support for the reported
results.

In summary, we proposed an ICA-based framework to
generalize and standardize the calculation of possible func-
tional connectivity features that leverages the benefits of a
data-driven approach and also provides comparability across
multiple analyses. In the current study, the experimental
conditions for data collection and preprocessing is specific to
each site thus enabling a straightforward implementation of
adaptive-ICA for estimation of subject-specific components.
Future work includes the development of iterative estimation
schemes for data shared between sites. One of the advan-
tages of decentralized analysis pipelines is that only inter-
mediary statistics are passed between sites, and full patient
records are never released across the network. These kinds
of decentralized algorithms are “plausibly private” (Sarwate
et al., 2014), due to the lack of directly identifiable records
in the global data network. We believe work presented here
provides a clear direction for future work in improving our
understanding of brain disorders by leveraging data from
different sites.

Conclusion

In this work, we demonstrated the feasibility of perform-
ing a multi-site large-sample ICA-based framework called
Neuromark. The goal of Neuromark is to generalize and
standardize the calculation of possible functional connec-
tivity features that leverages the benefits of a data-driven
approach and also provides comparability across multi-
ple analyses. An exploratory analysis was performed on
COINSTAC, a decentralized framework, using functional
MRI data collected in the UK and India. Additionally, we
also demonstrated the decentralized statistical analysis of
subject-specific network features for group level-inferences.
We hope this proof-of-concept will be a useful stepping
stone towards eventual application of such decentralized
approaches for analyzing data from different sites and for
further adoption in the clinical setting.
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