
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 71, NO. 7, JULY 2024 2189

Learning Spatiotemporal Brain Dynamics in
Adolescents via Multimodal MEG and fMRI Data
Fusion Using Joint Tensor/Matrix Decomposition

Irina Belyaeva , Member, IEEE, Ben Gabrielson , Graduate Student Member, IEEE,
Yu-Ping Wang , Senior Member, IEEE, Tony W. Wilson , Vince D. Calhoun , Fellow, IEEE,

Julia M. Stephen , and Tülay Adali , Fellow, IEEE

Abstract— Objective: Brain function is understood to be
regulated by complex spatiotemporal dynamics, and can
be characterized by a combination of observed brain re-
sponse patterns in time and space. Magnetoencephalog-
raphy (MEG), with its high temporal resolution, and
functional magnetic resonance imaging (fMRI), with its
high spatial resolution, are complementary imaging tech-
niques with great potential to reveal information about spa-
tiotemporal brain dynamics. Hence, the complementary na-
ture of these imaging techniques holds much promise to
study brain function in time and space, especially when
the two data types are allowed to fully interact. Methods:
We employed coupled tensor/matrix factorization (CMTF)
to extract joint latent components in the form of unique
spatiotemporal brain patterns that can be used to study
brain development and function on a millisecond scale.
Results: Using the CMTF model, we extracted distinct brain
patterns that revealed fine-grained spatiotemporal brain
dynamics and typical sensory processing pathways infor-
mative of high-level cognitive functions in healthy ado-
lescents. The components extracted from multimodal ten-
sor fusion possessed better discriminative ability between
high- and low-performance subjects than single-modality
data-driven models. Conclusion: Multimodal tensor fusion
successfully identified spatiotemporal brain dynamics of
brain function and produced unique components with high
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discriminatory power. Significance: The CMTF model is a
promising tool for high-order, multimodal data fusion that
exploits the functional resolution of MEG and fMRI, and
provides a comprehensive picture of the developing brain
in time and space.

Index Terms—Brain function, coupled tensor/matrix fac-
torization, developmental neuroscience, fMRI, MEG, multi-
modal data fusion, spatiotemporal brain dynamics.

I. INTRODUCTION

M
ULTIMODAL neuroimaging is an important tool for

neuroscience research, due to the complex spatiotempo-

ral dynamics being characterized by the collective information

present across multiple imaging modalities. Multimodal data

fusion can take advantage of multiple neuroimaging techniques

to improve the characterization of the temporal and spatial reso-

lution of neurological processes, and identify pathology with

high sensitivity and specificity [1], [2]. Magnetoencephalog-

raphy (MEG) and electroencephalography (EEG) are direct

neuroimaging techniques that instantaneously measure the neu-

ral currents induced by neuronal activity. MEG is a powerful

neuroimaging technique for studying the rich temporal dynamics

of neuronal activity with submillisecond resolution. Functional

magnetic resonance imaging (fMRI) is an indirect neuroimaging

technique that measures local changes in brain hemodynamics

with a high spatial resolution. However, the temporal resolution

of fMRI is limited to a few hundred milliseconds. Given notice-

able complementarity between the two techniques, integrating

MEG and fMRI has become a highly desirable multimodal ap-

proach [3]. Therefore, joint analysis of MEG and fMRI is of the

greatest interest for enabling a comprehensive large-scale view

of brain function. State-of-the-art methods for neuroimaging

data joint analysis comprise different approaches to data fusion,

or approaches that estimate the interaction between different

modalities [4]. Several data fusion methods have been proposed

for fusion of the MEG/EEG multimodal data based on matrix

and tensor decompositions. These include joint independent

component analysis (jICA) [5], multiset canonical correlation

analysis mCCA [6], dictionary learning (DL) [7], and indepen-

dent vector analysis (IVA) and its transposed variant (tIVA) [8]

among others [9]. Data-driven matrix decomposition methods

are powerful because they can extract meaningful biological
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patterns across multiple modalities [10] and enable fusion using

second order or high-order statistics. However, there are two

drawbacks of matrix decomposition methods: (1) flattening

naturally high-dimensional data into a two-dimensional (2D)

representation does not fully leverage the multilinear structure

of multisensor MEG/EEG, and (2) enforcing constraints such as

independence or sparsity of components is typically required to

ensure the uniqueness of the matrix decomposition [1], [7]. In

contrast, multiway data fusion methods address the drawbacks

of matrix decomposition methods by jointly analyzing datasets

in the form of matrices and tensors without imposing additional

constraints, and account for the multilinear structure of naturally

high-order MEG/EEG. The multiway decomposition methods

for MEG/EEG and fMRI data fusion include N-way partial least

squares [11], coupled matrix/tensor factorization (CMTF) [12]

and coupled tensor-tensor factorization (CTTD) [13]. Techni-

cally, both CMTF and CTTD decomposition methods employ

canonical polyadic (CP) decomposition [14], which is essen-

tially unique up to scaling and permutations [15].

Fusion of EEG and fMRI data has demonstrated the ability

to address the inherent limitations of each imaging modality,

resulting in enhanced spatiotemporal resolution and improved

localization of neural sources [16], [17], [18]. Furthermore, EEG

and fMRI data fusion offer significant benefits, such as high

sensitivity to radially-oriented sources, the ability to detect deep

sources in medial and subcortical regions, and the availability

of the method in hospitals when translating studies into clinical

practice [19], [20]. Despite these advantages, the fusion of EEG

and fMRI data still faces significant limitations. A notable chal-

lenge is the presence of dominant artifacts, including gradient

artifact and ballistocardiogram (BCG), that arise during the

simultaneous acquisition of these modalities [21], [22]. Another

limitation stems from the intrinsic issues associated with EEG

recordings, particularly volume conduction. Volume conduction

introduces complexities in relating EEG data to other imaging

modalities. The distortion of EEG signals caused by a poorly

conducting skull poses challenges to accurately identify the

underlying neural sources, leading to errors in source localiza-

tion [23], [24], [25], [26]. Unlike EEG, magnetic fields propagate

through the head almost unchanged and thus experience minimal

spatial distortion. For this reason, MEG recordings result in

significantly lower source localization errors [23], [25], [27],

offer a higher spatial resolution than EEG, and thus MEG and

fMRI data fusion can separate neural sources with a higher

specificity [20]. Furthermore, since MEG is biased towards

tangential sources, it provides increased sensitivity to the detec-

tion of activity arising from the fissural cortex [20]. Therefore,

the selectivity of MEG and fMRI data fusion to tangential

sources in the presence of several simultaneous sources is a

significant advantage in differentiating between multiple cortical

areas activated by somatosensory stimuli [20]. However, MEG

demonstrates a decrease in sensitivity to deeper sources [20],

[25]. Although EEG is not affected by the lower sensitivity to

deep sources as MEG and offers a more isotropic sensitivity

profile, the spread of electrical potential on the scalp hinders

source localization [28]. That said, both MEG and EEG provide

high temporal resolution (on the order of milliseconds), which

is complementary to the hemodynamic response measured with

fMRI (on the order of seconds). Because of the different time

scales of electrophysiological (MEG/EEG) vs. hemodynamic

(fMRI) techniques, we expect each technique will capture

both unique and overlapping spatiotemporal information. For

example, with high temporal resolution MEG can capture a

sequence of events within the brain by examining different

time points while performing tasks. However, deep sources pro-

duce weaker signals at the MEG sensors limiting sensitivity to

these structures, whereas fMRI provides sensitivity to both cor-

tical and subcortical structures but cannot separately capture the

sequence of events at the millisecond timescale. Furthermore,

the combination of MEG and fMRI holds promising prospects in

noise reduction inherent to each modality [22], [28], [29], [30].

As a result, MEG and fMRI data fusion shows great potential for

substantially boosting statistical sensitivity and outperforming

the use of either modality alone. This promise arises from several

key factors: MEG’s superior source localization accuracy over

EEG, the improved spatiotemporal resolution achieved through

the fusion of MEG and fMRI data, and the noise reduction

capabilities of the fusion process. Consequently, this integrated

approach enables more effective discrimination between exper-

imental conditions, making it a powerful tool in neuroscientific

research.

Given the advantages of MEG over EEG and the comple-

mentarity of MEG and fMRI, and the inherent multiway na-

ture of MEG data, tensor-based fusion of these modalities is

particularly attractive. The joint analysis of MEG and fMRI

provides a comprehensive view of brain processes beyond what

each imaging method can achieve independently. Therefore, the

fusion of MEG and fMRI holds great potential to significantly

contribute to the current state-of-the-art multimodal imaging

methods and further deepen our understanding of the human

brain and cognitive function.

The analysis of MEG/EEG data using tensor factorizations

has demonstrated promising performance in terms of extracting

and characterizing developmental brain patterns [31] as well

as for the extraction of developmental features from EEG pe-

diatric data [32] and for the study of functional connectivity

patterns [33]. Many recent studies have analyzed neuroimaging

data from multiple modalities using multiway representations

and used CMTF-like methods to jointly analyze EEG/MEG [34],

[35], EEG and fMRI [2], [17], [18]. Despite the substantial

number of studies dedicated to the joint high-order analysis of

EEG and fMRI, the joint tensor-based processing and fusion of

MEG and fMRI have not been well investigated. We found a

few studies that focused on MEG and fMRI data fusion using

multivariate pattern analysis techniques such as representation

similarity analysis (RSA) [36], [37], [38], the RSA-like model-

based MEG and fMRI fusion [39] that used a commonality

analysis [40]. The RSA method presented in [36], [37], [38]

is similarity-based fusion, which utilizes a region-of-interest

(ROI) approach to relate MEG and fMRI in selected ROIs

by computing distance matrices between fMRI brain regions

and MEG time courses. Even though similarity-based fusion

presents a novel application for the fusion of MEG and fMRI, it

is not a data-driven fusion method. It is instead a model-based
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Fig. 1. Illustration of joint tensor/matrix analysis for multi-subject MEG and fMRI data. (a)–(b) Joint MEG and fMRI tensor matrix model. MEG
tensor formation is achieved by arranging the subject’s ERF responses along the first dimension. fMRI data are arranged as a matrix in which spatial
maps derived from task-related contrast are concatenated along the first dimension. The MEG tensor is coupled with the fMRI matrix in subject
mode. (c) MEG and fMRI tensor/matrix decomposition into R rank-1 components. Each rank-1 component represents a distinct spatiotemporal
brain activity pattern with subject weight (ar), temporal (br), MEG spatial signatures (cr), and fMRI spatial signatures (dr).

method that restricts the exploration of associations between

MEG and fMRI based on the prior knowledge of the activation

patterns. Another limitation of the similarity-based fusion is the

inherent ambiguity [3] between spatial brain regions and MEG

timepoints, which results in a non-unique solution, and, thereby,

limited interpretability.

To address the limitations of EEG and fMRI data fusion as

well as existing model-driven methods for MEG and fMRI joint

data analysis, and to facilitate unrestricted interaction between

modalities while ensuring model uniqueness, we have employed

a high-order decomposition known as “structure-revealing data-

driven fusion” [12]. We employed the CMTF model to jointly

analyze MEG event-related fields (ERF) and fMRI contrast

data. MEG ERFs are organized as a tensor with dimensions of

subject × time × sensors, while the fMRI data are represented

as a matrix with dimensions of subject × voxels. The proposed

high-order data fusion exploits multilinear relationships within

MEG, enforces the uniqueness of overall decomposition, and

enables unsupervised full interaction among MEG and fMRI

modalities. The proposed approach is shown in Fig. 1. We

quantitatively evaluated the advantages of joint tensor/matrix

decomposition by comparing the discriminative abilities of the

CMTF model and single modality tensor/matrix models, includ-

ing the CP and multi-subject independent component analysis

(ICA) [41], [42].

In this paper, we demonstrate the effectiveness of multimodal

MEG and fMRI tensor/matrix decomposition for robust extrac-

tion of task-related joint latent components that can explain

brain function via multiway data-driven fusion. We show that the

joint latent components extracted via multimodal tensor/matrix

decomposition possess higher discriminative ability to differen-

tiate between subject subgroups than a single-modality’s decom-

position for tensor and matrix-based data-driven models. The

proposed framework allows for the study of sensory processing

that yields insights into higher-level cognitive functions and typ-

ical developmental trajectories in adolescent brains. Our results

show that both fast temporal dynamics of MEG and high spatial

resolution of fMRI improve the characterization of underlying

neural processes by providing the spatiotemporal location of the

brain activity. Therefore, joint tensor/matrix decomposition pro-

vides higher statistical power by leveraging the complementary

nature of both modalities via the full interaction of MEG and

fMRI data and, thus is an attractive solution for joint analysis

and group-level inferences in multimodal studies.

II. DATA

A. Participants

The participants included 74 healthy children and adoles-

cents (38 males, 36 females) between the ages of 9 and 15

(mean = 11.80 years and std = 1.91), with no reported clinical

diagnoses, recruited by the Mind Research Network (MRN)

in Albuquerque, New Mexico as part of the Developmental

Chronnecto-Genomics (Dev-CoG) study [43]. The participants

and parents signed consent forms approved by the Advarra

institutional review board (IRB) prior to joining the study. All

procedures were approved by the IRB prior to the start of the ex-

periment. The participants were divided into high-performance

(HP, n = 38) and low-performance groups (LP, n = 36) as

described in Supplementary Methods Section I-A. Participants’

characteristics are shown in Supplementary Table S.I. and

Fig. S.1.

B. MEG and fMRI Data Acquisition and
Image Preprocessing

We provide a brief overview of the experimental and pre-

processing pipeline. The detailed design and study protocol

has been previously published in [31], [43]. MEG and fMRI

data were separately collected from 74 subjects during a mul-

tisensory task in which the subjects were instructed to press

their index finger when they saw anything, heard anything or
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both. After the intertrial interval (ITI), the sensory stimulus

of auditory (AUD), visual (VIS), or audio-visual (AV) was

shown for 800 ms. MEG epochs around the stimulus onset

were averaged across approximately 100 trials within respective

conditions and formed sensor-level ERFs time-locked to the

stimulus condition (AUD, VIS, or AV). For the fMRI data, we

computed stimulus-related three-dimensional (3D) contrast im-

ages temporarily aligned to each target stimulus by the general-

linear model using the statistical parametrical mapping software

package [44].

III. MULTIMODAL JOINT TENSOR/MATRIX ANALYSIS OF MEG
AND FMRI DATA

In this section, we describe the generative data model for

data fusion and joint analysis of multi-subject MEG and fMRI

data via joint tensor/matrix decomposition. The mathematical

notations and definitions used in this paper were incorporated

from [45] and [46] and are briefly described in Supplementary

Methods Section I-B.

A. Generative Model for CMTF MEG and fMRI
Data Fusion

According to the experimental/preprocessing paradigm de-

scribed in Section II-B, we modeled the observed MEG and

fMRI recordings as a linear mixture of the underlying neural

sources synchronized in time across subjects within a specific

target-related stimulus. We assumed that these neural sources are

reflected in both modalities. Let X
(k)
MEG ∈ R

T×C represent the

observed MEG ERF waveform for the kth subject from C com-

mon sensors synchronized across T timepoints. Additionally,

x
(k)
fMRI ∈ R

V denotes the stimulus-related fMRI spatial contrast

map observed for the kth subject, where k = 1, . . . ,K.

We present a formal description of MEG ERF and fMRI

generative data fusion model as follows. Let cr ∈ R
C denote the

rth ERF sensor source vector, which characterizes the spatial

sensitivity of each sensor to the rth source. Furthermore, the

activity of the rth source at all timepoints is denoted asbr ∈ R
T .

These temporal profiles represent the level of activity exhibited

by the rth source across different timepoints. Moreover, the

spatial sensitivity of each fMRI spatial contrast map to the rth

source is denoted by dr ∈ R
V . Lastly, ar denotes the subject

weights assigned to the rth source for K subjects. The subject

weights denote the contribution of the rth source to the neural

activity of the kth subject.

In the absence of noise, the multisubject MEG ERFs, denoted

as X ∈ R
K×T×C , and fMRI spatial contrast maps XfMRI ∈

R
K×V observed in K participants, can be expressed as a linear

instantaneous combination of the underlying sources:

XMEG =

R
∑

r=1

ar ◦ br ◦ cr,

XfMRI =

R
∑

r=1

ar ◦ dr. (1)

The mixing system (1) is characterized by its associated weights.

Fig. 1(a)–(b) illustrate the MEG and fMRI generative model for

data fusion, where the MEG modality is encoded as a 3D tensor,

and the fMRI modality is encoded as a 2D matrix, with the tensor

and matrix coupled together in the common subject dimension.

B. Multi-Subject CMTF MEG and fMRI
Tensor/Matrix Decomposition

By adopting the generative model shown in Fig. 1(a)–(b), the

common latent structure of MEG and fMRI in (1) can be directly

extracted through the CMTF [12] R-component model, which

allows to exploit the multilinear structure of XMEG.

The CMTF for joint decomposition of MEG and fMRI is for-

mulated as the minimization of the following cost function [12]:

f(Λ,Σ,A,B,C,D)

= min
Λ,Σ,A,B,C,D

1

2
‖XMEG − [[Λ,A,B,C]]‖2F

+
1

2
‖XfMRI −AΣD

T‖2F ,

s.t ‖ar‖2 = ‖br‖2 = ‖cr‖2 = ‖dr‖2 = 1,

∀r = 1, . . . , R, (2)

where ‖ · ‖F denotes the Frobenius norm, ar ∈ R
K ,br ∈

R
T , cr ∈ R

C ,dr ∈ R
V are the columns of the factor

matricesA, B, C, D normalized to a 2-unit norm for r =
1, . . . , R. The norms are absorbed into diagonal matrices Λ ∈
R

R×R,Σ ∈ R
R×R. The matricesA ∈ R

K×R,B ∈ R
T×R,C ∈

R
C×R, D ∈ R

C×R correspond to the factor matrices in the

subject, time, sensor, and voxel modes.

The CMTF model jointly factorizes tensor XMEG and matrix

XfMRI by simultaneously fitting the CP model [45] to tensor

XMEG, and factorizing matrix XfMRI in such a way that the

matrixA extracted from the common (subject) mode is the same

for MEG and fMRI datasets. The CP model is unique under

mild [15], [47] conditions. It was shown in [48] that the CMTF

model inherits uniqueness from the CP model, and generates

unique interpretable factors up to scaling and permutations.

Therefore, using the CMTF model we can reliably relate MEG

ERF and fMRI brain activity and also as examine associations

between the timing of the activations, functional networks, or

brain cortical regions. Of note, the component signatures ar,

br, cr, dr are subject weights of time-varying ERF patterns,

time courses, and ERF spatial and fMRI spatial contrast maps,

respectively.

IV. IMPLEMENTATION DETAILS

A. Data Preprocessing

Prior to the analysis, we normalized the MEG data by center-

ing the third-order MEG tensor across the time mode and scaling

within the subject mode by its standard deviation [49]. The fMRI

data were centered (subject-wise), and each row was divided by

its standard deviation.
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B. Multimodal MEG and fMRI Component Estimation

Three MEG data tensors (X V IS
MEG , XAUD

MEG , XAV
MEG) and three

fMRI matrices were created (XV IS
fMRI , X

AUD
fMRI , XAV

fMRI) for each

of the three stimulus conditions according to the data fusion

generative model. We conducted three separate CMTF decom-

positions for each stimulus condition with the identified ten-

sor rank (see details on rank estimation in the Supplementary

Methods Section I-C). The fitted CMTF models resulted in three

estimated MEG tensors and three fMRI matrices that consisted

of R-component factor matrices A, B, C, D that were used

to reconstruct joint group-level MEG ERF and fMRI latent

components. The fMRI spatial component maps were scaled

to Z-values, and entered into nonparametric permutation one-

tailed t-tests with a maximum t-statistics [50] and thresholded

at p < 0.05.

C. Performance Evaluation of Multimodal MEG and
fMRI Decomposition

To evaluate the performance gained by the multimodal fusion

approach, we compared the sensitivity of the CMTF MEG and

fMRI model for each modality with the decomposition results

derived from single-modality data models. The sensitivity anal-

yses assessed the discriminative power and robustness of the

results in terms of the Cohen’s d effect size (ES) [51] (see

Section IV-C1) accompanied by p-values and sample size N . In

particular, we compared the discriminative power gained by the

MEG modality using CMTF with that of individual CP decom-

position using MEG data alone. For the sensitivity comparison

of the fMRI modality, we used the CMTF model and compared it

with two other state-of-the-art matrix-based data-driven meth-

ods, namely, ICA using the entropy-bound rate Minimization

(ERBM) algorithm [52] and the DL method [53]. The ERBM

takes higher-order statistical information into account through

a flexible density model as well as sample dependence for

achieving ICA. On the other hand, DL provides a decomposition

through a linear combination of basic elements (dictionary)

through sparse coefficients by learning both matrices in an

alternating fashion. For the comparison, we utilized a combined

multi-subject dataset created using a generative data model

based on multi-subject ICA [41], [42]. Supplementary Methods

Section I-D provides additional details about the multi-subject

ICA model. The components from different algorithms were

matched based on the highest pairwise Pearson correlation coef-

ficient (r) between all possible combinations of the components.

1) Statistical Group-Level Analysis: We compared the

discriminative power of multimodal and single-modality models

for differentiating subject subgroups using mixed analysis of

covariance (ANCOVA) of component loading factors in subject

mode (columns of matrixA) [31], followed by post hoc analysis

using two-tailed t-tests and corrections for multiple comparisons

using the false discovery rate (FDR) [54] with the significance

level of α = 0.05 to determine statistical significance. The

ANCOVAs were calculated for each component and stimulus

condition while controlling for age, sex, parental socioeconomic

status (SES), and subject head motion. We report F -statistics,

t-values, p-values, ES, and sample sizeN . The ES was evaluated

by the generalized η2G, and Cohen’s d values. Additionally, we

also reported the mean (M ) and standard deviation (SD) of mea-

sures of interests. The thresholded (p < 0.05) statistical images

(T-maps) and Cohen’s d maps showed significant activations

of fMRI spatial maps and the ES, respectively. The Cohen’s

d ES [55], which represent the standardized mean difference

between subject subgroups was used as a performance metric for

the assessment of decomposition method sensitivity as follows:

Cohen′s d(r) =
M(arHP

)−M(arLP
)

√

(nHP−1)SD(arHP
)2+(nLP−1)SD(arLP

)2

nHP+nLP−2

, (3)

where M(·) is the mean and standard deviation SD(·) of the

rth column of matrix A for a subgroup, nHP, and nLP are the

number of subjects for the HP and LP subgroups, respectively,

r = 1, . . . , R.

D. Multimodal Tensor Group-Level Analysis

This section presents a multimodal tensor-group level anal-

ysis, which extends the tensor-group level analysis for a single

imaging modality introduced in [31]. Similar to the CP model,

the CMTF model performs simultaneous factorization and is

fully multivariate [56]. An important property of the CP and

CMTF decomposition is their ability to mathematically isolate

the underlying latent components in the form of component

(factor) matrices. Each rth latent component in the sensor

space or voxel space is represented as the outer product of

R components (ar ◦ br ◦ cr) or (ar ◦ dr), respectively, with

its signatures corresponding to the subject (magnitude of the

component), temporal, and spatial factors.

The resulting component matrices can be utilized in statistical

tests following the joint factorization of the MEG and fMRI data

using the CMTF model. Due to the fully multivariate nature of

the CMTF model, each factor of the latent joint component is

identified across all levels of the other factors [56]. By quantify-

ing the magnitude of each CMTF component at every timepoint,

sensor, and voxel, there is no need to selectively choose specific

timepoints, sensor sites, or brain regions for extracting group

magnitudes in group-level inferences. This characteristic allows

for the direct application of statistical inference to the selected

component signatures. To identify discriminative components

that differentiate between subject subgroups (HP vs. LP), the

rth column of the factor matrix A, along with the subject

subgroup, is submitted to ANCOVAs and two-tailed t-tests. The

multimodal tensor group-level analysis is summarized in Fig. 2

and Table S.II, while the details of the group-level statistical

inference are given in Supplementary Methods Section I-E.

1) Execution Details: We applied alternating least squares

(ALS) algorithm to estimate the factor matrices for the CMTF

and CP models [45]. The CMTF-ALS [12] algorithm was used

to fit the CMTF model (2). For the CP model, we used the

CP-ALS algorithm [45]. All models were fit 100 times with

random initialization, and the most stable run was selected

(see Supplementary Methods Section I-C). The CMTF and

CP decomposition model order was evaluated using the core

consistency diagnostic (CONCORDIA/CCD) [57], average con-

gruence product [58], and Bayesian information criterion [59]
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Fig. 2. Illustration of multimodal group-level tensor analysis. (a) Component matrices obtained through the CMTF decomposition represent the
estimated latent components. (b) Multimodal group-level tensor analysis utilizes the component loading factors in the subject mode (columns of the
factor matrix A) as input to ANCOVA to identify discriminative latent components. Group-discriminative joint latent components are determined by
statistically comparing the component loading factors of subject subgroups, aiming to identify significant between-group differences with p < 0.05.

TABLE I
SUMMARY OF JOINTLY ESTIMATED MEG ERF AND FMRI COMPONENTS

(Supplementary Methods Section I-C, Fig. S.2: VIS: R = 3;

AUD: R = 3, AV: R = 4). The multi-subject ICA model order

was determined using the minimum description length crite-

rion [60] (VIS: R = 3; AUD: R = 3, AV: R = 4). Ten-fold

cross-validation was used to assess the value of the regularization

parameter, which was set as λ = 10−4 for the DL method.

V. RESULTS

A. Multimodal Tensor Analysis Using CMTF MEG and
fMRI Model

In this section, we present the results of the CMTF (2) model

to jointly decompose MEG and fMRI data from multisensory

tasks. The tensor analysis revealed a combined total of 10 joint

components across all conditions according to selected tensor

rank (VIS: R = 3, AUD: R = 3, AV: R = 4) (see Table I). The

components were characterized on the basis of the prominent

ERF peaks and fMRI activations. We present joint components

extracted from the CMTF decomposition in Fig. 3, and for the

VIS, AUD, and AV conditions in Figs. S.7– S.8. In Figs. 3, S.7,

and S.8, every subfigure depicts fMRI component activations

along with their corresponding ERF component. These ERF

components display signal traces from all individual MEG sen-

sors averaged across subject ERF components. The timecourse

of the average stimulus-related ERF is depicted in yellow, while

the average ERF component (averaged across sensors) is plotted

in cyan. The locations of the fMRI activations in the brain are

given in Montreal Neurological Institute (MNI) coordinates, and

anatomical areas are described.

The VIS/M150 component was found under the VIS and

AV conditions and is shown in Fig. 3(a) and Fig. S.7(a). This

component was associated with the first prominent visual peak

at 149–151 ms. Figs. 3(a) and S.7(a) depict the fMRI one-tailed

T-map (nonparametric permutation t-test, thresholded with p <

0.05), which shows the activation in the left and right lin-

gual (LING.L/R, (Broadman area) BA18) gyrus, right cuneus

(CUNC.R, BA19) and bilateral calcarine (CAL.L/R, BA17)

sulcus. The M200/mSFG component with an early peak at ap-

proximately 46–82 ms and 112 ms and a late peak at 171–260 ms

was consistently found in the VIS, AV, and AUD conditions

(see Figs. 3(b) and S.7(b), S.8(b)). The fMRI activation area

associated with the M200 component was in the medial su-

perior frontal gyrus (mSFG, BA09), precuneus (PCUN, BA7)

and presupplementary motor area (pre-SMA, BA08). The right

AUD/M300 component was found in the AUD and AV condi-

tions and is shown in Figs. S.7(a) and S.8(c). The AUD/M300

component revealed three subcomponents: early ERFs at ap-

proximately 80–83 ms and 109–120 ms and a late auditory at

approximately 312–378 ms. The associated fMRI activations for

the AUD/M300 component were found in the bilateral Heschl’s

gyrus (HES.L/R, BA41/42) and left/right superior temporal

gyrus (STG.L/R, BA22). The M400/SM component was ex-

tracted for all stimulus conditions (VIS, AUD, and AV), as shown

in Figs. 3(c) and S.7(c) and S.8(d). The M400/SM component
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Fig. 3. Group averaged results of CMTF MEG and fMRI decompo-
sition for the VIS stimulus. Every extracted joint component contains
ERF part and an fMRI part represented as one-tailed voxelwise T-map
(nonparametric permutation t-test, thresholded with p < 0.05). The joint
components are shown in different subfigures (a)–(c). Top: fMRI compo-
nent. Bottom: ERF component. The topographic maps show the density
of spatial patterns that correspond to prominent time peaks denoted with
red, blue and pink arrows. The average stimulus-related ERF timecourse
is shown in yellow, and the average ERF (average across sensors)
component is plotted in cyan. (a) The M150/VIS joint component, fMRI
activation in the left and right lingual (LING) gyrus (LING/BA18 Montreal
Neurological Institute (MNI) [10, −40, 0]), calcarine (CAL/BA17 MNI
[−8, −78, 10]) sulcus, and cuneus (CUNC) (CUNC.R/BA19 MNI [10,
−88, 34]). (b) The M200/mSFG joint component. The fMRI maps show
the activity in the superior frontal gyrus (medial part) (mSFG, BA09
MNI [0, 62, 18]), presupplementary motor area (pre-SMA/BA08 MNI
[16, 42, 50]), and precuneus (PCUN) (PCUN/BA07 MNI [0, −10, 6]).
(c) The M400/SM joint component. The fMRI activations are in the
postcentral gyrus (Post.CG/BA1/2/3 MNI [−44, 42, 60]), the precentral
gyrus (primary motor cortex) (Pre.CG/BA4 MNI [−34, −28, 68]), and
the bilateral superior parietal gyrus (SPG.L/R MNI [−24, −46, 72]). VIS:
visual, mSFG: superior frontal gyrus (medial part), SM: sensorimotor.

consisted of early sensory subcomponents at approximately

48–150 ms and a late latency subcomponent at approximately

356–424 ms. The fMRI activations in the M400/SM component

were identified in the left/right postcentral gyrus (Post.CG. L/R,

BA1/2/3), left/right precentral gyrus (Pre.CG, BA4) and in the

bilateral superior parietal gyrus (SPG.L/R, BA07). These fMRI

activations are expected and consistent with previous findings in

the literature [61]. The VIS/M150 and AUD/M300 components

generated activations in the primary visual and primary auditory

cortices, followed by the expected motor response (M400/SM)

to press the button with the fMRI activations in the primary and

somatosensory motor brain areas. The anatomical labels of the

fMRI significant activation clusters are listed in Supplementary

Table S.III.

B. Group-Level Discriminative Components

In this section, we studied the effect of each decomposition

method (CMTF, CP, ERBM, DL) on the group-level sensitivity

of estimated MEG ERF and fMRI components to differentiate

between the subject subgroups.

To compare the group-level sensitivities of multimodal vs.

single-modality decomposition methods, we first applied a

mixed-measures four-way ANCOVA on the component loading

factors for each modality, component/decomposition method,

and stimulus condition after controlling for covariates. The

modality (fMRI, MEG), stimulus condition (VIS, AUD, and AV)

and component (VIS/M150, AUD/M300, and M200/mSFG,

M400/mSFG) were within-subject factors, and the decomposi-

tion method (CMTF, CP, ERBM, and DL) and subject subgroup

(HP vs. LP) were between-subject factors. The mixed-measures

ANCOVA comparison of component loading factors showed

a statistically significant component × decomposition method

× group interaction for the VIS condition (F4,648 = 14.18, p <

0.0001, η2G = 0.08), AUD (F4,643 = 13.193, p < 0.0001, η2G =
0.076), and AV condition (F6,859 = 91.596, p < 0.0001, η2G =
0.391). After conducting post hoc analyses using independent

two-tailed t-tests (FDR corrected, p < 0.05), we identified a

total of 30 components that showed significant group differ-

ences (N = 74, HP vs. LP) across all decomposition methods

(CMTF:10, ERBM: 10, and DL:10) and stimulus conditions

(VIS, AUD, and AV). The corresponding post hoc results (HP

vs. LP) are shown in Supplementary Tables S.IV and S.V.

The detailed methodology of the relevant ANCOVA analyses

and post hoc two-tailed t-tests is provided in Supplementary

Methods Section I-E.2 and depicted in Fig. S.5.

We further quantified differences in the statistical power of

decomposition methods within fMRI and MEG modality by

computing the mean Cohen’s dES (3) for significant group-level

components (HP vs. LP) along with the p-values (see Tables

S.VI and S.VII). Fig. 4 depicts the mean ES computed for

both modalities using the CMTF and state-of-the-art methods.

Notably, as we can see from Fig. 4, Cohen’s dES was larger with

the multimodal CMTF method than with the single-modality

decomposition methods. As shown in Tables S.VI and S.VII,

the p-values for the CMTF were lower compared with the CP,

ERBM, and DL methods.
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Fig. 4. Main effect of the decomposition method on the mean Cohen’s d ES for the AUD, AV and VIS conditions in the MEG and fMRI modality:
MEG: CMTF vs CP, fMRI: CMTF vs. ERBM vs. DL. The error bars represent the standard error of the mean. Post hoc analyses with two tailed
t-tests (FDR corrected, p < 0.05) indicate that the mean Cohen’s d ES of CMTF was significantly higher than those of the CP, ERBM and DL. The
post hoc t-tests results are shown in Supplementary Tables S. IX–S.X. *: p < 0.01, **: p < 0.001, ***: p < 0.0001 (post hoc and FDR corrected with
p = 0.05).

TABLE II
ONE-WAY ANCOVA (CMTF VS. ERBM VS. DL) OF COHEN’S d ES FOR

THE VIS, AUD AND AV CONDITIONS IN FMRI MODALITY

Consequently, to evaluate the sensitivity of the ES between

methods, a one-way ANCOVA (MEG: CMTF vs. CP; fMRI:

CMTF vs. ERBM vs. DL) was conducted to examine effect of

the decomposition method on the mean Cohen’s d ES with an

FDR correction for each component (M150/VIS/, M200/mSFG,

M300/AUD, M400/SM) and condition (VIS, AUD, and AV)

within MEG and fMRI. There was a statistically significant

difference in the mean Cohen’s d ES between the CMTF and

CP in MEG modality with p < 0.05 for nine components (Table

S.VIII), and for nine components (CMTF vs. ERBM vs. DL)

in fMRI with p < 0.05 (Table II), respectively. Post hoc analy-

ses with pairwise two-tailed t-tests (FDR corrected, p < 0.05)

showed several components with statistically significant method

differences (p < 0.05) in MEG (CMTF vs. CP: Table S.IX)

and fMRI (CMTF vs. ERBM vs. DL: Table S.X). The post

hoc results show that the CMTF had a statistically significant

higher Cohen’s d ES in MEG (ES(CMTF) > ES(CP)) and

in fMRI (ES(CMTF) > ES(ERBM); ES(CMTF) � ES(DL);

ES(ERBM) � ES(DL)) (see Tables S.IX– S.X and Fig. 4). The

detailed methodology for the sensitivity analyses using one-way

ANCOVA analyses and post hoc pairwise two-tailed t-tests is

provided in Supplementary Methods Section I-E.3, and depicted

in Fig. S.6.

The results presented in Fig. 4 and Tables S.IX-S.X indicate

that CMTF resulted in statistically significant improvements in

the method sensitivity compared with the CP, ERBM, and DL

methods.

1) Comparative Analysis of Decomposition Methods in

fMRI Modality: We present the group-level fMRI contrast T-

maps and Cohen’s d maps between-subject subgroups (HP vs.

LP) for the decomposition methods (CMTF, ERBM, jDL) in

the VIS condition in Fig. 5. The T-maps and Cohen’s d maps

for the AUD and AV conditions are shown in Figs. S.9– S.10.

It is evident from Figs. 4(b), S.9–S.10 that the mean values of

the Cohen’s d statistics were larger with the CMTF and ERBM

than with the DL method. The T-maps and Cohen’s d maps

shown in Figs. 5 and S.9–S.10 confirm the results of the post hoc

analyses with two-tailed t-tests (Table S.X: CMTF vs. ERBM

vs. DL) by demonstrating higher ES for the CMTF. The second

method that showed discriminative performance comparable

with that of the CMTF is the ERBM, and the ES was signif-

icantly lower with the DL (see Fig. 5(b)) than with the CMTF

and ERBM.

2) Comparative Analysis of Decomposition Methods in

MEG Modality: We evaluated the group-level sensitivity in the

MEG modality by investigating the CMTF and CP methods to

differentiate the between-subject subgroups. To compare the

group-level sensitivity of the CMTF and CP tensor decompo-

sition methods, we computed timepoint/sensor-wise t-statistics

from a two-tailed nonparametric permutation t-test and the mean

value of Cohen’s d statistics. The group-level MEG ERF compo-

nents and sensor-level T-maps generated after the CMTF and CP

methods in the VIS condition are shown in Fig. 6, and those for

the AUD and AV conditions are shown in Supplementary Figs.

S.11– S.12. We compared the sensitivities of the CMTF and

CP methods using Cohen’s d ES in Fig. 4(a), Figs. S.11– S.12

and Table S.IX. As shown in Fig. 4(a) and Figs. S.11– S.12, the

group differences were higher and p-values lower (Tables S.VI

and S.IX) with the CMTF method than with the CP method. The

sensor-level T-maps shown in Figs. 6, S.11–S.12 also illustrate

a higher number of significant sensors with the CMTF than with

CP decomposition. Finally, the results shown in Figs. 4(a), 6,

S.11–S.12 and Table S.IX show a higher statistical effect size

and higher group-level sensitivity with the CMTF than with the

CP decomposition method.
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Fig. 5. Sensitivity analysis of the discriminative group-level fMRI com-
ponents estimated with the multimodal CMTF vs. single-modality matrix
decomposition methods for the VIS condition. The group-level contrast
T-maps and Cohen’s d ES maps between the HP and LP groups
for the CMTF, DL, and ERBM methods are shown. Top (red): CMTF.
Middle (blue): ERBM. Bottom (yellow): DL. Left: Group-level contrast
T-maps (HP vs. LP). Right: Group-level Cohen’s d ES maps (HP vs. LP).
The T-maps and Cohen’s d ES maps (nonparametric permutation two-
tailed t-test with a maximum t-statistics) are thresholded at p < 0.05.
(a) M150/VIS component. (b) M200/mSFG component. (c) M400/SM
component. The post hoc two-tailed t-tests comparing the methods
sensitivity using Cohen’s d ES (CMTF vs. ERBM, CMTF vs. DL) are
listed in Table S.X.

In summary, the results presented in Figs. 4 and S.11–S.12

show that the t-statistics and the ES were higher with the

multimodal CMTF method, suggesting better sensitivity of the

multimodal decomposition than of the single-modality decom-

position method in both fMRI and MEG modalities.

VI. DISCUSSION

In this paper, we jointly analysed multimodal neuroimaging

data, namely, sensor-level MEG ERFs and fMRI spatial maps

collected from healthy children and adolescents from our Dev-

Cog study [43], using coupled tensor/matrix decomposition,

such as the CMTF model. We extracted group-level ERF and

fMRI latent components for the VIS, AUD, and AV stimu-

lus conditions using the CMTF model where MEG and fMRI

Fig. 6. Sensitivity analysis of the MEG ERF components in the
VIS condition estimated different tensor decomposition methods: mul-
timodal vs. single-modality methods. Top: Estimation of the M150/VIS,
M200/mSFG, and M400/mSFG group components by the CMTF and
CP decomposition methods. Bottom: The group-level T-maps between
the HP and LP groups for the CMTF and CP methods are shown. The
T-maps (nonparametric permutation two-tailed t-test with a maximum
t-statistics thresholded at p < 0.05. The yellow circles on the scalp map
show the locations of the significant sensors. Left: ERFs and T-maps
estimated by the CMTF method. Right: ERFs estimated by the CP
method. (a)–(b) M150/VIS ERF component. (d)–(e) M200/mSFG ERF
component. (g)–(h) M400/SM ERF component. The post hoc two-tailed
t-tests comparing the methods sensitivity using Cohen’s d ES (CMTF
vs. ERBM, CMTF vs. DL) are listed in Table S.IX.
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were joined in the common subject dimension. In addition, we

presented a framework for exploiting the ultra-high temporal

resolution of MEG for the spatiotemporal reconstruction of

fMRI on a millisecond scale. Furthermore, we reported the sen-

sitivity of group-level components for multimodal and single-

modality data-driven decomposition methods. We showed that

CMTF enables the exploitation of multilinear structure of mul-

tisensor MEG data, and can estimate biologically meaningful

patterns with uniqueness guarantees on both tensor and matrix

decompositions without introducing additional constraints. We

demonstrated that the joint model can (1) produce robust ERF

and fMRI latent components that reveal expected task activation

patterns for a given experimental paradigm and (2) provide

better group-level sensitivity than that for single-modality multi-

subject data-driven models.

A. Multimodal Fusion for Brain Pattern Discovery

A key objective of this paper was to demonstrate the suc-

cess of multimodal fusion making use of the multiway nature

of MEG data for discovering spatiotemporal brain patterns

resolved in both time and space, and hence to underline the

promise of CMTF for further applications. In Section V-B, we

presented the results of joint ERF/fMRI component extraction

for different stimulus conditions (VIS, AUD, and AV). Our

findings illustrated that the CMTF model can produce latent

factors that represent functionally relevant ERF/fMRI compo-

nents, thus revealing meaningful spatiotemporal brain patterns.

Figs. 3 and S.7–S.8 illustrate a strong correspondence between

the ERF components and the average ERF waveforms. Addi-

tionally, these figures show the anticipated activations observed

in fMRI components. We extracted sensory components such

as the M150/VIS, M300/AUD, and sensorimotor component

M400/SM, followed by the button press. These sensory com-

ponents were characterized by distinct brain patterns in the

visual, auditory, and primary/secondary somatosensory cortices

and were consistent with the experimental paradigm. For ex-

ample, the M150/VIS component depicted in Fig. 3 shows

activation in occipital sensors, which aligns with the fMRI

activations observed in the primary and secondary visual areas

(BA17/BA18). The M150/VIS component resembles the typical

visual M100/P100 wave in MEG/EEG. In neuroscience, the vi-

sual component has been used to assess visual pathway function-

ing [62]. The M300/AUD component consisted of expected au-

ditory M100/M200 complex (N100/P200 in EEG) and fMRI ac-

tivations in primary/secondary auditory cortices (BA41/42/22),

which is typically used as a marker of auditory discrimina-

tion [62]. In addition, we identified the prefrontal M200/SFG

component, which exhibited activations in the parietal-frontal

regions (BA9/BA7/BA08) and was associated in the literature

as a marker of executive function and attention control [63]. In

summary, these findings are consistent with the existing litera-

ture and provide typical components that characterize patterns

of sensory processing and higher-level cognitive functions in

the healthy adolescent population. The paradigm employed was

intentionally not novel in order to facilitate our ability to deter-

mine if the cross-modal results were meaningful. That is, the

locations and timing of the activations are well known. It is thus

particularly noteworthy that despite few cross-modal constraints

in the CMTF model, the fMRI activations correspond with the

expected locations of the peak activations seen in the MEG

data. This interpretable and expected association between the

timing and location of activity provides a strong physiological

confirmation for the utility of the CMTF approach for achieving

multimodal integration. Another goal of this study was to explore

the relationship between specific brain patterns and cognitive

abilities in individuals with varying performance levels. The

study discovered distinct areas of fMRI activation that differed

between children in the HP and LP groups. The results indi-

cated significant differences between the HP and LP groups in

terms of 10 discriminative components with large effect sizes

(Cohen’s d ES > 0.8). The statistical analyses that are shown

in Tables S.IV– S.V, along with the neuropsychological tests

(Table S.I.), consistently revealed the superior performance of

the HP group compared with the LP group across all components

and cognitive measures, including Intelligence Quotient (IQ)

and Hyperactivity/Inattention. The group-level discriminative

components, depicted in Figs. 5 and S.9–S.10, show contrast

T-maps and Cohen’s d effect size maps between the HP and LP

groups. The T-maps illustrated a higher magnitude and extent

of spatial activation in specific regions of the brain for the HP

group, whereas the Cohen’s d ES maps indicated larger statistical

effects. Specifically, the HP group demonstrated higher magni-

tudes and extent of spatial activation in specific brain regions,

while the LP group consistently exhibited reduced magnitudes

and spatial extent of fMRI activations. The discriminative brain

regions included bilateral primary visual cortices (BA17), me-

dial prefrontal cortex (BA09), parietal regions (BA7), primary

auditory cortex (BA41/42), and primary/secondary somatosen-

sory brain regions (BA1/2/3). Our findings align with previous

studies conducted in healthy individuals and children diagnosed

with Attention Deficit Hyperactivity Disorder (ADHD) using

event-related fMRI designs. These previous studies reported

reduced activations in the prefrontal-parietal network [64], [65],

temporo-parietal [66], sensorimotor [67], and visual brain re-

gions [68] for patients with ADHD relative to controls. It is

important to note that enrolled youth were not diagnosed with

an ADHD and thus this pattern may reveal a general pattern

of reduced activation in individuals with subclinical levels of

inattention or lower cognitive performance. Therefore, our re-

sults, utilizing tensor-based MEG and fMRI data fusion, add

an important contribution to the expanding body of literature,

providing valuable insights to the sensitivity MEG and fMRI

fusion to variations in cognitive function in youth.

B. Role of Multimodal Data for Group-Level Sensitivity

In Section V-B, we compared the sensitivity of the multimodal

CMTF decomposition in MEG and fMRI with single-modality

data-driven decomposition methods. We showed that the mul-

timodal CMTF model can improve the sensitivity of group-

level analyses versus that of single-modality decomposition data

models. The results demonstrated better performance of the

CMTF in terms of Cohen’s d ES and lower p-values in both
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MEG and fMRI modalities. Compared with single-modality

decomposition models, we observed that CMTF provided 1.5–2

times higher ES (see Fig. 4) and lower p-values (see Tables S.VI–

S.VII). The second best-performing method was ERBM, which

showed better sensitivity than the DL method. An explanation is

that the ERBM algorithm employs the flexible density-matching

probability model, which automatically adjusts to the underlying

data distribution.

C. Limitations and Future Work

There were some study limitations that should be considered.

We have used the CMTF data model, which assumes that all

modalities share the same number of factors. However, because

of different nature of fused data, the number of components

could vary across modalities. To address this limitation, our

future work may include using the advanced CMTF model [12]

that allows shared/unshared factors to quantify the contribution

from each modality [12]. Future promising directions also in-

clude multitask pattern learning via the representation of the

multisensory task as a CTTD data model [13]. A multitask

CTTD data model could further improve the uniqueness of

the joint decomposition and enable the direct evaluation of the

non-additive multisensory effects.

VII. CONCLUSION

We demonstrated that the CMTF model can be used for

learning spatiotemporal brain dynamics with high temporal

resolution via data fusion of hemodynamic and electrophys-

iological measurements. We described a multimodal data fu-

sion framework that allows robust identification of task-related

activation patterns and improves the spatiotemporal charac-

terization of brain processes. In this paper, we demonstrated

the value of merging MEG and fMRI modalities to exploit

their functional resolutions. We used the proposed approach

to show that the sensitivity obtained was higher using the

multimodal tensor/matrix data model in group-level analyses

relative to the traditional single-modality data-driven models by

leveraging complementary information across MEG and fMRI

modalities. To summarize, joint tensor/matrix decomposition

using the CMTF model is a promising exploratory tool for

multimodal neuroimaging data. This method allowed us to study

the spatiotemporal dynamics of brain function and its relation to

behavioral and cognitive performance. The method enables the

use of complementary information from both MEG and fMRI

modalities for determining the facets of sensory processing and

for characterizing the typical spatiotemporal patterns in the

developing brain.
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