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Abstract— Obijective: Brain function is understood to be
regulated by complex spatiotemporal dynamics, and can
be characterized by a combination of observed brain re-
sponse patterns in time and space. Magnetoencephalog-
raphy (MEG), with its high temporal resolution, and
functional magnetic resonance imaging (fMRI), with its
high spatial resolution, are complementary imaging tech-
niques with great potential to reveal information about spa-
tiotemporal brain dynamics. Hence, the complementary na-
ture of these imaging techniques holds much promise to
study brain function in time and space, especially when

the two data types are allowed to fully interact. Methods:

We employed coupled tensor/matrix factorization (CMTF)
to extract joint latent components in the form of unique
spatiotemporal brain patterns that can be used to study
brain development and function on a millisecond scale.
Results: Using the CMTF model, we extracted distinct brain
patterns that revealed fine-grained spatiotemporal brain
dynamics and typical sensory processing pathways infor-
mative of high-level cognitive functions in healthy ado-
lescents. The components extracted from multimodal ten-
sor fusion possessed better discriminative ability between
high- and low-performance subjects than single-modality
data-driven models. Conclusion: Multimodal tensor fusion
successfully identified spatiotemporal brain dynamics of
brain function and produced unique components with high
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discriminatory power. Significance: The CMTF model is a
promising tool for high-order, multimodal data fusion that
exploits the functional resolution of MEG and fMRI, and
provides a comprehensive picture of the developing brain
in time and space.

Index Terms—Brain function, coupled tensor/matrix fac-
torization, developmental neuroscience, fMRI, MEG, multi-
modal data fusion, spatiotemporal brain dynamics.

[. INTRODUCTION

ULTIMODAL neuroimaging is an important tool for
M neuroscience research, due to the complex spatiotempo-
ral dynamics being characterized by the collective information
present across multiple imaging modalities. Multimodal data
fusion can take advantage of multiple neuroimaging techniques
to improve the characterization of the temporal and spatial reso-
lution of neurological processes, and identify pathology with
high sensitivity and specificity [1], [2]. Magnetoencephalog-
raphy (MEG) and electroencephalography (EEG) are direct
neuroimaging techniques that instantaneously measure the neu-
ral currents induced by neuronal activity. MEG is a powerful
neuroimaging technique for studying the rich temporal dynamics
of neuronal activity with submillisecond resolution. Functional
magnetic resonance imaging (fMRI) is an indirect neuroimaging
technique that measures local changes in brain hemodynamics
with a high spatial resolution. However, the temporal resolution
of fMRI is limited to a few hundred milliseconds. Given notice-
able complementarity between the two techniques, integrating
MEG and fMRI has become a highly desirable multimodal ap-
proach [3]. Therefore, joint analysis of MEG and fMRI is of the
greatest interest for enabling a comprehensive large-scale view
of brain function. State-of-the-art methods for neuroimaging
data joint analysis comprise different approaches to data fusion,
or approaches that estimate the interaction between different
modalities [4]. Several data fusion methods have been proposed
for fusion of the MEG/EEG multimodal data based on matrix
and tensor decompositions. These include joint independent
component analysis (GICA) [5], multiset canonical correlation
analysis mCCA [6], dictionary learning (DL) [7], and indepen-
dent vector analysis (IVA) and its transposed variant (tIVA) [8]
among others [9]. Data-driven matrix decomposition methods
are powerful because they can extract meaningful biological
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patterns across multiple modalities [10] and enable fusion using
second order or high-order statistics. However, there are two
drawbacks of matrix decomposition methods: (1) flattening
naturally high-dimensional data into a two-dimensional (2D)
representation does not fully leverage the multilinear structure
of multisensor MEG/EEG, and (2) enforcing constraints such as
independence or sparsity of components is typically required to
ensure the uniqueness of the matrix decomposition [1], [7]. In
contrast, multiway data fusion methods address the drawbacks
of matrix decomposition methods by jointly analyzing datasets
in the form of matrices and tensors without imposing additional
constraints, and account for the multilinear structure of naturally
high-order MEG/EEG. The multiway decomposition methods
for MEG/EEG and fMRI data fusion include N-way partial least
squares [11], coupled matrix/tensor factorization (CMTF) [12]
and coupled tensor-tensor factorization (CTTD) [13]. Techni-
cally, both CMTF and CTTD decomposition methods employ
canonical polyadic (CP) decomposition [14], which is essen-
tially unique up to scaling and permutations [15].

Fusion of EEG and fMRI data has demonstrated the ability
to address the inherent limitations of each imaging modality,
resulting in enhanced spatiotemporal resolution and improved
localization of neural sources [16], [17], [18]. Furthermore, EEG
and fMRI data fusion offer significant benefits, such as high
sensitivity to radially-oriented sources, the ability to detect deep
sources in medial and subcortical regions, and the availability
of the method in hospitals when translating studies into clinical
practice [19], [20]. Despite these advantages, the fusion of EEG
and fMRI data still faces significant limitations. A notable chal-
lenge is the presence of dominant artifacts, including gradient
artifact and ballistocardiogram (BCG), that arise during the
simultaneous acquisition of these modalities [21], [22]. Another
limitation stems from the intrinsic issues associated with EEG
recordings, particularly volume conduction. Volume conduction
introduces complexities in relating EEG data to other imaging
modalities. The distortion of EEG signals caused by a poorly
conducting skull poses challenges to accurately identify the
underlying neural sources, leading to errors in source localiza-
tion [23], [24], [25], [26]. Unlike EEG, magnetic fields propagate
through the head almost unchanged and thus experience minimal
spatial distortion. For this reason, MEG recordings result in
significantly lower source localization errors [23], [25], [27],
offer a higher spatial resolution than EEG, and thus MEG and
fMRI data fusion can separate neural sources with a higher
specificity [20]. Furthermore, since MEG is biased towards
tangential sources, it provides increased sensitivity to the detec-
tion of activity arising from the fissural cortex [20]. Therefore,
the selectivity of MEG and fMRI data fusion to tangential
sources in the presence of several simultaneous sources is a
significant advantage in differentiating between multiple cortical
areas activated by somatosensory stimuli [20]. However, MEG
demonstrates a decrease in sensitivity to deeper sources [20],
[25]. Although EEG is not affected by the lower sensitivity to
deep sources as MEG and offers a more isotropic sensitivity
profile, the spread of electrical potential on the scalp hinders
source localization [28]. That said, both MEG and EEG provide
high temporal resolution (on the order of milliseconds), which

is complementary to the hemodynamic response measured with
fMRI (on the order of seconds). Because of the different time
scales of electrophysiological (MEG/EEG) vs. hemodynamic
(fMRI) techniques, we expect each technique will capture
both unique and overlapping spatiotemporal information. For
example, with high temporal resolution MEG can capture a
sequence of events within the brain by examining different
time points while performing tasks. However, deep sources pro-
duce weaker signals at the MEG sensors limiting sensitivity to
these structures, whereas fMRI provides sensitivity to both cor-
tical and subcortical structures but cannot separately capture the
sequence of events at the millisecond timescale. Furthermore,
the combination of MEG and fMRI holds promising prospects in
noise reduction inherent to each modality [22], [28], [29], [30].
As aresult, MEG and fMRI data fusion shows great potential for
substantially boosting statistical sensitivity and outperforming
the use of either modality alone. This promise arises from several
key factors: MEG’s superior source localization accuracy over
EEG, the improved spatiotemporal resolution achieved through
the fusion of MEG and fMRI data, and the noise reduction
capabilities of the fusion process. Consequently, this integrated
approach enables more effective discrimination between exper-
imental conditions, making it a powerful tool in neuroscientific
research.

Given the advantages of MEG over EEG and the comple-
mentarity of MEG and fMRI, and the inherent multiway na-
ture of MEG data, tensor-based fusion of these modalities is
particularly attractive. The joint analysis of MEG and fMRI
provides a comprehensive view of brain processes beyond what
each imaging method can achieve independently. Therefore, the
fusion of MEG and fMRI holds great potential to significantly
contribute to the current state-of-the-art multimodal imaging
methods and further deepen our understanding of the human
brain and cognitive function.

The analysis of MEG/EEG data using tensor factorizations
has demonstrated promising performance in terms of extracting
and characterizing developmental brain patterns [31] as well
as for the extraction of developmental features from EEG pe-
diatric data [32] and for the study of functional connectivity
patterns [33]. Many recent studies have analyzed neuroimaging
data from multiple modalities using multiway representations
and used CMTF-like methods to jointly analyze EEG/MEG [34],
[35], EEG and fMRI [2], [17], [18]. Despite the substantial
number of studies dedicated to the joint high-order analysis of
EEG and fMRI, the joint tensor-based processing and fusion of
MEG and fMRI have not been well investigated. We found a
few studies that focused on MEG and fMRI data fusion using
multivariate pattern analysis techniques such as representation
similarity analysis (RSA) [36], [37], [38], the RSA-like model-
based MEG and fMRI fusion [39] that used a commonality
analysis [40]. The RSA method presented in [36], [37], [38]
is similarity-based fusion, which utilizes a region-of-interest
(ROI) approach to relate MEG and fMRI in selected ROIs
by computing distance matrices between fMRI brain regions
and MEG time courses. Even though similarity-based fusion
presents a novel application for the fusion of MEG and fMRI, it
is not a data-driven fusion method. It is instead a model-based
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Fig. 1.

lllustration of joint tensor/matrix analysis for multi-subject MEG and fMRI data. (a)—(b) Joint MEG and fMRI tensor matrix model. MEG

tensor formation is achieved by arranging the subject’s ERF responses along the first dimension. fMRI data are arranged as a matrix in which spatial
maps derived from task-related contrast are concatenated along the first dimension. The MEG tensor is coupled with the fMRI matrix in subject
mode. (c) MEG and fMRI tensor/matrix decomposition into R rank-1 components. Each rank-1 component represents a distinct spatiotemporal
brain activity pattern with subject weight (a,.), temporal (b,.), MEG spatial signatures (c,.), and fMRI spatial signatures (d,).

method that restricts the exploration of associations between
MEG and fMRI based on the prior knowledge of the activation
patterns. Another limitation of the similarity-based fusion is the
inherent ambiguity [3] between spatial brain regions and MEG
timepoints, which results in a non-unique solution, and, thereby,
limited interpretability.

To address the limitations of EEG and fMRI data fusion as
well as existing model-driven methods for MEG and fMRI joint
data analysis, and to facilitate unrestricted interaction between
modalities while ensuring model uniqueness, we have employed
a high-order decomposition known as “structure-revealing data-
driven fusion” [12]. We employed the CMTF model to jointly
analyze MEG event-related fields (ERF) and fMRI contrast
data. MEG ERFs are organized as a tensor with dimensions of
subject x time x sensors, while the fMRI data are represented
as a matrix with dimensions of subject x voxels. The proposed
high-order data fusion exploits multilinear relationships within
MEG, enforces the uniqueness of overall decomposition, and
enables unsupervised full interaction among MEG and fMRI
modalities. The proposed approach is shown in Fig. 1. We
quantitatively evaluated the advantages of joint tensor/matrix
decomposition by comparing the discriminative abilities of the
CMTF model and single modality tensor/matrix models, includ-
ing the CP and multi-subject independent component analysis
(ICA) [41], [42].

In this paper, we demonstrate the effectiveness of multimodal
MEG and fMRI tensor/matrix decomposition for robust extrac-
tion of task-related joint latent components that can explain
brain function via multiway data-driven fusion. We show that the
joint latent components extracted via multimodal tensor/matrix
decomposition possess higher discriminative ability to differen-
tiate between subject subgroups than a single-modality’s decom-
position for tensor and matrix-based data-driven models. The
proposed framework allows for the study of sensory processing
that yields insights into higher-level cognitive functions and typ-
ical developmental trajectories in adolescent brains. Our results

show that both fast temporal dynamics of MEG and high spatial
resolution of fMRI improve the characterization of underlying
neural processes by providing the spatiotemporal location of the
brain activity. Therefore, joint tensor/matrix decomposition pro-
vides higher statistical power by leveraging the complementary
nature of both modalities via the full interaction of MEG and
fMRI data and, thus is an attractive solution for joint analysis
and group-level inferences in multimodal studies.

[I. DATA
A. Participants

The participants included 74 healthy children and adoles-
cents (38 males, 36 females) between the ages of 9 and 15
(mean = 11.80 years and std = 1.91), with no reported clinical
diagnoses, recruited by the Mind Research Network (MRN)
in Albuquerque, New Mexico as part of the Developmental
Chronnecto-Genomics (Dev-CoG) study [43]. The participants
and parents signed consent forms approved by the Advarra
institutional review board (IRB) prior to joining the study. All
procedures were approved by the IRB prior to the start of the ex-
periment. The participants were divided into high-performance
(HP, n = 38) and low-performance groups (LP, n = 36) as
described in Supplementary Methods Section I-A. Participants’
characteristics are shown in Supplementary Table S.I. and
Fig. S.1.

B. MEG and fMRI Data Acquisition and
Image Preprocessing

We provide a brief overview of the experimental and pre-
processing pipeline. The detailed design and study protocol
has been previously published in [31], [43]. MEG and fMRI
data were separately collected from 74 subjects during a mul-
tisensory task in which the subjects were instructed to press
their index finger when they saw anything, heard anything or
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both. After the intertrial interval (ITI), the sensory stimulus
of auditory (AUD), visual (VIS), or audio-visual (AV) was
shown for 800 ms. MEG epochs around the stimulus onset
were averaged across approximately 100 trials within respective
conditions and formed sensor-level ERFs time-locked to the
stimulus condition (AUD, VIS, or AV). For the fMRI data, we
computed stimulus-related three-dimensional (3D) contrast im-
ages temporarily aligned to each target stimulus by the general-
linear model using the statistical parametrical mapping software
package [44].

[1l. MULTIMODAL JOINT TENSOR/MATRIX ANALYSIS OF MEG
AND FMRI DATA

In this section, we describe the generative data model for
data fusion and joint analysis of multi-subject MEG and fMRI
data via joint tensor/matrix decomposition. The mathematical
notations and definitions used in this paper were incorporated
from [45] and [46] and are briefly described in Supplementary
Methods Section I-B.

A. Generative Model for CMTF MEG and fMRI
Data Fusion

According to the experimental/preprocessing paradigm de-
scribed in Section II-B, we modeled the observed MEG and
fMRI recordings as a linear mixture of the underlying neural
sources synchronized in time across subjects within a specific
target-related stimulus. We assumed that these neural sources are
reflected in both modalities. Let XI(VI[C]%G € RT*C represent the
observed MEG ERF waveform for the kth subject from C' com-
mon sensors synchronized across 7' timepoints. Additionally,
xf({j[)RI € RV denotes the stimulus-related fMRI spatial contrast
map observed for the kth subject, where k =1, ..., K.

We present a formal description of MEG ERF and fMRI
generative data fusion model as follows. Let ¢, € R denote the
rth ERF sensor source vector, which characterizes the spatial
sensitivity of each sensor to the rth source. Furthermore, the
activity of the rth source at all timepoints is denoted as b, € R”".
These temporal profiles represent the level of activity exhibited
by the rth source across different timepoints. Moreover, the
spatial sensitivity of each fMRI spatial contrast map to the rth
source is denoted by d,. € RY. Lastly, a, denotes the subject
weights assigned to the rth source for K subjects. The subject
weights denote the contribution of the rth source to the neural
activity of the kth subject.

In the absence of noise, the multisubject MEG ERFs, denoted
as X € REXT*C and fMRI spatial contrast maps Xpvrr €
REXV observed in K participants, can be expressed as a linear
instantaneous combination of the underlying sources:

R
XMEG = § arobrocra

r=1
R

Xovr = ) _a,0d,. (1)
r=1

The mixing system (1) is characterized by its associated weights.
Fig. 1(a)—(b) illustrate the MEG and fMRI generative model for

data fusion, where the MEG modality is encoded as a 3D tensor,
and the fMRI modality is encoded as a 2D matrix, with the tensor
and matrix coupled together in the common subject dimension.

B. Multi-Subject CMTF MEG and fMRI
Tensor/Matrix Decomposition

By adopting the generative model shown in Fig. 1(a)—(b), the
common latent structure of MEG and fMRI in (1) can be directly
extracted through the CMTF [12] R-component model, which
allows to exploit the multilinear structure of X ygg.

The CMTF for joint decomposition of MEG and fMRI is for-
mulated as the minimization of the following cost function [12]:

f(A7 27 A> Ba 07 D)

1
— i —|Xmec — [[A, A, B 7
. |Xmec — [[A, A, B, Cl]||%

1
+ QHXfMRI —AXD|%,

st larflz = [Ibrll2 = [lerll2 = [Idrll2 = 1,
Vr=1,...,R, 2)
where | -||p denotes the Frobenius norm, a, € R¥ b, €

R” ¢, € RY,d, € RV are the columns of the factor
matricesA, B, C, D normalized to a 2-unit norm for r =
1,..., R. The norms are absorbed into diagonal matrices A €
RE*E 3 ¢ RE*E The matrices A € REXE B ¢ RT*E C ¢
RE*E D e ROXE correspond to the factor matrices in the
subject, time, sensor, and voxel modes.

The CMTF model jointly factorizes tensor X \igg and matrix
X¢mrr by simultaneously fitting the CP model [45] to tensor
XwMEeG, and factorizing matrix Xpygry in such a way that the
matrix A extracted from the common (subject) mode is the same
for MEG and fMRI datasets. The CP model is unique under
mild [15], [47] conditions. It was shown in [48] that the CMTF
model inherits uniqueness from the CP model, and generates
unique interpretable factors up to scaling and permutations.
Therefore, using the CMTF model we can reliably relate MEG
ERF and fMRI brain activity and also as examine associations
between the timing of the activations, functional networks, or
brain cortical regions. Of note, the component signatures a,.,
b,, c,, d, are subject weights of time-varying ERF patterns,
time courses, and ERF spatial and fMRI spatial contrast maps,
respectively.

IV. IMPLEMENTATION DETAILS
A. Data Preprocessing

Prior to the analysis, we normalized the MEG data by center-
ing the third-order MEG tensor across the time mode and scaling
within the subject mode by its standard deviation [49]. The fMRI
data were centered (subject-wise), and each row was divided by
its standard deviation.
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B. Multimodal MEG and fMRI Component Estimation

Three MEG data tensors (X 1‘\/415(53 X QEUC? , X 11\4/11‘5/0) and three
fMRI matrices were created (Xhis, XakP, Xak,) for each
of the three stimulus conditions according to the data fusion
generative model. We conducted three separate CMTF decom-
positions for each stimulus condition with the identified ten-
sor rank (see details on rank estimation in the Supplementary
Methods Section I-C). The fitted CMTF models resulted in three
estimated MEG tensors and three fMRI matrices that consisted
of R-component factor matrices A, B, C, D that were used
to reconstruct joint group-level MEG ERF and fMRI latent
components. The fMRI spatial component maps were scaled
to Z-values, and entered into nonparametric permutation one-
tailed ¢-tests with a maximum t¢-statistics [50] and thresholded
atp < 0.05.

C. Performance Evaluation of Multimodal MEG and
fMRI Decomposition

To evaluate the performance gained by the multimodal fusion
approach, we compared the sensitivity of the CMTF MEG and
fMRI model for each modality with the decomposition results
derived from single-modality data models. The sensitivity anal-
yses assessed the discriminative power and robustness of the
results in terms of the Cohen’s d effect size (ES) [51] (see
Section IV-C1) accompanied by p-values and sample size N. In
particular, we compared the discriminative power gained by the
MEG modality using CMTF with that of individual CP decom-
position using MEG data alone. For the sensitivity comparison
of the fMRI modality, we used the CMTF model and compared it
with two other state-of-the-art matrix-based data-driven meth-
ods, namely, ICA using the entropy-bound rate Minimization
(ERBM) algorithm [52] and the DL method [53]. The ERBM
takes higher-order statistical information into account through
a flexible density model as well as sample dependence for
achieving ICA. On the other hand, DL provides a decomposition
through a linear combination of basic elements (dictionary)
through sparse coefficients by learning both matrices in an
alternating fashion. For the comparison, we utilized a combined
multi-subject dataset created using a generative data model
based on multi-subject ICA [41], [42]. Supplementary Methods
Section I-D provides additional details about the multi-subject
ICA model. The components from different algorithms were
matched based on the highest pairwise Pearson correlation coef-
ficient () between all possible combinations of the components.

1) Statistical Group-Level Analysis: We compared the
discriminative power of multimodal and single-modality models
for differentiating subject subgroups using mixed analysis of
covariance (ANCOVA) of component loading factors in subject
mode (columns of matrix A) [31], followed by post hoc analysis
using two-tailed ¢-tests and corrections for multiple comparisons
using the false discovery rate (FDR) [54] with the significance
level of o = 0.05 to determine statistical significance. The
ANCOVAs were calculated for each component and stimulus
condition while controlling for age, sex, parental socioeconomic
status (SES), and subject head motion. We report F'-statistics,
t-values, p-values, ES, and sample size V. The ES was evaluated

by the generalized 12, and Cohen’s d values. Additionally, we
also reported the mean (M) and standard deviation (S D) of mea-
sures of interests. The thresholded (p < 0.05) statistical images
(T-maps) and Cohen’s d maps showed significant activations
of fMRI spatial maps and the ES, respectively. The Cohen’s
d ES [55], which represent the standardized mean difference
between subject subgroups was used as a performance metric for
the assessment of decomposition method sensitivity as follows:

Cohen's diry = M(an,) — M(ay,) 3)

\/(anfl)SD(aTHP)2+(an71)SD(aTLP)2 ’
nup+nrp—2

where M (-) is the mean and standard deviation SD(-) of the
rth column of matrix A for a subgroup, nyp, and nyp are the
number of subjects for the HP and LP subgroups, respectively,
r=1,...,R.

D. Multimodal Tensor Group-Level Analysis

This section presents a multimodal tensor-group level anal-
ysis, which extends the tensor-group level analysis for a single
imaging modality introduced in [31]. Similar to the CP model,
the CMTF model performs simultaneous factorization and is
fully multivariate [56]. An important property of the CP and
CMTF decomposition is their ability to mathematically isolate
the underlying latent components in the form of component
(factor) matrices. Each rth latent component in the sensor
space or voxel space is represented as the outer product of
R components (a, o b,. oc,) or (a, od,), respectively, with
its signatures corresponding to the subject (magnitude of the
component), temporal, and spatial factors.

The resulting component matrices can be utilized in statistical
tests following the joint factorization of the MEG and fMRI data
using the CMTF model. Due to the fully multivariate nature of
the CMTF model, each factor of the latent joint component is
identified across all levels of the other factors [56]. By quantify-
ing the magnitude of each CMTF component at every timepoint,
sensor, and voxel, there is no need to selectively choose specific
timepoints, sensor sites, or brain regions for extracting group
magnitudes in group-level inferences. This characteristic allows
for the direct application of statistical inference to the selected
component signatures. To identify discriminative components
that differentiate between subject subgroups (HP vs. LP), the
rth column of the factor matrix A, along with the subject
subgroup, is submitted to ANCOVAs and two-tailed ¢-tests. The
multimodal tensor group-level analysis is summarized in Fig. 2
and Table S.II, while the details of the group-level statistical
inference are given in Supplementary Methods Section I-E.

1) Execution Details: We applied alternating least squares
(ALS) algorithm to estimate the factor matrices for the CMTF
and CP models [45]. The CMTF-ALS [12] algorithm was used
to fit the CMTF model (2). For the CP model, we used the
CP-ALS algorithm [45]. All models were fit 100 times with
random initialization, and the most stable run was selected
(see Supplementary Methods Section I-C). The CMTF and
CP decomposition model order was evaluated using the core
consistency diagnostic (CONCORDIA/CCD) [57], average con-
gruence product [58], and Bayesian information criterion [59]
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TABLE |
SUMMARY OF JOINTLY ESTIMATED MEG ERF AND FMRI COMPONENTS

MEG ERF and fMRI Joint Component

Stimuli condition ~ M150/VIS ~ M200/mSFG ~ M300/AUD  M400/SM
VIS Vv Vv - Vv
AUD - Vv IV v
AV v v v v

(Supplementary Methods Section I-C, Fig. S.2: VIS: R = 3;
AUD: R = 3, AV: R = 4). The multi-subject ICA model order
was determined using the minimum description length crite-
rion [60] (VIS: R =3; AUD: R =3, AV: R = 4). Ten-fold
cross-validation was used to assess the value of the regularization
parameter, which was set as A = 10~* for the DL method.

V. RESULTS

A. Multimodal Tensor Analysis Using CMTF MEG and
fMRI Model

In this section, we present the results of the CMTF (2) model
to jointly decompose MEG and fMRI data from multisensory
tasks. The tensor analysis revealed a combined total of 10 joint
components across all conditions according to selected tensor
rank (VIS: R = 3, AUD: R = 3, AV: R = 4) (see Table I). The
components were characterized on the basis of the prominent
ERF peaks and fMRI activations. We present joint components
extracted from the CMTF decomposition in Fig. 3, and for the
VIS, AUD, and AV conditions in Figs. S.7- S.8. In Figs. 3, S.7,
and S.8, every subfigure depicts fMRI component activations
along with their corresponding ERF component. These ERF

components display signal traces from all individual MEG sen-
sors averaged across subject ERF components. The timecourse
of the average stimulus-related ERF is depicted in yellow, while
the average ERF component (averaged across sensors) is plotted
in cyan. The locations of the fMRI activations in the brain are
given in Montreal Neurological Institute (MNI) coordinates, and
anatomical areas are described.

The VIS/M150 component was found under the VIS and
AV conditions and is shown in Fig. 3(a) and Fig. S.7(a). This
component was associated with the first prominent visual peak
at 149-151 ms. Figs. 3(a) and S.7(a) depict the fMRI one-tailed
T-map (nonparametric permutation ¢-test, thresholded with p <
0.05), which shows the activation in the left and right lin-
gual (LING.L/R, (Broadman area) BA18) gyrus, right cuneus
(CUNC.R, BA19) and bilateral calcarine (CAL.L/R, BA17)
sulcus. The M200/mSFG component with an early peak at ap-
proximately 46—82 ms and 112 ms and a late peak at 171-260 ms
was consistently found in the VIS, AV, and AUD conditions
(see Figs. 3(b) and S.7(b), S.8(b)). The fMRI activation area
associated with the M200 component was in the medial su-
perior frontal gyrus (mSFG, BAQ9), precuneus (PCUN, BA7)
and presupplementary motor area (pre-SMA, BAOS). The right
AUD/M300 component was found in the AUD and AV condi-
tions and is shown in Figs. S.7(a) and S.8(c). The AUD/M300
component revealed three subcomponents: early ERFs at ap-
proximately 80-83 ms and 109—-120 ms and a late auditory at
approximately 312-378 ms. The associated fMRI activations for
the AUD/M300 component were found in the bilateral Heschl’s
gyrus (HES.L/R, BA41/42) and left/right superior temporal
gyrus (STG.L/R, BA22). The M400/SM component was ex-
tracted for all stimulus conditions (VIS, AUD, and AV), as shown
in Figs. 3(c) and S.7(c) and S.8(d). The M400/SM component
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Fig. 3. Group averaged results of CMTF MEG and fMRI decompo-
sition for the VIS stimulus. Every extracted joint component contains
ERF part and an fMRI part represented as one-tailed voxelwise T-map
(nonparametric permutation ¢-test, thresholded with p < 0.05). The joint
components are shown in different subfigures (a)—(c). Top: fMRI compo-
nent. Bottom: ERF component. The topographic maps show the density
of spatial patterns that correspond to prominent time peaks denoted with
red, blue and pink arrows. The average stimulus-related ERF timecourse
is shown in yellow, and the average ERF (average across sensors)
component is plotted in cyan. (a) The M150/VIS joint component, fMRI
activation in the left and right lingual (LING) gyrus (LING/BA18 Montreal
Neurological Institute (MNI) [10, —40, 0]), calcarine (CAL/BA17 MNI
[-8, —78, 10]) sulcus, and cuneus (CUNC) (CUNC.R/BA19 MNI [10,
—88, 34]). (b) The M200/mSFG joint component. The fMRI maps show
the activity in the superior frontal gyrus (medial part) (mSFG, BA09
MNI [0, 62, 18]), presupplementary motor area (pre-SMA/BA08 MNI
[16, 42, 50]), and precuneus (PCUN) (PCUN/BA07 MNI [0, —10, 6]).
(c) The M400/SM joint component. The fMRI activations are in the
postcentral gyrus (Post.CG/BA1/2/3 MNI [—44, 42, 60]), the precentral
gyrus (primary motor cortex) (Pre.CG/BA4 MNI [-34, —28, 68]), and
the bilateral superior parietal gyrus (SPG.L/R MNI [-24, —46, 72]). VIS:
visual, mSFG: superior frontal gyrus (medial part), SM: sensorimotor.

consisted of early sensory subcomponents at approximately
48-150 ms and a late latency subcomponent at approximately
356424 ms. The fMRI activations in the M400/SM component
were identified in the left/right postcentral gyrus (Post.CG. L/R,
BA1/2/3), left/right precentral gyrus (Pre.CG, BA4) and in the
bilateral superior parietal gyrus (SPG.L/R, BA07). These fMRI
activations are expected and consistent with previous findings in
the literature [61]. The VIS/M 150 and AUD/M300 components
generated activations in the primary visual and primary auditory
cortices, followed by the expected motor response (M400/SM)
to press the button with the fMRI activations in the primary and
somatosensory motor brain areas. The anatomical labels of the
fMRI significant activation clusters are listed in Supplementary
Table S.III.

B. Group-Level Discriminative Components

In this section, we studied the effect of each decomposition
method (CMTF, CP, ERBM, DL) on the group-level sensitivity
of estimated MEG ERF and fMRI components to differentiate
between the subject subgroups.

To compare the group-level sensitivities of multimodal vs.
single-modality decomposition methods, we first applied a
mixed-measures four-way ANCOVA on the component loading
factors for each modality, component/decomposition method,
and stimulus condition after controlling for covariates. The
modality (fMRI, MEG), stimulus condition (VIS, AUD, and AV)
and component (VIS/M150, AUD/M300, and M200/mSFG,
M400/mSFG) were within-subject factors, and the decomposi-
tion method (CMTF, CP, ERBM, and DL) and subject subgroup
(HP vs. LP) were between-subject factors. The mixed-measures
ANCOVA comparison of component loading factors showed
a statistically significant component x decomposition method
x group interaction for the VIS condition (F} 648 = 14.18,p <
0.0001, 72 = 0.08), AUD (Fy 643 = 13.193,p < 0.0001, 7% =
0.076), and AV condition (Fs g59 = 91.596, p < 0.0001, né =
0.391). After conducting post hoc analyses using independent
two-tailed t¢-tests (FDR corrected, p < 0.05), we identified a
total of 30 components that showed significant group differ-
ences (/N = 74, HP vs. LP) across all decomposition methods
(CMTF:10, ERBM: 10, and DL:10) and stimulus conditions
(VIS, AUD, and AV). The corresponding post hoc results (HP
vs. LP) are shown in Supplementary Tables S.IV and S.V.
The detailed methodology of the relevant ANCOVA analyses
and post hoc two-tailed ¢-tests is provided in Supplementary
Methods Section I-E.2 and depicted in Fig. S.5.

We further quantified differences in the statistical power of
decomposition methods within fMRI and MEG modality by
computing the mean Cohen’s d ES (3) for significant group-level
components (HP vs. LP) along with the p-values (see Tables
S.VI and S.VII). Fig. 4 depicts the mean ES computed for
both modalities using the CMTF and state-of-the-art methods.
Notably, as we can see from Fig. 4, Cohen’s d ES was larger with
the multimodal CMTF method than with the single-modality
decomposition methods. As shown in Tables S.VI and S.VII,
the p-values for the CMTF were lower compared with the CP,
ERBM, and DL methods.
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Main effect of the decomposition method on the mean Cohen’s d ES for the AUD, AV and VIS conditions in the MEG and fMRI modality:

MEG: CMTF vs CP, fMRI: CMTF vs. ERBM vs. DL. The error bars represent the standard error of the mean. Post hoc analyses with two tailed
t-tests (FDR corrected, p < 0.05) indicate that the mean Cohen’s d ES of CMTF was significantly higher than those of the CP, ERBM and DL. The
post hoc t-tests results are shown in Supplementary Tables S. IX-S.X. *: p < 0.01, **: p < 0.001, ***: p < 0.0001 (post hoc and FDR corrected with

p = 0.05).

TABLE Il
ONE-WAY ANCOVA (CMTF vs. ERBM vs. DL) oF COHEN'S d ES FOR
THE VIS, AUD AND AV CONDITIONS IN FMRI MODALITY

Cohen’s d ES
Component CMTF EBM DL F(1,146)  p value n&
M(SD)  M(SD)  M(SD)
VIS
MI50/VIS 2.15(0.63) 218 (1.48) 1.54 (1.31) 10.85 0.01 0.091
M200/mSFG ~ 2.15 (1.04)  1.70 (1.25)  1.06 (0.43)  30.01 p < 0.0001* 0.215
M400/SM 253 (1.25)  1.16 (0.98)  1.23 (1.40)  24.09 p < 0.0001* 0.180
AUD
M200/mSFG ~ 2.18 (1.12)  1.37 (1.08)  0.74 (1.05) 41.48 p < 0.0001* 0275
M300/AUD 271 (1.84)  1.04 (137) 059 (1.07)  54.68 p < 0.0001" 0.336
M400/SM 234 (0.98) 1.81 (1.05) 1.65 (1.28) 10.97 p < 0.01* 0.091
AV
MI150 243 (1.38) 181 (1.13) 053 (1.08)  42.96 p < 0.0001* 0.282
M200 244 (114) 196 (126) 061 (1.12) 3821 p < 0.0001* 0.259
M300 274 (2.28)  2.11 (1.46)  0.73 (1.01)  32.50 p < 0.0001* 0.231
M400 269 (126) 201 (1.52) 1.60 (122) 7.12 0.002° 0.061

“p values (FDR corrected, p < 0.05) from one-way ANCOVA F-tests (CMTF vs. ERBM vs.
DL) adjusted for age, sex, parental SES, and subject head motion.

Consequently, to evaluate the sensitivity of the ES between
methods, a one-way ANCOVA (MEG: CMTF vs. CP; fMRI:
CMTF vs. ERBM vs. DL) was conducted to examine effect of
the decomposition method on the mean Cohen’s d ES with an
FDR correction for each component (M150/VIS/, M200/mSFG,
M300/AUD, M400/SM) and condition (VIS, AUD, and AV)
within MEG and fMRI. There was a statistically significant
difference in the mean Cohen’s d ES between the CMTF and
CP in MEG modality with p < 0.05 for nine components (Table
S.VIID), and for nine components (CMTF vs. ERBM vs. DL)
in fMRI with p < 0.05 (Table II), respectively. Post hoc analy-
ses with pairwise two-tailed ¢-tests (FDR corrected, p < 0.05)
showed several components with statistically significant method
differences (p < 0.05) in MEG (CMTF vs. CP: Table S.IX)
and fMRI (CMTF vs. ERBM vs. DL: Table S.X). The post
hoc results show that the CMTF had a statistically significant
higher Cohen’s d ES in MEG (ES(CMTF) > ES(CP)) and
in fMRI (ES(CMTF) > ES(ERBM); ES(CMTF) > ES(DL);
ES(ERBM) > ES(DL)) (see Tables S.IX- S.X and Fig. 4). The
detailed methodology for the sensitivity analyses using one-way
ANCOVA analyses and post hoc pairwise two-tailed ?-tests is
provided in Supplementary Methods Section I-E.3, and depicted
in Fig. S.6.

The results presented in Fig. 4 and Tables S.IX-S.X indicate
that CMTF resulted in statistically significant improvements in
the method sensitivity compared with the CP, ERBM, and DL
methods.

1) Comparative Analysis of Decomposition Methods in
fMRI Modality: We present the group-level fMRI contrast T-
maps and Cohen’s d maps between-subject subgroups (HP vs.
LP) for the decomposition methods (CMTEF, ERBM, jDL) in
the VIS condition in Fig. 5. The T-maps and Cohen’s d maps
for the AUD and AV conditions are shown in Figs. S.9— S.10.
It is evident from Figs. 4(b), S.9-S.10 that the mean values of
the Cohen’s d statistics were larger with the CMTF and ERBM
than with the DL method. The T-maps and Cohen’s d maps
shown in Figs. 5 and S.9-S.10 confirm the results of the post hoc
analyses with two-tailed ¢-tests (Table S.X: CMTF vs. ERBM
vs. DL) by demonstrating higher ES for the CMTF. The second
method that showed discriminative performance comparable
with that of the CMTF is the ERBM, and the ES was signif-
icantly lower with the DL (see Fig. 5(b)) than with the CMTF
and ERBM.

2) Comparative Analysis of Decomposition Methods in
MEG Modality: We evaluated the group-level sensitivity in the
MEG modality by investigating the CMTF and CP methods to
differentiate the between-subject subgroups. To compare the
group-level sensitivity of the CMTF and CP tensor decompo-
sition methods, we computed timepoint/sensor-wise ¢-statistics
from a two-tailed nonparametric permutation ¢-test and the mean
value of Cohen’s d statistics. The group-level MEG ERF compo-
nents and sensor-level T-maps generated after the CMTF and CP
methods in the VIS condition are shown in Fig. 6, and those for
the AUD and AV conditions are shown in Supplementary Figs.
S.11- S.12. We compared the sensitivities of the CMTF and
CP methods using Cohen’s d ES in Fig. 4(a), Figs. S.11- S.12
and Table S.IX. As shown in Fig. 4(a) and Figs. S.11-S.12, the
group differences were higher and p-values lower (Tables S.VI
and S.IX) with the CMTF method than with the CP method. The
sensor-level T-maps shown in Figs. 6, S.11-S.12 also illustrate
a higher number of significant sensors with the CMTF than with
CP decomposition. Finally, the results shown in Figs. 4(a), 6,
S.11-S.12 and Table S.IX show a higher statistical effect size
and higher group-level sensitivity with the CMTF than with the
CP decomposition method.
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Fig. 5. Sensitivity analysis of the discriminative group-level fMRI com-

ponents estimated with the multimodal CMTF vs. single-modality matrix
decomposition methods for the VIS condition. The group-level contrast
T-maps and Cohen’s d ES maps between the HP and LP groups
for the CMTF, DL, and ERBM methods are shown. Top (red): CMTF.
Middle (blue): ERBM. Bottom (yellow): DL. Left: Group-level contrast
T-maps (HP vs. LP). Right: Group-level Cohen’s d ES maps (HP vs. LP).
The T-maps and Cohen’s d ES maps (nonparametric permutation two-
tailed t-test with a maximum ¢-statistics) are thresholded at p < 0.05.
(a) M150/VIS component. (b) M200/mSFG component. (c) M400/SM
component. The post hoc two-tailed ¢-tests comparing the methods
sensitivity using Cohen’s d ES (CMTF vs. ERBM, CMTF vs. DL) are
listed in Table S.X.

In summary, the results presented in Figs. 4 and S.11-S.12
show that the t¢-statistics and the ES were higher with the
multimodal CMTF method, suggesting better sensitivity of the
multimodal decomposition than of the single-modality decom-
position method in both fMRI and MEG modalities.

VI. DISCUSSION

In this paper, we jointly analysed multimodal neuroimaging
data, namely, sensor-level MEG ERFs and fMRI spatial maps
collected from healthy children and adolescents from our Dev-
Cog study [43], using coupled tensor/matrix decomposition,
such as the CMTF model. We extracted group-level ERF and
fMRI latent components for the VIS, AUD, and AV stimu-
lus conditions using the CMTF model where MEG and fMRI
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Fig. 6. Sensitivity analysis of the MEG ERF components in the

VIS condition estimated different tensor decomposition methods: mul-
timodal vs. single-modality methods. Top: Estimation of the M150/VIS,
M200/mSFG, and M400/mSFG group components by the CMTF and
CP decomposition methods. Bottom: The group-level T-maps between
the HP and LP groups for the CMTF and CP methods are shown. The
T-maps (nonparametric permutation two-tailed ¢-test with a maximum
t-statistics thresholded at p < 0.05. The yellow circles on the scalp map
show the locations of the significant sensors. Left: ERFs and T-maps
estimated by the CMTF method. Right: ERFs estimated by the CP
method. (a)—(b) M150/VIS ERF component. (d)—(e) M200/mSFG ERF
component. (g)—(h) M400/SM ERF component. The post hoc two-tailed
t-tests comparing the methods sensitivity using Cohen’s d ES (CMTF
vs. ERBM, CMTF vs. DL) are listed in Table S.IX.
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were joined in the common subject dimension. In addition, we
presented a framework for exploiting the ultra-high temporal
resolution of MEG for the spatiotemporal reconstruction of
fMRI on a millisecond scale. Furthermore, we reported the sen-
sitivity of group-level components for multimodal and single-
modality data-driven decomposition methods. We showed that
CMTF enables the exploitation of multilinear structure of mul-
tisensor MEG data, and can estimate biologically meaningful
patterns with uniqueness guarantees on both tensor and matrix
decompositions without introducing additional constraints. We
demonstrated that the joint model can (1) produce robust ERF
and fMRI latent components that reveal expected task activation
patterns for a given experimental paradigm and (2) provide
better group-level sensitivity than that for single-modality multi-
subject data-driven models.

A. Multimodal Fusion for Brain Pattern Discovery

A key objective of this paper was to demonstrate the suc-
cess of multimodal fusion making use of the multiway nature
of MEG data for discovering spatiotemporal brain patterns
resolved in both time and space, and hence to underline the
promise of CMTF for further applications. In Section V-B, we
presented the results of joint ERF/fMRI component extraction
for different stimulus conditions (VIS, AUD, and AV). Our
findings illustrated that the CMTF model can produce latent
factors that represent functionally relevant ERF/fMRI compo-
nents, thus revealing meaningful spatiotemporal brain patterns.
Figs. 3 and S.7-S.8 illustrate a strong correspondence between
the ERF components and the average ERF waveforms. Addi-
tionally, these figures show the anticipated activations observed
in fMRI components. We extracted sensory components such
as the M150/VIS, M300/AUD, and sensorimotor component
M400/SM, followed by the button press. These sensory com-
ponents were characterized by distinct brain patterns in the
visual, auditory, and primary/secondary somatosensory cortices
and were consistent with the experimental paradigm. For ex-
ample, the M150/VIS component depicted in Fig. 3 shows
activation in occipital sensors, which aligns with the fMRI
activations observed in the primary and secondary visual areas
(BA17/BA18). The M150/VIS component resembles the typical
visual M100/P100 wave in MEG/EEG. In neuroscience, the vi-
sual component has been used to assess visual pathway function-
ing [62]. The M300/AUD component consisted of expected au-
ditory M100/M200 complex (N100/P200 in EEG) and fMRI ac-
tivations in primary/secondary auditory cortices (BA41/42/22),
which is typically used as a marker of auditory discrimina-
tion [62]. In addition, we identified the prefrontal M200/SFG
component, which exhibited activations in the parietal-frontal
regions (BA9/BA7/BA08) and was associated in the literature
as a marker of executive function and attention control [63]. In
summary, these findings are consistent with the existing litera-
ture and provide typical components that characterize patterns
of sensory processing and higher-level cognitive functions in
the healthy adolescent population. The paradigm employed was
intentionally not novel in order to facilitate our ability to deter-
mine if the cross-modal results were meaningful. That is, the

locations and timing of the activations are well known. It is thus
particularly noteworthy that despite few cross-modal constraints
in the CMTF model, the fMRI activations correspond with the
expected locations of the peak activations seen in the MEG
data. This interpretable and expected association between the
timing and location of activity provides a strong physiological
confirmation for the utility of the CMTF approach for achieving
multimodal integration. Another goal of this study was to explore
the relationship between specific brain patterns and cognitive
abilities in individuals with varying performance levels. The
study discovered distinct areas of fMRI activation that differed
between children in the HP and LP groups. The results indi-
cated significant differences between the HP and LP groups in
terms of 10 discriminative components with large effect sizes
(Cohen’s d ES > 0.8). The statistical analyses that are shown
in Tables S.IV- S.V, along with the neuropsychological tests
(Table S.1.), consistently revealed the superior performance of
the HP group compared with the LP group across all components
and cognitive measures, including Intelligence Quotient (IQ)
and Hyperactivity/Inattention. The group-level discriminative
components, depicted in Figs. 5 and S.9-S.10, show contrast
T-maps and Cohen’s d effect size maps between the HP and LP
groups. The T-maps illustrated a higher magnitude and extent
of spatial activation in specific regions of the brain for the HP
group, whereas the Cohen’s d ES maps indicated larger statistical
effects. Specifically, the HP group demonstrated higher magni-
tudes and extent of spatial activation in specific brain regions,
while the LP group consistently exhibited reduced magnitudes
and spatial extent of fMRI activations. The discriminative brain
regions included bilateral primary visual cortices (BA17), me-
dial prefrontal cortex (BA09), parietal regions (BA7), primary
auditory cortex (BA41/42), and primary/secondary somatosen-
sory brain regions (BA1/2/3). Our findings align with previous
studies conducted in healthy individuals and children diagnosed
with Attention Deficit Hyperactivity Disorder (ADHD) using
event-related fMRI designs. These previous studies reported
reduced activations in the prefrontal-parietal network [64], [65],
temporo-parietal [66], sensorimotor [67], and visual brain re-
gions [68] for patients with ADHD relative to controls. It is
important to note that enrolled youth were not diagnosed with
an ADHD and thus this pattern may reveal a general pattern
of reduced activation in individuals with subclinical levels of
inattention or lower cognitive performance. Therefore, our re-
sults, utilizing tensor-based MEG and fMRI data fusion, add
an important contribution to the expanding body of literature,
providing valuable insights to the sensitivity MEG and fMRI
fusion to variations in cognitive function in youth.

B. Role of Multimodal Data for Group-Level Sensitivity

In Section V-B, we compared the sensitivity of the multimodal
CMTF decomposition in MEG and fMRI with single-modality
data-driven decomposition methods. We showed that the mul-
timodal CMTF model can improve the sensitivity of group-
level analyses versus that of single-modality decomposition data
models. The results demonstrated better performance of the
CMTF in terms of Cohen’s d ES and lower p-values in both
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MEG and fMRI modalities. Compared with single-modality
decomposition models, we observed that CMTF provided 1.5-2
times higher ES (see Fig. 4) and lower p-values (see Tables S.VI-
S.VID). The second best-performing method was ERBM, which
showed better sensitivity than the DL method. An explanation is
that the ERBM algorithm employs the flexible density-matching
probability model, which automatically adjusts to the underlying
data distribution.

C. Limitations and Future Work

There were some study limitations that should be considered.
We have used the CMTF data model, which assumes that all
modalities share the same number of factors. However, because
of different nature of fused data, the number of components
could vary across modalities. To address this limitation, our
future work may include using the advanced CMTF model [12]
that allows shared/unshared factors to quantify the contribution
from each modality [12]. Future promising directions also in-
clude multitask pattern learning via the representation of the
multisensory task as a CTTD data model [13]. A multitask
CTTD data model could further improve the uniqueness of
the joint decomposition and enable the direct evaluation of the
non-additive multisensory effects.

VIl. CONCLUSION

We demonstrated that the CMTF model can be used for
learning spatiotemporal brain dynamics with high temporal
resolution via data fusion of hemodynamic and electrophys-
iological measurements. We described a multimodal data fu-
sion framework that allows robust identification of task-related
activation patterns and improves the spatiotemporal charac-
terization of brain processes. In this paper, we demonstrated
the value of merging MEG and fMRI modalities to exploit
their functional resolutions. We used the proposed approach
to show that the sensitivity obtained was higher using the
multimodal tensor/matrix data model in group-level analyses
relative to the traditional single-modality data-driven models by
leveraging complementary information across MEG and fMRI
modalities. To summarize, joint tensor/matrix decomposition
using the CMTF model is a promising exploratory tool for
multimodal neuroimaging data. This method allowed us to study
the spatiotemporal dynamics of brain function and its relation to
behavioral and cognitive performance. The method enables the
use of complementary information from both MEG and fMRI
modalities for determining the facets of sensory processing and
for characterizing the typical spatiotemporal patterns in the
developing brain.

REFERENCES

[1] D. Lahat, T. Adali, and C. Jutten, “Multimodal data fusion: An overview
of methods, challenges, and prospects,” Proc. IEEE, vol. 103, no. 9,
pp. 1449-1477, Sep. 2015.

[2] E.Acaretal., “Unraveling diagnostic biomarkers of schizophrenia through
structure-revealing fusion of multi-modal neuroimaging data,” Front. Neu-
rosci., vol. 13, 2019, Art. no. 416.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

R. M. Cichy and A. Oliva, “AM/EEG-fMRI fusion primer: Resolving
human brain responses in space and time,” Neuron, vol. 107, no. 5,
pp. 772-781, 2020.

J. Sui et al., “A review of multivariate methods for multimodal fusion
of brain imaging data,” J. Neurosci. Methods, vol. 204, no. 1, pp. 68-81,
2012.

V. D. Calhoun et al., “Neuronal chronometry of target detection: Fusion
of hemodynamic and event-related potential data,” Neuroimage, vol. 30,
no. 2, pp. 544-553, 2006.

N. M. Correa et al., “Multi-set canonical correlation analysis for the fusion
of concurrent single trial ERP and functional MRI,” Neuroimage, vol. 50,
no. 4, pp. 1438-1445, 2010.

R. Jin et al., “Dictionary learning-based fMRI data analysis for capturing
common and individual neural activation maps,” IEEE J. Sel. Topics Signal
Process., vol. 14, no. 6, pp. 1265-1279, Oct. 2020.

T. Adali, Y. Levin-Schwartz, and V. D. Calhoun, “Multimodal data fusion
using source separation: Application to medical imaging,” Proc. IEEE,
vol. 103, no. 9, pp. 1494-1506, Sep. 2015.

R. F. Silva et al., “Multidataset independent subspace analysis with ap-
plication to multimodal fusion,” IEEE Trans. Image Process., vol. 30,
pp- 588-602, 2021.

V. Calhoun, T. Adali, and J. Liu, “A feature-based approach to combine
functional MRI, structural MRI and EEG brain imaging data,” in Proc.
Int. Conf. IEEE Eng. Med. Biol. Soc., 2006, pp. 3672-3675.

E. Martlnez-Montes et al., “Concurrent EEG/fMRI analysis by multiway
partial least squares,” Neurolmage, vol. 22, no. 3, pp. 1023-1034, 2004.
E. Acar et al., “Structure-revealing data fusion,” BMC Bioinf., vol. 15,
no. 1, pp. 1-17, 2014.

C. Chatzichristos et al., “Early soft and flexible fusion of electroen-
cephalography and functional magnetic resonance imaging via double
coupled matrix tensor factorization for multisubject group analysis,” Hum.
Brain Mapping, vol. 43, no. 4, pp. 1231-1255, 2022.

J. D. Carroll and J.-J. Chang, “Analysis of individual differences in
multidimensional scaling via an N-way generalization of “Eckart-Young”
decomposition,” Psychometrika, vol. 35, no. 3, pp. 283-319, 1970.

N. D. Sidiropoulos and R. Bro, “On the uniqueness of multilinear de-
composition of n-way arrays,” J. Chemometrics: A J. Chemometrics Soc.,
vol. 14, no. 3, pp. 229-239, 2000.

J. Jorge, W. Van der Zwaag, and P. Figueiredo, “EEG-fMRI integration
for the study of human brain function,” Neuroimage, vol. 102, pp. 24-34,
2014.

S. Ferdowsi et al., “A new informed tensor factorization approach to EEG—
fMRI fusion,” J. Neurosci. Methods, vol. 254, pp. 27-35, 2015.

Y. Jonmohamadi et al., “Extraction of common task features in EEG-fMRI
data using coupled tensor-tensor decomposition,” Brain Topogr., vol. 33,
no. 5, pp. 636-650, 2020.

S. P. Ahlfors et al., “Sensitivity of MEG and EEG to source orientation,”
Brain Topogr., vol. 23, pp. 227-232, 2010.

M. Illman et al., “Comparing MEG and EEG in detecting the 20-Hz
rhythm modulation to tactile and proprioceptive stimulation,” Neurolmage,
vol. 215, 2020, Art. no. 116804.

S. Ferdowsi et al., “Removing ballistocardiogram artifact from EEG using
short-and long-term linear predictor,” IEEE Trans. Biomed. Eng., vol. 60,
no. 7, pp. 1900-1911, Jul. 2013.

V. Abolghasemi et al., “EEG-fMRI: Dictionary learning for removal of
ballistocardiogram artifact from EEG,” Biomed. Signal Process. Control,
vol. 18, pp. 186-194, 2015.

R. Leahy etal., “A study of dipole localization accuracy for MEG and EEG
using a human skull phantom,” Electroencephalogr. Clin. Neuriophysiol.,
vol. 107, no. 2, pp. 159-173, 1998.

R. Hari and R. Salmelin, “Magnetoencephalography: From squids to
neuroscience: Neuroimage 20th anniversary special edition,” Neuroimage,
vol. 61, no. 2, pp. 386-396, 2012.

S. Baillet, “Magnetoencephalography for brain electrophysiology and
imaging,” Nature Neurosci., vol. 20, no. 3, pp. 327-339, 2017.

M. Himildinen etal., “Magnetoencephalography—theory, instrumentation,
and applications to noninvasive studies of the working human brain,” Rev.
Modern Phys., vol. 65, no. 2, 1993, Art. no. 413.

M. Antonakakis et al., “The effect of stimulation type, head modeling,
and combined EEG and MEG on the source reconstruction of the so-
matosensory P20/N20 component,” Hum. Brain Mapping, vol. 40, no. 17,
pp- 5011-5028, 2019.

S.R. McWhinney et al., “Asymmetric weighting to optimize regional sen-
sitivity in combined fMRI-MEG maps,” Brain Topogr., vol. 29, pp. 1-12,
2016.

Authorized licensed use limited to: Georgia State University. Downloaded on February 04,2025 at 19:32:02 UTC from IEEE Xplore. Restrictions apply.



2200 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 71, NO. 7, JULY 2024

[29] M. Bullock et al., “Artifact reduction in simultaneous EEG-fMRI: A [49] R. Bro and A. K. Smilde, “Centering and scaling in component analysis,”
systematic review of methods and contemporary usage,” Front. Neurol., J. Chemometrics, vol. 17, no. 1, pp. 16-33, 2003.
vol. 12, 2021, Art. no. 622719. [50] T. E. Nichols and A. P. Holmes, “Nonparametric permutation tests for

[30] H.-J.Lee et al., “Ballistocardiogram suppression in concurrent EEG-MRI functional neuroimaging: A primer with examples,” Hum. Brain Mapping,
by dynamic modeling of heartbeats,” Hum. Brain Mapping, vol. 43, no. 14, vol. 15, no. 1, pp. 1-25, 2002.
pp. 4444-4457, 2022. [51] J.Cobhen, Statistical Power Analysis for the Behavioral Sciences. Evanston,

[31] I Belyaevaetal., “Multi-subject analysis for brain developmental patterns IL, USA: Routledge, 2013.
discovery via tensor decomposition of MEG data,” Neuroinformatics,  [52] G.-S. Fu et al., “Blind source separation by entropy rate minimization,”
vol. 21, no. 1, pp. 115-141, 2023. IEEFE Trans. Signal Process., vol. 62, no. 16, pp. 4245-4255, Aug. 2014.

[32] E.Kinney-Lang et al., “Introducing the joint EEG-development inference  [53] J. Mairal et al., “Online learning for matrix factorization and sparse
(JEDI) model: A multi-way, data fusion approach for estimating paediatric coding,” J. Mach. Learn. Res., vol. 11, no. 1, pp. 19-60, 2010.
developmental scores via EEG,” IEEE Trans. Neural Syst. Rehab. Eng.,  [54] Y. Benjamini et al., “Controlling the false discovery rate in behavior
vol. 27, no. 3, pp. 348-357, Mar. 2019. genetics research,” Behav. Brain Res., vol. 125, no. 1/2, pp. 279-284,2001.

[33] Y. Zhu et al., “Discovering dynamic task-modulated functional networks ~ [55] G. M. Sullivan and R. Feinn, “Using effect size—or why the P value is not
with specific spectral modes using MEG,” Neurolmage, vol. 218, 2020, enough,” J. Graduate Med. Educ., vol. 4, no. 3, pp. 279-282, 2012.

Art. no. 116924. [56] F. Cong etal., “Tensor decomposition of EEG signals: A brief review,” J.

[34] K. Naskovska et al., “Coupled CP decomposition of simultaneous MEG- Neurosci. Methods, vol. 248, pp. 59-69, 2015.

EEG signals for differentiating oscillators during photic driving,” Front. ~ [57] R. Bro and H. A. Kiers, “A new efficient method for determining the
Neurosci., vol. 14, 2020, Art. no. 261. number of components in PARAFAC models,” J. Chemometrics: A J.

[35] Y. Cheng et al., “Using PARAFAC?2 for multi-way component analysis of Chemometrics Soc., vol. 17, no. 5, pp. 274-286, 2003.
somatosensory evoked magnetic fields and somatosensory evoked elec-  [58] G. Tomasi and R. Bro, “PARAFAC and missing values,” Chemometrics
trical potentials,” in Proc. IEEE 10th Sensor Array Multichannel Signal Intell. Lab. Syst., vol. 75, no. 2, pp. 163—180, 2005.

Process. Workshop, 2018, pp. 385-389. [59] G. Schwarz, “Estimating the dimension of a model,” The Ann. Statist.,

[36] R. M. Cichy et al., “Similarity-based fusion of MEG and f{MRI reveals vol. 6, pp. 461-464, 1978.
spatio-temporal dynamics in human cortex during visual object recogni- ~ [60] Y.-O. Li et al., “Estimating the number of independent components for
tion,” Cereb. Cortex, vol. 26, no. 8, pp. 3563-3579, 2016. functional magnetic resonance imaging data,” Hum. Brain Mapping,

[37] S.-M.Khaligh-Razavietal., “Tracking the spatiotemporal neural dynamics vol. 28, no. 11, pp. 1251-1266, 2007.
of real-world object size and animacy in the human brain,” J. Cogn.  [61] B. Mijovi¢ et al., “The “why” and “how” of JointICA: Results from a
Neurosci., vol. 30, no. 11, pp. 1559-1576, 2018. visual detection task,” Neurolmage, vol. 60, no. 2, pp. 1171-1185, 2012.

[38] Y.Mohsenzadeh et al., “Reliability and generalizability of similarity-based ~ [62] C. A. Nelson and J. P. McCleery, “Use of event-related potentials in the
fusion of MEG and fMRI data in human ventral and dorsal visual streams,” study of typical and atypical development,” J. Amer. Acad. Child Adolesc.
Vision, vol. 3, no. 1, 2019, Art. no. 8. Psychiatry, vol. 47, no. 11, pp. 1252-1261, 2008.

[39] M. N. Hebart et al., “The representational dynamics of task and object ~ [63] R.E.Jungand R.J. Haier, “The parieto-frontal integration theory (P-FIT)
processing in humans,” Elife, vol. 7, 2018, Art. no. e32816. of intelligence: Converging neuroimaging evidence,” Behav. Brain Sci.,

[40] D.R. Seibold and R. D. McPHEE, “Commonality analysis: A method for vol. 30, no. 2, pp. 135-154, 2007.
decomposing explained variance in multiple regression analyses,” Hum.  [64] M.D. Albaugh etal., “Inattention and reaction time variability are linked to
Commun. Res., vol. 5, no. 4, pp. 355-365, 1979. ventromedial prefrontal volume in adolescents,” Biol. Psychiatry, vol. 82,

[41] V. D. Calhoun et al., “A method for making group inferences from no. 9, pp. 660-668, 2017.
functional MRI data using independent component analysis,” Hum. Brain ~ [65] L. Tamm et al., “Parietal attentional system aberrations during target
Mapping, vol. 14, no. 3, pp. 140-151, 2001. detection in adolescents with attention deficit hyperactivity disorder:

[42] V. D. Calhoun and T. Adali, “Multisubject independent component anal- Event-related fMRI evidence,” Amer. J. Psychiatry, vol. 163, no. 6,
ysis of fMRI: A decade of intrinsic networks, default mode, and neurodi- pp. 1033-1043, 2006.
agnostic discovery,” IEEE Rev. Biomed. Eng., vol. 5, pp. 60-73, 2012. [66] K. Rubia et al., “Temporal lobe dysfunction in medication-naive boys

[43] J.M. Stephen et al., “The developmental chronnecto-genomics (Dev-CoG) with attention-deficit/hyperactivity disorder during attention allocation
study: A multimodal study on the developing brain,” Neurolmage, vol. 225, and its relation to response variability,” Biol. Psychiatry, vol. 62, no. 9,
2021, Art. no. 117438. pp. 999-1006, 2007.

[44] SPM12,2022. Accessed: Oct. 17,2022. [Online]. Available: https://www. ~ [67] S. H. Mostofsky et al., “Atypical motor and sensory cortex activation in
fil.ion.ucl.ac.uk/spm/software/spm12/ attention-deficit/hyperactivity disorder: A functional magnetic resonance

[45] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” imaging study of simple sequential finger tapping,” Biol. Psychiatry,
SIAM Rev., vol. 51, no. 3, pp. 455-500, 2009. vol. 59, no. 1, pp. 48-56, 2006.

[46] A. Cichocki et al., “Tensor networks for dimensionality reduction and  [68] T. S. Hale et al., “Visual network asymmetry and default mode network
large-scale optimization: Part 1 low-rank tensor decompositions,” Found. function in ADHD: An fMRI study,” Front. Psychiatry, vol. 5, 2014,
Trends Mach. Learn., vol. 9, no. 4/5, pp. 249-429, 2016. Art. no. 81.

[47] J.B.Kruskal, “Three-way arrays: Rank and uniqueness of trilinear decom-

[48]

positions, with application to arithmetic complexity and statistics,” Linear
Algebra Appl., vol. 18, no. 2, pp. 95-138, 1977.

M. Sgrensen and L. D. De Lathauwer, “Coupled canonical polyadic
decompositions and (coupled) decompositions in multilinear rank-
(L_r,n,]_r,n,1) terms—Part I: Uniqueness,” SIAM J. Matrix Anal. Appl.,
vol. 36, no. 2, pp. 496-522, 2015.

Authorized licensed use limited to: Georgia State University. Downloaded on February 04,2025 at 19:32:02 UTC from IEEE Xplore. Restrictions apply.



