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Abstract— Mental disorders such as schizophrenia have been
challenging to characterize due in part to their heterogeneous
presentation in individuals. Most studies have focused on
identifying groups differences and have typically ignored the
heterogeneous patterns within groups. Here we propose a
novel approach based on a variational autoencoder (VAE) to
interpolate static functional network connectivity (sSFNC) across
individuals, with group-specific patterns between schizophrenia
patients and controls captured simultaneously. We then visual-
ize the original sFNC in a 2D grid according to the samples
in the VAE latent space. We observe a high correspondence
between the generated and the original SFNC. The proposed
framework facilitates data visualization and can potentially be
applied to predict the stage that a subject falls within a disorder
continuum as well as characterize individual heterogeneity
within and between groups.

I. INTRODUCTION

Schizophrenia is a lifelong mental disorder which affects
perception and behavior with a prevalence of just under
1% in the population and it is among the top causes of
disability worldwide [1], [2]. Relying on expert assessment
or patient self-report data, the current diagnostic system
is insufficient to accurately capture biological deficits and
symptom progression [3]. Recent neuroimaging studies have
shown that schizophrenia can be characterized by functional
dysconnectivity [4], [5] and supervised learning approaches
have been developed to predict disease conditions from
functional connectivity data [6], [7]. However, this disorder
is known to be highly heterogeneous, and there is debate
over whether this reflects multiple diseases within a clinical
syndrome or heterogeneity within the disorder itself [8].
Group averages and supervised classification approaches are
not sufficient for its characterization. There is thus a need
to develop unsupervised learning approaches that can char-
acterize individual variability within and between groups.

Unsupervised learning algorithms such as variational
autoencoders (VAEs) [9] are capable of learning low-
dimensional latent representations from data without tar-
get labels. A VAE consists of an encoder and a decoder,
where the encoder reduces high-dimensional inputs into low-
dimensional distributions and the decoder then reconstructs
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the inputs according to the samples from those latent dis-
tributions. There are two main advantages to using a VAE.
Firstly, the encoder performs dimension reduction and can
learn latent distributions from the data in an unsupervised
manner. Secondly, the decoder can generate continuous
artificial data that resembles real data by sampling from
the latent distributions. Recent work has demonstrated that
latent representations of neuroimaging data learned by a VAE
can be used to predict schizophrenia diagnosis and achieve
competitive performance to supervised approaches [10].

Here, we propose to use a VAE to interpolate NeuroMark
[11] static functional network connectivity (SFNC) collected
from controls and individuals with schizophrenia. To better
visualize sFNC patterns across subjects, we make use of a 2D
grid layout to organize similar or distinct individual sSFNC
matrices. A VAE is then used to interpolate the sSFNC matri-
ces along this grid. We display the generated SFNC matrices
sampled from the VAE latent distribution and the original
SFNC matrices ordered by VAE two-dimensional features in
the 2D grid respectively. We observe a high correspondence
between the generated and the original SFNC matrices. The
generated result supports both group-specific patterns as well
as a continuous alteration between patients and controls.
Our study highlights the benefits of leveraging unsupervised
generative models to capture individual variability within a
group and continuous sFNC progression patterns between
groups, and to interpolate over the pattern alterations across
subjects.

II. METHODS
A. Dataset

We utilize a subset of the functional biomedical infor-
matics network (fBIRN) dataset [12], which contains 144
subjects with schizophrenia and 145 controls. The fMRI
data was processed with the NeuroMark pipeline [11].
Subject-specific functional components and corresponding
time courses were then estimated using an adaptive-ICA
method. The sFNC was subsequently computed as the corre-
lation between the time courses of 53 intrinsic connectivity
networks (ICNs). These 53 ICNs are from 7 functional
domains including the subcortical (SC), auditory (AU), sen-
sorimotor (SM), visual (VI), cognitive control (CC), default
mode (DM) and cerebellar (CB) domains (Fig. 1) [11].

B. Model Architecture

The fBIRN dataset X = {z;}}¥, consists of N samples
xz;, where N is equal to 289 subjects and z; is a vector
with size 1378 x 1, the flattened upper triangle of a 53 x 53
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Schematic of interpolation framework. The upper triangle of the SFNC matrix is flattened and used as the input to the VAE. During the training

stage (gray arrow), the VAE is trained to learn a latent representation z by minimizing the reconstruction loss between the inputs and the reconstructed
outputs, while the KL divergence regularizes the difference between the prior distribution p(z) and the approximate posterior distribution gy (z|x). During
the inference stage (purple arrow), SENC matrices are generated by uniformly sampling the latent representation z. Also the original sSFNC matrices are
fed to the trained encoder, the two-dimensional features in the latent space are mapped to a 2D grid using the Jonker-Volgenant algorithm, and then the
corresponding original SFNC matrices are mapped and displayed in the 2D grid.

sFNC matrix. Assume that the latent variable z denoting
the underlying factors in the dataset is sampled from a
prior distribution p(z) and the data z is sampled from the
conditional likelihood distribution pg(z|z) parameterized by
6. According to Bayes’ rule, the latent posterior distribution
pe(z]x) can be written as

p(2)pe(zlz) _  p(2)pe(xl2)
Po(z) Jp(2)po(|2)dz"

The computation of the posterior pg(z|x) is intractable
because of the integral [ p(z)pg(z|z)dz. Thus, we need to
assume a simpler proposal distribution to perform variational
inference and approximate the true distribution. The KL
divergence D (qo(2]z) || pe(z]x)) is used to quantify
the distance between the true distribution py(z|x) and a
multivariate Gaussian approximation g4 (z|x) with a diagonal
covariance structure N(z; u, 01) parameterized by ¢. The
evidence lower bound (ELBO) can be derived as

L(0,¢) = —Drr(
=—Dgr(

where L£(0,¢$) < logpe(z). An encoder and a decoder
parameterized by variational parameters ¢ and generative
parameters 6 are trained to maximize the ELBO L(6, ¢)
and thus maximize the log-likelihood of generating real data
samples log pg (). To train the model using backpropagation,

we use the reparameterization trick [9]: z = pu+ 0 @€

po(z]z) =

(zlz) || po(2]x)) + log po(x)
|

4¢
4 (2[2) || (2)) + Eq, (210 [log po (7] 2)],

where € ~ N (0,1). A detailed derivation of the variational
inference and learning algorithm can be found in [9].

We implement a multilayer perceptron (MLP) as the
encoder (¢q(2|z)) and decoder (py(z|z)) in the VAE. The
MLP consists of five dense layers with 256, 128, 64, 32,
and 16 output units in the MLP encoder and a symmetric
MLP decoder. Each layer uses a hyperbolic tangent (tanh)
activation function and L; regularization. The model is
trained for 300 epochs using the Adam optimizer [13] with a
learning rate of 0.001 and a batch size of 16. By optimizing
the ELBO L(6, ¢), the VAE is able to learn the underlying
factors in the dataset and generate new data by interpolating
between points using the learned factors.

The model is implemented in Python using the Keras
Application Programming Interface [14], which runs on top
of the TensorFlow open source machine learning framework
[15]. The Google Colaboratory platform with an NVIDIA
Tesla K80 GPU was used as the development environment.

C. Interpolation Framework

An overview of the interpolation framework is presented
in Fig. 1. The VAE is trained to learn a latent representation
z by minimizing the reconstruction loss between the inputs
and the reconstructed outputs, while the KL divergence
regularizes the difference between the prior distribution p(z)
and the approximate posterior distribution g4(z|x). After
the training stage, we utilize the decoder to generate SFNC
matrices by uniformly sampling points in the latent space

1478

Authorized licensed use limited to: Georgia State University. Downloaded on February 04,2025 at 19:33:58 UTC from IEEE Xplore. Restrictions apply.



Fig. 2. Generated sFNC matrices. Top: The generated sFNC matrices.
Bottom: Two 4 X 4 zoom-in grids showing patient (left) and control (right)
patterns, respectively. The VAE interpolation result can capture individual
variability within a group and continuous patterns between groups.

and visualize the generated sFNC matrices in a 2D grid with
17 x 17 nodes. We subsequently feed the original training
data to the trained encoder and extract the representative
two-dimensional features in the latent space. The Jonker-
Volgenant algorithm [16] is then used to map these latent
features into nodes in a 2D grid by minimizing the pairwise
Euclidean distance between the latent samples and the 2D
grid nodes. Code for the Jonker-Volgenant algorithm can be
found at https://github.com/gatagat/lap. This
allows us to visualize the generated sFNC matrices and the
original sFNC matrices in the 2D grid, respectively.

III. RESULTS

Our primary results show a high correspondence between
the generated sFNC matrices (Fig. 2) and the original SFNC
matrices (Fig. 3). To better visualize the results, we retain
the upper triangle of the SFNC matrix, remove the element-
wise mean across all subjects in the lower triangle, and color
code the diagonal based on the diagnosis (red: patients; blue:
controls) for each sFNC matrix. By examining the group-
specific patterns in both 2D grids, we observe focal modular-
ity in the top left corner dominated by the patient group, and
highly modular and polar patterns in the bottom right corner
dominated by the control group. For example, the patient

Fig. 3.
Bottom: Two 4 X 4 zoom-in grids showing patient (left) and control (right)
patterns, respectively. Individual differences and group-specific patterns can
be visualized according to the VAE latent features.

Original sFNC matrices. Top: The original sFNC matrices.

group shows low functional connectivity between the AU
and SM domains and between the SM and VI domains. In
contrast, the control group shows strong function connection
among the AU, SM and VI domains. The 2D grid layout
also facilitates understanding the sFNC pattern alterations
between schizophrenia patients and controls. Specifically, the
changes can be visualized in the connectivity between the SC
and CB domains, between the SC and AU domains, as well
as between the SC and SM domains. Thus, the generated
results can capture representative patterns within a group and
continuous pattern alterations between groups. The original
sFNC matrices in the 2D grid can help to examine individual
variability in the dataset. For example, the sFNC in the Fig.
3 bottom right corner shows a patient with a typical control
pattern, suggesting that the patient may have mild symptoms.

Pearson correlations further support the correspondence
between the generated and the original results (Fig. 4). The
highest correlation is 0.91. The median correlation across
all subjects is 0.73, with a median of 0.72 in the patient
group and a median of 0.74 in the control group. Matrices
in the upper 7 rows show relatively low correlations with
a median of 0.67 and 71.4% of these matrices represent
patients, indicating more variability in the patient group.
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Fig. 4. Pearson correlation between the generated and the original
sFNC matrices. The VAE can achieve fairly good reconstructions with a
median correlation of 0.73 across all subjects (p < 0.05 for all pairs).

IV. DISCUSSION

This study demonstrates the ability of the unsupervised
generative model to capture representative group-specific
SsFNC patterns and interpolate the continuous pattern al-
terations between schizophrenia patients and controls (Fig.
2). In addition, our work highlights the benefits of a 2D
grid layout to visualize individual sFNC differences. As
presented in Fig. 3, a 2D grid can be used to display the
original individual sFNC matrices according to the latent
samples and visualize both individual and group-specific
patterns in the dataset. We observe relatively homogeneous
sFNC patterns in the control group and highly heterogeneous
patterns in the patient group. This finding supports the fact
that schizophrenia is a highly heterogeneous disorder and
that there may exist subgroups among patients, which could
potentially be identified with our framework.

Moreover, the correlation result (Fig. 4) between the
generated and the original sFNC shows that the VAE can
learn the representative latent distributions from the data
and achieve fairly good reconstructions, especially in the
control group. Since schizophrenia is known to be highly
heterogeneous, the vanilla VAE cannot fully capture the
heterogeneity in the patient group, resulting in slightly lower
correlations in patients compared with controls.

It is worth noting that we made an assumption that the
sFNC changes between schizophrenia patients and controls
can be interpolated. However, it is still unknown whether
there is a categorical or a continuous boundary between
groups. Our study suggests that there exist both group-
specific sSFNC patterns and intermediate continuous patterns
which can be interpolated over two groups.

Future work will consider further characterizing the het-
erogeneity of disease syndromes using hierarchical clustering
or mixture model priors in VAEs, identifying clinical tran-
sition states and disease subtypes, and incorporating large
datasets with autism spectrum disorder and depression to
capture disease progression across multiple mental disorders.

V. CONCLUSION

We utilize an unsupervised generative model to interpolate
sFNC matrices across subjects while also capturing individ-
ual variability within a group and sFNC progression patterns
between groups. We demonstrate a high correspondence
between the generated and the original sSFNC matrices. By
displaying individual sSFNC in the 2D grid, we can observe
both individual and group-specific patterns. Our approach is
a promising step toward individualized disorder progression
prediction and provides insights into the characterization of
individual heterogeneity within and between groups.
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