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Abstract— Mental disorders such as schizophrenia have been
challenging to characterize due in part to their heterogeneous
presentation in individuals. Most studies have focused on
identifying groups differences and have typically ignored the
heterogeneous patterns within groups. Here we propose a
novel approach based on a variational autoencoder (VAE) to
interpolate static functional network connectivity (sFNC) across
individuals, with group-specific patterns between schizophrenia
patients and controls captured simultaneously. We then visual-
ize the original sFNC in a 2D grid according to the samples
in the VAE latent space. We observe a high correspondence
between the generated and the original sFNC. The proposed
framework facilitates data visualization and can potentially be
applied to predict the stage that a subject falls within a disorder
continuum as well as characterize individual heterogeneity
within and between groups.

I. INTRODUCTION

Schizophrenia is a lifelong mental disorder which affects

perception and behavior with a prevalence of just under

1% in the population and it is among the top causes of

disability worldwide [1], [2]. Relying on expert assessment

or patient self-report data, the current diagnostic system

is insufficient to accurately capture biological deficits and

symptom progression [3]. Recent neuroimaging studies have

shown that schizophrenia can be characterized by functional

dysconnectivity [4], [5] and supervised learning approaches

have been developed to predict disease conditions from

functional connectivity data [6], [7]. However, this disorder

is known to be highly heterogeneous, and there is debate

over whether this reflects multiple diseases within a clinical

syndrome or heterogeneity within the disorder itself [8].

Group averages and supervised classification approaches are

not sufficient for its characterization. There is thus a need

to develop unsupervised learning approaches that can char-

acterize individual variability within and between groups.

Unsupervised learning algorithms such as variational

autoencoders (VAEs) [9] are capable of learning low-

dimensional latent representations from data without tar-

get labels. A VAE consists of an encoder and a decoder,

where the encoder reduces high-dimensional inputs into low-

dimensional distributions and the decoder then reconstructs
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the inputs according to the samples from those latent dis-

tributions. There are two main advantages to using a VAE.

Firstly, the encoder performs dimension reduction and can

learn latent distributions from the data in an unsupervised

manner. Secondly, the decoder can generate continuous

artificial data that resembles real data by sampling from

the latent distributions. Recent work has demonstrated that

latent representations of neuroimaging data learned by a VAE

can be used to predict schizophrenia diagnosis and achieve

competitive performance to supervised approaches [10].

Here, we propose to use a VAE to interpolate NeuroMark

[11] static functional network connectivity (sFNC) collected

from controls and individuals with schizophrenia. To better

visualize sFNC patterns across subjects, we make use of a 2D

grid layout to organize similar or distinct individual sFNC

matrices. A VAE is then used to interpolate the sFNC matri-

ces along this grid. We display the generated sFNC matrices

sampled from the VAE latent distribution and the original

sFNC matrices ordered by VAE two-dimensional features in

the 2D grid respectively. We observe a high correspondence

between the generated and the original sFNC matrices. The

generated result supports both group-specific patterns as well

as a continuous alteration between patients and controls.

Our study highlights the benefits of leveraging unsupervised

generative models to capture individual variability within a

group and continuous sFNC progression patterns between

groups, and to interpolate over the pattern alterations across

subjects.

II. METHODS

A. Dataset

We utilize a subset of the functional biomedical infor-

matics network (fBIRN) dataset [12], which contains 144

subjects with schizophrenia and 145 controls. The fMRI

data was processed with the NeuroMark pipeline [11].

Subject-specific functional components and corresponding

time courses were then estimated using an adaptive-ICA

method. The sFNC was subsequently computed as the corre-

lation between the time courses of 53 intrinsic connectivity

networks (ICNs). These 53 ICNs are from 7 functional

domains including the subcortical (SC), auditory (AU), sen-

sorimotor (SM), visual (VI), cognitive control (CC), default

mode (DM) and cerebellar (CB) domains (Fig. 1) [11].

B. Model Architecture

The fBIRN dataset X = {xi}
N
i=1 consists of N samples

xi, where N is equal to 289 subjects and xi is a vector

with size 1378× 1, the flattened upper triangle of a 53× 5320
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Fig. 1. Schematic of interpolation framework. The upper triangle of the sFNC matrix is flattened and used as the input to the VAE. During the training
stage (gray arrow), the VAE is trained to learn a latent representation z by minimizing the reconstruction loss between the inputs and the reconstructed
outputs, while the KL divergence regularizes the difference between the prior distribution p(z) and the approximate posterior distribution qφ(z|x). During
the inference stage (purple arrow), sFNC matrices are generated by uniformly sampling the latent representation z. Also the original sFNC matrices are
fed to the trained encoder, the two-dimensional features in the latent space are mapped to a 2D grid using the Jonker-Volgenant algorithm, and then the
corresponding original sFNC matrices are mapped and displayed in the 2D grid.

sFNC matrix. Assume that the latent variable z denoting

the underlying factors in the dataset is sampled from a

prior distribution p(z) and the data x is sampled from the

conditional likelihood distribution pθ(x|z) parameterized by

¹. According to Bayes’ rule, the latent posterior distribution

pθ(z|x) can be written as

pθ(z|x) =
p(z)pθ(x|z)

pθ(x)
=

p(z)pθ(x|z)∫
p(z)pθ(x|z)dz

.

The computation of the posterior pθ(z|x) is intractable

because of the integral
∫
p(z)pθ(x|z)dz. Thus, we need to

assume a simpler proposal distribution to perform variational

inference and approximate the true distribution. The KL

divergence DKL(qφ(z|x) ∥ pθ(z|x)) is used to quantify

the distance between the true distribution pθ(z|x) and a

multivariate Gaussian approximation qφ(z|x) with a diagonal

covariance structure N (z;µ, Ã2I) parameterized by ϕ. The

evidence lower bound (ELBO) can be derived as

L(¹, ϕ) = −DKL(qφ(z|x) ∥ pθ(z|x)) + log pθ(x)

= −DKL(qφ(z|x) ∥ p(z)) + Eqφ(z|x)[log pθ(x|z)],

where L(¹, ϕ) f log pθ(x). An encoder and a decoder

parameterized by variational parameters ϕ and generative

parameters ¹ are trained to maximize the ELBO L(¹, ϕ)
and thus maximize the log-likelihood of generating real data

samples log pθ(x). To train the model using backpropagation,

we use the reparameterization trick [9]: z = µ + Ã » ϵ

where ϵ ∼ N (0, I). A detailed derivation of the variational

inference and learning algorithm can be found in [9].

We implement a multilayer perceptron (MLP) as the

encoder (qφ(z|x)) and decoder (pθ(x|z)) in the VAE. The

MLP consists of five dense layers with 256, 128, 64, 32,

and 16 output units in the MLP encoder and a symmetric

MLP decoder. Each layer uses a hyperbolic tangent (tanh)

activation function and L1 regularization. The model is

trained for 300 epochs using the Adam optimizer [13] with a

learning rate of 0.001 and a batch size of 16. By optimizing

the ELBO L(¹, ϕ), the VAE is able to learn the underlying

factors in the dataset and generate new data by interpolating

between points using the learned factors.

The model is implemented in Python using the Keras

Application Programming Interface [14], which runs on top

of the TensorFlow open source machine learning framework

[15]. The Google Colaboratory platform with an NVIDIA

Tesla K80 GPU was used as the development environment.

C. Interpolation Framework

An overview of the interpolation framework is presented

in Fig. 1. The VAE is trained to learn a latent representation

z by minimizing the reconstruction loss between the inputs

and the reconstructed outputs, while the KL divergence

regularizes the difference between the prior distribution p(z)
and the approximate posterior distribution qφ(z|x). After

the training stage, we utilize the decoder to generate sFNC

matrices by uniformly sampling points in the latent space
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Fig. 2. Generated sFNC matrices. Top: The generated sFNC matrices.
Bottom: Two 4× 4 zoom-in grids showing patient (left) and control (right)
patterns, respectively. The VAE interpolation result can capture individual
variability within a group and continuous patterns between groups.

and visualize the generated sFNC matrices in a 2D grid with

17 × 17 nodes. We subsequently feed the original training

data to the trained encoder and extract the representative

two-dimensional features in the latent space. The Jonker-

Volgenant algorithm [16] is then used to map these latent

features into nodes in a 2D grid by minimizing the pairwise

Euclidean distance between the latent samples and the 2D

grid nodes. Code for the Jonker-Volgenant algorithm can be

found at https://github.com/gatagat/lap. This

allows us to visualize the generated sFNC matrices and the

original sFNC matrices in the 2D grid, respectively.

III. RESULTS

Our primary results show a high correspondence between

the generated sFNC matrices (Fig. 2) and the original sFNC

matrices (Fig. 3). To better visualize the results, we retain

the upper triangle of the sFNC matrix, remove the element-

wise mean across all subjects in the lower triangle, and color

code the diagonal based on the diagnosis (red: patients; blue:

controls) for each sFNC matrix. By examining the group-

specific patterns in both 2D grids, we observe focal modular-

ity in the top left corner dominated by the patient group, and

highly modular and polar patterns in the bottom right corner

dominated by the control group. For example, the patient

Fig. 3. Original sFNC matrices. Top: The original sFNC matrices.
Bottom: Two 4× 4 zoom-in grids showing patient (left) and control (right)
patterns, respectively. Individual differences and group-specific patterns can
be visualized according to the VAE latent features.

group shows low functional connectivity between the AU

and SM domains and between the SM and VI domains. In

contrast, the control group shows strong function connection

among the AU, SM and VI domains. The 2D grid layout

also facilitates understanding the sFNC pattern alterations

between schizophrenia patients and controls. Specifically, the

changes can be visualized in the connectivity between the SC

and CB domains, between the SC and AU domains, as well

as between the SC and SM domains. Thus, the generated

results can capture representative patterns within a group and

continuous pattern alterations between groups. The original

sFNC matrices in the 2D grid can help to examine individual

variability in the dataset. For example, the sFNC in the Fig.

3 bottom right corner shows a patient with a typical control

pattern, suggesting that the patient may have mild symptoms.

Pearson correlations further support the correspondence

between the generated and the original results (Fig. 4). The

highest correlation is 0.91. The median correlation across

all subjects is 0.73, with a median of 0.72 in the patient

group and a median of 0.74 in the control group. Matrices

in the upper 7 rows show relatively low correlations with

a median of 0.67 and 71.4% of these matrices represent

patients, indicating more variability in the patient group.
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Fig. 4. Pearson correlation between the generated and the original

sFNC matrices. The VAE can achieve fairly good reconstructions with a
median correlation of 0.73 across all subjects (p < 0.05 for all pairs).

IV. DISCUSSION

This study demonstrates the ability of the unsupervised

generative model to capture representative group-specific

sFNC patterns and interpolate the continuous pattern al-

terations between schizophrenia patients and controls (Fig.

2). In addition, our work highlights the benefits of a 2D

grid layout to visualize individual sFNC differences. As

presented in Fig. 3, a 2D grid can be used to display the

original individual sFNC matrices according to the latent

samples and visualize both individual and group-specific

patterns in the dataset. We observe relatively homogeneous

sFNC patterns in the control group and highly heterogeneous

patterns in the patient group. This finding supports the fact

that schizophrenia is a highly heterogeneous disorder and

that there may exist subgroups among patients, which could

potentially be identified with our framework.

Moreover, the correlation result (Fig. 4) between the

generated and the original sFNC shows that the VAE can

learn the representative latent distributions from the data

and achieve fairly good reconstructions, especially in the

control group. Since schizophrenia is known to be highly

heterogeneous, the vanilla VAE cannot fully capture the

heterogeneity in the patient group, resulting in slightly lower

correlations in patients compared with controls.

It is worth noting that we made an assumption that the

sFNC changes between schizophrenia patients and controls

can be interpolated. However, it is still unknown whether

there is a categorical or a continuous boundary between

groups. Our study suggests that there exist both group-

specific sFNC patterns and intermediate continuous patterns

which can be interpolated over two groups.

Future work will consider further characterizing the het-

erogeneity of disease syndromes using hierarchical clustering

or mixture model priors in VAEs, identifying clinical tran-

sition states and disease subtypes, and incorporating large

datasets with autism spectrum disorder and depression to

capture disease progression across multiple mental disorders.

V. CONCLUSION

We utilize an unsupervised generative model to interpolate

sFNC matrices across subjects while also capturing individ-

ual variability within a group and sFNC progression patterns

between groups. We demonstrate a high correspondence

between the generated and the original sFNC matrices. By

displaying individual sFNC in the 2D grid, we can observe

both individual and group-specific patterns. Our approach is

a promising step toward individualized disorder progression

prediction and provides insights into the characterization of

individual heterogeneity within and between groups.
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[1] B. Moreno-Küstner, C. Martı́n, and L. Pastor, “Prevalence of psychotic
disorders and its association with methodological issues. a systematic
review and meta-analyses,” PloS one, vol. 13, no. 4, 2018.

[2] S. Saha et al., “A systematic review of the prevalence of schizophre-
nia,” PLOS Medicine, vol. 2, no. 5, p. e141, 2005.

[3] C. Su et al., “Deep learning in mental health outcome research: a
scoping review,” Translational Psychiatry, vol. 10, no. 1, 2020.

[4] Q. Yu et al., “Brain connectivity networks in schizophrenia underlying
resting state functional magnetic resonance imaging,” Current topics

in medicinal chemistry, vol. 12, no. 21, p. 2415–2425, 2012.
[5] E. Damaraju et al., “Dynamic functional connectivity analysis reveals

transient states of dysconnectivity in schizophrenia,” NeuroImage:

Clinical, vol. 5, pp. 298–308, 2014.
[6] B. Rashid et al., “Classification of schizophrenia and bipolar patients

using static and dynamic resting-state fmri brain connectivity,” Neu-

roImage, vol. 134, p. 645–657, 2016.
[7] L.-L. Zeng et al., “Multi-site diagnostic classification of schizophrenia

using discriminant deep learning with functional connectivity mri,”
EBioMedicine, vol. 30, pp. 74–85, 2018.

[8] M. T. Tsuang, M. J. Lyons, and S. V. Faraone, “Heterogeneity of
schizophrenia: Conceptual models and analytic strategies,” British

Journal of Psychiatry, vol. 156, no. 1, p. 17–26, 1990.
[9] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”

2014.
[10] E. Geenjaar et al., “Fusing multimodal neuroimaging data with a

variational autoencoder,” 2021.
[11] Y. Du, Z. Fu, et al., “Neuromark: An automated and adaptive ica based

pipeline to identify reproducible fmri markers of brain disorders,”
NeuroImage: Clinical, vol. 28, p. 102375, 2020.

[12] D. B. Keator et al., “The function biomedical informatics research
network data repository,” NeuroImage, vol. 124, pp. 1074–1079, 2016.

[13] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” 2017.

[14] F. Chollet et al., “Keras,” https://github.com/fchollet/keras, 2015.
[15] M. Abadi et al., “Tensorflow: A system for large-scale machine

learning,” in 12th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 16), 2016, pp. 265–283.
[16] R. Jonker and A. Volgenant, “A shortest augmenting path algorithm

for dense and sparse linear assignment problems,” Computing, vol. 38,
pp. 325–340, 2005.

Authorized licensed use limited to: Georgia State University. Downloaded on February 04,2025 at 19:33:58 UTC from IEEE Xplore.  Restrictions apply. 


