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ARTICLE INFO ABSTRACT
Keywords: Brain functional networks identified from resting functional magnetic resonance imaging (fMRI) data have the
Functional network connectivity(FNC) potential to reveal biomarkers for brain disorders, but studies of complex mental illnesses such as schizophrenia
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(SZ) often yield mixed results across replication studies. This is likely due in part to the complexity of the dis-
order, the short data acquisition time, and the limited ability of the approaches for brain imaging data mining.
Therefore, the use of analytic approaches which can both capture individual variability while offering compa-
rability across analyses is highly preferred. Fully blind data-driven approaches such as independent component
analysis (ICA) are hard to compare across studies, and approaches that use fixed atlas-based regions can have
limited sensitivity to individual sensitivity. By contrast, spatially constrained ICA (scICA) provides a hybrid, fully
automated solution that can incorporate spatial network priors while also adapting to new subjects. However,
scICA has thus far only been used with a single spatial scale (ICA dimensionality, i.e., ICA model order). In this
work, we present an approach using multi-objective optimization scICA with reference algorithm (MOO-ICAR) to
extract subject-specific intrinsic connectivity networks (ICNs) from fMRI data at multiple spatial scales, which
also enables us to study interactions across spatial scales. We evaluate this approach using a large N (N > 1,600)
study of schizophrenia divided into separate validation and replication sets. A multi-scale ICN template was
estimated and labeled, then used as input into scICA which was computed on an individual subject level. We then
performed a subsequent analysis of multiscale functional network connectivity (msFNC) to evaluate the patient
data, including group differences and classification. Results showed highly consistent group differences in msFNC
in regions including cerebellum, thalamus, and motor/auditory networks. Importantly, multiple msFNC pairs
linking different spatial scales were implicated. The classification model built on the msFNC features obtained up
to 85% F1 score, 83% precision, and 88% recall, indicating the strength of the proposed framework in detecting
group differences between schizophrenia and the control group. Finally, we evaluated the relationship of the
identified patterns to positive symptoms and found consistent results across datasets. The results verified the
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robustness of our framework in evaluating brain functional connectivity of schizophrenia at multiple spatial
scales, implicated consistent and replicable brain networks, and highlighted a promising approach for leveraging
resting fMRI data for brain biomarker development.

1. Introduction
1.1. Background

Schizophrenia is a severe psychiatric disease characterized by hal-
lucinations, delusions, loss of initiative, and cognitive dysfunction (Van
Den Heuvel & Fornito, 2014), that typically emerges in late adolescence
or early adulthood (Sadeghi et al., 2022). Schizophrenia is a heteroge-
neous syndromic diagnosis of exclusion, that lacks unique symptoms,
and coordination between thoughts, actions, and emotions (Shoeibi
et al., 2021). Schizophrenia is diagnosed clinically by both positive and
negative symptoms (American Psychiatric Association (2013)). Schizo-
phrenia has been hypothesized as a developmental disorder of disrupted
brain function, which can be characterized by functional dysconnec-
tivity and changes in functional integration (Friston & Frith, 1995,
Stephan et al., 2006). Studying functional connectivity can provide
important information about brain functional integration and its
schizophrenia changes, potentially improving our understanding of the
actual brain pathology, thus eventually improving treatments and care
for individuals with schizophrenia (Iraji et al., 2021a,b).

Group ICA (Calhoun et al., 2001a,b) has been widely applied for
investigating functional network biomarkers in neuroimaging data.
Group ICA is typically used to extract brain functional networks from
multiple subjects in a fully data-driven manner. However, comparison of
these networks across datasets can be challenging if they are analyzed
separately because the components will be randomly sorted at each run.
While one can use regression approaches to estimate the networks in
new subjects, this can decrease efficiency as regression neither ensure
maximal independence within each subject nor does it fully adapt the
spatial networks to the new data (Erhardt et al., 2011). Consequently,
when leveraging higher-order statistics, previous work has shown the
statistical and classification performance of regression-based ap-
proaches is reduced compared to ICA solutions (Salman et al., 2019).

In contrast, spatially constrained ICA (scICA) of fMRI (Lin et al.,
2010, Du & Fan, 2013) was proposed to overcome difficulties in iden-
tifying components of interest and determining the optimal number of
components in ICA analysis because scICA incorporates available spatial
prior information about the sources into standard blind ICA. Previous
studies (Sui et al., 2009, Qi et al., 2018, Salman et al., 2019) have
demonstrated the benefit of using scICA in functional MRI analysis.
Recent work has proposed deriving component priors by identifying
replicable component maps across multiple large datasets analyzed
separately, then using a template in scICA. scICA has been used in a
variety of studies to date (Du et al., 2019, 2020), and this approach has
multiple strengths: 1) fully automated, avoiding the need to select, label,
and order components, 2) adapts the component maps and timecourses
to individual subjects, making cross-validation easier, and 3) provides
comparability across studies. A recent scICA approach called MOO-ICAR
(Du et al., 2020) was implemented using the GIFT software toolbox (htt
ps://trendscenter.org/software/gift) (Iraji et al, 2020). The MOO-ICAR
approach utilized components from the Neuromark fMRI_1.0 template
(available in GIFT version 4e) as the references to extract subject-
specific independent component maps and their time courses. The
template includes fifty-three ICNs and is arranged into seven functional
domains using visual inspection and atlas labels based on the peak co-
ordinates for each component, including 2 auditory, 4 cerebellar, 17
cognitive control, 7 default mode, 5 subcortical, 9 somatomotor, and 9
visual components. After obtaining the subject-specific time-courses, the
ICN time courses were linearly detrended and filtered between 0.01 and
0.15 Hz prior to FNC calculations. The Pearson correlation coefficient

was then calculated between time courses of ICNs and r-to-z trans-
formed, resulting in a 53 * 53 FNC matrix for each participant (DeRamus
et al., 2022). The MOO-ICAR framework (Du et al., 2019) estimates
subject-specific ICs that provide more optimal independence and better
spatial correspondence across different subjects and achieve higher
spatial and temporal accuracy compared to existing ICA methods. The
MOO-ICAR approach has been applied in multiple studies. For example,
researchers have used the Neuromark IC template to estimate subject-
specific networks that were then used as features in a support vector
machine (SVM)-based framework (Osuch et al., 2018, Du et al., 2019,
2020) to predict response to medication (either antidepressants or mood
stabilizers) in bipolar disorder and major depressive disorder patients.

Most previous research has focused on priors derived from a single
ICA model order (i.e., 53 networks from 100 components estimated),
ignoring the importance of capturing functional information at different
levels of spatial granularity as well as the between-order information. In
recent work, we have shown the advantage of working with multiple
spatial scales (i.e., multi-model order ICA) (Iraji et al., 2021b, Meng
et al., 2021). Multi-model order ICA provides a comprehensive way to
study brain functional network connectivity within and between mul-
tiple spatial scales, highlighting findings that would have been ignored
in a single model order analysis. Previous studies (Iraji et al., 2021a,
Meng et al., 2021) have highlighted the benefit of studying functional
network connectivity in schizophrenia using multiple spatial scales.

Here we propose the use of ICNs resulting from scICA with multiple
spatial scales to fill this gap and also apply this approach to a large N
study including validation on an independent dataset. Our hypothesis
was that combining scICA and msFNC would yield group differences and
classification results that are robust to data collected at different sites
and with different demographics. Combining scICA and msFNC to detect
group differences in schizophrenia allows us to leverage the known
benefits of both approaches. To the best of our knowledge, no studies
have shown the robustness of scICA in the context of capturing group
differences at single or multiple spatial scales. To verify our hypothesis,
in this study, we proposed a framework to evaluate multi-model order
scICA using MOO-ICAR to capture robust, replicable schizophrenia-
related alterations and identify potential biomarkers for schizophrenia
classification. We used a recently developed multi-model order ICA
template (Meng et al., 2021) and together with the proposed scICA
based framework addressed in this work to identify consistent predictive
ICNs in schizophrenia. To evaluate the robustness of our framework, we
built our framework on one dataset and evaluated the performance on
an independent dataset.

2. Literature review
2.1. Multi-model order ICA / multiple spatial scales

The brain can be segregated into distinct functional sources (e.g.,
ICNs), which dynamically interact with each other (i.e., functional
integration), and brain function has been modeled as coordination and
interaction between functional sources, which has been studied using
the principles of segregation and integration (Genon et al., 2018). ICN is
a temporally synchronized pattern of the brain, a good estimation of a
functional source. The ICN time course describes its functional activity
over time, while its spatial pattern indicates the contribution of spatial
locations to ICN. The spatial scale of ICNs can be set effectively using the
model orders of ICA. Thus, we can study brain segregation and estimate
ICNs at different spatial scales by using ICA with different model orders
(Iraji et al., 2022a,b). Low model order ICA results in large-scale
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Table 1
Comparison between scICA and classic ICA.

Method Number of Model Generalized Reveal observations
orders conclusion across in between model
different model orders  orders

Classic Typically focus on No No
ICA one model order

Multi- Combination of Yes Yes
order different model
scICA orders

Table 2

Summary of analysis approaches of related work.

Single scale
classic ICA

Multiple spatial
scale ICA

Spatially
constrained ICA

(Nygard et al. Yes
2012)
(Salman et al. Yes
2019)
(Deramus et al.
2021)
(Iraji et al., 2022a, Yes
b)
(Meng et al.,
2021)
Proposed research Yes Yes

spatially distributed ICNs (Damoiseaux et al., 2008, Iraji et al., 2016),
while high model order results in more spatially granular ICNs (Iraji
et al., 2009, 2019, Allen et al., 2011).

Brain functional sources exist at different spatial scales (e.g., model
orders), and each spatial scale contains its own functional sources with
unique functional information. Most studies have used single model-
order ICA. However, functional interactions may occur among func-
tional sources within and between different spatial scales (e.g., large
networks interact with small networks). The functional interactions in
cross-model orders (between-model orders), may reveal important in-
formation and might be ignored if using a single spatial scale to analyze
the data (Iraji et al., 2022a,b). Mutil-model orders (multiple spatial
scales) studies, not like traditional single model orders ICA studies
(typically with moder order of 20 ~ 100 components), focuses on
combining different model orders (in this study, we combinedly use
model order of 25, 50, 75, and 100), to capture the functional infor-
mation at different ICA dimensionalities as well as the cross-model order
information. Our previous research (Meng et al., 2021) has demon-
strated that multi-model order classification gave better results
compared to single-model order classification, in particular the (typi-
cally ignored) cross-model order (cross-spatial scale) information ap-
pears to be contributing unique information, which highlights the
benefit of multi-model order analysis.

2.2. scICA vs classic ‘fully blind’ ICA

Compared to classic ICA, scICA has several advantages, 1) scICA is
fully automated ICA, 2) the component ordering and grouping are
automatically obtained, and 3) scICA runs at the single subject level. For
classic ICA, running on a group can lead to data leakage, running on
individual subjects would be prohibitively expensive as it would require
sorting and grouping components separately for each subject. Although
this process can be done using greedy matching algorithms, it is very
messy and error-prone. While ICA followed by regression of the spatial
maps onto new data offers one solution, we have previously shown that
scICA, which optimizes for independence at the single subject level,
outperforms spatio-temporal (dual) regression-based approaches (Sal-
man et al,, 2019a). Table 1 shows the comparison scICA and classic ICA.
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2.3. Innovation

In this work, we present an approach that uses multi-model order
analysis by leveraging MOO-ICAR to study multi-spatial-scale functional
interactions (both within and between spatial scales) in schizophrenia.
Multiscale ICA uses multi-model order ICA to estimate brain functional
networks at multiple spatial scales (Iraji et al., 2022a,b). In order to
compare our framework, which uses multi-model order analysis by
leveraging MOO-ICAR in studying schizophrenia, with other traditional
ICA approaches, we made the following tabular summary of the paper’s
review to give readers a better understanding of the research done in this
field (as shown in Table 2).

In summary, the innovation of our work compared to previous work
is two-fold, 1) We combined, for the first time, scICA and msFNC, to
leverage the benefits of both approaches in order to train a classification
model in schizophrenia, and 2) Our framework was built and tested
leveraging a large N dataset, and revealed highly replicable group dif-
ferences and consistent predictive results in detecting group differences
in schizophrenia.

3. Methods
3.1. Dataset and preprocessing

We used two datasets in this study. The first data set, ‘dataset 1’, was
used as a discovery and validation dataset, and the second ‘dataset 2’
was used as a replication dataset. Dataset 1 was mainly used to extract
predictive features based on which classification was built and vali-
dated. Dataset 2 was used to further validate the classification model
using the features that were selected from dataset 1.

Dataset 1 was selected from three different studies, one with seven
sites (fBIRN: Functional Imaging Biomedical Informatics Research
Network), one with three sites (MPRC: Maryland Psychiatric Research
Center), and one single site (COBRE: Center for Biomedical Research
Excellence). This resulted in a total 827 individuals, including 477
subjects (age: 38.76 + 13.39, females: 213, males: 264) of typical con-
trols (TC) and 350 schizophrenia individuals (age: 38.70 + 13.14, fe-
males: 96, males: 254). The parameter settings for the resting-state fMRI
(rsfMRI) data collected in the fBIRN data were the same across all sites,
with a standard gradient echo-planar imaging (EPI) sequence (repetition
time (TR)/echo time (TE) = 2000/30 ms, voxel spacing size = 3.4375 x
3.4375 x 4 mm, field of view (FOV) = 220 x 220 mm, and a total of 162
vol). Six of the seven sites used 3-Tesla Siemens Tim Trio scanners, and
one site used a 3.0 Tesla General Electric Discovery MR750 scanner. For
COBRE data, rsfMRI images were acquired using a standard EPI
sequence (TR/TE = 2000/29 ms, voxel spacing size = 3.75 x 3.75 x 4.5
mm, FOV = 240 x 240 mm, and a total of 149 volumes. Data were
collected using a 3-Tesla Siemens Tim Trio scanner. The MPRC dataset
were acquired using a standard EPI sequence in three sites, including
Siemens 3.0 Tesla Siemens Allegra scanner (TR/TE = 2000/27 ms, voxel
spacing size = 3.44 x 3.44 x 4 mm, FOV = 220 x 220 mm, and 150
volumes), 3.0 Tesla Siemens Trio scanner (TR/TE = 2210/30 ms, voxel
spacing size = 3.44 x 3.44 x 4 mm, FOV = 220 x 220 mm, and 140
volumes), and 3.0 Tesla Siemens Tim Trio scanner (TR/TE = 2000/30
ms, voxel spacing size = 1.72 x 1.72 x 4 mm, FOV = 220 x 220 mm,
and 444 volumes). This data has also been used in prior work (Iraji et al.,
2021a, Meng et al., 2021).

Dataset 2 contained a total of 815 subjects, collected from several
Chinese hospitals, including 326 subjects (age: 29.81 + 8.68, females:
167, males: 159) of typical controls and 489 SZ individuals (age: 28.98
+ 7.63, females: 229, males: 260). The subjects were Chinese ethnic Han
groups. The dataset was recruited from seven sites in China with the
same recruitment criterion, including Peking University Sixth Hospital;
Beijing Huilongguan Hospital; Xinxiang Hospital Simens; Xinxiang
HospitalGE; Xijing Hospital; Renmin Hospital of Wuhan University;
Zhumadian Psychiatric Hospital (Yan et al., 2019). The resting-state
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Table 3
Dataset summary.
Dataset Age Gender Race PANSS
(female/ Score
male) (Sample data)
Dataset TC: 38.76 TC: 213/264 No record Total: 143 SZ
1 +13.39 (44%) (from US PANSS total: 29.57
SZ: 38.70 SZ: 96/254 hospitals) + 8.53
+13.14 (27%) PANSS positive:
15.35 + 4.96
PANSS
Negative:14.22 +
5.53
Dataset TC: 29.81 TC: 167/159 Chinese ethnic Total: 149 SZ
2 + 8.68 (51%) Han PANSS total: 43.76
SZ: 28.98 SZ: 229/260 (from Chinese +6.29
+ 7.63 (45%) hospitals) PANSS positive:
25.35 + 4.12
PANSS Negative:
18.41 + 4.78

fMRI data were collected with the following three different types of
scanners across the seven sites: 3.0 Tesla Siemens Tim Trio Scanner, 3.0
T Siemens Verio Scanner, and 3.0 T Signa HDx GE Scanner (TR/TE =
2000/30 ms, voxel spacing size = 3 x 3 x 3 mm, FOV = 220 x 220 mm,
and 480/360 volumes). Subjects were instructed to relax and lie still in
the scanner while remaining calm and awake.

Table 3 displays the summary of the two datasets. The replication
dataset (dataset 2) is comprised of individuals from a different ethnic
group compared to the discovery dataset (dataset 1). The two datasets
were preprocessed according to the same procedures as in our previous
study (A. Iraji et al., 2021a). To summarize, preprocessing was mainly
performed using the statistical parametric mapping (SPM12, https
://www.fil.ion.ucl.ac.uk/spm/) toolbox. First, we discarded the first
five volumes for magnetization equilibrium. We then performed rigid
body motion correction using the toolbox in SPM to correct subject head
motion, followed by the slice-timing correction to account for timing
difference in slice acquisition. For each subject, the translation of head
motion was less than 3 mm and the rotation of head motion was less than
3° in all axes through the whole scanning process. And the next step, the
rsfMRI data of each subject was subsequently warped into standard
Montreal Neurological Institute (MNI) space using an echo-planar im-
aging (EPI) template and smoothed using a Gaussian kernel with a 6 mm
full width at half-maximum (FWHM = 6 mm). The voxel time courses
were z-scored (variance normalized). To make it consistent, the mini-
mum data length (135 volumes) across all subjects from the two datasets
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was selected for further analysis.

3.2. Analysis framework

The framework to explore group differences and identify predict-
ability of PANSS scores (Meng et al., 2021) in schizophrenia is provided
in Fig. 1. There are three major components in this framework: 1) apply
spatially constrained ICA to extract corresponding functional regions
and time-courses (TCs), calculate msFNC matrix for each individual; 2)
perform feature selection based on the msFNC matrix, and build the
SVM classification model; 3) identify predictive ICN domains, and
evaluate differences between schizophrenia and control groups.

3.3. Spatially constrained ICA analysis

The proposed approach is based on scICA, which incorporates a
spatial reference in the ICA algorithm. This allows us to extract only
desired ICs, and hence we do not need to run a complete ICA to extract
all sources. The scICA analysis was performed using the GIFT software
(https://trendscenter.org/software/gift, Calhoun et al., 2001a, Calhoun
& Adali, 2012, Iraji et al., 2020, 2021b). We ran scICA on each subject
for both dataset 1 and dataset 2, where we utilized ICA with different
model orders (25 ~ 100) to identify ICNs at multiple spatial scales. ICNs
were identified from each model order and included components with
peak activations in gray matter and low-frequency timecourses (Cal-
houn et al., 2009). A total of 127 ICNs were hand labeled by experts in
our research group from different model orders (15, 28, 36, and 48 from
25, 50, 75, and 100 model orders, respectively). ICNs were grouped into
functional domains including cerebellum, cognitive control, default
mode, somatomotor, subcortical, temporal, and visual. This template
was obtained and labeled using dataset 1 (Iraji et al., 2021a).

3.4. msFNC analysis on spatially constrained ICA

msFNC was computed between each pair of ICN time courses by
calculating the Pearson correlation coefficient between ICN timecourses
(Calhoun et al., 2003a,b, Jafri et al., 2008, Allen et al., 2011), which
resulted in a 2D symmetric ICN x ICN msFNC matrix for each individual.
Each cell of the msFNC matrix represented the functional connectivity
between two ICNs. To capture functional interaction across different
spatial scales, we calculated the functional network connectivity be-
tween each pair of ICNs across all model orders. ICN time courses were
interpolated to 2 s for a subset of dataset 1 (15%) with a sampling rate
other than 2 s and for all of dataset 2. We aggregated the msFNC matrix

vl o : - : ™~ Fig. 1. Workflow of our framework. After pre-
NG FDatasetil—— -, She s SUbI?Ct SEatialy Dataset} processing, we calculated the msFNC matrix based
preprocessing constrained ICA FNC matrix . .
Multi-model order + on the spatially constrained ICA for both datasets.
ICATemplate 1] We then performed feature selection on the msFNC
Data Single subject spatially Dataset 2 matrix of dataset 1, to find out predictive ICN fea-
Dataset2 preprocessing constrained ICA FNC matrix ) :
. = —~ / tures. And the next step, we built the SVM model on
e — Dr—— dataset 2, using the ICN features selected from
sw 3 »  Feature selection Common predictive dataset 1. To find out general predictive ICN fea-
FNC matrix features 1 SVM features
tures across the different dataset, we repeated the
Comparison of feature selection process on dataset 2, and
et common features compared them with the predictive features selected
Dataset 2 A Discriminative . o .
: — Feature selection — ' from dataset 1. Thus, we identified consistent pre-
FNC matrix features 2 Display of ICA o R
" dictive features across different datasets. And
\ components/domains . . .
finally, we extracted a subset of SZ with available
Discriminative L Sv'M del - Replicable group symptom scores from dataset 1 and dataset 2, and
features 1 inear mode differences calculated the linear correlation between msFNC
S SRR = = and the symptom score. We then made a compari-
atase Subset 1 wit|
X N _— son between them.
FNC matrix PANSS scores e FNC and PANSS
Dataset 2 ) Subset2with | — correlation
FNC matrix PANSS scores
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Input msFNC feature
for classification
(Dataset 1)

10 rounds
% Feature selection Top 70% ranked
Dataset 1 | (Relief) features
50%

Fig. 2. Feature selection workflow. The feature selection process was performed on dataset 1. Each unit in the msFNC matrix was considered a feature. To get a stable
result, the selection process was repeated for 10 rounds. We calculated an average weight for each feature across the 10 rounds. We then selected the top 70%

predictive features (with higher weights).

from all subjects into an augmented 2D matrix. We then calculate the
mean msFNC matrix of all subjects for further analysis.

3.5. Feature selection on msFNC

The feature selection process was described in Fig. 2. It was per-
formed using only dataset 1. Each msFNC pair was considered as the
input feature for classification, and the category of group TC or SZ was
considered as the response vector. Given that some of those msFNC
features might be non-informative or redundant for classification, we
performed feature selection using Relief (Verma and Salour, 1992) to
improve classification performance and speed up computation. Relief
calculates a feature score for each feature which can then be applied to
rank and select top-scoring features for feature selection. Alternatively,
these scores may be applied as feature weights to guide downstream
modeling. Relief feature scoring is based on the identification of feature
value differences between k nearest neighbor instance pairs. If a feature
value difference is observed in a neighboring instance pair with the same
class (a ’hit’), the feature score decreases. Alternatively, if a feature
value difference is observed in a neighboring instance pair with different
class values (a 'miss’), the feature score increases. We set k to 10 in
accordance with our previous work (Meng et al., 2021). The function
returns the indices of the most important predictors (features) and the
weights of the predictors. Feature selection was carried out before
classifier training through the recursive feature elimination step. For
each round of feature selection, 50% of the training data was selected.
We repeated it for ten rounds and retained those features with a high
average weight (top 70%) among all the rounds. We thus narrowed the
set of features to a subset of the original feature set, eliminating msFNC
features’ redundancy. The classification model was built based on the
selected msFNC feature set.

3.6. Support vector machine-based classification (SVM)

The SVM (Verma and Salour, 1992) is a widely used binary classi-
fication method due to its ability to deal with high-dimensional data and
versatility in modeling diverse sources of data. The SVM has been widely
applied in numerous neuroimaging classification studies and has ach-
ieved remarkable results due to its excellent generalization perfor-
mance. Our motivation for using SVM over other approaches was due to
its sensitivity, resilience to overfitting, ability to extract and interpret
features, and superior performance in fMRI data classification (Martino

et al., 2008, Pereira et al., 2009, Ecker et al., 2010, Liu et al., 2013,
Vergun et al., 2013, Wang et al., 2019, Saha et al., 2021). To investigate
the group differences, we built a binary SVM classifier using a linear
kernel (Hsu, 2003), as a straightforward baseline classifier, to demon-
strate the practicability of our framework. We also compared the per-
formance of SVM and random forest as a comparison model on a small
training set, as SVM outperformed random forest in that case, we uti-
lized SVM as our baseline model.

We built an SVM model on dataset 2, using the ICN features selected
from dataset 1 as mentioned in the previous feature selection section.
The classification model was trained and cross-validated (10 fold). To
obtain stable performance, we iteratively built and evaluated the clas-
sification model multiple times on dataset 2. For each iteration, we
randomly split the whole dataset 2 into 80% of the training set and 20%
of the testing set. The test set was held out for final evaluation. We ran
the modeling process for a total number of 100 iterations and evaluated
the SVM model based on average specificity, sensitivity, and F1 score
(the harmonic mean of the precision and recall) across all iterations.

3.7. Compare common predictive features

To identify common predictive ICN features in detecting schizo-
phrenia across different datasets, we repeated the same feature selection
procedure on dataset 2, and compared the selected features from dataset
2 with the ones that were selected from dataset 1. As we have a large
number of features (in total 8,001 msFNC features, between 127 pairs of
ICNs), we wanted to focus on those highly predictive features, and
explore a heuristic result. As a result, we selected around 1% (96 fea-
tures out of 8,001 in total) of top-ranked features from each of the
datasets. We then compared the two feature sets and selected the
overlapping features. We normalized their feature weights for further
comparison. The major goal in this section is to find out consistent
predictive ICN features across different datasets, and thus to show the
robustness of our study.

3.8. Correlation between msFNC and symptom score

We investigated the correlation between msFNC and the symptom
scores, measured by the positive and negative syndrome scale (PANSS)
(Kay et al., 1987), aiming to evaluate the consistent predictive strength
of the msFNC features across datasets from a different view. In theory,
the predictive msFNC features should have in general similar
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Fig. 3. Mean msFNC plot of dataset 1 (left) and dataset 2 (right). We calculated the mean msFNC (z-fisher score) based on the aggregated msFNC matrix of all
individuals. The ICNs in these msFNC matrices were sorted by domains first, and within each domain, ICNs were sorted by model orders (from 25 to 100). The dot
lines in each domain divide different model orders. ICNs were sorted in the order of cerebellum (CR), cognitive control (CC), default mode (DM), somatomotor (SM),
subcortical (SB), temporal (TP), and visual (VS). The overall pattern of the two datasets is similar. Stronger correlations in CR vs. VS and anticorrelations in DM vs.
SM, CC vs. DM were seen in dataset 2, and stronger anticorrelations in CR vs. SM in dataset 1.
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correlations with symptom scores across datasets. We extract 143
schizophrenia individuals from dataset 1, and 149 schizophrenia indi-
vidual subjects from dataset 2 separately, with valid symptom scores
(PANSS total, PANSS positive, PANSS negative). We then calculated the
linear correlation between the msFNC and the symptom scores for each
of the subjects of the two datasets and made a comparison between
them.

4. Results
4.1. msFNC analysis across different databases

Fig. 3 presents the mean msFNC (z-fisher score) between 127 ICNs of
all model orders, for dataset 1 and dataset 2, separately. The overall
patterns of the mean msFNC matrix of dataset 1 and dataset 2 were
similar. We observed that the cerebellum (CR), somatomotor (SM),
subcortical (SB), temporal (TP), and visual (VS) were highly correlated

regions. (For interpretation of the ref-
erences to colour in this figure legend,
the reader is referred to the web version
of this article.)

with themselves in msFNC for both of the datasets, which were more
homogeneous than the default mode (DM) and cognitive control (CC)
domains.

We then evaluated the group difference between SZ and TC groups
for the two datasets. The most dominant increases in msFNC in the SZ
group for both datasets were mainly seen between the ICNs of cere-
bellum vs. somatomotor, cerebellum vs. temporal, and cerebellum vs.
visual. Increases in msFNC were also seen between the ICNs of subcor-
tical vs. visual, subcortical vs. temporal, and subcortical vs. somato-
motor. In addition, both datasets show a relatively large decrease in the
SZ groups compared to the TC groups between the ICNs of the subcor-
tical vs. cerebellum, somatomotor vs. visual, somatomotor vs. temporal.
Fig. 4 displays the overall group differences between SZ and TC for the
two datasets. Statistical comparison (intensity values (-sign(T)*log10
(FDR), T: t-values from two-sample t-tests, FDR: corrected p-values ob-
tained from two-sample t-tests between SZ and TC group) was compared
between the two datasets.
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Fig. 5. Connectogram of mean msFNC difference (TC - SZ) matrix of 18 com-
mon predictive features for dataset 1 (left) and dataset 2 (right). The common
features show strong increases in msFNC in the domains of SB vs. TP, SB vs. SB,
CR vs. SM, and decreases in SM vs. TP, for both of the datasets.

Table 4
The average performance of the SVM model for 100 iterations.
F1 Precision Recall Accuracy
SVM 0.8493 0.8259 0.8759 0.8137

As we mentioned, we selected around 1% of top-ranked features
from each of the datasets and then compared the two feature sets and
retained the overlapping features, which resulted in 18 common pre-
dictive features. Fig. 5 shows the Connectogram of the average msFNC
difference between TC and SZ for the 18 common predictive features
between the two datasets. The common predictive features have shown
distinct group differences between TC and SZ in msFNC for both data-
sets. The selected common features were considered the most predictive
features in detecting group differences in schizophrenia, as they were
selected separately from each dataset by feature selection. These com-
mon features identified ICN domains that are highly related to schizo-
phrenia. It is observed that the common predictive features also show
consistent group differences and consistent signs (positive vs negative)
for the msFNC in the two datasets.

4.2. Support vector machine-based classification (SVM)

We evaluated the performance of the SVM model as shown in
Table 4. As we mentioned, the SVM model was built using the predictive
features selected from dataset 1, and then trained and verified on dataset
2. The performance was averaged across 100 iterations of modeling. As
shown in the table, the average accuracy of the classification model was
81.4%, with a precision of 82.6%, 87.6% recall, and 84.9% F1 score.
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To better understand the ICN domains that the 18 common predic-
tive features connected and the features’ contribution in detecting group
differences, we show the connectograms (as shown in Fig. 6) of the
feature weights of the common features. The majority of the common
features fell into the ICNs domains of subcortical vs. temporal, the rest of
them fell into the ICNs domains of somatomotor vs. temporal, somato-
motor vs. cerebellum, and within the subcortical, which may indicate an
important role of these domains in detecting schizophrenia. The lines
within the circles represent ICN features, and the outer circles indicate
the ICN domains the features belong to. As we mentioned, the common
features fell into four ICN domains, cerebellum, somatomotor, subcor-
tical, and temporal, with 2, 3, 5, and 4 ICs in each of them separately. It
is observed that the majority ICs (11 out of 14) involved were from
higher model orders (75 ~ 100), and most of them were from between
model orders. The subfigure Fig. 5c the averaged feature weights of the
common features of the combined two datasets.

4.3. Correlation between msFNC and symptom scores

In order to detect the correlation between msFNC and symptom
scores, we calculated the linear correlation between the msFNC of each
subject and its symptom scores (including PANSS total, PANSS positive,
and PANSS negative). The following figures show the correlation matrix
between msFNC and symptom scores in the two datasets. It is observed
that the correlation in the ICN domain of somatomotor vs. cerebellum in
dataset 2 was noticeably stronger than that of dataset 1. And also,
dataset 2 shows generally stronger anticorrelations between msFNC and
symptom scores in the ICN domains of somatomotor vs. visual, soma-
tomotor vs. temporal, and somatomotor vs. cerebellum, compared to
dataset 1, which have indicated the major differences of the two data-
sets. In addition, both of the datasets have shown strong anticorrelations
within the subcortical domain between the correlation of msFNC and
PANSS positive. We then calculated the correlation between msFNC and
symptom scores with the combined dataset of the two datasets, as shown
on the third row of Fig. 7 (Appendices).

Fig. 8 shows the connectograms of the correlation between msFNC
and symptom scores for the 18 common predictive features selected
from the two datasets. The common predictive features in dataset 2 (the
second row) have shown stronger correlations between msFNC and
symptom scores (PANSS total on the left, PANSS positive in the middle,
and PANSS negative on the right) in the ICN domain of somatomotor vs.
cerebellum, compared to the ones in dataset 1 (the first row). The third
row of the figure shows the correlation between msFNC and symptom
scores of the common features combined of the two common feature
sets.
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Fig. 6. Connectogram of feature weights of the 18 common features, for dataset 1 (a), dataset 2 (b), and the combined dataset (c). The common features have shown
strong predictive strength in predicting group differences of TC and SZ, for both of the datasets. Statistically, the relevance level of a relevant feature is expected to be
larger than zero and that of an irrelevant one is expected to be zero (or negative). The SB, TP, SM, and CR contribute most to the classification, for both of the
datasets. The ICN features in domain TP (yellow) vs. SB (purple) generally have higher weights compared to other ICN domains, which indicates their predictive
strength in detecting group differences of TC and SZ. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)



X. Meng et al.

8 S
Dataset 1 E] e %TF: Ll
B/ g
Ygam
‘ B B
Dataset 2 B ”_5{]%/{;
B g
o 8 a
d e
82f8g Bl @
Dataset 1 + Dataset 2 E:a >>j’;_//_( aﬂ 5 ﬂm 3})‘;{{/?_ EH
B __ Bggl__

5. Discussion and limitation

In this work, we present a framework to extract subject-specific
intrinsic connectivity networks from fMRI data at multi-model order
spatially constrained ICA. We built our predictive model based on the
ICN features selected from one dataset, and trained the model on a
different dataset, using the predictive features selected from the first
dataset. We then compared the two independent datasets, regarding
their msFNC patterns, predictive ICN features, group differences be-
tween typical controls and schizophrenia patients, and also the corre-
lations between msFNC and symptom scores. Results have shown
consistent predictive strengths of the four ICN domains of the cere-
bellum, somatomotor, subcortical, and temporal domains, in detecting
schizophrenia. The multiscale ICA template was generated from dataset
1. It was also used as a training set of feature selection for the classifi-
cation model. Dataset 2 was used as an independent dataset on which
the classification model was built and tested. Considering the hetero-
geneity and differences (age and race) in the two datasets, our approach
has demonstrated strength in finding consistent SZ changes regardless of
these differences. The performance of the classification model reached
up to 85% F1 score, 83% precision, and 88% recall. Results suggest the
proposed framework would probably provide similar performance if
applied to other datasets with different demographics (race, age, gender,
etc.), given the replicable evidence we obtained. Our results demon-
strated that MOO-ICAR is capable of obtaining subject-specific ICNs
with strong independence, which in the meanwhile reduced the
computational cost compared to the standard ICA methods. As we
observed, the 18 common predictive features fell into four ICN domains,
cerebellum, somatomotor, subcortical, and temporal. And the majority
ICs involved were from between model orders, for example, subcortical
vs. temporal, somatomotor vs. temporal, and somatomotor vs. cere-
bellum. The results have shown the importance of studying brain
functional connectivity at cross-spatial scales.

Compared to classic single-model order ICA, multi-model order ICA
has multiple advantages in that: 1) It allows us to use the cross-model
order information, which is not possible for a single model order,
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Fig. 8. Connectograms of the correlation
B e o} between msFNC and symptom scores for
the 18 common features. The connecto-
grams of the first row and second row
show the correlations between msFNC
and the PANSS total (a. and d.), PANSS
positive (b. and e.) and PANSS negative
(c. and f.), for dataset 1 and dataset 2
separately, where PANSS total is the sum
of PANSS positive and PANSS negative.
O] The connectograms of the last row are
the correlations between msFNC and the
PANSS total (g.), PANSS positive (h.) and
PANSS negative (i.) for the combined
dataset. Linear correlation was calculated
between the msFNC matrix and the
PANSS scores for each SZ patient. It is
seen that the anticorrelations between
the ICN domains of TP (yellow) vs. SB
(purple) were generally stronger in
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since there is no cross-model order information or different spatial scales
in that case. As we addressed in Section 2.5, many of the predictive
features were cross-model features. Moreover, the cross-model is infor-
mative and widely applicable to other areas since it allows us to capture
coupling between smaller and larger networks. 2) It allows us to visu-
alize networks or nodes at different model orders. 3) It improves clas-
sification accuracy. To compare the predictive strength of the proposed
classification models using multi-model order ICA and the standard
approach (single-model order ICA), we performed classification
modeling using standard analysis using single model order (100
component decomposition). The feature selection and parameter tuning
process were exactly the same when training the classification models.
The resulting accuracy of single-model order ICA was slightly, but
significantly, lower (80% vs 81%) and, importantly, was not able to
reveal the informative cross-model order information and allow us to
evaluate both larger networks as well as subnodes within networks,
along with their interactions, simultaneously. 4) Because this is spatially
constrained ICA, the multi-model order subsumes the single model-
order approach. 5) Group ICA is not ideal for classification since it
does not allow fully independent cross-validation, and single-subject
ICA without constraint would require extensive matching and be
impractical for a large number of subjects.

There are some limitations of the current study. First, for simplicity,
we only selected and evaluated a small set (around the top 1%, which
resulted in 96 features out of 8001 in total) of top-ranked common ICN
features from the two datasets as our preliminary results. The selected
18 common features showed consistent strength in detecting group
differences between TC and SZ groups in schizophrenia. However, it is
worth exploring a larger range of scales of the common feature set in
future work and evaluating the optimal size of the common predictive
feature set to build the classification model. This may improve the
performance of the predictive model. In addition, we set k to 10 as the
number of nearest neighbors when applying Relief for feature selection
in accordance with our previous work (Meng et al., 2021). For future
work, it would be informative to explore a range of k values to ensure
robustness. And also, when we performed feature selection on dataset 1,
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Fig. 7. Correlations between msFNC and symptom score, for dataset 1 (the first row), dataset 2 (the second row), and the combined dataset of the two datasets (the
third row). Each row shows the correlations between msFNC and the PANSS total (left), PANSS positive (middle) and PANSS negative (right), separately. We
extracted 143 and 149 SZ with valid PANSS(total, positive and negative) scores from dataset 1 and dataset 2 separately. We calculated linear correlations between the
msFNC matrix and the PANSS scores for each SZ patient. It is noticeable that the correlations between msFNC and the symptom scores in the ICN domain of CR vs. SM

are stronger in dataset 2, compared to dataset 1.

again for computational reasons, we selected the top 70% ranked fea-
tures to train the SVM model. In future work, we are aiming to explore a
set range of ranked features and find the optimal percentage as the
parameter. Furthermore, we used SVM model as our classification model
in this work, and even so it performed quickly well. However, more
advanced classification models could also be used, including deep
learning models. For example, work by (Niu et al., 2019) suggests that a
convolutional neural network (CNN) can further improve the perfor-
mance of classification in schizophrenia. Future work will focus on
applying deep learning models to further improve the performance of
classification. In this work, we were performing feature selection on the
labeled dataset. In future work, we would explore some unsupervised
feature selection methods, such as filter methods (Sanchez-Marono,
etal., 2007), wrapper methods (Yang et al., 2013) or embedded methods
(Wang et al., 2015), which can be used for unlabeled data, to find the
best set of features to build the predictive models. Moreover, we would
like to pursue the predictive accuracy of various subtyping of schizo-
phrenia approaches (Shi et al., 2023) in future work. And lastly, in this
work, we evaluated the relationship of the FNC imaging measures to the
PANSS subscales, and found some evidence of consistency across the
different analyses. However, this is not the full story, as symptomatology

is complicated and the PANSS positive/negative/general averages
represent just one, albeit widely used, summary of the PANSS assess-
ment. Additional analyses could evaluate the relationship of the imaging
result to data-driven factors derived from the full 30 question answers on
the PANSS assessment. As there are multiple ways to approach this, we
defer a full treatment of this additional analysis to future work.

6. Conclusions

We reported a new framework for detecting FNC differences between
groups at multiple spatial scales using spatially constrained ICA. To the
best of our knowledge, this is the initial research work using spatially
constrained ICA at multiple spatial scales to predict group differences in
schizophrenia. Importantly, the clinical significance of our study is to
make multiscale analysis comparable across datasets and the proposed
framework can be directly applied to any new dataset. Meaningful
consistent predictive msFNC features were selected in the study. The
results showed consistent evidence of the four ICN domains cerebellum,
somatomotor, subcortical and temporal, especially in detecting aberrant
FNCs in schizophrenia on two independent datasets. These results
highlight replicable cross-spatial scale msFNC differences which may
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inform our understanding of the neural patterns linked to schizophrenia.
Future work might focus on further replication and potentially focus on
interventional approaches targeting the highlighted domains.
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