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Abstract—Traumatic brain injury (TBI) can drastically affect
an individual's cognition, physical, emotional wellbeing, and
behavior. Even patients with mild TBI (mTBI) may suffer from
a variety of long-lasting symptoms, which motivates researchers
to find better biomarkers. Machine learning algorithms have
shown promising results in detecting mTBI from resting-state
functional network connectivity (rsFNC) data. However, data
collected at multiple sites introduces additional noise called site-
effects, resulting in erroneous conclusions. Site errors are
controlled through a process called harmonization, but its use in
classifying neuroimaging data has been addressed lightly. With
the ongoing need to improve mTBI detection, this study shows
that harmonization should be integrated into the machine
learning process when working with multi-site neuroimaging
datasets.

I. INTRODUCTION

Traumatic brain injury (TBI) can have profound adverse
effects on an individual's neurocognitive functions. Even
patients with mild traumatic brain injury (mTBI) may suffer
from various symptoms, including dizziness, fatigue, anxiety,
depression, lack of concentration, vertigo, irritability, and
impulsiveness [1]. Different technologies have been applied to
examine the effects of mTBI on the human brain. Used
neuroimaging techniques include diffusion magnetic
resonance imaging (dMRI), tomography and structural MRI
[2, 3]. Later, resting-state functional network connectivity
(rsFNC) was found to be an optimal biomarker for mild TBI
[4]. However, when data is collected from different cohorts at
multiple sites, additional non-biological variability is added as
noise to the combined dataset, commonly known as site effects
[5]. These sites’ effects are due to differences in scanners,
acquisition methods, etc. The additional noise may lead
analysis to erroneous conclusions. To reduce undesired site
effects from the combined dataset, researchers need to perform
harmonization. For neuroimaging, a harmonization algorithm
known as 'ComBat' has been successfully applied in several
studies [5, 6, 7, 8, 9]. This study explored the effects of
harmonization on machine learning classification algorithms
for datasets gathered from different site sources. This work
shows how integrating harmonization and machine learning
classifiers can significantly improve mTBI detection.
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II. METHODS

This study includes fMRI cohort data from two countries
USA, North America, and the Netherlands, Europe (EU). At
the USA New Mexico (NM) site, first fMRI data was
collected, getting the approved consent of all participants
following the declaration of Helsinki and the institutional
guidelines at the University of New Mexico. Second fMRI
data received from the Netherlands (EU), following the local
medical ethics committee of the University Medical Center
Groningen (UMCG) guidelines, and written informed consent
was obtained from all participants.

A. Subjects

New Mexico cohort data contained 96 participants (48
mTBI patients and 48 healthy controls) with an age range of
27.3 £9.0. European cohort data included 74 participants (54
mTBI patients and 20 healthy controls) with an age range of
19-64.

B. Imaging protocols

New Mexico cohort data was collected using a 3 Tesla
Siemens Trio Scanner. TR (Repetition Time) = 2000 ms; TE
(Time of Echo) =29 ms; flip angle = 75° FOV (Field of View)
= 240 mm; matrix size = 64 x 64. European cohort data was
collected using a 3.0 T Philips Integra MRI scanner. TR
(Repetition Time) = 2000 ms; TE (Time of Echo) =20 ms; flip
angle = 8% FOV (Field of View) = 224 x 224 x 136.5 mm.

C. fMRI Pre-processing

fMRI data was first transformed into Montreal
Neurological Institute standard space using Statistical
Parametric Mapping (SPM; http://www.fil.ion.ucl.ac.uk/spm)
[10]. AFNI software v17.1.03 was used for de-spiking. Then
time courses were converted to orthogonal to 1) linear,
quadratic, and cubic trends, 2) 6 realignment parameters, 3)
derivatives of realignment parameters. We used group
independent component analysis (GICA) [11] using the
Group ICA fMRI Toolbox (GIFT;
http://trendscenter.org/software/gift/) [12] on NM cohort data
and collected a set of functionally independent components.
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Figure 1: AUC score comparison of different classifier for
unharmonized and harmonized datasets considering all features.

Also used group information guided ICA (GIGICA) [13],
available through the GIFT software, algorithm to match the
70 components in the EU cohort dataset. Artificial
components were discarded, and 48 noise-free components
were selected as resting-state networks (rSN) for further
study.

D. ComBat and Machine Learning Algorithms

This study combined harmonization using the ComBat
method with a machine learning workflow. ComBat was
initially proposed in genomics to reduce the batch effects [14].
Later, several studies showed that ComBat could harmonize
different neuroimaging modalities [5, 6, 7, 8, 9]. Another
advantage of selecting ComBat is that this algorithm has a
decentralized version to harmonize data in a decentralized
fashion [15]. Decentralized algorithms do not pool data from
the original source, also do not create additional copies of the
same dataset which reduce the use of computational resources.
Another advantage of using decentralized algorithms is that
ensure privacy of the original data. ComBat is a widely used
algorithm for harmonization in the field of neuroimaging. For
machine learning algorithms, 'scikit-learn' python library was
used [16]. This study explored the most common classical
machine learning classifiers to predict healthy controls and
mTBI patients. The classifiers which were selected include
logistic regression, nearest neighbor, gaussian process, support
vector machine (SVM), decision tree, random forest, neural
network, naive Bayes, adaboost and quadratic discriminant
analysis (QDA).

III. ANALYSIS AND RESULTS

In this experiment, fMRI data was collected from two site
sources. Scan data were preprocessed to obtain rsFNC values.
Next, form a large dataset with sites’ rsFNC data. Then,
harmonized the combined dataset using the ComBat
algorithm. To minimize any potential confounding influence
of age and gender, linear regression was used to regressed out
age and sex from rsFNC data. These residuals were further
used as rsFNC data for the machine learning classifiers. The
dataset was prepared for machine learning classifiers by
splitting it into training and testing datasets (80:20). The
training dataset was used to train the classifiers and the test
data to evaluate their performances.
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Figure 2: AUC score comparison of different classifier for
unharmonized and harmonized datasets considering feature
selection.

Next, for each classifier, a tuned model was built by
performing grid-search 10-fold cross-validation providing a
set of hyperparameters and the training set as the input data.
The model with the best area under the curve (AUC) average
test score was selected as the classifier's tuned model. Feature
selection is achieved by extracting the random forest feature
importance values. The lower-dimensional features, referred
to as selected features, are obtained by keeping the features
with non-zero discriminative power. Then, the classifiers’
tuned models were trained considering two input data cases:
higher-dimensional data (all features) and lower-dimensional
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Figure 3: Flow chart of the experiment including Harmonization
and Machine Learning
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Figure 4: t-values of group-difference (mTBI-HC) (left) and
Feature Importance (right) for the harmonized dataset.

data (selected features). Tuned models’ performance
evaluated with the test data using the AUC metric.

was

The model having the best average AUC score was selected
as the classifier’s tuned model. Finally, tested the tuned
models with the test dataset and report the AUC scores. Also
performed another experiment without applying the feature
selection step in parallel and collected the results.

Similarly, repeated the analysis with unharmonized data
and collected the results. Finally, plot the AUC scores of
different classifiers for visualization and comparison. Fig. 1
shows the AUC scores of different machine learning
classifiers when trained on a harmonized and unharmonized
dataset. Results show that we got better predictive scores than
the unharmonized dataset when using harmonization. Fig. 2
shows feature selection's AUC scores of different machine
learning classifiers. We observed a similar AUC score
increase in machine learning classifiers when harmonization
was applied. Fig. 1 and Fig. 2 showed that with or without the
feature selection, the highest AUC score of 0.85 was achieved
for the nearest neighbor classifier for harmonized dataset
compared to the highest of 0.76 on the unharmonized dataset.
The performance of the algorithms on harmonized dataset
changes very slightly on few cases. Fig. 3 showed the overall
experimental setup with a flow chart.

For further analysis on the effect of harmonization we
calculate t-values of the group difference between mTBI and
healthy controls. Fig. 4 and Fig. 5 showed the t-values and
feature importance (%). First, calculated the correlation
between the t-values of group difference (mTBI-HC) and
feature importance; found that the p-value was 0.0256 for the
harmonized dataset. However, in the unharmonized dataset,
the p-value was 0.7825. Since harmonization removed
additional noise due to site effects, the true correlation
between the features and group differences was only found in
the harmonized results.

IV. DISCUSSION

When neuroimaging data is collected from various locations
worldwide, each dataset introduces additional non-biological
noise resulting from site effects. Harmonization aims to
reduce the source dependency from the combined dataset.
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Figure 5: t-values of group-difference (mTBI-HC) (left) and
Feature importance (right) for the unharmonized dataset.

This additional noise affects the machine learning classifiers
and any other statistical analysis. For data collected at two
sites that used different scanners, parameters and acquisition
methods, machine learning classifiers performed relatively
poorly in this study. After including data harmonization in the
machine learning pipeline, we found that reducing site effects
can improve machine learning classifiers performance. The
New Mexico dataset was analyzed in a previous classification
study where the authors showed that SVM has an AUC score
of 0.85 [4]. Another study also used SVM to discriminate
mTBI patients from healthy controls (HC) on a different
dataset and found an AUC score of 0.72 [17]. However, when
we combined the two-sites datasets, we found that the
performance of the SVM classifier decreased to an AUC score
of 0.62. When we harmonized the data and perform feature
selection SVM algorithm reached an AUC score of 0.72. The
predictive score decreased because the site effect heavily
affected the combined dataset. After harmonization, we
observed a high correlation between the t-values of group
difference and feature importance. Moreover, the previous
studies only considered single-source data collected by a
single scanner and the same acquisition methods.

We emphasize that no comparisons were shown between
other classifiers in previous studies. When data is combined
with another dataset from a different source, SVM performs
poorly when data remain unharmonized. A different study
[18] compared different machine learning algorithms to
predict mTBI patients from the EEG dataset. The authors
showed that Nearest Neighbor has an accuracy of around 85%
for a single source dataset. This study also found that nearest
neighbor can be the higher-performing classifier for
predicting mTBI patients. This study found that nearest
neighbor classifier showed AUC score of 0.74 before
harmonization and after harmonization the AUC score
increased to 0.85. It was a 10% improvement. Since
harmonization removed non-biological variances from the
dataset resulted in a much clear group difference (mTBI and
HC), it helped nearest neighbor classifier to perform more
accurately.

In summary, to the best of our knowledge, no previous
studies included data harmonization and machine learning
classifiers to predict mTBI patients [4, 17, 18, 19, 20]. Our
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study results showed that harmonization should be a part of a
multi-site machine learning pipeline.

V. LIMITATIONS AND FUTURE DIRECTION

Among the limitations, this study presents results only
considering fMRI data from two site sources. We explored the
performance of one harmonization algorithm; however, our
primary purpose was not to study harmonization algorithms.
Instead, we aimed to examine harmonization effects on
machine learning classification algorithms. Another
limitation may be considering one metric (AUC) to compare
classifiers’ performance. However, other metrics also showed
a similar performance increase for harmonized data. In future
studies, we plan to explore the effects of harmonization with
deep learning algorithms.

VI. CONCLUSION

Machine learning algorithms are highly dependent on the
quality of the data. Various neuroimaging studies on mTBI
have been done worldwide. Scattered data allows researchers
to access data collected at different sites to perform better
analysis. This study has shown that researchers need to
consider harmonization as an integrated part of the machine
learning workflow when working with multi-site datasets.
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