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Abstract— The APOE-¢4 allele is a known genetic risk for
Alzheimer’s disease (AD). Thus, it can be reasoned that the
APOE-¢4 allele would also impact neurodegeneration-associated
structural brain changes. Here we probe if the APOE-g4
genotype directly modulates the human brain’s gray matter
using a neural network trained on the whole-brain gray matter
images from the cognitively normally aging (CN) and AD
individuals. To investigate the linkage between the APOE-¢4
allele and whole-brain (voxel-wise) gray matter, we
systematically profile our investigation in multiple classification
tasks, including diagnostic classification and APOE-¢4
classification conjointly as well as independently. Results suggest
that although the MRI data can reliably track and reflect
neurodegenerative changes in the brain cross-sectionally, the
APOE-g4 status may not be distinguishable correspondingly.
The nonexistence of a direct and convincing modulative effect of
APOE-¢£4 on the whole-brain gray matter indicates that the gray
matter changes may be independent of the APOE-g4 status, and
instead characterize a non-APOE, comorbid mechanism in AD.

I. INTRODUCTION

The €4 allele of the Apolipoprotein E gene (APOE-£4) is a
strong genetic risk factor for Alzheimer’s disease (AD). Thus,
it can be reasoned that the APOE-¢4 allele may uniquely
impact  this  neurodegenerative  brain  condition's
morphological expression. While there is abundant literature
demonstrating that the APOE-£4 status is correlated with AD
risk and affects AD progression likewise, it is not yet explored
if the APOE-g4 genotype modulates the human brain’s gray
matter directly.

Recently, deep learning (DL) approaches have shown great
promise in diverse medical imaging applications [1-4]. DL
approaches exploit the wealth of information available from
raw or minimally preprocessed input images to facilitate the
automatic and adaptive discovery of task-discriminative
representations at multiple hierarchy levels as an integral part
of the training procedure. DL approaches are increasingly
used to study structural and functional brain imaging
modalities with the ultimate objective of understanding
mental health non-invasively [5-10]. Our recent work [7]
demonstrates using structural MRI (sMRI) data that if trained
following prevalent DL practices, DL methods have the
potential to scale particularly well and consistently

Additionally, our prior DL study on predicting progression to
AD, using baseline sMRI data alone, resulted in state-of-the-
art performance even considering multimodal studies.
Importantly, in both studies, we demonstrate how DL
approaches can provide backward mapping to the input image
space through methodical interpretations, therefore
facilitating inferences on task-specific brain mechanisms,
such as delineating the most influential data features in
predicting an attempted task.
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Figure 1: Study Workflow: This figure provides an overview of the
experimental design. The ADNI dataset

The success mentioned above, and the flexibility of DL
approaches motivate its application to the neuroimaging
objective explored in this work. To investigate the association
between the APOE-¢4 allele and whole-brain (voxel-wise)
gray matter, here we perform a structural magnetic resonance
imaging (sMRI) study to examine if the APOE-g4 status
directly modulates the whole-brain (voxel-wise) gray matter.
We probe that using a neural network trained on the whole-
brain gray matter images from the cognitively normally aging
(CN) and AD individuals from the Alzheimer's Disease

outperform standard machine learning (SML) methods in ~ Neuroimaging Initiative ~ (ADNI) data  repository,
neuroimaging  classification and  regression  tasks. Systematically profiling our investigation in multiple
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classification tasks, including diagnosis and APOE-&4 status
classification independently as well as conjointly (as detailed
in the coming sections).

II. MATERIALS AND METHODS

A. Data

The ADNI study procedures were approved by the
institutional review boards of all participating centers as
detailed in this document—https://adni.loni.usc.edu/wp-
content/uploads/how_to_apply/ADNI_Acknowledgement L
ist.pdf. Written, informed consent was obtained from all
subjects participating in the study according to the
Declaration of Helsinki, and the study was approved by the
institutional review board at each participating site.

This study worked with all cognitively normally aging
(CN: n=425), and AD (CN: n=293) individuals with
structural MRI scans available in the ADNI 1/2/GO/3 phases
(as of September 7, 2021) that passed our image
preprocessing pipeline quality check. The above-stated
numbers are post-QC sample sizes (see next section for QC
details). Notably, we used only one image per subject in all
conducted research, retaining the earliest scan passing QC for
all subjects. Detailed scanning parameters are available at
http://adni.loni.usc.edu/methods/documents/mri-protocols/.

B. Data pre-processing

The ADNI sMRI data preprocessing pipeline featured
segmentation into tissue probability maps for gray matter,
white matter, and cerebral spinal fluid using the Statistical
Parametric Mapping toolbox (SPM12). Using the same
toolbox, the segmented gray matter maps were warped to
standard Montreal Neurological Institute (MNI) space,
modulated, and smoothed using a Gaussian kernel with a full
width at half maximum (FWHM) of 6 mm. Quality control
(QC) of the preprocessed sMRI datasets included discarding
images that exhibited low correlation with individual and/or
group level masks.

C. Classification Tasks

We undertook several classification tasks based on subject
diagnosis and APOE-¢4 status. The following classification
tasks were performed - (1) 2-way diagnostic classification
(CN vs. AD), (2) 3-way APOE-¢4 status classification for the
CN and AD groups (APOE non-carriers vs. heterozygous vs.
homozygous, or APOE4=0 vs. APOE4=1 vs. APOE4=2), and
(3) 6-way combined diagnosis by APOE-e4 status
classification tasks (CN-0 vs. CN-1 vs. CN-2 vs. AD-0 vs.
AD-1 vs. AD-2).

D. Deep Learning Model and Pipeline

We trained the preprocessed gray matter volume images
using our recent deep learning model and pipeline as
implemented in our previous work [7]. This pipeline
employed an end-to-end trained convolutional neural network
(CNN) model to learn the differences in the morphological
patterns revealed in the implemented classification tasks

(Figure 1), details of which are provided in the following sub-
sections.

e DL training: Our CNN model's training and testing
routines were implemented on the NVIDIA CUDA
parallel computing platform on the TReNDS slurm-
managed cluster using the PyTorch Lightning research
framework. We used the SGD (stochastic gradient
descent) optimizer with learning rate and weight decay
parameters of 0.001 and momentum value of 0.9 in this
work. We used a batch size of 8 for all classification
tasks in this work and employed the StepLR learning
rate scheduler callback to decay the learning rate of
each parameter by a factor of 0.3 every 50 epochs.

e Cross-validation procedure:  The ADNI datasets
(n=718) were stratified into non-overlapping training
(n=512), validation (n=103) and test (n=103) partitions,
and a stratified Monte-Carlo (i.e., repeated random sub-
sampling) cross-validation procedure was employed.
Each repetition sampled the data exactly once to ensure
a consistent and valid statistical distribution of the
evaluated test metrics.

e Hyperparameter validation and model validation:
Hyperparameter tuning was employed using the
training and validation partitions to tune the optimizer
and learning rate. The SGD optimizer and a learning
rate of 0.001 were validated for this experiment. We
validated the best-performing model per the epoch with
the highest validation balanced accuracy metric in this
work. Using the validated model, we evaluated the
performance on unseen, held-out test data samples to
estimate test metrics for each cross-validation
repetition and classification task.

e Saliency Estimation: Saliency was estimated using
gradient-based sensitivity analysis [11]. More
specifically, we computed the gradients of the class
probabilities with respect to the input for determining
each pixel’s relevance with respect to the classification
decision. Subsequently, the subject level maps were
filtered using a three-dimensional Gaussian filter (with
a standard deviation of 2 with truncation at 1.75
standard deviations, equivalent to a smoothing kernel
size of 9x9x9) and scaled to a standard [0-1] range for
further group-level analysis.

E. Standard Machine Learning Models and Pipelines

Five SML methods, including logistic regression (LR) and
support vector machine method with a linear (SVML),
polynomial (SVMP), radial-basis function (SVMR), and
sigmoidal (SVMS) kernel, were used to estimate a rational
baseline to compare the performance of DL models. As
feature extraction is vital to boost the performance of SML
methods, we explored three dimensionality reduction
methods: univariate feature selection (UFS), recursive feature
elimination (RFE), and Gaussian random projection (GRP)
with hyperparameters tuned in a similar range as in our
previous work [7].
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Figure 2: This figure shows the classification performance (accuracy and balanced accuracy metrics) of our deep learning (DL)
model and five standard machine learning (SML) models for the (A) 2-way diagnostic classification (left panels) and (B) 6-way
diagnosis and APOE status classification tasks (right panels), respectively. The SML methods included logistic regression (LR),
and support vector machine methods with a linear (SVML), polynomial (SVMP), radial-basis function (SVMR), and sigmoidal
(SVMS) kernel, and the dimensionality reduction methods included univariate feature selection (UFS), recursive feature

elimination (RFE), and gaussian random projection (GRP).

III. RESULTS

A. DL Classification Performance

We observed a median classification accuracy and
balanced accuracy of 89% for the diagnostic classification (2-
way: CN vs. AD) task using our DL model (left top and
bottom panels in Figure 2), which is very similar to our
previous AD work [6] and a significant improvement (two-
tailed paired sample #-test; p < 0.05) over the best-performing
SML method (86% for LR method on GRP reduced features).
Additionally, the distribution of the DL measures has a
significantly lower spread than the SML measures for this
classification task. This observation suggests that our DL
model, when trained on sSMRI data, shows improved accuracy
to reliably track and visualize neurodegeneration-associated
changes in the brain cross-sectionally. However, for the

APOE-¢4 status classification task (3-way: APOE4=0 vs.
APOE4=1 vs. APOE4=2), accuracy levels were at chance,
suggesting that APOE-¢4 status may not be reflected in gray
matter maps.

To ascertain the absence of a direct and convincing
modulative effect of APOE-¢4 on whole-brain gray matter,
we also trained our neural network for prediction of APOE-
€4 status when the two tasks are trained conjointly (6-way:
CN-0 vs. CN-1 vs. CN-2 vs. AD-0 vs. AD-1 vs. AD-2). We
observed a median accuracy and balanced accuracy of 53%
and 40% for this conjoint task, respectively, although the
chance prediction level was approximately 17% (right top and
bottom panels in Figure 2). For this task, the accuracy of SML
methods was very similar to our DL model, but the balanced
accuracy dropped significantly, as seen in the bottom right
panel of Figure 2.
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Figure 3: Aggregate (group-level) saliency maps were computed to introspect the MRI correlates of APOE status for the diagnostic classification task.
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Figure 4: Aggregate (group-level) saliency maps were computed to introspect the MRI correlates of APOE status for the conjoined diagnosis and APOE

status classification task.

Nonetheless, since this is a pooled task, it is reasonable to
assume that the performance was driven by the easier of the
two tasks, which is the diagnosis here. We further interrogate
this by exploring the saliency distributions in the different
brain regions for these tasks as the next sub-section covers.

B. Brain saliency mapping

Now, if our neural network is indeed learning APOE-g4
status, we expect those differences to appear on the saliency
maps. However, as revealed by Figure 4, the saliences are
very similar within the diagnostic groups and like the patterns
indicated in the diagnostic classification task (Figure 3).

Notably, the highest saliency values localized in distinct
temporal lobe regions for both groups in both tasks align with
previous literature. Overall, the saliency results confirm that
our deep learning multi-class task classifier primarily
recorded diagnostic information rather than learning the
APOE-¢4 status.

IV. DISCUSSION

This study sought evidence for APOE-e4 associated
morphological variations detectable directly at the whole-
brain voxel level. Results suggest that the sMRI data, when
probed with DL, can accurately and reliably predict
neurodegenerative diagnostic categories. However, the
APOE-¢4 status does not appear to be uniquely reflected in
the gray matter. Our observations thus suggest that gray
matter changes may be independent of APOE-e4 status and
may characterize a non-APOE, comorbid mechanism in AD.

Although limited by small sample size, this study is
distinctly indicative of the trends in cross-examining APOE-
€4 status directly from gray matter. Further exploratory work
could involve pooling the available AD data from other
studies and additionally exploring other phenotypes and
assessments relevant to AD. Crucially, an extension of the
undertaken approach to large-scale univariate or multivariate
zygosity testing in single nucleotide polymorphisms, for
example, through single-task or multi-task learning, could aid
in reliable identification of individuals at risk of AD.
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