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Abstract—Privacy protection is one of the most crucial factors
when sharing MR images between researchers. There are many
defacing software programs that can blur or remove the face
of MR images. However, there are reasons to believe that the
brain and other remaining features are not only identifiable but
also can be used for facial reconstruction to fill the face of the
subject back into the image, and it is possible to rebuild the facial
part of the images using recently developed machine learning
models. A demonstration of this is of practical significance as
it could convince the community to adopt stricter data-sharing
standards. Additionally, even if the reconstructed faces are not
identifiable, smooth completion of the ’damaged” MRI images
may improve methods that depend on the head modeling, such
as source localization approaches. Recent work has been focusing
on using the generative adversarial networks (GAN) for this task,
which is generally believed to be the best method. Because we
hope the model can generate the face entirely depending on
the information from the brain, we show here an alternative
approach, pixel constrained CNN, which is a purely supervised
facial reconstruction. We simulated the rebuild process and
showed convincing results.

Index Terms—Neuroimaging, Refacing, Privacy protection

I. INTRODUCTION

Privacy-preserving Deep learning of MRI (Magnetic Res-
onance Imaging) patient data is—Ilike any security-related
field—an ever-evolving game of cat and mouse. Like the
adversarial atmosphere of security, generative adversarial net-
works by way of CycleGAN have been used to demonstrate
refacing techniques that weaken anonymizing characteristics
of defacing [1]. While striving to protect patient anonymity in
the field of neuroscience, the white hats (neuroscientists, deep
learning researchers, data scientists, security researchers, and
regulators) must determine what parties to trust (e.g., patients,
developers, researchers, software, and hardware providers) and
reduce the number of trusted parties to as few as is reasonable.
There is a balance that benevolent parties must discern be-
tween reasonable levels of privacy protections and added cost
to the research process. Concomitantly, what historically once
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may have been a reasonable security measure will eventually
be obsolete, as our work will show in the case of defacing
MRIs to protect identity.

When a security practice is shown to be obsolete, it should
be replaced with better methods to protect patient privacy.
There is little value in continuing to use easily subverted
countermeasures when they not only fail to protect privacy,
as our research shows in the case of defacing, but also when
those methods have the potential to increase the probability
of incorrect analysis due to artifacts that may be introduced
into the processed MRI [2]. MRI is an imaging technique
that utilizes strong magnetic fields to align the orientation of
protons in organic tissues. Additionally, radio frequencies (RF)
are used to perturb protons from their magnetically induced
alignment a finite amount. The photon from the RF wave
deposits energy into the proton. When the radio frequencies
are removed, another photon is emitted as the proton realigns
with the strong magnetic field. The photon released during
realignment of the proton with the strong magnetic field can be
measured and used to create an image. MRI is useful in such
fields as neuroscience, cardiology, and orthopedics. Essentially
any time a physician would like to image internal structures of
the human body, MRI is a significant tool. However, despite
the usefulness of MRI, we will show that ensuring anonymity
of the patient data is becoming increasingly difficult due to
generative and transformational neural network models such as
Pixel Constrained CNN, which we use to inpaint faces (reface)
in zeroed out regions of an MRI that have been removed for
the purpose of privacy—a practice known as defacing. Implicit
in the practice of defacing and refacing is the premise that
brain images cleaned of the face do not contain personally
identifiable information or enough data to reconstruct that
information. Our work demonstrates that the assumption of in-
dependence of face and brain may be flawed. We demonstrate
that defaced MRIs can be reconstructed using freely available
deep learning generative models such as pixel constrained
CNN [1]. As generative models continue to evolve, the ability
of these models to reface personally identifiable information
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will only further make current defacing methods obsolete. The
reasons why the brain and face are not independent in their
structure are probably biological due to dependencies on DNA.
Some neurological disorders have associated facial affects [3].
Both the face and the brain are a function of the DNA of a
single individual, so there are reasons for potential correlation.
More formally, one may consider the human body a non-linear
dynamical system, and such systems often exhibit coupling
and correlation in seemingly distinct modules [4].

Our work demonstrates that the face can be reconstructed
after refacing. We used two methods to deface the MRI, and no
matter which one is used, our model (Pixel Constrained CNN)
can regenerate the face with a high SSIM. The regenerated
image not only has the shape of a human being, but also has
plausible details such as correct muscle structure and features.

The main contributions and advantages of defacing and
refacing MRI can be summarized as:

o We demonstrate that current state-of-art defacing methods
do not sufficiently protect patient’s privacy.

o We establish that image orientation and mask construc-
tion can optimize the effects of Pixel Constrained CNN’s
receptive field on refacing results.

o We utilize image compression in a way that makes predic-
tion computationally efficient without losing significant
qualitative image fidelity of refacing results.

II. RELATED WORK

The structure of the regions of the brain and the facial
features exhibit measurable correlation. Facial features can be
derived from DNA with varying levels of accuracy [3], [5]-
[10]. DNA, brains and the human body behave as non-linear
dynamical systems, and non-linear dynamical systems often
exhibit high degrees of coupling [4], [11], [12]. Structures
within the brain exhibit correlations inactivation during emo-
tional changes [12]. Some genetic disorders are marked by
facial as well as brain changes [3].

Another nail in the coffin of defacing is the phenomenon of
covariance shift-related problems in deep learning. Covariance
shift problems are a common problem in deep learning, yet
they are infrequently known as such. This problem, also
known as domain shift, is related to catastrophic forgetting
in continuous learning. Covariance shift problems occur when
there are changes to the distribution of training and test set
data, such as a new MRI machine, different cameras, different
lighting conditions, different camera angles, or increased noise
in the input to the neural network. These will result in higher
than expected error rates. Defacing or refacing presents a
possible way to introduce a nontrivial covariance shift that
could fail analysis models. Analysis algorithms trained with
one face removal or replacement algorithm will be more
likely to fail when presented with inputs that are dissimilar
to training in the types of artifacts and noise such algorithms
might introduce. Discerning how much defacing and refacing
methods will impact the generalizability of neural network
models during their lifecycle is difficult-except to say most
likely negatively.

In a similar problem, Goodfellow proposes the famous
adversarial example of adding engineered noise via the fast
gradient sign method to an image and changing the predicted
class from panda to gibbon [13]. Adversarial examples prove
that neural networks are not always robust to covariance shift.

Rather than introducing a potential covariance shift that has
become increasingly outmoded, one seeking to protect privacy
has the opportunity to choose from myriad and growing
existing privacy-preserving solutions that can replace or aug-
ment defacing in MRI. Homomorphic encryption that allows
computation only on encrypted data may have been used in
privacy preservation [14]-[23]. Federated learning that allows
for data and models to be split among multiple parties could
also be used to solve privacy issues [18], [20], [21], [24]-
[32]. Blockchain is still another solution to patient privacy that
allows tracking of computation and trusted parties [18], [33]-
[37]. Trusted execution environments that implement hardware
restrictions to access are yet another solution [18], [21]-[23],
[29], [37]-[40]. With so many solutions, we can move to newer
and better standards to protect the privacy and keep the number
of trusted parties minimal.

III. IMAGE INPAINTING

Image inpainting is a problem where some portion of an
image is masked by element-wise multiplication with a binary
matrix of equivalent size. In general, given an Image I, , .
and binary mask M, , ., inpainting takes as input a value,
I ® M where © is element-wise multiplication with the binary
mask.

When element-wise multiplication with 1 occurs, the orig-
inal image pixel remains as it was. When element-wise mul-
tiplication with 0 occurs, the information about that pixel is
destroyed. Thus, the mask tensor plays the role of a binary
gate for each pixel in the original input image or MRI.

Image inpainting is an exciting problem in that it can be
made arbitrarily simple (fill in a monochromatic image) or
complex (fill in a masked out a tumor in the brain). One
can imagine other challenging scenarios for reconstruction in
sports and action photos requiring an understanding of the
causality of the scene if key parts are removed. Reproducing
engineering schematics that are redacted is approaching an Al-
complete problem. The range of difficulty is worth pointing
out because the history of image inpainting with deep neural
networks has success somewhere between these extremes of
arbitrarily simple and potentially Al-complete. However, each
of these implementations can be made to have failure cases if
the masks at the testing time are different from the masks
at the training time or if there is a domain shift in the
training data, such as shifting from celeb-a to ImageNet. Image
inpainting on celeb-a is much closer to the type of problem
of image inpainting on MRI because celeb-a is of a single
super-class—much like MRI in neuroscience. However, often
MRI datasets are much smaller than celeb-a. MRI datasets
requiring defacing are generally similar in class cardinality
and structure (there is a single class of similarly structured
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images). This consistency increases the likelihood of learning
success and decreases the training time.

Because one can see consistent improvements in the quality
and difficulty of inpainting over time, the time to improve
privacy-preserving measures in neuroscience approaches. In-
painting models will only make the premise of this paper
that one can infer facial features from surrounding features
more probable in its ability to compromise privacy. One
can envision models with larger receptive fields, and more
semantic understanding can learn from a large corpus of MRI
and thus more accurately reconstruct inpainted facial features.

IV. PIXELCNN, PIXENCNN++, AND GATED PIXELCNN

Pixel by pixel image generation was effectively imple-
mented in PixelRNN and PixelCNN formats as a generative
model for unsupervised image modeling [41]. PixelCNN was
not explicitly adapted for image inpainting at the outset,
although being a generative model with decent scalability,
speed, and effectiveness, Pixel CNN was destined to be adapted
for this purpose. The authors of PixelCNNs also created
PixelRNNs, which are more accurate in generating models, but
much slower. PixelCNNs have a bounded receptive field near
the pixel being generated. A mask is used to bound the context
for a generated pixel at index ¢ to only previously generated
pixels—modeling the conditional probabilities of (1). Prior to
pixel by pixel generation, image generation has completed
a section or entire image at a time via convolution, dilated
convolution, and deconvolution architectures [42], [43]. In
PixelCNN, each unknown pixel is modeled as conditional
probabilities on other known pixels, as one can see in (1).
x; represents the i, pixel in the image, and n is the width of
the input image.

p(x) = Hp(xi|$i—1,-~-,$1) (D
i=1

PixelCNN has numerous extensions, such as Pixel CNN++
and gated pixel CNN. PixelCNN++ replaced several aspects
of Pixel CNN that were obsolete-replacing softmax, increasing
the receptive field, adding skip connections, and using dropout
regulation [44]. These now fairly standard model improve-
ments created a much more robust generative model. Gated
pixel CNN focuses on the conditional generation of images
[45]. Additionally, as the name implies, a gating mechanism
is added to the convolutions to help gradient propagation.
However, the conditional image generation introduces the
opportunity to apply pixel CNNs to inpainting, though the
work focuses on more general conditional image generation
from one hot encoding and portrait embeddings. In (2), h
represents the added conditions that help to generate an image
based on a specific limitation.

’I’L2

p(xh) = [ [ p(zilzio, ... x1,h) 2)

i=1
The gated pixel CNN can generate images from one-hot
encodings of image classes as well as portrait embeddings

(represented by h in (2)). Gated pixel CNN remarkably per-
forms image inpainting, but it is conditional image generation
from a latent space, a subtle but important difference. It is also
demonstrated to perform well as an auto-encoder.

V. PROBABILISTIC SEMANTIC INPAINTING WITH PIXEL
CONSTRAINED CNNSs

Pixel constrained CNNs introduce the capability to condi-
tionally generate images in the domain of inpainting that are
a function of the image x and conditional values c.

p(xle) = ] pl@ilzic1,... z1,¢) 3)
iz ¢e

c in the context of image inpainting is a function of mask M
and image z. The architecture of pixel constrained CNNs has
two conceptual networks—a prior network that is a gated pixel
CNN and a conditioning network that is a resnet. The prior net-
work receives the ground truth but uses masked convolution to
constrain the receptive field of the network to only previously
generated pixels. The conditioning network takes two inputs—a
masked image X © M and the mask itself M —each of the same
size. The inputs are concatenated together (X ®@ M) || M before
being fed into the conditioning network. The logits of both the
prior network and the conditioning network are combined to
predict the intensity of each generated pixel, and cross-entropy
loss is used to teach the network based on the correctness of its
answers. A prior network is fed the ground truth input during
training to aid the network in learning representations. At
inference time, the network is sampled to create unique images
with different likelihoods from the test set. Pixel constrained
CNN is effective at inpainting images of the celeb-a dataset
when compared against gan and neural process [1].

VI. DATASET

Our dataset was collected at the Mind Research Network
(MRN) was used for this study. Data were collected on
Siemens 3 T TIM Trio scanner, located at MRN, using a 12-
channel head coil. High resolution T1-weighted images were
acquired with a 5-echo multi-echo MPRAGE sequence [TE
(echo times) = 1.64, 3.5, 5.36, 7.22, 9.08 ms, TR (repetition
time) = 2.53 s, TI (inversion time) = 1.2 s, 7deg flip angle,
number of excitations (NEX) = 1, slice thickness = 1 mm,
field of view (FOV)= 256 mm, resolution = 256 x 256. There
is a total of 946 samples in the dataset. We used 800 randomly
selected samples as our training set and the remaining for the
testing set.

VII. METHODS
A. Methods for Defacing

We used two methods for defacing MRI. One is fsl_deface
which is considered the best existing method at preventing face
recognition in part because it removes the eyes and has minor
effects on brain measurement [46]. Another method is mri_-
deface. mri_deface method has also been used as the defacing
algorithm prior to refacing with CycleGAN [47]. Similarly
as Abramian’s and Eklund’s work, We compare the structural
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similarity index (SSIMs) between the defaced images (from
both fsl_deface and mri_deface) to the ground truth image
[48]. SSIM is used to measure the similarity between two
images. Generally speaking, the higher the SSIM is, the more
similar the two images are. The comparison is shown in figure
1. So one can clearly see that the similarity of MRIs defaced
by fsl_deface is far lower to the original image than defaced
by mri_deface which means fsl_deface is better in defacing.

In figure 2, we can see that mri_deface can mask out more
pixels from the MRI. However, the problem is that a part
of the eyes is still there, leaving important information for
reconstructing the original face.

SSIM

| ol bbbl sl

0 200 400 600 a00
image index

Fig. 1. SSIM Comparison Between Defacing mri_deface and fsl_deface on
Whole Dataset

B. Data Preprocessing

The data we have has a size of 256 by 256 pixels. We
use OpenCV to resize the image to 128 by 128 pixels to
save model space on GPU and allow for larger batch sizes.
We reduced the pixel intensity from 8-bit (with a range of 0
to 255) to 3-bit(with a range of 0 to 7) so that our model
(Pixel Constrained CNN) calculates the likelihood of each
pixel within reasonable uncertainty bounds. From Figure 3
we can see that even when the processed data has a lower
resolution and pixel intensity, the integrity of the original data
is largely maintained by looking through the human eye.

C. Model

The model we use is Pixel Constrained CNN described in
section V. Pixel Constrained CNN has a receptive field at pixel
i dependent not only on the rows above the pixel and the
partial row to the left of pixel ¢, but also on a global overview
of each pixel in the image [1]. As a result, we orient our facial
images face down, as seen in figure 4. The masked image and
mask are fed into Pixel Constrained CNN as input to obtain
refaced output—see figure 4. By applying Pixel Constrained
CNN, our model can collect information from the face, brain,
jaw, forehead, and any image part. This will better help to
predict a facial shape.

D. Training

We trained our model through backpropagation with 500
epochs in pytorch. We set our prior network with 19 layers
and conditional network with 32 layers. 32 layers for the
conditional network is because we want the model to have the
largest receptive field of the image so that we can condition
on as much information as possible. Also, we set a 5 by 5

mri_deface

ground_truth

fsl_deface

Fig. 2. Examples of mri_deface, Ground Truth and fsI_deface

kernel for each network and a cosine annealing schedule for
a learning rate of 0.00005.

In figure 4, the input of the model has two components.
One component is for the input of the prior network, which
should be the original image (4a). The other component for
the conditioning network is a two-channel tensor consisting of
one channel, the defaced image, and the second channel, the
relative mask (4d). As we can see all the images in figure 4, we
rotate them from face-right to face-down. Because PixelCNN
starts to generate pixels from the top-left points. We want our
model to estimate the likelihood of each pixel based on as
much information as is available from the unmasked portion
of the MRI.

VIII. RESULTS

The structural similarity index measure(SSIM) is considered
one of the best measures to evaluate the similarity between two
images [49]. We use this method to evaluate the generated
images’ quality. We randomly selected five images from the
held-out test dataset and demoed them with defacing by
MRI_dface and fsl_deface. From the two demo plots on both
experiments in figure 5 and figure 6, we can see that no matter
what method is used to remove the face, our model can have
a good prediction. One trend we observed through the 146
demos from the test data was that the MRI with a larger head
shape and prominent neck will result in better reconstruction,
such as in demos 1 and 4 in both figure 5 and figure 6. In
demo 5, the neck part is missing from the MRI compared

Ground Truth

Processed Data

Fig. 3. Comparison between the processed image and ground truth. The left
image is a processed image with lower resolution and lower intensity. The
right image is the ground truth
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Mask Masked Image Cond Net Input

(a) (b) (© (d)

Fig. 4. From left to right. (a) is the processed image which will input to
a prior network. (b) is the mask of relative image.(c) is masked out deface
image. (d) is the concatenated of mask and the defaced image. This 2 channel
image will input to the conditional network for feature extraction

demo 1 demo 2 demo 3 demo 4 demo 5

output input

target

Fig. 5. Demo on Samples Defaced by fsl_deface. The first row is the input
which are defaced image. The second row is the generated images. The third
row is the ground truth.

to the other four demos, and the reconstruction is of lower
quality. We anticipate that such anomalies would go away with
larger data sets or more data augmentation, although these
approaches would increase training time. The demo results in
figure 5 and figures 6 are both generated from the held-out
testing dataset.

demo 1 demo 2 demo 3 demo 4 demo 5

output input

target

Fig. 6. Demo on Samples Defaced by mri_deface. The first row is the input
which are defaced image. The second row is the generated images. The third
row is the ground truth.

Looking through the plot of loss in figure 7, We can see
a tendency towards overfitting in the most general sense of
the term (loss on training would be better than the loss on
the test set). There were diminishing returns on how much
improvement in training resulted in improvement in the test
set loss. Initially, we would always try to maintain parity
between training loss and test loss and avoid any overfitting
with early stopping. However, early stopping would result in

The Curve of Cross-Entropy Loss
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Fig. 7. The Cross-Entropy Loss in Epochs

a lack of precise qualitative results on training and test sets.
For example, the shape of the face would be incorrect with
early stopping, although the loss would be better. However,
qualitative improvements in the test set are not reflected by
the loss measures. Additionally, overfitting is quite difficult
to avoid with such a small dataset. When we increase the
iterations from 100 to 500 epochs, the model can have a
tremendous qualitative performance not only on the trained
800 samples but also would have good generations on the held-
out 146 samples which we have shown in figure 5 and figure 6.
Although the loss of the test curve keeps going up, the genera-
tion process in the test set still performed well qualitatively. We
check that there are no duplicated samples between the training
and testing datasets. In general, a higher cross-entropy loss
and qualitative accuracy will not be perfectly correlated. Some
incorrect predictions can have a significantly larger effect than
correct predictions. We speculate that the model is learning
the face structure, as evidenced by the qualitative results, but
cannot reproduce the exact face with as high of precision as
indicated by the loss values.

In figure 8, the green line represents the SSIM between
defaced image and ground truth. Compared with figure 1,
the SSIM of the defaced image is numerically increased.
This is because our prepossessing reduced the MRI resolution
and pixel intensity. While the blue line represents the SSIM
between refaced image and ground truth. The defacing process
is based on fs/_deface. We can see that after prediction by
Pixel Constrained CNN, the SSIM of the refaced image has
increased. Although the increase is not significant, in our
experiments, the pixel intensity is only 3-bit, and the changing
of SSIM is only affected by the part of the masked pixels.

Figure 9 shows a comparison between image defaced by
fsl_deface and mri_deface. From the plot, face reconstruction
through Pixel Constrained CNN has a better performance on
fsl_deface. We assume that it is because mri_deface can zero
out more pixels at the direct back of the nose of MRI. We
observed that the nose is the hardest part to generate through
our experiments.
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Fig. 8. Comparison of SSIM before and after predicted by Pixel Constrained
CNN. The blue line is the SSIM of our newly generated images, compared
with the green line, which is the SSIM before refacing
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SSIM of generated images between defacing by mri_deface and fsi_-

IX. DISCUSSION AND CONCLUSIONS

We can get reasonably good reconstructions of faces no
matter what defacing method used. These results demonstrate
that privacy still at risk despite defacing techniques. By
reducing the resolution and intensity of the defaced images,
we simplified the network’s calculations and improved our
likelihood predictions and meanwhile keeping the main feature
of the subject. We observe that the most challenging part of
reconstructing is the nose. We also observe that the larger the
masked region, the more difficult it is to reconstruct based on
our comparisons of mri_deface and fsl_deface.

Prior work in the relationship between DNA and facial
features mentions that the nose is affected most by genes [50].
Because we can often reconstruct the nose from the defaced
MRI, we surmise that these nose genes may also affect brain
structures.

Increasing the size of our dataset would greatly help recon-
struct masked regions. Additionally, 3d reconstruction is the
next step of this research. The pipeline that an attacker could
easily take to compromise security fully would require lifting
images from 3d reconstructions of defaced MRI and search-
ing images available in social media databases for nearest
matches. Furthermore, we think our research has implications
for criminology and anthropology. In anthropology, one could
reconstruct ancient humans’ brain structures or faces from
their remains by masking out different regions and applying
continuous learning (bringing what is learnable from modern
MRI data into this field). In criminology, head trauma could
be removed from data to identify the remains of victims.

Most importantly, we would like to inform the research
community in neuroscience that current defacing measures
are quickly becoming obsolete. We as a community have a
responsibility to protect privacy. Organized crime and state-

sponsored actors could easily afford to create the larger corpus
of MRI necessary to reconstruct de-identified images using our
methodology. Such methodologies could already be in place,
and thus our community needs to implement more rigorous
techniques to protect patient identities.

Based on our observation that larger masks are more chal-
lenging to reconstruct, it is clear that one should segment the
brain and remove the nasal and throat structures in addition
to only removing the face. Productive future research going
forward might use brain segmentation to mask out these
features in new defacing algorithms.
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