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Abstract—Privacy protection is one of the most crucial factors
when sharing MR images between researchers. There are many
defacing software programs that can blur or remove the face
of MR images. However, there are reasons to believe that the
brain and other remaining features are not only identifiable but
also can be used for facial reconstruction to fill the face of the
subject back into the image, and it is possible to rebuild the facial
part of the images using recently developed machine learning
models. A demonstration of this is of practical significance as
it could convince the community to adopt stricter data-sharing
standards. Additionally, even if the reconstructed faces are not
identifiable, smooth completion of the ”damaged” MRI images
may improve methods that depend on the head modeling, such
as source localization approaches. Recent work has been focusing
on using the generative adversarial networks (GAN) for this task,
which is generally believed to be the best method. Because we
hope the model can generate the face entirely depending on
the information from the brain, we show here an alternative
approach, pixel constrained CNN, which is a purely supervised
facial reconstruction. We simulated the rebuild process and
showed convincing results.

Index Terms—Neuroimaging, Refacing, Privacy protection

I. INTRODUCTION

Privacy-preserving Deep learning of MRI (Magnetic Res-

onance Imaging) patient data is—like any security-related

field—an ever-evolving game of cat and mouse. Like the

adversarial atmosphere of security, generative adversarial net-

works by way of CycleGAN have been used to demonstrate

refacing techniques that weaken anonymizing characteristics

of defacing [1]. While striving to protect patient anonymity in

the field of neuroscience, the white hats (neuroscientists, deep

learning researchers, data scientists, security researchers, and

regulators) must determine what parties to trust (e.g., patients,

developers, researchers, software, and hardware providers) and

reduce the number of trusted parties to as few as is reasonable.

There is a balance that benevolent parties must discern be-

tween reasonable levels of privacy protections and added cost

to the research process. Concomitantly, what historically once

This work was funded in part by NIH RF1MH121885, R01MH123610,
R01EB006841 and NSF 2112455 grants.

may have been a reasonable security measure will eventually

be obsolete, as our work will show in the case of defacing

MRIs to protect identity.

When a security practice is shown to be obsolete, it should

be replaced with better methods to protect patient privacy.

There is little value in continuing to use easily subverted

countermeasures when they not only fail to protect privacy,

as our research shows in the case of defacing, but also when

those methods have the potential to increase the probability

of incorrect analysis due to artifacts that may be introduced

into the processed MRI [2]. MRI is an imaging technique

that utilizes strong magnetic fields to align the orientation of

protons in organic tissues. Additionally, radio frequencies (RF)

are used to perturb protons from their magnetically induced

alignment a finite amount. The photon from the RF wave

deposits energy into the proton. When the radio frequencies

are removed, another photon is emitted as the proton realigns

with the strong magnetic field. The photon released during

realignment of the proton with the strong magnetic field can be

measured and used to create an image. MRI is useful in such

fields as neuroscience, cardiology, and orthopedics. Essentially

any time a physician would like to image internal structures of

the human body, MRI is a significant tool. However, despite

the usefulness of MRI, we will show that ensuring anonymity

of the patient data is becoming increasingly difficult due to

generative and transformational neural network models such as

Pixel Constrained CNN, which we use to inpaint faces (reface)

in zeroed out regions of an MRI that have been removed for

the purpose of privacy–a practice known as defacing. Implicit

in the practice of defacing and refacing is the premise that

brain images cleaned of the face do not contain personally

identifiable information or enough data to reconstruct that

information. Our work demonstrates that the assumption of in-

dependence of face and brain may be flawed. We demonstrate

that defaced MRIs can be reconstructed using freely available

deep learning generative models such as pixel constrained

CNN [1]. As generative models continue to evolve, the ability

of these models to reface personally identifiable information
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will only further make current defacing methods obsolete. The

reasons why the brain and face are not independent in their

structure are probably biological due to dependencies on DNA.

Some neurological disorders have associated facial affects [3].

Both the face and the brain are a function of the DNA of a

single individual, so there are reasons for potential correlation.

More formally, one may consider the human body a non-linear

dynamical system, and such systems often exhibit coupling

and correlation in seemingly distinct modules [4].

Our work demonstrates that the face can be reconstructed

after refacing. We used two methods to deface the MRI, and no

matter which one is used, our model (Pixel Constrained CNN)

can regenerate the face with a high SSIM. The regenerated

image not only has the shape of a human being, but also has

plausible details such as correct muscle structure and features.

The main contributions and advantages of defacing and

refacing MRI can be summarized as:

• We demonstrate that current state-of-art defacing methods

do not sufficiently protect patient’s privacy.

• We establish that image orientation and mask construc-

tion can optimize the effects of Pixel Constrained CNN’s

receptive field on refacing results.

• We utilize image compression in a way that makes predic-

tion computationally efficient without losing significant

qualitative image fidelity of refacing results.

II. RELATED WORK

The structure of the regions of the brain and the facial

features exhibit measurable correlation. Facial features can be

derived from DNA with varying levels of accuracy [3], [5]–

[10]. DNA, brains and the human body behave as non-linear

dynamical systems, and non-linear dynamical systems often

exhibit high degrees of coupling [4], [11], [12]. Structures

within the brain exhibit correlations inactivation during emo-

tional changes [12]. Some genetic disorders are marked by

facial as well as brain changes [3].

Another nail in the coffin of defacing is the phenomenon of

covariance shift-related problems in deep learning. Covariance

shift problems are a common problem in deep learning, yet

they are infrequently known as such. This problem, also

known as domain shift, is related to catastrophic forgetting

in continuous learning. Covariance shift problems occur when

there are changes to the distribution of training and test set

data, such as a new MRI machine, different cameras, different

lighting conditions, different camera angles, or increased noise

in the input to the neural network. These will result in higher

than expected error rates. Defacing or refacing presents a

possible way to introduce a nontrivial covariance shift that

could fail analysis models. Analysis algorithms trained with

one face removal or replacement algorithm will be more

likely to fail when presented with inputs that are dissimilar

to training in the types of artifacts and noise such algorithms

might introduce. Discerning how much defacing and refacing

methods will impact the generalizability of neural network

models during their lifecycle is difficult–except to say most

likely negatively.

In a similar problem, Goodfellow proposes the famous

adversarial example of adding engineered noise via the fast

gradient sign method to an image and changing the predicted

class from panda to gibbon [13]. Adversarial examples prove

that neural networks are not always robust to covariance shift.

Rather than introducing a potential covariance shift that has

become increasingly outmoded, one seeking to protect privacy

has the opportunity to choose from myriad and growing

existing privacy-preserving solutions that can replace or aug-

ment defacing in MRI. Homomorphic encryption that allows

computation only on encrypted data may have been used in

privacy preservation [14]–[23]. Federated learning that allows

for data and models to be split among multiple parties could

also be used to solve privacy issues [18], [20], [21], [24]–

[32]. Blockchain is still another solution to patient privacy that

allows tracking of computation and trusted parties [18], [33]–

[37]. Trusted execution environments that implement hardware

restrictions to access are yet another solution [18], [21]–[23],

[29], [37]–[40]. With so many solutions, we can move to newer

and better standards to protect the privacy and keep the number

of trusted parties minimal.

III. IMAGE INPAINTING

Image inpainting is a problem where some portion of an

image is masked by element-wise multiplication with a binary

matrix of equivalent size. In general, given an Image Im,n,c

and binary mask Mm,n,c, inpainting takes as input a value,

I»M where » is element-wise multiplication with the binary

mask.

When element-wise multiplication with 1 occurs, the orig-

inal image pixel remains as it was. When element-wise mul-

tiplication with 0 occurs, the information about that pixel is

destroyed. Thus, the mask tensor plays the role of a binary

gate for each pixel in the original input image or MRI.

Image inpainting is an exciting problem in that it can be

made arbitrarily simple (fill in a monochromatic image) or

complex (fill in a masked out a tumor in the brain). One

can imagine other challenging scenarios for reconstruction in

sports and action photos requiring an understanding of the

causality of the scene if key parts are removed. Reproducing

engineering schematics that are redacted is approaching an AI-

complete problem. The range of difficulty is worth pointing

out because the history of image inpainting with deep neural

networks has success somewhere between these extremes of

arbitrarily simple and potentially AI-complete. However, each

of these implementations can be made to have failure cases if

the masks at the testing time are different from the masks

at the training time or if there is a domain shift in the

training data, such as shifting from celeb-a to ImageNet. Image

inpainting on celeb-a is much closer to the type of problem

of image inpainting on MRI because celeb-a is of a single

super-class–much like MRI in neuroscience. However, often

MRI datasets are much smaller than celeb-a. MRI datasets

requiring defacing are generally similar in class cardinality

and structure (there is a single class of similarly structured
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images). This consistency increases the likelihood of learning

success and decreases the training time.

Because one can see consistent improvements in the quality

and difficulty of inpainting over time, the time to improve

privacy-preserving measures in neuroscience approaches. In-

painting models will only make the premise of this paper

that one can infer facial features from surrounding features

more probable in its ability to compromise privacy. One

can envision models with larger receptive fields, and more

semantic understanding can learn from a large corpus of MRI

and thus more accurately reconstruct inpainted facial features.

IV. PIXELCNN, PIXENCNN++, AND GATED PIXELCNN

Pixel by pixel image generation was effectively imple-

mented in PixelRNN and PixelCNN formats as a generative

model for unsupervised image modeling [41]. PixelCNN was

not explicitly adapted for image inpainting at the outset,

although being a generative model with decent scalability,

speed, and effectiveness, PixelCNN was destined to be adapted

for this purpose. The authors of PixelCNNs also created

PixelRNNs, which are more accurate in generating models, but

much slower. PixelCNNs have a bounded receptive field near

the pixel being generated. A mask is used to bound the context

for a generated pixel at index i to only previously generated

pixels–modeling the conditional probabilities of (1). Prior to

pixel by pixel generation, image generation has completed

a section or entire image at a time via convolution, dilated

convolution, and deconvolution architectures [42], [43]. In

PixelCNN, each unknown pixel is modeled as conditional

probabilities on other known pixels, as one can see in (1).

xi represents the ith pixel in the image, and n is the width of

the input image.

p(x) =
n2∏

i=1

p(xi|xi−1, . . . , x1) (1)

PixelCNN has numerous extensions, such as PixelCNN++

and gated pixel CNN. PixelCNN++ replaced several aspects

of PixelCNN that were obsolete–replacing softmax, increasing

the receptive field, adding skip connections, and using dropout

regulation [44]. These now fairly standard model improve-

ments created a much more robust generative model. Gated

pixel CNN focuses on the conditional generation of images

[45]. Additionally, as the name implies, a gating mechanism

is added to the convolutions to help gradient propagation.

However, the conditional image generation introduces the

opportunity to apply pixel CNNs to inpainting, though the

work focuses on more general conditional image generation

from one hot encoding and portrait embeddings. In (2), h

represents the added conditions that help to generate an image

based on a specific limitation.

p(x|h) =
n2∏

i=1

p(xi|xi−1, . . . , x1, h) (2)

The gated pixel CNN can generate images from one-hot

encodings of image classes as well as portrait embeddings

(represented by h in (2)). Gated pixel CNN remarkably per-

forms image inpainting, but it is conditional image generation

from a latent space, a subtle but important difference. It is also

demonstrated to perform well as an auto-encoder.

V. PROBABILISTIC SEMANTIC INPAINTING WITH PIXEL

CONSTRAINED CNNS

Pixel constrained CNNs introduce the capability to condi-

tionally generate images in the domain of inpainting that are

a function of the image x and conditional values c.

p(x|c) =
∏

i:xi /∈c

p(xi|xi−1, . . . , x1, c) (3)

c in the context of image inpainting is a function of mask M

and image x. The architecture of pixel constrained CNNs has

two conceptual networks–a prior network that is a gated pixel

CNN and a conditioning network that is a resnet. The prior net-

work receives the ground truth but uses masked convolution to

constrain the receptive field of the network to only previously

generated pixels. The conditioning network takes two inputs–a

masked image X»M and the mask itself M–each of the same

size. The inputs are concatenated together (X»M)∥M before

being fed into the conditioning network. The logits of both the

prior network and the conditioning network are combined to

predict the intensity of each generated pixel, and cross-entropy

loss is used to teach the network based on the correctness of its

answers. A prior network is fed the ground truth input during

training to aid the network in learning representations. At

inference time, the network is sampled to create unique images

with different likelihoods from the test set. Pixel constrained

CNN is effective at inpainting images of the celeb-a dataset

when compared against gan and neural process [1].

VI. DATASET

Our dataset was collected at the Mind Research Network

(MRN) was used for this study. Data were collected on

Siemens 3 T TIM Trio scanner, located at MRN, using a 12-

channel head coil. High resolution T1-weighted images were

acquired with a 5-echo multi-echo MPRAGE sequence [TE

(echo times) = 1.64, 3.5, 5.36, 7.22, 9.08 ms, TR (repetition

time) = 2.53 s, TI (inversion time) = 1.2 s, 7deg flip angle,

number of excitations (NEX) = 1, slice thickness = 1 mm,

field of view (FOV)= 256 mm, resolution = 256 × 256. There

is a total of 946 samples in the dataset. We used 800 randomly

selected samples as our training set and the remaining for the

testing set.

VII. METHODS

A. Methods for Defacing

We used two methods for defacing MRI. One is fsl deface

which is considered the best existing method at preventing face

recognition in part because it removes the eyes and has minor

effects on brain measurement [46]. Another method is mri -

deface. mri deface method has also been used as the defacing

algorithm prior to refacing with CycleGAN [47]. Similarly

as Abramian’s and Eklund’s work, We compare the structural
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similarity index (SSIMs) between the defaced images (from

both fsl deface and mri deface) to the ground truth image

[48]. SSIM is used to measure the similarity between two

images. Generally speaking, the higher the SSIM is, the more

similar the two images are. The comparison is shown in figure

1. So one can clearly see that the similarity of MRIs defaced

by fsl deface is far lower to the original image than defaced

by mri deface which means fsl deface is better in defacing.

In figure 2, we can see that mri deface can mask out more

pixels from the MRI. However, the problem is that a part

of the eyes is still there, leaving important information for

reconstructing the original face.

Fig. 1. SSIM Comparison Between Defacing mri deface and fsl deface on
Whole Dataset

B. Data Preprocessing

The data we have has a size of 256 by 256 pixels. We

use OpenCV to resize the image to 128 by 128 pixels to

save model space on GPU and allow for larger batch sizes.

We reduced the pixel intensity from 8-bit (with a range of 0

to 255) to 3-bit(with a range of 0 to 7) so that our model

(Pixel Constrained CNN) calculates the likelihood of each

pixel within reasonable uncertainty bounds. From Figure 3

we can see that even when the processed data has a lower

resolution and pixel intensity, the integrity of the original data

is largely maintained by looking through the human eye.

C. Model

The model we use is Pixel Constrained CNN described in

section V. Pixel Constrained CNN has a receptive field at pixel

i dependent not only on the rows above the pixel and the

partial row to the left of pixel i, but also on a global overview

of each pixel in the image [1]. As a result, we orient our facial

images face down, as seen in figure 4. The masked image and

mask are fed into Pixel Constrained CNN as input to obtain

refaced output–see figure 4. By applying Pixel Constrained

CNN, our model can collect information from the face, brain,

jaw, forehead, and any image part. This will better help to

predict a facial shape.

D. Training

We trained our model through backpropagation with 500

epochs in pytorch. We set our prior network with 19 layers

and conditional network with 32 layers. 32 layers for the

conditional network is because we want the model to have the

largest receptive field of the image so that we can condition

on as much information as possible. Also, we set a 5 by 5

Fig. 2. Examples of mri deface, Ground Truth and fsl deface

kernel for each network and a cosine annealing schedule for

a learning rate of 0.00005.

In figure 4, the input of the model has two components.

One component is for the input of the prior network, which

should be the original image (4a). The other component for

the conditioning network is a two-channel tensor consisting of

one channel, the defaced image, and the second channel, the

relative mask (4d). As we can see all the images in figure 4, we

rotate them from face-right to face-down. Because PixelCNN

starts to generate pixels from the top-left points. We want our

model to estimate the likelihood of each pixel based on as

much information as is available from the unmasked portion

of the MRI.

VIII. RESULTS

The structural similarity index measure(SSIM) is considered

one of the best measures to evaluate the similarity between two

images [49]. We use this method to evaluate the generated

images’ quality. We randomly selected five images from the

held-out test dataset and demoed them with defacing by

MRI dface and fsl deface. From the two demo plots on both

experiments in figure 5 and figure 6, we can see that no matter

what method is used to remove the face, our model can have

a good prediction. One trend we observed through the 146

demos from the test data was that the MRI with a larger head

shape and prominent neck will result in better reconstruction,

such as in demos 1 and 4 in both figure 5 and figure 6. In

demo 5, the neck part is missing from the MRI compared

Fig. 3. Comparison between the processed image and ground truth. The left
image is a processed image with lower resolution and lower intensity. The
right image is the ground truth
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Fig. 4. From left to right. (a) is the processed image which will input to
a prior network. (b) is the mask of relative image.(c) is masked out deface
image. (d) is the concatenated of mask and the defaced image. This 2 channel
image will input to the conditional network for feature extraction

Fig. 5. Demo on Samples Defaced by fsl deface. The first row is the input
which are defaced image. The second row is the generated images. The third
row is the ground truth.

to the other four demos, and the reconstruction is of lower

quality. We anticipate that such anomalies would go away with

larger data sets or more data augmentation, although these

approaches would increase training time. The demo results in

figure 5 and figures 6 are both generated from the held-out

testing dataset.

Fig. 6. Demo on Samples Defaced by mri deface. The first row is the input
which are defaced image. The second row is the generated images. The third
row is the ground truth.

Looking through the plot of loss in figure 7, We can see

a tendency towards overfitting in the most general sense of

the term (loss on training would be better than the loss on

the test set). There were diminishing returns on how much

improvement in training resulted in improvement in the test

set loss. Initially, we would always try to maintain parity

between training loss and test loss and avoid any overfitting

with early stopping. However, early stopping would result in

Fig. 7. The Cross-Entropy Loss in Epochs

a lack of precise qualitative results on training and test sets.

For example, the shape of the face would be incorrect with

early stopping, although the loss would be better. However,

qualitative improvements in the test set are not reflected by

the loss measures. Additionally, overfitting is quite difficult

to avoid with such a small dataset. When we increase the

iterations from 100 to 500 epochs, the model can have a

tremendous qualitative performance not only on the trained

800 samples but also would have good generations on the held-

out 146 samples which we have shown in figure 5 and figure 6.

Although the loss of the test curve keeps going up, the genera-

tion process in the test set still performed well qualitatively. We

check that there are no duplicated samples between the training

and testing datasets. In general, a higher cross-entropy loss

and qualitative accuracy will not be perfectly correlated. Some

incorrect predictions can have a significantly larger effect than

correct predictions. We speculate that the model is learning

the face structure, as evidenced by the qualitative results, but

cannot reproduce the exact face with as high of precision as

indicated by the loss values.

In figure 8, the green line represents the SSIM between

defaced image and ground truth. Compared with figure 1,

the SSIM of the defaced image is numerically increased.

This is because our prepossessing reduced the MRI resolution

and pixel intensity. While the blue line represents the SSIM

between refaced image and ground truth. The defacing process

is based on fsl deface. We can see that after prediction by

Pixel Constrained CNN, the SSIM of the refaced image has

increased. Although the increase is not significant, in our

experiments, the pixel intensity is only 3-bit, and the changing

of SSIM is only affected by the part of the masked pixels.

Figure 9 shows a comparison between image defaced by

fsl deface and mri deface. From the plot, face reconstruction

through Pixel Constrained CNN has a better performance on

fsl deface. We assume that it is because mri deface can zero

out more pixels at the direct back of the nose of MRI. We

observed that the nose is the hardest part to generate through

our experiments.

Authorized licensed use limited to: Georgia State University. Downloaded on February 04,2025 at 19:44:31 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 8. Comparison of SSIM before and after predicted by Pixel Constrained
CNN. The blue line is the SSIM of our newly generated images, compared
with the green line, which is the SSIM before refacing

Fig. 9. SSIM of generated images between defacing by mri deface and fsl -

deface

IX. DISCUSSION AND CONCLUSIONS

We can get reasonably good reconstructions of faces no

matter what defacing method used. These results demonstrate

that privacy still at risk despite defacing techniques. By

reducing the resolution and intensity of the defaced images,

we simplified the network’s calculations and improved our

likelihood predictions and meanwhile keeping the main feature

of the subject. We observe that the most challenging part of

reconstructing is the nose. We also observe that the larger the

masked region, the more difficult it is to reconstruct based on

our comparisons of mri deface and fsl deface.

Prior work in the relationship between DNA and facial

features mentions that the nose is affected most by genes [50].

Because we can often reconstruct the nose from the defaced

MRI, we surmise that these nose genes may also affect brain

structures.

Increasing the size of our dataset would greatly help recon-

struct masked regions. Additionally, 3d reconstruction is the

next step of this research. The pipeline that an attacker could

easily take to compromise security fully would require lifting

images from 3d reconstructions of defaced MRI and search-

ing images available in social media databases for nearest

matches. Furthermore, we think our research has implications

for criminology and anthropology. In anthropology, one could

reconstruct ancient humans’ brain structures or faces from

their remains by masking out different regions and applying

continuous learning (bringing what is learnable from modern

MRI data into this field). In criminology, head trauma could

be removed from data to identify the remains of victims.

Most importantly, we would like to inform the research

community in neuroscience that current defacing measures

are quickly becoming obsolete. We as a community have a

responsibility to protect privacy. Organized crime and state-

sponsored actors could easily afford to create the larger corpus

of MRI necessary to reconstruct de-identified images using our

methodology. Such methodologies could already be in place,

and thus our community needs to implement more rigorous

techniques to protect patient identities.

Based on our observation that larger masks are more chal-

lenging to reconstruct, it is clear that one should segment the

brain and remove the nasal and throat structures in addition

to only removing the face. Productive future research going

forward might use brain segmentation to mask out these

features in new defacing algorithms.
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