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ABSTRACT

BACKGROUND: Schizophrenia research reveals sex differences in incidence, symptoms, genetic risk factors, and

brain function. However, a knowledge gap remains regarding sex-specific schizophrenia alterations in brain function.

Schizophrenia is considered a dysconnectivity syndrome, but the dynamic integration and segregation of brain

networks are poorly understood. Recent advances in resting-state functional magnetic resonance imaging allow

us to study spatial dynamics, the phenomenon of brain networks spatially evolving over time. Nevertheless,

estimating time-resolved networks remains challenging due to low signal-to-noise ratio, limited short-time

information, and uncertain network identification.

METHODS: We adapted a reference-informed network estimation technique to capture time-resolved networks and

their dynamic spatial integration and segregation for 193 individuals with schizophrenia and 315 control participants.

We focused on time-resolved spatial functional network connectivity, an estimate of network spatial coupling, to

study sex-specific alterations in schizophrenia and their links to genomic data.

RESULTS: Our findings are consistent with the dysconnectivity and neurodevelopment hypotheses and with the

cerebello-thalamo-cortical, triple-network, and frontoparietal dysconnectivity models, helping to unify them. The

potential unification offers a new understanding of the underlying mechanisms. Notably, the posterior default

mode/salience spatial functional network connectivity exhibits sex-specific schizophrenia alteration during the

state with the highest global network integration and is correlated with genetic risk for schizophrenia. This

dysfunction is reflected in regions with weak functional connectivity to corresponding networks.

CONCLUSIONS: Our method can effectively capture spatially dynamic networks, detect nuanced schizophrenia

effects including sex-specific ones, and reveal the intricate relationship of dynamic information to genomic data. The

results also underscore the clinical potential of dynamic spatial dependence and weak connectivity.

https://doi.org/10.1016/j.biopsych.2023.12.002

Schizophrenia is a complex neuropsychiatric disorder that

significantly burdens society (1) and presents a wide array of

symptoms, including hallucinations, delusions, disorganized

speech and behavior, and cognitive impairments (2,3). Un-

derstanding the underlying neurobiological mechanisms of

schizophrenia is imperative for developing effective in-

terventions and treatments, with sex being an important factor

influencing outcomes and strategies. Notably, research has

elucidated sex/gender differences in the incidence and clinical

manifestation of mental disorders (4,5). Females with schizo-

phrenia tend to exhibit more depressive symptoms, whereas

males often experience more negative symptoms (6,7). Sex

differences have also been identified in cognitive tasks (8),

genetics (9), and neurobiology (8,10). Previous findings support

the notion that autosomal genes interact with sex to influence

the risk for schizophrenia (9,11–13). Moreover, polygenic risk

scores for schizophrenia are negatively correlated with cogni-

tive performance in males exclusively (14). However, a sub-

stantial knowledge gap remains regarding sex-specific

schizophrenia alterations in brain function and their link to

schizophrenia genetic risk factors.

At the brain level, schizophrenia is hypothesized as a

disconnection syndrome, where disruptions in functional in-

tegrations have a greater influence on behavior and psycho-

pathology than aberrations in single brain regions (15,16).

Thus, extensive efforts have been directed toward identifying

these disruptions using resting-state functional magnetic

resonance imaging (rsfMRI) to unravel the underlying neuro-

biology of schizophrenia (17–25). Recent research also shows

sex differences in functional connectivity aberrations in
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schizophrenia (20). The default mode network (DMN) and

salience network (SN) have been associated with negative

symptoms, which are more pronounced in men with schizo-

phrenia (6,8,19,26–28). Their functional connectivity mediates

the link between sex and mental rotation (29), potentially

explaining schizophrenia-by-sex interactions in the mental rota-

tion task (8). Sex differences in functional connectivity were

observed in autism spectrum disorder (30), which shares sig-

nificant clinical and genetic components with schizophrenia (31).

Nonetheless, research is lacking on how brain functional

units spatially integrate and segregate over time in schizo-

phrenia and how sex-specific schizophrenia differences in

brain function are related to genetic risk factors.

Spatially Dynamic Analyses in rsfMRI: Quantifying

Spatial Network Coupling

The brain maintains, regulates, adapts, and responds to a rich

repertoire of behavior and mental activities via the continuous

reconfiguration of coordinated intrinsic activities. On a large

scale, these activities are thought to manifest as a set of

discrete yet interactive neuronal assemblies, commonly

referred to as functional units or functional sources (32). This

view has gained traction in the field of rsfMRI, where spatially

fixed nodes or data-driven estimations of functional sources,

e.g., functional networks (33–35) or functional parcels (36–38),

have been used to model the functional interactions among

functional sources. Studies often assume that functional sources

remain spatially fixed throughout the scan and use average voxel

time series from fixed spatial regions to estimate sources’ time

courses and compute whole-brain static or temporally dynamic

functional connectivity. However, the continuous reconfiguration

of coordinated intrinsic activities can result in changes in the

spatial patterns of functional units over time (i.e., spatial dy-

namics) (22,32,39–41). Consequently, relying solely on the

average time series over anatomically fixed regions, which

overlooks spatial dynamics, leads to suboptimal functional

connectivity estimation and imprecise inferences.

In addition, spatial dynamics carry unique information hidden

from existing spatially static approaches, particularly regarding

the spatial coupling and uncoupling of functional units over time.

Our previous work (39) has shown that brain networks can

dynamically segregate and integrate in space, including the

transient emergence of the cerebellar and primary visual net-

works within the spatial patterns of other brain networks.

Here, we leveraged spatial dependence to quantify dynamic

integration and segregation in brain networks, thereby

enhancing our understanding of the dynamic interplay be-

tween integrative and specialized processes. We use the term

spatial functional network connectivity (spFNC) to describe the

spatial dependence between networks, consistent with the

definition of temporal FNC, which refers to the temporal

dependence between networks.

METHODS AND MATERIALS

Dataset and Preprocessing

We analyzed multicenter 3T rsfMRI data (18,42,43). Quality

control and preprocessing followed the NeuroMark protocol

(34). The inclusion criteria were 1) minimum of 100 volumes for

rsfMRI data (all data exceeded 140 volumes), 2) head motion

within 3� rotations and 3-mm translations in each direction, 3)

mean framewise displacement (44) , 0.25, 4) accurate regis-

tration to the template, and 5) spatial overlap exceeding 80%

between individual and group masks. This resulted in a sample

comprising 193 participants with schizophrenia and 315

matched control participants (Table 1). Preprocessing steps

included excluding the first 5 volumes, slice-timing and rigid

body motion corrections, registration to a Montreal Neuro-

logical Institute template, resampling to 3 mm3 isotropic vox-

els, and spatial smoothing with a 6-mm full width at half

maximum Gaussian kernel. Additionally, voxel time courses

were detrended, despiked, motion corrected, and filtered to

reduce noise and nuisance signals (39). See the Supplement

for details regarding dataset, recruitment strategies, inclusion/

exclusion criteria, demographic variables, and preprocessing.

RESULTS

Capturing Time-Resolved Network-Specific Spatial

Patterns

To effectively estimate time-resolved spFNCs, we introduced a

time-resolved, reference-informed network estimation approach

that derived time-varying spatial maps for each network while

controlling for the impact of other networks, thereby disen-

tangling their specific contributions over time (Figure 1). This

approach also overcomes the uncertainty of post hoc matching,

which can be more problematic in a time-resolved setting

(35,45). Furthermore, the combination of reference-informed and

spatial-constraint mechanisms effectively addresses the chal-

lenges of low signal-to-noise ratio and limited information in

short time segments. Spatial constraints restrict the search

space and act as regularizers, mitigating overfitting to noise and

enabling the capture of the underlying signal.

First, we performed group-level spatial independent

component analysis (ICA) (46) with a model order of 20 (39,47)

using the Group ICA of FMRI Toolbox (http://trendscenter.org/

software/gift) and obtained large-scale brain networks used as

the templates for downstream analysis (Figure 1A). Fourteen

components of 20 with very high ICASSO stability indexes

(average 6 SD = 0.96 6 0.01, minimum–maximum = 0.93–0.98)

were identified as brain networks based on their temporal and

spatial properties and knowledge from previous studies

(35,39,47). These include the primary and secondary visual

(VIS-P/VIS-S), primary and secondary somatomotor (MTR-P/

Table 1. Demographic Information

Sex,

Female/

Male

Age,

Years

Population, Ancestry,

Descent, or

Nationality,

AMR/EUR/Oa

Control Group,

n = 315

130/185 38.40 6 12.73 65/192/58

Schizophrenia Group,

n = 193

39/154 38.61 6 13.29 44/112/37

Values are presented as n or mean 6 SD.

AMR, American ancestry; EUR, European ancestry; O, Other (African American

ancestry or East Asian ancestry).
aBased on 1000 Genomes Project superpopulations.
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MTR-S), subcortical (SUB), cerebellar (CER), attention (ATN),

frontal (FRNT), left and right frontoparietal (FPN-L/FPN-R),

posterior and anterior default mode (DMN-P/DMN-A), salience

(SN), and temporal (TEMP) networks (Figure 2A). Moreover,

separate ICAs conducted for each sex group identified similar

networks for men and women with high spatial similarity (0.926

0.05 and 0.92 6 0.03, respectively).

Next, we combined a spatially constrained ICA method

called multivariate-objective optimization ICA with reference

(48) (Figure 1B, left) and the sliding window technique (49) to

estimate time-resolved networks corresponding to the tem-

plates (Figure 1B, right). This ICA approach performs well in

capturing sample-specific information for different data lengths

and brain networks (35) and is robust to artifacts (50). The

sliding window technique is the most commonly used tech-

nique to study brain dynamics due to its simplicity, ease of use,

and similarity to the conventional functional connectivity pro-

cedure, making the interpretation of findings straightforward

(49). We used a tapered window (rectangle width = 60 sec-

onds, Gaussian s = 6 seconds) with a sliding step size of 1,

consistent with previous recommendations (49,51) and our

previous research in spatial dynamics (39), ensuring consis-

tency and comparability of findings across studies.

Low-Dimensional Spatial Dynamic States

Encapsulates Global Brain State Dynamics

We quantified time-resolved spFNCs by calculating spatial

covariance of networks at each time window, where an

increase and decrease indicate network integration and

segregation. Next, we captured global brain state dynamics by

identifying 4 recurring, distinct spFNC patterns (Figure 2C)

using k-means clustering with L1 distance and the elbow cri-

terion (Figure 2B), following previous work and recommenda-

tions (20,49,52).

The fraction of time that individuals spent in spatial dy-

namics states varied significantly, with state 4 having an

approximately 2-fold higher fraction rate than state 2 (0.31 vs.

0.17). State 4 demonstrated the lowest level of overall network

integration, while states 1 and 2 showed the highest integra-

tion. Conversely, the mean dwell time, which indicates the

amount of time spent at each state per visit, was very similar

across all states, ranging from 18.95 to 22.03 seconds. In other

words, while the life expectancy of spatial dynamic states (i.e.,

mean dwell time) is similar on average, the total amount of time

the brain stays in each state varies.

The Clinical Relevance of Dynamic Spatial

Coupling: A Schizophrenia Study

Next, we investigated alterations in the continuous reconfigu-

ration of functional integration and segregation in schizo-

phrenia. Given the previous findings (17–20,23,24,26,39), we

hypothesized alterations in the dynamic spFNC of large-scale

networks in schizophrenia, including sex-specific disruptions

in the posterior DMN (pDMN)/SN spFNC.

We ran a generalized linear regression model for each

spFNC pair from each spatial dynamic state with age, sex,

Figure 1. Schematic of the analysis pipeline.

(A) Using group-level spatial independent compo-

nent analysis (ICA) to obtain group-level intrinsic

connectivity networks as a functional unit reference.

(B) Applying spatially constrained ICA (scICA) to

estimate the correspondence of intrinsic connectiv-

ity networks (ICNs) from a given participant. The left

panel shows the standard scICA application to es-

timate spatially static ICNs (i.e., assume spatial

patterns of ICNs remained fixed over time), and the

right panel shows the proposed approach to esti-

mate time-resolved ICN information. (C) Calculating

whole-brain spatial dynamic states from spatial

covariance matrices. gr-ICN, group-level ICN;

rsfMRI, resting-state functional magnetic resonance

imaging; SMs: spatial maps; TCs: time courses.

Sex-Specific Spatial Dynamics in Schizophrenia

190 Biological Psychiatry August 1, 2024; 96:188–197 www.sobp.org/journal

Biological
Psychiatry



mean framewise displacement, and site as confounding fac-

tors and diagnosis and sex-by-diagnosis interactions as pre-

dictors of interest. The p values were corrected using a 5%

false discovery rate (53).

We observed system-wide disruptions in dynamic func-

tional integration (Figure 3), among which the spFNC pairs of

the CER, TEMP, and MTR-S were affected the most. As hy-

pothesized, the dynamic spatial coupling between the pDMN

and SN revealed sex-specific changes in schizophrenia. The

sex-specific effect also existed in dynamic spFNC network

pairs of CER/MTR-S and SUB/FRNT. The sex-specific effect of

schizophrenia was only significant in state 1, the state with the

highest level of system-wide functional integration.

Next, we evaluated the genomic predisposition of aberrant

system-wide dynamic functional integration. We focused on

the schizophrenia-risk single nucleotide polymorphisms that

reside in the 287 loci reported by a recent large-scale

schizophrenia genomic study (54) and computed the poly-

genic risk score for schizophrenia pruned at R2
, 0.1 (54) using

PRSice (55). Sixteen of the annotated genes have been

implicated for credible causal nonsynonymous or untranslated

region variation, and the enrichment test has pointed to

postsynaptic pathology (54). Details regarding these 287 risk

loci are available in Supplementary Table 3 of Trubetskoy et al.

(54). The associations between the polygenic risk score and

aberrant dynamic spFNC were performed on a subset of data

(European/American = 304/109, schizophrenia/control = 156/

257) using Pearson correlations while controlling for diagnosis,

sex, age, mean framewise displacement, and site and cor-

recting for multiple comparisons using the false discovery rate.

Two dynamic spFNC pairs exhibited significant correlations

with the polygenic risk score for schizophrenia, including

pDMN/SN spFNC in state 1 with a sex-specific schizophrenia

effect and TEMP/MTR-P spFNC in state 2 with a significant

diagnosis effect (Figure 3C). We also investigated these as-

sociations separately in European and American populations

and observed consistent associations with comparable effect

sizes.

Low Regional Contribution Linked to High

Informational Content

Next, we investigated how schizophrenia-related alterations in

low-dimensional spatial dynamic states were linked to diag-

nosis differences in high-dimensional voxel space by focusing

on the dynamic spFNC pairs with both significant schizo-

phrenia effects and genomic associations. Voxelwise statisti-

cal comparisons were conducted on the networks’ state

spatial maps using the same regression model as for spFNC

analysis, which resulted in 1 spatial map of beta coefficients for

each variable of interest. Subsequently, we computed the

spatial similarity between each beta-spatial map and the

spatial maps of networks involved in each spFNC pair using

Pearson correlations and compared it with the spatial similarity

estimated from null data with the same level of spatial

smoothing.

Our results suggest that 1) the aberrations of brain networks

reflect changes in dynamic spFNC; 2) schizophrenia affects

brain networks in a nuanced and distributed manner across the

entire brain; 3) regions with lower network contributions

Figure 2. Capturing global brain state dynamics using low-dimensional spatial dynamic states. (A) Visualization of the intrinsic connectivity networks. Each

color in the composite map represents the spatial map of 1 intrinsic connectivity network thresholded at jZj . 1.96 (p = .05). (B) Estimation of the optimal

number of states. The k-means clustering procedure was conducted for cluster numbers 1 to 15. The ratio of within- to between-cluster variance was

calculated for each clustering, and the elbow criterion was used to estimate the number of global states. (C) The 4 spatial dynamic states were identified using

k-means clustering with L1 distance. The fraction rate is the fraction of times a participant spends in a given state, and mean dwell time represents the average

time a given participant stays in a given state before switching to another state. The mean dwell time is similar across states (18.95 w 22.03 seconds), while

fraction rate shows more difference across states (0.17w 0.31). aDMN, anterior default mode network; ATN, attention network; CER, cerebellar network; FPN,

frontoparietal network; FRNT, frontal network; L, left; MDT, mean dwell time; MTR, somatomotor network; P, primary; pDMN, posterior default mode network;

PFT, percentage fraction rate; R, right; S, secondary; SN, salience network; SUB, subcortical network; TEMP, temporal network; VIS, visual network.
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demonstrate a more prominent effect; and 4) the impact of

schizophrenia may not necessarily be strongly evident for

single voxels despite significant whole-brain effects.

Figure 4A shows the spatial similarity between the beta-

spatial maps of variables of interest (e.g., diagnosis) and the

network maps, with significant similarities indicated by aster-

isks. Figure 4B shows the beta-spatial maps with significant

spatial similarity. The beta-spatial map of SN state 1 for the

sex-by-diagnosis interaction and male diagnosis effects (but

not for the group diagnosis effect) showed significant spatial

similarities with the pDMN (Figure 4A). Similarly, the beta-

spatial maps of the interaction (sex-by-diagnosis) and diag-

nosis (male) effects for the state 1 pDMN had significant

similarities with the spatial map of the SN (Figure 4A). These

findings bolster the sex-specific schizophrenia effect observed

in pDMN/SN spFNC in state 1 (Figure 3).

For the state 1 pDMN, the impact of schizophrenia was not

strong enough to manifest at the voxel level (Figure 4C) despite

the significant global effect. However, the SN map in state 1

revealed significant interaction and male diagnosis effects in

regions commonly associated with the pDMN, including the

posterior cingulate cortex and precuneus (Figure 4C). These

regions with notable sex-specific schizophrenia effects have

often been masked out in previous research due to their weak

functional connectivity to their respective networks.

For the MTR-P and TEMP in state 2 with significant diag-

nostic effects in their spFNC (Figure 3), the beta-spatial map of

the diagnosis effect showed significant spatial similarity with

the TEMP and MTR-P, respectively (Figure 4A). At the voxel

level, regions with significant diagnosis group effects for the

TEMP resembled the MTR-P (Figure 4C). For the MTR-P, the

diagnosis group effect spatial map contains a brain area with a

significant contribution to the TEMP but also contains regions

of the primary visual network, which also showed aberrant

FNC with the MTR-P in state 2.

We also conducted a voxelwise analysis to evaluate the

associations between the polygenic risk score and state

network spatial maps. We found significant spatial similarities

(p , .05) between the genomic association maps and all 4

networks’ state spatial maps. For example, the genomic as-

sociation map for the state 1 pDMN showed significant spatial

similarity with the SN map (p = .03).

DISCUSSION

Our research aims to explore the potential benefits of dynamic

spatial integration and segregation of brain networks in the

context of schizophrenia, with a particular focus on sex-

specific alterations and their links to genetic risk factors.

To achieve this goal and address existing challenges, we

have introduced a reference-informed network estimation

technique that effectively estimates time-resolved networks

from short time segments while also controlling for the influ-

ence of other networks in the estimations. This has a potential

advantage over our previous work (39), which utilized sliding

window correlation as an alternative approach. Furthermore,

compared to our previous effort (56), this method is more

generalizable, computationally efficient, and capable of

capturing information about the second- and higher-order

statistics of spatial dependence. This allows us to more

Figure 3. Global spatial dynamic disruption in schizophrenia (SZ) and association with genomic data. (A) The diagnosis effect (before correcting for multiple

comparisons), i.e., SZ vs. control (CN), of the identified spatial functional network connectivity (spFNC) dynamic states. The statistical comparison for each per-

state spFNC pair was conducted using a generalized linear regression model with age, sex, mean framewise displacement, and site as confounding factors

and diagnosis and sex-by-diagnosis interactions as predictors of interest. Asterisks (*) represent p , .05. (B) Connectograms of state spFNC pairs with a

significant diagnosis or interaction (diagnosis-by-sex) effects after false discovery rate corrections. Three spFNC pairs from state 1 show significant sex-by-

diagnosis interaction effects, including the posterior default mode network (pDMN) and salience network (SN). (C) The association between SZ genetic risk and

aberrant dynamic spatial coupling. Among dynamic spFNC pairs with a significant SZ effect, 2 show significant associations with the polygenic risk score

(PRS) after false discovery rate correction. These 2 include the spFNC between the pDMN and SN in state 1 with a sex-specific SZ effect and the spFNC

between the temporal network (TEMP) and primary somatomotor network (MTR-P) in state 2, which show disruption in SZ but with no significant sex effect.

aDMN, anterior default mode network; ATN, attention network; CER, cerebellar network; FPN, frontoparietal network; FRNT, frontal network; L, left; P, primary;

R, right; S, secondary; SUB, subcortical network; VIS, visual network.
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accurately quantify dynamic integration and segregation,

thereby enhancing our understanding of dysconnectivity in

brain dynamics associated with schizophrenia.

We identified 4 distinct spatial dynamic states with unique

network integration and segregation patterns, which

collectively provide a low-dimensional summary of global brain

state dynamics. The brain spends more time in state 4, the

most segregated state with the highest rate of between-state

transitioning. We propose that this state functions as a hub-

like transition state. However, all states have a similar life

Figure 4. The evidence of aberrant dynamic spatial coupling on network dynamic spatial maps. We conducted voxelwise statistical analysis on the spatial

patterns of the networks to evaluate whether the effect of schizophrenia on dynamic spatial functional network connectivity emerges in the network dynamic

spatial maps. We focused on the spatial patterns involved in the 2 spatial functional network connectivity pairs with significant schizophrenia effects and

genomic associations. (A) The results of the spatial similarity (measured by Pearson correlation) between the spatial map of a specific network for a given state

and the beta-spatial maps of the variables of interest (e.g., diagnosis) from voxelwise statistical analysis. Asterisks represent those with significant spatial

similarity (p value , .05), and the value in each cell represents the Pearson correlation coefficient. The results are consistent with dynamic spatial functional

network connectivity findings. For example, we observe significant spatial similarity with the posterior default mode network (pDMN) for the interaction effect in

the salience network (SN) state 1. Another example is the spatial map of the diagnosis group effect (but not the interaction effect) obtained using voxelwise

analysis of the primary somatomotor network (MTR-P) in state 2, which shows significant spatial similarity with the spatial map of the temporal network (TEMP).

(B) The beta-spatial maps of those that show significant spatial similarity in (A). To study the impact of schizophrenia at the voxel level, cluster-wise correction

was applied to beta-spatial maps. (C) Cluster-corrected statistics. Pink arrows illustrate clusters in which the paired networks have a strong contribution. For

example, the pink arrows in † show the cluster in the posterior cingulate cortex and precuneus that survived cluster-wise correction. The posterior cingulate

cortex and precuneus are the cores of the pDMN and contribute significantly to the pDMN. L, left; R, right.
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expectancy, suggesting that state 4 is not a steady state.

These findings must be verified in an independent dataset to

ensure replicability and generalizability.

We examined the impact of schizophrenia on low-

dimensional spatial dynamic states. Inferring from the dys-

connectivity hypothesis (57), disturbances in behavior and

psychopathology are expected to be associated with disrup-

tions in the reconfiguration of system-wide brain functional

integration. Our findings support this proposition by demon-

strating significant alterations in the dynamics of spatial

coupling in both men and women with schizophrenia.

In general, individuals with schizophrenia presented lower

spFNC integration across all states and most networks. Spe-

cifically, the patterns of lower integration were more wide-

spread in the MTRs and the right FPN (Figure 3). This is

consistent with previous reports of global connectivity deficits

in schizophrenia, with more prominent alterations in the frontal

and temporal regions (58,59). We also found that individuals

with schizophrenia presented, to a lesser extent, higher spFNC

integration in specific pairs of networks, mainly involving the

SUB, TEMP, MTRs, and CER (Figure 3). This is also consistent

with previous reports of functional hyperconnectivity in in-

dividuals with schizophrenia (60–62).

While widespread disruption in networks’ spatial coupling

occurs across the whole brain and all dynamic states, the

highly integrated, modular state 1 showed a great number of

dysconnectivity patterns. The alterations observed in the

pDMN/SN and right FPN/ATN spFNC in this state may be

related to disturbances in cognition and psychopathology

associated with psychosis (19,63). These findings are consis-

tent with the triple-network model (63), suggesting that the

abnormal striatal dopamine release may lead to disruptions in

the dynamics among the DMN, SN, and FPN, thus potentially

contributing to the misattribution of salience to irrelevant

external stimuli and self-referential mental events.

Moreover, functional connectivity aberrations in the pDMN

have repeatedly been shown to be involved with schizophrenia

pathophysiology (64–66). Our results support and extend these

findings by showing that disruptions in pDMN/SN spFNC were

present in all 4 dynamic states (although this did not survive

multiple comparison correction in state 3). Also, as hypothe-

sized, we found a sex-by-diagnosis interaction effect for

pDMN/SN spFNC in state 1, which could explain why some

previous work found mixed results (65,67–69) or no alterations

(70) in the DMN functional connectivity of individuals with

schizophrenia. This pair also showed an association with the

schizophrenia polygenic risk score, adding another layer of

confirmation and suggesting a potential sex-specific psycho-

sis neurobiological marker. However, the reproducibility of

these results should be verified in an independent dataset.

Previous studies suggest that women diagnosed with

schizophrenia tend to manifest more affective symptoms and

often have overlapping diagnoses with affective psychosis

(71,72). Negative symptoms tend to be more prevalent in men.

Given the association between these symptoms and differ-

ences in cingulo-opercular and CER networks (73), our findings

are consistent with the potential link between CER and SN and

the observed sex differences.

Some spFNC pairs presented significant schizophrenia

differences that were fleeting and temporally localized to only a

few states (i.e., exhibited a state-like property), which contrasts

with spFNC pairs where the schizophrenia effect was consis-

tently present across all states (a trait-like property). The right

FPN/ATN coupling exemplifies a state-like spFNC pair,

whereas the TEMP/MTR-S pair is a notable trait-like example.

Intriguingly, based on Neurosynth (https://www.neurosynth.

org/) (74), the highest activation point for the TEMP is linked

to semantic integration and language, while the peak activation

for MTR-S is associated with speech production. Disruptions

in language-related regions and networks in psychotic disor-

ders are findings well-established in previous studies and may

be linked to auditory verbal hallucinations (75–80). It should be

noted that other pairs, such as pDMN/SN (with a diagnosis-by-

sex interaction effect), MTR-S/SUB, MTR-S/CER, and SUB/

CER, demonstrated a similar trait-like pattern, although the

difference did not survive multiple comparison correction in all

states (Figure 3A). Importantly, the schizophrenia changes in

the MTR-S/SUB/CER support the cerebellar-thalamic-cortical

dysconnectivity model of psychosis (81–83).

Another major finding is the spatial decoupling between the

TEMP and MTR across all states, among which TEMP/MTR-P

spFNC in state 2 is correlated with the schizophrenia polygenic

risk score. Alterations in functional connectivity in temporal,

somatosensory, and motor regions have previously been

associated with schizophrenia (18), but to the best of our

knowledge, this is the first study to show an association be-

tween those aberrations and genetic predisposition for

schizophrenia. Individuals with schizophrenia often exhibit

motor impairments from early stages, suggesting a genetic

vulnerability contributing to neurodevelopmental disruptions

(84,85). Temporal cortex dysfunction may also play a role in

social cognition and theory of mind impairments in schizo-

phrenia due to difficulties that individuals have detecting subtle

emotional components of auditory inputs, which leads to

reduced social interaction skills and marked deficiencies in

psychosocial functioning (86). Additionally, the schizophrenia

polygenic risk score reflects the overall genetic risk burden of

287 schizophrenia-related loci, for which a fine mapping

revealed that 16 of the annotated genes had been implicated

for credible causal nonsynonymous or untranslated region

variation. The enrichment test has also pointed to a diverse set

of synaptic proteins and suggested that multiple functional

interactions of schizophrenia risk converge on synapses (54).

While our findings link genetic risk for schizophrenia to TEMP/

MTR, it would be intriguing to investigate whether this genetic

predisposition could lead to synaptic alterations in these net-

works during neurodevelopment, thereby resulting in poor

functional integration and the early emergence of neurological

signs.

A significant breakthrough has been made regarding the

significance of regions with weak functional connectivity

(Figure 4). Our findings reveal that the distortion in spatial

coupling was embedded in high-dimensional (voxel-level)

space in brain regions with low contributions to the corre-

sponding networks (Figure 4). For example, significant

schizophrenia interaction and male diagnosis effects in the SN

in state 1 were exclusively exhibited in regions with a low

contribution to the SN. This observation is significant because

current research often overlooks regions with small contribu-

tions during voxelwise analysis (i.e., uses a mask of regions
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with high amplitude in spatial maps). This complements our

recent finding (21) on the importance of time points with low

contributions to capturing schizophrenia-related changes,

calling for further investigation.

Taken together, our findings indicate that information about

dynamic spatial dependence, which has been overlooked,

holds immense potential to substantially impact the clinical

landscape as it quantifies the continuous integration and

segregation of brain networks. Particularly, it can advance our

understanding of schizophrenia, a disorder that is often char-

acterized by dysconnectivity and disruptions in system-wide

functional integration.

Limitations and Future Directions

We confirmed the existence of these networks in both men

and women, and our framework ensures comparability of

findings between them. Nevertheless, there is a pressing need

for new techniques that account for sex-specific differences

when estimating brain networks.

Using spatially constrained ICA enables capturing brain

networks from short data lengths (35), but its constraints limit

comprehensive depiction of spatial dynamics and participant-

specific features. Future research should develop optimized

methods for more precise and thorough estimations of time-

resolved participant-specific networks to improve our under-

standing of intricate spatial dynamics and individual variations

in brain function. Furthermore, our study focused on dynamic

spatial coupling, but a more comprehensive framework that

includes temporal dynamics and static features is needed to

characterize sex-common and sex-specific functional patterns

of schizophrenia and their association with genetic risk factors.

In this study, we made choices based on existing knowl-

edge from previous studies (49,51,52). However, the impact of

different choices and the generalizability of clinical findings

should be assessed in future studies, especially considering

the inconsistency among previous schizophrenia-related find-

ings. For example, future studies should investigate the impact

of window lengths and spatial smoothing (35).

Factors, such as medication status and symptom severity,

may influence the results and limit their applicability to other

populations or specific subgroups. It is imperative to assess

the replicability and generalizability of the findings in more

homogeneous independent datasets with larger sample sizes,

with a particular focus on medication use, symptom severity,

substance use disorders, medical comorbidities, and years

since symptom onset. While our post hoc analysis found no

significant association between medication (chlorpromazine

equivalence scores) and the 2 dynamic spFNC pairs with

significant schizophrenia effects and genomic associations,

evaluating the impact of different pharmacological treatments

on schizophrenia-related changes in brain dynamics is critical.

Additionally, future research should evaluate our findings in

other cohorts, such as individuals with first-episode psychosis,

individuals at high risk of psychosis, or first-degree relatives.

The correlation between the schizophrenia polygenic risk

score and 2 specific spFNC aberrations suggests genetic in-

fluence on these changes and lends support to the neuro-

developmental hypothesis of schizophrenia, but the cross-

sectional design precludes drawing causal inferences. Longi-

tudinal studies with larger datasets are needed to elucidate the

neurodevelopmental trajectory of schizophrenia.

Finally, the relevance of sex-specific findings should be

interpreted while recognizing sex differences in the incidence

and prevalence (higher in males) and the earlier onset of

schizophrenia in men. Additionally, the limitations of statistical

power underscore the need for larger sample sizes in future

studies to validate these findings. Gender is another crucial

factor that can influence our findings. Sex and gender differ-

ences in psychosis are the consequence of complex in-

teractions between biological and psychosocial factors. It is

essential to evaluate our findings in a dataset with both sex

and gender information to discern between findings driven

primarily by psychosocial or biological factors.
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