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ABSTRACT

BACKGROUND: Schizophrenia research reveals sex differences in incidence, symptoms, genetic risk factors, and
brain function. However, a knowledge gap remains regarding sex-specific schizophrenia alterations in brain function.
Schizophrenia is considered a dysconnectivity syndrome, but the dynamic integration and segregation of brain
networks are poorly understood. Recent advances in resting-state functional magnetic resonance imaging allow
us to study spatial dynamics, the phenomenon of brain networks spatially evolving over time. Nevertheless,
estimating time-resolved networks remains challenging due to low signal-to-noise ratio, limited short-time
information, and uncertain network identification.

METHODS: We adapted a reference-informed network estimation technique to capture time-resolved networks and
their dynamic spatial integration and segregation for 193 individuals with schizophrenia and 315 control participants.
We focused on time-resolved spatial functional network connectivity, an estimate of network spatial coupling, to
study sex-specific alterations in schizophrenia and their links to genomic data.

RESULTS: Our findings are consistent with the dysconnectivity and neurodevelopment hypotheses and with the
cerebello-thalamo-cortical, triple-network, and frontoparietal dysconnectivity models, helping to unify them. The
potential unification offers a new understanding of the underlying mechanisms. Notably, the posterior default
mode/salience spatial functional network connectivity exhibits sex-specific schizophrenia alteration during the
state with the highest global network integration and is correlated with genetic risk for schizophrenia. This
dysfunction is reflected in regions with weak functional connectivity to corresponding networks.

CONCLUSIONS: Our method can effectively capture spatially dynamic networks, detect nuanced schizophrenia
effects including sex-specific ones, and reveal the intricate relationship of dynamic information to genomic data. The
results also underscore the clinical potential of dynamic spatial dependence and weak connectivity.

https://doi.org/10.1016/j.biopsych.2023.12.002

Schizophrenia is a complex neuropsychiatric disorder that
significantly burdens society (1) and presents a wide array of
symptoms, including hallucinations, delusions, disorganized
speech and behavior, and cognitive impairments (2,3). Un-
derstanding the underlying neurobiological mechanisms of
schizophrenia is imperative for developing effective in-
terventions and treatments, with sex being an important factor
influencing outcomes and strategies. Notably, research has
elucidated sex/gender differences in the incidence and clinical
manifestation of mental disorders (4,5). Females with schizo-
phrenia tend to exhibit more depressive symptoms, whereas
males often experience more negative symptoms (6,7). Sex
differences have also been identified in cognitive tasks (8),
genetics (9), and neurobiology (8,10). Previous findings support
the notion that autosomal genes interact with sex to influence
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the risk for schizophrenia (9,11-13). Moreover, polygenic risk
scores for schizophrenia are negatively correlated with cogni-
tive performance in males exclusively (14). However, a sub-
stantial knowledge gap remains regarding sex-specific
schizophrenia alterations in brain function and their link to
schizophrenia genetic risk factors.

At the brain level, schizophrenia is hypothesized as a
disconnection syndrome, where disruptions in functional in-
tegrations have a greater influence on behavior and psycho-
pathology than aberrations in single brain regions (15,16).
Thus, extensive efforts have been directed toward identifying
these disruptions using resting-state functional magnetic
resonance imaging (rsfMRI) to unravel the underlying neuro-
biology of schizophrenia (17-25). Recent research also shows
sex differences in functional connectivity aberrations in
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schizophrenia (20). The default mode network (DMN) and
salience network (SN) have been associated with negative
symptoms, which are more pronounced in men with schizo-
phrenia (6,8,19,26-28). Their functional connectivity mediates
the link between sex and mental rotation (29), potentially
explaining schizophrenia-by-sex interactions in the mental rota-
tion task (8). Sex differences in functional connectivity were
observed in autism spectrum disorder (30), which shares sig-
nificant clinical and genetic components with schizophrenia (31).

Nonetheless, research is lacking on how brain functional
units spatially integrate and segregate over time in schizo-
phrenia and how sex-specific schizophrenia differences in
brain function are related to genetic risk factors.

Spatially Dynamic Analyses in rsfMRI: Quantifying
Spatial Network Coupling

The brain maintains, regulates, adapts, and responds to a rich
repertoire of behavior and mental activities via the continuous
reconfiguration of coordinated intrinsic activities. On a large
scale, these activities are thought to manifest as a set of
discrete yet interactive neuronal assemblies, commonly
referred to as functional units or functional sources (32). This
view has gained traction in the field of rsfMRI, where spatially
fixed nodes or data-driven estimations of functional sources,
e.g., functional networks (33-35) or functional parcels (36-38),
have been used to model the functional interactions among
functional sources. Studies often assume that functional sources
remain spatially fixed throughout the scan and use average voxel
time series from fixed spatial regions to estimate sources’ time
courses and compute whole-brain static or temporally dynamic
functional connectivity. However, the continuous reconfiguration
of coordinated intrinsic activities can result in changes in the
spatial patterns of functional units over time (i.e., spatial dy-
namics) (22,32,39-41). Consequently, relying solely on the
average time series over anatomically fixed regions, which
overlooks spatial dynamics, leads to suboptimal functional
connectivity estimation and imprecise inferences.

In addition, spatial dynamics carry unique information hidden
from existing spatially static approaches, particularly regarding
the spatial coupling and uncoupling of functional units over time.
Our previous work (39) has shown that brain networks can
dynamically segregate and integrate in space, including the
transient emergence of the cerebellar and primary visual net-
works within the spatial patterns of other brain networks.

Here, we leveraged spatial dependence to quantify dynamic
integration and segregation in brain networks, thereby
enhancing our understanding of the dynamic interplay be-
tween integrative and specialized processes. We use the term
spatial functional network connectivity (spFNC) to describe the
spatial dependence between networks, consistent with the
definition of temporal FNC, which refers to the temporal
dependence between networks.

METHODS AND MATERIALS

Dataset and Preprocessing

We analyzed multicenter 3T rsfMRI data (18,42,43). Quality
control and preprocessing followed the NeuroMark protocol
(34). The inclusion criteria were 1) minimum of 100 volumes for
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rsfMRI data (all data exceeded 140 volumes), 2) head motion
within 3° rotations and 3-mm translations in each direction, 3)
mean framewise displacement (44) < 0.25, 4) accurate regis-
tration to the template, and 5) spatial overlap exceeding 80%
between individual and group masks. This resulted in a sample
comprising 193 participants with schizophrenia and 315
matched control participants (Table 1). Preprocessing steps
included excluding the first 5 volumes, slice-timing and rigid
body motion corrections, registration to a Montreal Neuro-
logical Institute template, resampling to 3 mm? isotropic vox-
els, and spatial smoothing with a 6-mm full width at half
maximum Gaussian kernel. Additionally, voxel time courses
were detrended, despiked, motion corrected, and filtered to
reduce noise and nuisance signals (39). See the Supplement
for details regarding dataset, recruitment strategies, inclusion/
exclusion criteria, demographic variables, and preprocessing.

RESULTS

Capturing Time-Resolved Network-Specific Spatial
Patterns

To effectively estimate time-resolved spFNCs, we introduced a
time-resolved, reference-informed network estimation approach
that derived time-varying spatial maps for each network while
controlling for the impact of other networks, thereby disen-
tangling their specific contributions over time (Figure 1). This
approach also overcomes the uncertainty of post hoc matching,
which can be more problematic in a time-resolved setting
(35,45). Furthermore, the combination of reference-informed and
spatial-constraint mechanisms effectively addresses the chal-
lenges of low signal-to-noise ratio and limited information in
short time segments. Spatial constraints restrict the search
space and act as regularizers, mitigating overfitting to noise and
enabling the capture of the underlying signal.

First, we performed group-level spatial independent
component analysis (ICA) (46) with a model order of 20 (39,47)
using the Group ICA of FMRI Toolbox (http://trendscenter.org/
software/gift) and obtained large-scale brain networks used as
the templates for downstream analysis (Figure 1A). Fourteen
components of 20 with very high ICASSO stability indexes
(average = SD = 0.96 = 0.01, minimum-maximum = 0.93-0.98)
were identified as brain networks based on their temporal and
spatial properties and knowledge from previous studies
(35,39,47). These include the primary and secondary visual
(VIS-PNIS-S), primary and secondary somatomotor (MTR-P/

Table 1. Demographic Information

Population, Ancestry,

Sex, Descent, or
Female/ Age, Nationality,
Male Years AMR/EUR/O?
Control Group, 130/185 38.40 = 12.73 65/192/58
n =315
Schizophrenia Group, 39/154 38.61 = 13.29 44/112/37
n =193

Values are presented as n or mean =+ SD.

AMR, American ancestry; EUR, European ancestry; O, Other (African American
ancestry or East Asian ancestry).

“Based on 1000 Genomes Project superpopulations.
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Component Analysis (ICA)

B Referenced-Informed Network Estimation
Spatially Static ICNs

Sex-Specific Spatial Dynamics in Schizophrenia

Figure 1. Schematic of the analysis pipeline.
(A) Using group-level spatial independent compo-
nent analysis (ICA) to obtain group-level intrinsic

connectivity networks as a functional unit reference.
(B) Applying spatially constrained ICA (scICA) to
estimate the correspondence of intrinsic connectiv-
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ity networks (ICNs) from a given participant. The left
panel shows the standard sclCA application to es-
timate spatially static ICNs (i.e., assume spatial
patterns of ICNs remained fixed over time), and the

Time

Time
—_—

P e—

[

rsfMRI data: Subject i

|9XOA

windowm

gl
x
[cA

ICNs: Subject i (spatially static)

ICNs: Subject / window m

rsfMRI data: Subject i
—— SN AN AN AN N\ e

ICNs: Subject /i window n

right panel shows the proposed approach to esti-
mate time-resolved ICN information. (C) Calculating
whole-brain spatial dynamic states from spatial
covariance matrices. gr-ICN, group-level ICN;
rsfMRI, resting-state functional magnetic resonance
imaging; SMs: spatial maps; TCs: time courses.

windown

C Spatial Dynamic States Calculation

1" Spatial Covariance

N | K-means
Clustering

MTR-S), subcortical (SUB), cerebellar (CER), attention (ATN),
frontal (FRNT), left and right frontoparietal (FPN-L/FPN-R),
posterior and anterior default mode (DMN-P/DMN-A), salience
(SN), and temporal (TEMP) networks (Figure 2A). Moreover,
separate ICAs conducted for each sex group identified similar
networks for men and women with high spatial similarity (0.92 +
0.05 and 0.92 =+ 0.03, respectively).

Next, we combined a spatially constrained ICA method
called multivariate-objective optimization ICA with reference
(48) (Figure 1B, left) and the sliding window technique (49) to
estimate time-resolved networks corresponding to the tem-
plates (Figure 1B, right). This ICA approach performs well in
capturing sample-specific information for different data lengths
and brain networks (35) and is robust to artifacts (50). The
sliding window technique is the most commonly used tech-
nique to study brain dynamics due to its simplicity, ease of use,
and similarity to the conventional functional connectivity pro-
cedure, making the interpretation of findings straightforward
(49). We used a tapered window (rectangle width = 60 sec-
onds, Gaussian ¢ = 6 seconds) with a sliding step size of 1,
consistent with previous recommendations (49,51) and our
previous research in spatial dynamics (39), ensuring consis-
tency and comparability of findings across studies.

Low-Dimensional Spatial Dynamic States
Encapsulates Global Brain State Dynamics

We quantified time-resolved spFNCs by calculating spatial
covariance of networks at each time window, where an

190

increase and decrease indicate network integration and
segregation. Next, we captured global brain state dynamics by
identifying 4 recurring, distinct spFNC patterns (Figure 2C)
using k-means clustering with L1 distance and the elbow cri-
terion (Figure 2B), following previous work and recommenda-
tions (20,49,52).

The fraction of time that individuals spent in spatial dy-
namics states varied significantly, with state 4 having an
approximately 2-fold higher fraction rate than state 2 (0.31 vs.
0.17). State 4 demonstrated the lowest level of overall network
integration, while states 1 and 2 showed the highest integra-
tion. Conversely, the mean dwell time, which indicates the
amount of time spent at each state per visit, was very similar
across all states, ranging from 18.95 to 22.03 seconds. In other
words, while the life expectancy of spatial dynamic states (i.e.,
mean dwell time) is similar on average, the total amount of time
the brain stays in each state varies.

The Clinical Relevance of Dynamic Spatial
Coupling: A Schizophrenia Study

Next, we investigated alterations in the continuous reconfigu-
ration of functional integration and segregation in schizo-
phrenia. Given the previous findings (17-20,23,24,26,39), we
hypothesized alterations in the dynamic spFNC of large-scale
networks in schizophrenia, including sex-specific disruptions
in the posterior DMN (pDMN)/SN spFNC.

We ran a generalized linear regression model for each
spFNC pair from each spatial dynamic state with age, sex,
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Figure 2. Capturing global brain state dynamics using low-dimensional spatial dynamic states. (A) Visualization of the intrinsic connectivity networks. Each
color in the composite map represents the spatial map of 1 intrinsic connectivity network thresholded at |Z] > 1.96 (p = .05). (B) Estimation of the optimal
number of states. The k-means clustering procedure was conducted for cluster numbers 1 to 15. The ratio of within- to between-cluster variance was
calculated for each clustering, and the elbow criterion was used to estimate the number of global states. (C) The 4 spatial dynamic states were identified using
k-means clustering with L1 distance. The fraction rate is the fraction of times a participant spends in a given state, and mean dwell time represents the average
time a given participant stays in a given state before switching to another state. The mean dwell time is similar across states (18.95 ~ 22.03 seconds), while
fraction rate shows more difference across states (0.17 ~ 0.31). aDMN, anterior default mode network; ATN, attention network; CER, cerebellar network; FPN,
frontoparietal network; FRNT, frontal network; L, left; MDT, mean dwell time; MTR, somatomotor network; P, primary; pDMN, posterior default mode network;
PFT, percentage fraction rate; R, right; S, secondary; SN, salience network; SUB, subcortical network; TEMP, temporal network; VIS, visual network.

mean framewise displacement, and site as confounding fac-
tors and diagnosis and sex-by-diagnosis interactions as pre-
dictors of interest. The p values were corrected using a 5%
false discovery rate (53).

We observed system-wide disruptions in dynamic func-
tional integration (Figure 3), among which the spFNC pairs of
the CER, TEMP, and MTR-S were affected the most. As hy-
pothesized, the dynamic spatial coupling between the pDMN
and SN revealed sex-specific changes in schizophrenia. The
sex-specific effect also existed in dynamic spFNC network
pairs of CER/MTR-S and SUB/FRNT. The sex-specific effect of
schizophrenia was only significant in state 1, the state with the
highest level of system-wide functional integration.

Next, we evaluated the genomic predisposition of aberrant
system-wide dynamic functional integration. We focused on
the schizophrenia-risk single nucleotide polymorphisms that
reside in the 287 loci reported by a recent large-scale
schizophrenia genomic study (54) and computed the poly-
genic risk score for schizophrenia pruned at R? < 0.1 (54) using
PRSice (55). Sixteen of the annotated genes have been
implicated for credible causal nonsynonymous or untranslated
region variation, and the enrichment test has pointed to
postsynaptic pathology (54). Details regarding these 287 risk
loci are available in Supplementary Table 3 of Trubetskoy et al.
(54). The associations between the polygenic risk score and
aberrant dynamic spFNC were performed on a subset of data
(European/American = 304/109, schizophrenia/control = 156/
257) using Pearson correlations while controlling for diagnosis,
sex, age, mean framewise displacement, and site and cor-
recting for multiple comparisons using the false discovery rate.

Two dynamic spFNC pairs exhibited significant correlations
with the polygenic risk score for schizophrenia, including
pDMN/SN spFNC in state 1 with a sex-specific schizophrenia
effect and TEMP/MTR-P spFNC in state 2 with a significant
diagnosis effect (Figure 3C). We also investigated these as-
sociations separately in European and American populations
and observed consistent associations with comparable effect
sizes.

Low Regional Contribution Linked to High
Informational Content

Next, we investigated how schizophrenia-related alterations in
low-dimensional spatial dynamic states were linked to diag-
nosis differences in high-dimensional voxel space by focusing
on the dynamic spFNC pairs with both significant schizo-
phrenia effects and genomic associations. Voxelwise statisti-
cal comparisons were conducted on the networks’ state
spatial maps using the same regression model as for spFNC
analysis, which resulted in 1 spatial map of beta coefficients for
each variable of interest. Subsequently, we computed the
spatial similarity between each beta-spatial map and the
spatial maps of networks involved in each spFNC pair using
Pearson correlations and compared it with the spatial similarity
estimated from null data with the same level of spatial
smoothing.

Our results suggest that 1) the aberrations of brain networks
reflect changes in dynamic spFNC; 2) schizophrenia affects
brain networks in a nuanced and distributed manner across the
entire brain; 3) regions with lower network contributions
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Figure 3. Global spatial dynamic disruption in schizophrenia (S2) and association with genomic data. (A) The diagnosis effect (before correcting for multiple
comparisons), i.e., SZ vs. control (CN), of the identified spatial functional network connectivity (spFNC) dynamic states. The statistical comparison for each per-
state spFNC pair was conducted using a generalized linear regression model with age, sex, mean framewise displacement, and site as confounding factors
and diagnosis and sex-by-diagnosis interactions as predictors of interest. Asterisks (*) represent p < .05. (B) Connectograms of state spFNC pairs with a
significant diagnosis or interaction (diagnosis-by-sex) effects after false discovery rate corrections. Three spFNC pairs from state 1 show significant sex-by-
diagnosis interaction effects, including the posterior default mode network (pDMN) and salience network (SN). (C) The association between SZ genetic risk and
aberrant dynamic spatial coupling. Among dynamic spFNC pairs with a significant SZ effect, 2 show significant associations with the polygenic risk score
(PRS) after false discovery rate correction. These 2 include the spFNC between the pDMN and SN in state 1 with a sex-specific SZ effect and the spFNC
between the temporal network (TEMP) and primary somatomotor network (MTR-P) in state 2, which show disruption in SZ but with no significant sex effect.
aDMN, anterior default mode network; ATN, attention network; CER, cerebellar network; FPN, frontoparietal network; FRNT, frontal network; L, left; P, primary;

R, right; S, secondary; SUB, subcortical network; VIS, visual network.

demonstrate a more prominent effect; and 4) the impact of
schizophrenia may not necessarily be strongly evident for
single voxels despite significant whole-brain effects.

Figure 4A shows the spatial similarity between the beta-
spatial maps of variables of interest (e.g., diagnosis) and the
network maps, with significant similarities indicated by aster-
isks. Figure 4B shows the beta-spatial maps with significant
spatial similarity. The beta-spatial map of SN state 1 for the
sex-by-diagnosis interaction and male diagnosis effects (but
not for the group diagnosis effect) showed significant spatial
similarities with the pDMN (Figure 4A). Similarly, the beta-
spatial maps of the interaction (sex-by-diagnosis) and diag-
nosis (male) effects for the state 1 pDMN had significant
similarities with the spatial map of the SN (Figure 4A). These
findings bolster the sex-specific schizophrenia effect observed
in pDMN/SN spFNC in state 1 (Figure 3).

For the state 1 pDMN, the impact of schizophrenia was not
strong enough to manifest at the voxel level (Figure 4C) despite
the significant global effect. However, the SN map in state 1
revealed significant interaction and male diagnosis effects in
regions commonly associated with the pDMN, including the
posterior cingulate cortex and precuneus (Figure 4C). These
regions with notable sex-specific schizophrenia effects have
often been masked out in previous research due to their weak
functional connectivity to their respective networks.

For the MTR-P and TEMP in state 2 with significant diag-
nostic effects in their spFNC (Figure 3), the beta-spatial map of
the diagnosis effect showed significant spatial similarity with
the TEMP and MTR-P, respectively (Figure 4A). At the voxel
level, regions with significant diagnosis group effects for the
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TEMP resembled the MTR-P (Figure 4C). For the MTR-P, the
diagnosis group effect spatial map contains a brain area with a
significant contribution to the TEMP but also contains regions
of the primary visual network, which also showed aberrant
FNC with the MTR-P in state 2.

We also conducted a voxelwise analysis to evaluate the
associations between the polygenic risk score and state
network spatial maps. We found significant spatial similarities
(p < .05) between the genomic association maps and all 4
networks’ state spatial maps. For example, the genomic as-
sociation map for the state 1 pDMN showed significant spatial
similarity with the SN map (p = .03).

DISCUSSION

Our research aims to explore the potential benefits of dynamic
spatial integration and segregation of brain networks in the
context of schizophrenia, with a particular focus on sex-
specific alterations and their links to genetic risk factors.

To achieve this goal and address existing challenges, we
have introduced a reference-informed network estimation
technique that effectively estimates time-resolved networks
from short time segments while also controlling for the influ-
ence of other networks in the estimations. This has a potential
advantage over our previous work (39), which utilized sliding
window correlation as an alternative approach. Furthermore,
compared to our previous effort (56), this method is more
generalizable, computationally efficient, and capable of
capturing information about the second- and higher-order
statistics of spatial dependence. This allows us to more
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Figure 4. The evidence of aberrant dynamic spatial coupling on network dynamic spatial maps. We conducted voxelwise statistical analysis on the spatial
patterns of the networks to evaluate whether the effect of schizophrenia on dynamic spatial functional network connectivity emerges in the network dynamic
spatial maps. We focused on the spatial patterns involved in the 2 spatial functional network connectivity pairs with significant schizophrenia effects and
genomic associations. (A) The results of the spatial similarity (measured by Pearson correlation) between the spatial map of a specific network for a given state
and the beta-spatial maps of the variables of interest (e.g., diagnosis) from voxelwise statistical analysis. Asterisks represent those with significant spatial
similarity (p value < .05), and the value in each cell represents the Pearson correlation coefficient. The results are consistent with dynamic spatial functional
network connectivity findings. For example, we observe significant spatial similarity with the posterior default mode network (pDMN) for the interaction effect in
the salience network (SN) state 1. Another example is the spatial map of the diagnosis group effect (but not the interaction effect) obtained using voxelwise
analysis of the primary somatomotor network (MTR-P) in state 2, which shows significant spatial similarity with the spatial map of the temporal network (TEMP).
(B) The beta-spatial maps of those that show significant spatial similarity in (A). To study the impact of schizophrenia at the voxel level, cluster-wise correction
was applied to beta-spatial maps. (C) Cluster-corrected statistics. Pink arrows illustrate clusters in which the paired networks have a strong contribution. For
example, the pink arrows in T show the cluster in the posterior cingulate cortex and precuneus that survived cluster-wise correction. The posterior cingulate
cortex and precuneus are the cores of the pDMN and contribute significantly to the pDMN. L, left; R, right.

accurately quantify dynamic integration and segregation, collectively provide a low-dimensional summary of global brain
thereby enhancing our understanding of dysconnectivity in state dynamics. The brain spends more time in state 4, the
brain dynamics associated with schizophrenia. most segregated state with the highest rate of between-state

We identified 4 distinct spatial dynamic states with unique transitioning. We propose that this state functions as a hub-
network integration and segregation patterns, which like transition state. However, all states have a similar life
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expectancy, suggesting that state 4 is not a steady state.
These findings must be verified in an independent dataset to
ensure replicability and generalizability.

We examined the impact of schizophrenia on low-
dimensional spatial dynamic states. Inferring from the dys-
connectivity hypothesis (57), disturbances in behavior and
psychopathology are expected to be associated with disrup-
tions in the reconfiguration of system-wide brain functional
integration. Our findings support this proposition by demon-
strating significant alterations in the dynamics of spatial
coupling in both men and women with schizophrenia.

In general, individuals with schizophrenia presented lower
spFNC integration across all states and most networks. Spe-
cifically, the patterns of lower integration were more wide-
spread in the MTRs and the right FPN (Figure 3). This is
consistent with previous reports of global connectivity deficits
in schizophrenia, with more prominent alterations in the frontal
and temporal regions (58,59). We also found that individuals
with schizophrenia presented, to a lesser extent, higher spFNC
integration in specific pairs of networks, mainly involving the
SUB, TEMP, MTRs, and CER (Figure 3). This is also consistent
with previous reports of functional hyperconnectivity in in-
dividuals with schizophrenia (60-62).

While widespread disruption in networks’ spatial coupling
occurs across the whole brain and all dynamic states, the
highly integrated, modular state 1 showed a great number of
dysconnectivity patterns. The alterations observed in the
pDMN/SN and right FPN/ATN spFNC in this state may be
related to disturbances in cognition and psychopathology
associated with psychosis (19,63). These findings are consis-
tent with the triple-network model (63), suggesting that the
abnormal striatal dopamine release may lead to disruptions in
the dynamics among the DMN, SN, and FPN, thus potentially
contributing to the misattribution of salience to irrelevant
external stimuli and self-referential mental events.

Moreover, functional connectivity aberrations in the pDMN
have repeatedly been shown to be involved with schizophrenia
pathophysiology (64-66). Our results support and extend these
findings by showing that disruptions in pDMN/SN spFNC were
present in all 4 dynamic states (although this did not survive
multiple comparison correction in state 3). Also, as hypothe-
sized, we found a sex-by-diagnosis interaction effect for
pDMN/SN spFNC in state 1, which could explain why some
previous work found mixed results (65,67-69) or no alterations
(70) in the DMN functional connectivity of individuals with
schizophrenia. This pair also showed an association with the
schizophrenia polygenic risk score, adding another layer of
confirmation and suggesting a potential sex-specific psycho-
sis neurobiological marker. However, the reproducibility of
these results should be verified in an independent dataset.

Previous studies suggest that women diagnosed with
schizophrenia tend to manifest more affective symptoms and
often have overlapping diagnoses with affective psychosis
(71,72). Negative symptoms tend to be more prevalent in men.
Given the association between these symptoms and differ-
ences in cingulo-opercular and CER networks (73), our findings
are consistent with the potential link between CER and SN and
the observed sex differences.

Some spFNC pairs presented significant schizophrenia
differences that were fleeting and temporally localized to only a
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few states (i.e., exhibited a state-like property), which contrasts
with spFNC pairs where the schizophrenia effect was consis-
tently present across all states (a trait-like property). The right
FPN/ATN coupling exemplifies a state-like spFNC pair,
whereas the TEMP/MTR-S pair is a notable trait-like example.
Intriguingly, based on Neurosynth (https://www.neurosynth.
org/) (74), the highest activation point for the TEMP is linked
to semantic integration and language, while the peak activation
for MTR-S is associated with speech production. Disruptions
in language-related regions and networks in psychotic disor-
ders are findings well-established in previous studies and may
be linked to auditory verbal hallucinations (75-80). It should be
noted that other pairs, such as pDMN/SN (with a diagnosis-by-
sex interaction effect), MTR-S/SUB, MTR-S/CER, and SUB/
CER, demonstrated a similar trait-like pattern, although the
difference did not survive multiple comparison correction in all
states (Figure 3A). Importantly, the schizophrenia changes in
the MTR-S/SUB/CER support the cerebellar-thalamic-cortical
dysconnectivity model of psychosis (81-83).

Another major finding is the spatial decoupling between the
TEMP and MTR across all states, among which TEMP/MTR-P
spFNC in state 2 is correlated with the schizophrenia polygenic
risk score. Alterations in functional connectivity in temporal,
somatosensory, and motor regions have previously been
associated with schizophrenia (18), but to the best of our
knowledge, this is the first study to show an association be-
tween those aberrations and genetic predisposition for
schizophrenia. Individuals with schizophrenia often exhibit
motor impairments from early stages, suggesting a genetic
vulnerability contributing to neurodevelopmental disruptions
(84,85). Temporal cortex dysfunction may also play a role in
social cognition and theory of mind impairments in schizo-
phrenia due to difficulties that individuals have detecting subtle
emotional components of auditory inputs, which leads to
reduced social interaction skills and marked deficiencies in
psychosocial functioning (86). Additionally, the schizophrenia
polygenic risk score reflects the overall genetic risk burden of
287 schizophrenia-related loci, for which a fine mapping
revealed that 16 of the annotated genes had been implicated
for credible causal nonsynonymous or untranslated region
variation. The enrichment test has also pointed to a diverse set
of synaptic proteins and suggested that multiple functional
interactions of schizophrenia risk converge on synapses (54).
While our findings link genetic risk for schizophrenia to TEMP/
MTR, it would be intriguing to investigate whether this genetic
predisposition could lead to synaptic alterations in these net-
works during neurodevelopment, thereby resulting in poor
functional integration and the early emergence of neurological
signs.

A significant breakthrough has been made regarding the
significance of regions with weak functional connectivity
(Figure 4). Our findings reveal that the distortion in spatial
coupling was embedded in high-dimensional (voxel-level)
space in brain regions with low contributions to the corre-
sponding networks (Figure 4). For example, significant
schizophrenia interaction and male diagnosis effects in the SN
in state 1 were exclusively exhibited in regions with a low
contribution to the SN. This observation is significant because
current research often overlooks regions with small contribu-
tions during voxelwise analysis (i.e., uses a mask of regions
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with high amplitude in spatial maps). This complements our
recent finding (21) on the importance of time points with low
contributions to capturing schizophrenia-related changes,
calling for further investigation.

Taken together, our findings indicate that information about
dynamic spatial dependence, which has been overlooked,
holds immense potential to substantially impact the clinical
landscape as it quantifies the continuous integration and
segregation of brain networks. Particularly, it can advance our
understanding of schizophrenia, a disorder that is often char-
acterized by dysconnectivity and disruptions in system-wide
functional integration.

Limitations and Future Directions

We confirmed the existence of these networks in both men
and women, and our framework ensures comparability of
findings between them. Nevertheless, there is a pressing need
for new techniques that account for sex-specific differences
when estimating brain networks.

Using spatially constrained ICA enables capturing brain
networks from short data lengths (35), but its constraints limit
comprehensive depiction of spatial dynamics and participant-
specific features. Future research should develop optimized
methods for more precise and thorough estimations of time-
resolved participant-specific networks to improve our under-
standing of intricate spatial dynamics and individual variations
in brain function. Furthermore, our study focused on dynamic
spatial coupling, but a more comprehensive framework that
includes temporal dynamics and static features is needed to
characterize sex-common and sex-specific functional patterns
of schizophrenia and their association with genetic risk factors.

In this study, we made choices based on existing knowl-
edge from previous studies (49,51,52). However, the impact of
different choices and the generalizability of clinical findings
should be assessed in future studies, especially considering
the inconsistency among previous schizophrenia-related find-
ings. For example, future studies should investigate the impact
of window lengths and spatial smoothing (35).

Factors, such as medication status and symptom severity,
may influence the results and limit their applicability to other
populations or specific subgroups. It is imperative to assess
the replicability and generalizability of the findings in more
homogeneous independent datasets with larger sample sizes,
with a particular focus on medication use, symptom severity,
substance use disorders, medical comorbidities, and years
since symptom onset. While our post hoc analysis found no
significant association between medication (chlorpromazine
equivalence scores) and the 2 dynamic spFNC pairs with
significant schizophrenia effects and genomic associations,
evaluating the impact of different pharmacological treatments
on schizophrenia-related changes in brain dynamics is critical.
Additionally, future research should evaluate our findings in
other cohorts, such as individuals with first-episode psychosis,
individuals at high risk of psychosis, or first-degree relatives.

The correlation between the schizophrenia polygenic risk
score and 2 specific spFNC aberrations suggests genetic in-
fluence on these changes and lends support to the neuro-
developmental hypothesis of schizophrenia, but the cross-

Biological
Psychiatry

sectional design precludes drawing causal inferences. Longi-
tudinal studies with larger datasets are needed to elucidate the
neurodevelopmental trajectory of schizophrenia.

Finally, the relevance of sex-specific findings should be
interpreted while recognizing sex differences in the incidence
and prevalence (higher in males) and the earlier onset of
schizophrenia in men. Additionally, the limitations of statistical
power underscore the need for larger sample sizes in future
studies to validate these findings. Gender is another crucial
factor that can influence our findings. Sex and gender differ-
ences in psychosis are the consequence of complex in-
teractions between biological and psychosocial factors. It is
essential to evaluate our findings in a dataset with both sex
and gender information to discern between findings driven
primarily by psychosocial or biological factors.
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