
  

 

Abstract4 Resting-state functional network connectivity 

(rsFNC) has shown utility for identifying characteristic 

functional brain patterns in individuals with psychiatric and 

mood disorders, providing a promising avenue for biomarker 

development. However, several factors have precluded 

widespread clinical adoption of rsFNC diagnostics, namely the 

lack of standardized approaches for capturing comparable and 

reproducible imaging markers across individuals, as well as the 

disagreement on the amount of data required to robustly detect 

intrinsic connectivity networks (ICNs) and diagnostically 

relevant patterns of rsFNC. Here, we investigate the robustness 

of (1) subject-specific ICNs standardized to an a priori network 

template via spatially constrained ICA (scICA), and (2) rsFNC 

differences between schizophrenia and control groups with 

respect to the length of the fMRI. Our results suggest clinical 

rsFMRI scans, when decomposed with scICA, could potentially 

be shortened to just 2-4 minutes without significant loss of 

individual rsFNC information or classification performance of 

longer scan lengths.  

 
Clinical Relevance4 This work shows diagnostically relevant 

rsFNC patterns for schizophrenia can be identified from just 2-

4 minutes of rsfMRI using an scICA approach. These results can 

influence future work in neuroimaging biomarker development.  

I. INTRODUCTION 

Resting-state functional MRI (rsfMRI) has been a valuable 
tool for identifying and investigating brain networks and their 
functional interactions, often referred to as resting-state 
functional network connectivity (rsFNC), in both typical 
individuals and those diagnosed with psychiatric and mood 
disorders. Clinically, rsfMRI offers several benefits, namely 
that it is non-invasive, it is relatively easy to administer and 
imposes fewer demands on subjects than other imaging 
techniques or task-based paradigms, an important 
consideration for clinical populations that may not be able to 
perform standardized tasks in the scanner. Studies of rsFNC 
have also identified characteristic and reproducible 
connectivity patterns capable of discriminating between 
various diagnostic groups [1], [2], as well as <fingerprinting= 
individuals and predicting behavior [3].  

While these benefits show promise for rsFNC to serve as 
a potential biomarker to move towards precision diagnosis in 
the currently tangled landscape of psychiatric disorders, 
several factors have prevented widespread clinical adoption of 
such methods. One challenge is the lack of standardized 
approaches for capturing imaging markers, in this case 
individualized intrinsic connectivity networks (ICNs), that are 

 
*Research supported by the National Institutes of Health (NIH R01MH123610) and the National Science Foundation (NSF 2112455). 

M. Duda, A. Iraji, and V.D. Calhoun are with the Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia 

State University, Georgia Institute of Technology, and Emory University, Atlanta, GA 30303, USA (e-mails: mduda@gsu.edu, armin.iraji@gmail.com, 

vcalhoun@gsu.edu).  

reproducible and readily comparable across individuals. 
Independent components analysis (ICA) is a widely used data-
driven approach for extracting maximally spatially 
independent components that share co-varying activation 
patterns from voxel-level fMRI data, and though several group 
ICA methods have been developed that enforce 
correspondence between individual-level ICNs in a given 
group analysis [4]3[6], there is no such guarantee of 
correspondence across different datasets or analyses. To 
address this challenge, spatially constrained ICA (scICA) 
methods have recently been proposed [7] that can extract 
individualized ICNs guided by the spatial prior of an 
independently derived and validated network template. The 
scICA approach is fully automated and ensures the 
correspondence of ICNs across subjects while maintaining 
individualized identification of components, suggesting it can 
be of great use for precision biomarker development.  

In addition, there is currently debate in the field 
surrounding the amount of rsfMRI data needed to generate 
robust estimates of functional networks and corresponding 
resting-state functional connectivity (rsFC). Typically, rsfMRI 
scan lengths range from 5-15 minutes, but recent work has 
yielded conflicting results, suggesting as little as 5-6 minutes 
[8]3[10] or as much as 30-40 minutes [11]3[13] of data are 
necessary to produce sufficiently reliable estimates of 
individual rsFC. While shorter scanning sessions would be 
more cost- and resource-efficient for clinical implementation, 
the ICN and rsFC estimates from shorter time courses can be 
more susceptible to spurious noise; conversely, while longer 
scanning sessions have the benefit of averaging across more 
data, the longer a subject spends in the scanner the more 
susceptible they are to fatigue, increased head motion, 
drowsiness, and fluctuations in vigilance [14], which also 
contribute to noise. Thus, the lack of consensus around an 
appropriate <minimally sufficient= scan length for clinical 
applications of rsfMRI has left this an open area of research. 

Importantly, existing studies of scan length reliability 
have focused on atlas- and seed-based approaches; to the best 
of our knowledge there has been no such examination of 
reliability using a data-driven ICA approach, specifically 
scICA. We suggest scan length reliability is dependent, at least 
in part, on the methodological approach employed. 
Furthermore, we hypothesize that the regularization provided 
by the spatial priors in scICA can serve to stabilize the solution 
even when less data is used, increasing reliability at shorter 
scan lengths than what is seen in non-ICA approaches.  
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Motivated by the lack of consensus in recommended scan 
lengths for clinical applications, we investigate the robustness 
of both subject-specific ICNs extracted via scICA and their 
resultant rsFNC matrices with respect to time series length. We 
study these in the context of identifying rsFNC differences 
between schizophrenia and control groups. 

II. MATERIALS AND METHODS 

A. Data and Preprocessing 

We utilized an age- and gender-matched discovery dataset, 
including 150 schizophrenia (SZ) and 160 control (CON) 
samples [15]. The rsfMRI data were collected with 3-Tesla 
MRI scanners with a repetition time (TR) of 2 sec, voxel size 
of 3.44 × 3.44 × 4 mm, a slice gap of 1 mm, and a total of 157 
volumes. We also utilized an independent validation dataset 
for classification, consisting of 50 SZ and 79 CON samples 
[16]. The rsfMRI data were collected with 3-Tesla MRI 
scanners [TR = 2 sec; voxel size: 3.75 × 3.75 × 4.55 mm], for 
a total of 145 volumes. The experimental procedures involving 
collection of data from human subjects were approved by the 
Institutional Review Boards of the participating institutions. 
Preprocessing for both datasets was done in SPM and included 
brain extraction, slice-timing, and motion correction steps. 
Preprocessed data were then registered into structural MNI 
space, resampled to 3 mm3 isotropic voxels, and spatially 
smoothed using a Gaussian kernel with a 6 mm full-width at 
half-maximum on a per-subject basis. Finally, first five 
timepoints were trimmed and voxel time courses (TCs) were 
z-scored.  

To supplement the relatively short data lengths available 
from our clinical rsfMRI datasets, we simulated a set of longer 
fMRI time courses using the SimTB toolbox [17], 
(https://trendscenter.org/software/simtb/). In our simulation, 
we set M = 100 subjects and C = 29 components. Simulated 
spatial maps were 148 × 148 voxels in dimension and TCs 
were 900 time points in length with a TR = 2 seconds (30 
minutes total). We simulated individual variation in ICN 
spatial maps by randomly varying the size, rotation and 
translation of template components. The simulation modeled 
two distinct groups (M = 50/50 subjects) with four engineered 
group differences: (1) Group A has a larger amplitude for 
component 7 (C7) than Group B, (2) Groups A and B have 
different shapes for networks composed of C5 and C10, (3) 
Groups A and B have different shapes and amplitudes for a 
network composed of C22 and C23, (4) Group B has stronger 
FNC between C3 and C4 than Group A. For more details, see 
the protocol for simulated group differences described in [18].  

 

Figure 1. NeuroMark network template used for MOO-ICAR. 

B. Spatially Constrained ICA 

We utilized an scICA approach called multivariate-
objective optimization ICA with reference (MOO-ICAR),  
implemented using the GIFT software toolbox 
(http://trendscenter.org/software/gift) [19]. MOO-ICAR 
estimates subject-level independent components (ICs) using 
existing network templates as guides [7]. In this work, we 
utilized the NeuroMark template (described in [7] and 
available at https://trendscenter.org/data/) (Figure 1), which 
consists of N = 53 ICNs categorized into seven functional 
domains: subcortical (SC), auditory (AUD), sensorimotor 
(SM), visual (VIS), cognitive-control (CC), default mode 
(DM) and cerebellar (CB). The following equation represents 
how the lth network can be estimated for the kth subject using 
the network template �  as guidance: 

��� %�'� ( = {�,�'� (. 2 �[�(�)]}
�'� ( = �[� � ]  

 

�. �. :� : = 1 

In this formulation, � = (� ) ç �  represents the 
estimated lth network of the kth subject, where �  is the 

whitened fMRI data matrix of the kth subject and �  is the 
unmixing column vector, to be solved in the optimization 

functions. The function �'� ( serves to optimize the 

independence of �  via negentropy. Here, v is a Gaussian 
variable with mean zero and unit variance, G() is a 
nonquadratic function, and E[]	 denotes the expectation of the 

variable. The function �'� ( serves to optimize the 

correspondence between the template network (� ) and subject 

network (� ). The optimization problem is solved by applying 
a linear weighted sum to combine the two objective functions, 
with weights set at 0.5. Applying MOO-ICAR to each subject 
extracts subject-specific ICNs corresponding to each of the N 
network templates, as well as the relevant TCs. 

C. Stability Evaluation 

 We applied scICA via the MOO-ICAR framework to the 
full reference TC for each subject, and separately to data 
extracted from just the first 1, 2, 3, & minutes, up to the full-
length TC. At each data length, subject-level static functional 
network connectivity (sFNC) was computed via pairwise 
Pearson correlation between time courses of all ICNs, 
resulting in an N × N sFNC matrix. Differences in group-
average sFNC between the CON and SZ populations were 
identified using univariate multiple linear regression including 
age, gender, scanning site and head motion as covariates (or 
two-sample t-test in the case of the simulated data). Significant 
group differences in sFNC were identified as those whose p-

values survive FDR correction at aFDR = 0.05. We evaluated 
the stability of both subject-specific measures (ICN spatial 
maps and sFNC) as well as group differences in sFNC with 
respect to data length by computing Pearson correlations 
between measures derived from the partial TCs and the full 
reference TC. We utilized a robustness threshold of correlation 
g 0.85 to the reference, originally proposed in [11], to identify 
a <minimally sufficient= data length with respect to each 
metric. This evaluation was applied both to the clinical 
discovery and simulated datasets.  
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D. Group Classification 

 We further investigated the robustness and clinical utility 
of scICA-based estimates of rsFNC with a group classification 
task. Using our discovery rsfMRI dataset as training data, we 
generated subject-level feature vectors for each data length by 
extracting the upper triangular of the corresponding scICA-
derived sFNC matrix. We fit binary LASSO-regularized linear 
SVM classification models separately for each data length to 
classify each subject as SZ/CON. For each model, the lambda 
parameter was tuned using five-fold cross-validation. After 
obtaining the optimal lambda value, performance for each of 
the five models was estimated with 500 rounds of bootstrap 
resampled five-fold cross-validation. The final five models for 
each data length were fit using the full training dataset and 
tested on the independent validation dataset for external 
evaluation of classification performance and generalizability 
at each data length. 

III. RESULTS 

We evaluated the stability of subject-level estimates of 
ICN spatial maps and sFNC matrices derived via scICA with 
respect to the length of rsfMRI data for both clinical (Figure 
2A-B) and simulated (Figure 2D-E) datasets. We found no 
discernible group differences in most subject-level measures, 
but the CON group exhibited slightly higher stability in sFNC 
than the SZ group in the clinical data. In the clinical data we 
found only 3 minutes of rsfMRI data were sufficient to meet 
the robustness threshold for the subject-specific ICN spatial 
maps and 3.5 minutes were sufficient for the corresponding 
subject-level sFNC estimates. Notably, the results from the 
simulated data with a 30-minute reference TC showed a 
similar pattern of reliability, surpassing the robustness 
threshold with just 4 minutes of data for both subject-specific 
ICN spatial map and rsFNC estimates. 

We also evaluated the reliability of group-level sFNC 
patterns across TC lengths. Results showed the characteristic 
rsFNC signatures for the SZ and CON groups were highly 
robust to the length of rsfMRI data used, indicating high 
group-level rsFNC stability. The mean sFNC matrices derived 
from even 1 minute of data were highly correlated to the full 
TC reference for both the SZ (r = 0.94) and CON (r = 0.93) 
groups, and this relationship continually increased with more 
of the rsfMRI time course.  

  

Figure 2. Reliability results for clinical (A-C) and simulated (D-F) datasets. 

Subject-level measures (A-B, D-E) show mean (solid line) and standard 

deviation (shaded area) across all subjects. Dotted lines indicate data lengths 

at which the measures meet or exceed the robustness threshold. 

 

Figure 3. Group differences in rsFNC in clinical (top row; SZ-CON) and 

simulated (bottom row; Group A-B) datasets. Values are plotted as 2log10(p-

value) × sign(t-value). 

We found significant group differences in sFNC patterns 
across all experiments (Figure 3). We found 2 minutes of 
rsfMRI data were sufficient to meet the robustness threshold 
for group differences in clinical data (Figure 2C), compared to 
the 6 minutes required in the simulated data (Figure 2F). The 
differing group-level results between the clinical and 
simulated experiments could be attributed to the difference in 
reference scan length (5 vs. 30 minutes), or to the strength of 
the simulated group differences. In the clinical data the results 
showed the group differences that were most robust to data 
length were decreased within-domain connectivity of the VIS 
domain and increased cross-domain connectivity between SC-
SM and SC-VIS domains of the SZ group compared to that of 
the CON group. 

The results from our classification experiments showed 
highly stable classification accuracy for models fit across the 
range of 2-5 minutes, with the model trained on 2 minutes of 
data attaining a relative performance to that of the full TC 
reference model of 98% in the internal cross-validation (0.73 
vs 0.74) and 97% in the external validation (0.68 vs 0.70) 
(Figure 4A). For each model, we extracted the most influential 
sFNC edges, defined as the 20% of features with the largest 
magnitude weights. We found 31 sFNC edges were commonly 
included among the top feature weights across the five models 
(Figure 4B) that mainly belonged to the SC, VIS, and SM 
domains, corresponding with the significant edges identified 
in the group differences analysis. 

 

 

Figure 4. (A) Classification performance of linear SVM models trained at 

each data length. (B) FNC edges in the top 20% of SVM feature weights 

shared among all five models. 

IV. DISCUSSION 

The aim of this work was to identify a <minimally 
sufficient= rsfMRI scan length that demonstrates clinical 
utility, both in producing stable estimates of ICNs and rsFNC 
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matrices at the single-subject level, as well as capturing 
diagnostically relevant group differences in rsFNC. Previous 
work has produced conflicting results, suggesting anywhere 
from 5-40 minutes as necessary minimum scan lengths to 
reach adequate reliability, with most recent works advocating 
for longer acquisitions. One such study suggested that at least 
30 minutes of rsfMRI were required to obtain an average 
subject-level rsFC reliability of r g 0.85, with respect to a 70 
minute reference [11]. In contrast, we found just 3-4 minutes 
of data can produce an average subject-level rsFNC reliability 
of r g 0.85 with respect to both shorter (5 minute) and longer 
(30 minute) reference TCs (Figure 2B,E). These differing 
results are likely due to our data-driven scICA approach, in 
which the spatial priors may serve to help regularize the 
solution somewhat, leading to increased stability even when 
analyzing much less data.  

Additionally, our classification experiments showed just 2 
minutes of data retained 97% of the accuracy of the full-length 
reference TC, directly demonstrating the utility of shorter TCs 
in diagnostic predictions. Most existing studies of scan length 
reliability focus mainly on subject-level measures, namely 
rsFC, and do not extend the analysis to group-level measures 
or diagnostic classification tasks. These additional analyses in 
our study more clearly define the scope of our work in the 
context of clinical biomarker development and separate the 
present study from the existing body of work in this area.  

This study does have several limitations to consider. Our 
results are limited by the acquisition protocols of the clinical 
datasets available to us, which consist of relatively short (5 
minute) scans of individuals. We addressed this limitation by 
simulating longer (30 minute) fMRI time courses, and though 
the SimTB software has been extensively studied and has 
shown utility for reliably modeling multi-subject fMRI 
datasets, the simulations are expectedly limited in both the 
spatial dimensionality, simulating a single axial slice rather 
than a three-dimensional full brain, and the ability of the 
engineered group differences to simulate differences between 
true clinical populations. Therefore, the conclusions made 
from our simulated experiments should be tested further in true 
clinical rsfMRI data of similar scan lengths. 

V. CONCLUSION 

Our results support the idea that when scICA is employed, 
a <minimally sufficient= scan length may exist in the 234-
minute range that could be favorable for use in clinical 
settings, both in maximizing clinical efficiency and patient 
comfort while retaining diagnostic efficacy. However, more 
work is still required to validate these results in larger (and 
longer) data sets, as well as in other diagnoses for which 
rsFNC biomarkers may be useful. Future work may also 
include direct comparisons of scICA against other data-driven 
methods, such as classical group ICA, as well as atlas- and 
seed-based approaches.  
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