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Abstract— The high dimensionality and complexity of time-
varying measures of functional brain connectivity have created
an environment in which a very rich transformation of the
data remains difficult to map into disease states without some
form of reduction (averaging, clustering, statistical blindness
to the multivariate interactions between features that modu-
late their contributions). In this work, employing a recently
developed architecture for long short-term memory classifiers
that supports use of gradient-based model interpretability tech-
niques, we predict progression or recovery from mild cognitive
impairment (MCI) from an instantaneous (windowless) wavelet-
based measure of dynamic functional network connectivity. This
time-attention LSTM (TA-LSTM) model achieves 0.79 AUC on
the task of predicting which MCI patients who will recover
(RMCI) vs. those who will progress (PMCI) to AZD within a
three-year timeframe. Using a common gradient-based model
interpretation technique, saliency analysis, on this TA-LSTM
points to potentially important predictive dynamic biomarkers,
including the duration of the highly salient time intervals and
the average connectivity patterns within these highly salient
intervals.

Index Term—Brain Dynamics, Dynamic Functional Network
Connectivity, Long Short-term Memory, Explainable Deep
Learning, Wavelet Transform, rs-fMRI, Mild Cognitive Impair-
ment, Alzheimer’s Disease

I. INTRODUCTION

Alzheimer’s Disease (AZD) is a neurodegenerative disease

that has risen to become the fifth leading cause of death

in adults over 65 in the United States [1]. Mild cognitive

impairment (MCI) is a precursor-stage of AZD that has a

high chance of progressing to AZD in five years, but can

still be reversed to cognitive health (CN) [2]. Therefore,

prediction progression to AZD or recovery to CN is vital

that offer early medical intervention.

Blood oxygenation level dependent (BOLD) functional

magnetic resonance imaging (fMRI) measures changes in

blood flow as a proxy for the dynamically varying activation

levels in localized neuronal populations. In the resting state

paradigm (rs-fMRI), subjects are scanned under task-free

conditions, with no explicit experimental guidance. This

paradigm has been used to study evolving configurations

of connectivity in the brain [3], particularly associated with

mental disorders [4]. Dynamic functional network connectiv-

ity (dFNC) is a transformed measure from rs-fMRI in which

time-varying functional integration, typically computed as
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a set of network-pair correlations assessed on successive

sliding windows through the scan (SWCdFNC) [5]. Window-

less wavelet-based dynamic functional network connectivity

(WWdFNC) captures connectivity at each timepoint using

time-varying frequency domain information from the contin-

uous wavelet transform [6]. WWdFNC functions as a low-

pass filter on the dynamics and blurs the base of information

that a recurrent neural network classifier can exploit for its

task.

Deep learning has made significant advances in the neu-

roimaging domain for classification and prediction tasks by

allowing the model to learn class discriminative patterns on

various levels of abstraction from the data representation.

Understanding and interpreting the model through post-hoc

analysis will enable us to uncover the group-wise biomarkers.

The saliency map approach [7] is a gradient-based “black-

box decoding” approach that allows visualization of each

input feature’s value’s contribution to the final prediction

in the well-trained model. In general, gradient-based feature

importance techniques applied to recurrent models are biased

toward proximal timepoints due to the “vanishing gradient”

phenomenon, making it difficult to leverage their powerful

predictive performance on dynamic inputs for model inter-

pretation. The time-attention LSTM overcomes this limi-

tation by inserting an attention layer between the deepest

LSTM layer and the final layer [8] (Figure 1).

This work introduces a model interpretation pipeline for

identifying potential predictive time-varying group-wise con-

nectivity biomarkers in the WWdFNC. We trained and tested

the TA-LSTM model to predict patients with MCI who will

progress to AZD vs. recover to HC in the next three years

after rs-fMRI scanning. This is the first study of WWdFNC

for feature learning on the deep learning model, and the

results indicate WWdFNC as a feature representation that

has more discriminative power than SWCdFNC. We then

constructed a per-input saliency map to represent the con-

tributing level to the final prediction. We performed several

statistical analyses to find the predictive dynamic group-

wise biomarkers, including the duration of the highly salient

time intervals and connectivity attributes in the highlighted

intervals.

II. MATERIALS AND METHODS

A. Participants and Data

We used data from the latest release in the Open Access

Series of Imaging Studies (OASIS-3). OASIS-3 is a longi-

tudinal dataset that included over one thousand participants20
22
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Fig. 1. The framework of Windowless Wavelet-based dFNC feature construction and Time-Attention LSTM model Architecture

at various stages of cognitive decline related to Alzheimer’s

Disease [9]1. We used the clinical dementia rating (CDR)

scale score at and three years after the scan together to

identify the progression directions of MCI patients. The

RMCI subjects had a CDR of 0.5 at the scan time and

returned to 0 in three years. The PMCI subjects had a CDR

of 0.5 at the scan time and progressed to a CDR of greater

than 0.5 in the next three-year timeframe. We used one rs-

fMRI scan per participant in our final sample dataset, and

the final dataset consists of 94 rs-fMRI scans (50 RMCI,

44 PMCI) with age and gender balanced. The demographic

information is summarized in Table I.

TABLE I

DEMOGRAPHIC AND CLINICAL INFORMATION

Mean ± SD Recovery MCI Progressive MCI P value

Number 50 44 -
Age 73.81 ± 6.77 75.23 ± 7.15 0.33a

Gender(M/F) 27/23 27/17 0.47a

CDRY 0 0.5 0.5 -
CDRY 3 0 ± 0 1.13 ± 0.38 -

SD, Standard Deviation; MCI, Mild Cognitive Impairment; CDRY n,
n-year after MR scan session; aTwo sampled T-test

B. Data Preprocessing and Decomposition

We preprocessed the rs-fMRI using statistical paramet-

ric mapping (SPM12, http://www.fil.ion.ucl.ac.

uk/spm/) by removing first five time points and performing

the rigid body motion correction and slice timing correction.

We used an echo-planar imaging (EPI) template to fit the

rs-fMRI data into standard Montreal Neurological Institute

(MNI) space and resampled to 3×3×3mm3 voxels. The data

were smoothed using a Gaussian kernel (FWHM = 5mm),

and were normalized to finalize the preprocessing.

Next, we decomposed the preprocessed rs-fMRI with

group independent component analysis (GICA) to the in-

dependent components (ICs) and the corresponding time-

1The OASIS-3 is a public use dataset and is not individually identifi-
able, the original experimental procedures involving human subjects were
approved by the Institutional Review Board.

courses (TCs) by adopting the NeuroMark pipeline [10].

Fifty-three pairs of ICs and TCs were selected and arranged

into seven functional domains based on the spatial location,

and seven domains include subcortical (SC), auditory (AU),

sensorimotor (SM), visual (VI), cognitive control (CC), de-

fault mode (DM), and cerebellar (CB). In this work, we use

z-scored TCs in the analysis.

C. Windowless Wavelet-based dFNC (WWdFNC)

We used a windowless wavelet-based functional network

connectivity measure as detailed in [6] to investigate time-

varying connectivity between brain networks. The coupling

status of networks at each timepoint t ∈{1,2,. . . ,T} is

represented using WWdFNC, a wavelet-based measure. The

WWdFNC starts by performing a continuous wavelet trans-

form of each univariate network timeseries sk(t) using the

complex Morlet wavelet at J = 20 evenly spaced frequen-

cies. For each univariate network timeseries, this results

in a complex-valued multivariate time-frequency domain

timeseries (mTFTs), Sk(t) ∈ C
J .

Assuming we have N samples and k TCs for each sample

as input S = [s1, s2, ..., sk], we decompose k–th network’s

time-courses sk into Pk ∈ C
J×T and let P

j,t
k ∈ C denote

the wavelet coefficient that represents the power and phase

at frequency j in network k at time t. The network connec-

tivity was then calculated by taking both power and phase

synchrony into account. Power-weighted phase synchrony is

used to compute the WWdFNC between k–th and l–th at t:

Connt
k,l =

20
∑

j=1

ptk + ptl
2

cos(¹tk − ¹tl ) (1)

where ptk and ¹tk are the power and phase coefficient for

network k at time t, respectively.

D. Time Attention-based LSTM (TA-LSTM)

The attention mechanism was proposed and proved faster

and more accurate than other state-of-art models [11], and

also was proved efficiently to overcome the vanishing gra-

dient issue in the gradient-based interpretation approach [8].
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Meanwhile, we aim to build attention on the high-level time

dimension feature after sequence learning instead of the

general pooling computation after the attention layer. The

time attention layer consists of scaled dot-product attention

[11] with half dropout followed by global pooling over the

time dimension. The time attention-weighted output ct from

the attention layer is computed by:

ct =
1

∥ej∥

j
∑

j=1

³tt × etj and ³tt = Ã(
qtj × e¦tj
√

∥ej∥
) (2)

Ã is softmax function, etj is hidden neural status of the last

LSTM layer, qtj is the query matrix produced by a half

random dropout from etj . The TA-LSTM model consists

of three LSTM layers with 64 hidden cells, the time-

summarized attention layer, and one softmax layer to output

the class probability. The architecture is shown in Figure 1.

III. RESULT

In this section, we report model performance and the

interpretation of how the model learned on both temporal

pattern and network connectivity level.

A. Model Performance on learning dFNC

We evaluated WWdFNC and SWCdFNC feature repre-

sentations by training with TA-LSTM model in the ten-

fold cross-validation manner. SWCdFNC was computed

from NeuroMark preprocessed rs-fMRI in a sliding-window

approach with the window size of 20 TR (44s) in steps

of 1TR. In each fold, all 94 data were divided into 90%

of training and 10% of testing. For every ten-fold cross-

validation, each scan was tested once. We repeated ten-fold

cross-validation five times with different shuffle parameters,

resulting in 50 trials. We used the mean of 50 trials’ AUC

(Area Under the Curve), accuracy, sensitivity, specificity as

the evaluation metrics. The performance is shown in Figure

2. The WWdFNC achieved 0.789 of AUC and 79.3% on the

accuracy, increased an average of 0.06 on AUC metric, and

3.1% on accuracy compared to SWCdFNC.

Fig. 2. Mean Model Performance of Prediction of RMCI vs. PMCI

B. Visualization of Most Salient Time Intervals

In the preceding section, we showed that our model trained

on WWdFNC features could perform well in predicting the

progression/ recovery of MCI patients in the next three years.

In this section, we report the interpretation on the group-

distinct brain function connectivity biomarkers in temporal

patterns level. We constructed the saliency maps using the

approach proposed in [7]. It applies the backpropagation

algorithm to compute the gradient of the predicted class score

yc (before the Softmax layer) with respect to each input to

construct the saliency maps with the same dimensionality as

the trained features.

To analyze the temporal patterns from the saliency maps,

we first averaged of all the connectivity at each t. We ac-

cessed the “strongly-contributing” time points (refer as C⃗) by

thresholding with the upper 90th percentile. The temporally

highlighted patterns for both groups are shown in Figure 3(a).

In the saliency maps, we observed the continuous highlighted

intervals C⃗ in RMCI tend to last longer than in PMCI.

We performed the independent 2-sample t-test between the

length of ⃗CRMCI and ⃗CPMCI , and there is the significant

difference between two groups ( ⃗̄CRMCI = 3.78, ⃗̄CPMCI =

2.99, p-value = 7.7e−3). The kernel density estimates shown

in Figure 3(b), show a clearer pattern that C⃗ greater than

or equal to three is the separator point: RMCI has a larger

proportion of length of C⃗ greater or equal to three and verse

vice for PMCI. We evaluated three more thresholds that

equally range between 0.8 to 0.9 to broaden the range of

“strongly-contributing” cutoffs. The results support the same

conclusion that the highlighted time intervals in RMCI tend

to last longer than in PMCI (Figure 3(c)).

C. Group-wise Connectivity Patterns within Intervals

We performed the statistical analysis on the cellwise prop-

erties on the “strongly-contributing” time intervals. Based

on the observations reported in the preceding section, we

selected all the C⃗ greater than or equal to 3. The independent

samples t-test with multiple comparison correction results

shown in middle plot of Figure 4. We also performed two

additional statistical analyses for validation tests by applying

no thresholding and 10% bottom gradient thresholding, and

results are shown in the left and right plots of Figure 4.

The global (no thresholding) cellwise plot shows few levels

of significant difference; and no significant cells after FDR

correction. The 10% lower thresholding that is evaluated for

representing the non-contributing cellwise attributes behave

in the opposite direction to the “strongly-contributing” and

show less significance. The validation tests elucidate that the

model is not strengthening the global-wise attributes of group

difference for feature learning and show the discriminative

temporal patterns that extracted in the saliency maps. With

excluding the global cellwise connectivity patterns, we ob-

served that the RMCI group, compared with the PMCI group,

shows significant high connectivity in CC-DM, CC-VI, CC-

CB, VI-SM, and VI-SC, and low connectivity in VI-VI, VI-

CB, CC-CC.

IV. CONCLUSION AND DISCUSSION

Here our approach introduces a feasible pipeline to capture

transiently realized connectivity biomarkers for advancing

cognitive decline by exploiting the time-dependent feature

learning of the TA-LSTM model. The highlighted “highly

contributing” time intervals show few overlaps with the

global average map, and the global average map has no

significant elements after FDR correction, indicating the

Authorized licensed use limited to: Georgia State University. Downloaded on February 04,2025 at 19:56:47 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3. The saliency maps were constructed on the trial with the highest AUC. (a) The sample-wise saliency maps are first averaged along the connectivity
dimension at each time point, and the 10% highest gradient time points are highlighted. The left section shows the RMCI group and right section is for
PMCI group. (b) The distribution of all supra-threshold time interval durations. We tested four equally spaced thresholds between [0.81, 0.9] and performed
the t-test on the length of supra-threshold intervals. The distribution and p value shown in (c).

Fig. 4. T-test for differences between RMCI and PMCI in mean cellwise WWdFNC connectivity: all samples (left); within intervals exceeding the 90%
upper thresholding for saliency (middle); within intervals under the 10% lower saliency thresholding (right). For the leftmost panel, we applied the no
thresholding, for the middle we used intervals of length at least 3 exceeding the 90% upper saliency threshold, and for the left we used intervals of length
at least 3 with saliency under the 10% bottom saliency threshold computed from all WWdFNC. We averaged the connectivity features within time intervals
and performed the 2-sample T-test with multiple comparison correction (False Discovery Rate Correction q = 0.05). Red means the group average of RMCI
is significantly greater than PMCI (p < 0.05(FDR)), blue means the group average of PMCI is significantly greater than RMCI (p < 0.05(FDR)).

group-wise time-varying patterns do not consistently exist

in whole scan, and the patterns would be faded out in the

average map. The low-vs-high saliency comparison validates

time intervals contain different information with few rela-

tionships to the final prediction scores. Therefore, capturing

the “highly contributing” time intervals over the full scan and

investigating the corresponding connectivity patterns expands

our knowledge of dynamic biomarkers for the future recovery

or cognitive decline of impaired patients. We believe that

the power to localize connectivity patterns whose transient

appearance on intervals retained through sequential process-

ing with memory in long short-term memory networks war-

rants continued focus on interpretable LSTMs. Furthermore,

the additional accuracy achieved by using “instantaneous”

WWdFNCs in this model suggests that greater temporal

resolution of the input data can be productively exploited by

LSTMs compared with SWCdFNC in which with the corase

time resolution, highlighting the importance of continuing to

refine our measures of time-varying connectivity.
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