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Abstract— The high dimensionality and complexity of time-
varying measures of functional brain connectivity have created
an environment in which a very rich transformation of the
data remains difficult to map into disease states without some
form of reduction (averaging, clustering, statistical blindness
to the multivariate interactions between features that modu-
late their contributions). In this work, employing a recently
developed architecture for long short-term memory classifiers
that supports use of gradient-based model interpretability tech-
niques, we predict progression or recovery from mild cognitive
impairment (MCI) from an instantaneous (windowless) wavelet-
based measure of dynamic functional network connectivity. This
time-attention LSTM (TA-LSTM) model achieves 0.79 AUC on
the task of predicting which MCI patients who will recover
(RMCI) vs. those who will progress (PMCI) to AZD within a
three-year timeframe. Using a common gradient-based model
interpretation technique, saliency analysis, on this TA-LSTM
points to potentially important predictive dynamic biomarkers,
including the duration of the highly salient time intervals and
the average connectivity patterns within these highly salient
intervals.

Index Term—Brain Dynamics, Dynamic Functional Network
Connectivity, Long Short-term Memory, Explainable Deep
Learning, Wavelet Transform, rs-fMRI, Mild Cognitive Impair-
ment, Alzheimer’s Disease

[. INTRODUCTION

Alzheimer’s Disease (AZD) is a neurodegenerative disease
that has risen to become the fifth leading cause of death
in adults over 65 in the United States [1]. Mild cognitive
impairment (MCI) is a precursor-stage of AZD that has a
high chance of progressing to AZD in five years, but can
still be reversed to cognitive health (CN) [2]. Therefore,
prediction progression to AZD or recovery to CN is vital
that offer early medical intervention.

Blood oxygenation level dependent (BOLD) functional
magnetic resonance imaging (fMRI) measures changes in
blood flow as a proxy for the dynamically varying activation
levels in localized neuronal populations. In the resting state
paradigm (rs-fMRI), subjects are scanned under task-free
conditions, with no explicit experimental guidance. This
paradigm has been used to study evolving configurations
of connectivity in the brain [3], particularly associated with
mental disorders [4]. Dynamic functional network connectiv-
ity (dFNC) is a transformed measure from rs-fMRI in which
time-varying functional integration, typically computed as
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a set of network-pair correlations assessed on successive
sliding windows through the scan (SWCAFNC) [5]. Window-
less wavelet-based dynamic functional network connectivity
(WWAJFNC) captures connectivity at each timepoint using
time-varying frequency domain information from the contin-
uous wavelet transform [6]. WWAFNC functions as a low-
pass filter on the dynamics and blurs the base of information
that a recurrent neural network classifier can exploit for its
task.

Deep learning has made significant advances in the neu-
roimaging domain for classification and prediction tasks by
allowing the model to learn class discriminative patterns on
various levels of abstraction from the data representation.
Understanding and interpreting the model through post-hoc
analysis will enable us to uncover the group-wise biomarkers.
The saliency map approach [7] is a gradient-based “black-
box decoding” approach that allows visualization of each
input feature’s value’s contribution to the final prediction
in the well-trained model. In general, gradient-based feature
importance techniques applied to recurrent models are biased
toward proximal timepoints due to the “vanishing gradient”
phenomenon, making it difficult to leverage their powerful
predictive performance on dynamic inputs for model inter-
pretation. The time-attention LSTM overcomes this limi-
tation by inserting an attention layer between the deepest
LSTM layer and the final layer [8] (Figure 1).

This work introduces a model interpretation pipeline for
identifying potential predictive time-varying group-wise con-
nectivity biomarkers in the WWdFNC. We trained and tested
the TA-LSTM model to predict patients with MCI who will
progress to AZD vs. recover to HC in the next three years
after rs-fMRI scanning. This is the first study of WWdFNC
for feature learning on the deep learning model, and the
results indicate WWAFNC as a feature representation that
has more discriminative power than SWCAFNC. We then
constructed a per-input saliency map to represent the con-
tributing level to the final prediction. We performed several
statistical analyses to find the predictive dynamic group-
wise biomarkers, including the duration of the highly salient
time intervals and connectivity attributes in the highlighted
intervals.

II. MATERIALS AND METHODS

A. Participants and Data

We used data from the latest release in the Open Access
Series of Imaging Studies (OASIS-3). OASIS-3 is a longi-
tudinal dataset that included over one thousand participants
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Fig. 1.

at various stages of cognitive decline related to Alzheimer’s
Disease [9]'. We used the clinical dementia rating (CDR)
scale score at and three years after the scan together to
identify the progression directions of MCI patients. The
RMCI subjects had a CDR of 0.5 at the scan time and
returned to O in three years. The PMCI subjects had a CDR
of 0.5 at the scan time and progressed to a CDR of greater
than 0.5 in the next three-year timeframe. We used one rs-
fMRI scan per participant in our final sample dataset, and
the final dataset consists of 94 rs-fMRI scans (50 RMCI,
44 PMCI) with age and gender balanced. The demographic
information is summarized in Table I.
TABLE 1
DEMOGRAPHIC AND CLINICAL INFORMATION

Mean + SD Recovery MCI  Progressive MCI P value
Number 50 44 -

Age 73.81 + 6.77 75.23 +7.15 0.332
Gender(M/F)  27/23 27/17 0.472
CDRy 0.5 0.5 -
CDRy3 0+0 1.13 + 0.38 -

SD, Standard Deviation; MCI, Mild Cognitive Impairment; CDRy,,
n-year after MR scan session; *Two sampled T-test

B. Data Preprocessing and Decomposition

We preprocessed the rs-fMRI using statistical paramet-
ric mapping (SPM12, http://www.fil.ion.ucl.ac.
uk/spm/) by removing first five time points and performing
the rigid body motion correction and slice timing correction.
We used an echo-planar imaging (EPI) template to fit the
rs-fMRI data into standard Montreal Neurological Institute
(MNI) space and resampled to 3 x 3 x 3mm3 voxels. The data
were smoothed using a Gaussian kernel (FWHM = 5mm),
and were normalized to finalize the preprocessing.

Next, we decomposed the preprocessed rs-fMRI with
group independent component analysis (GICA) to the in-
dependent components (ICs) and the corresponding time-

IThe OASIS-3 is a public use dataset and is not individually identifi-
able, the original experimental procedures involving human subjects were
approved by the Institutional Review Board.

The framework of Windowless Wavelet-based dFNC feature construction and Time-Attention LSTM model Architecture

courses (TCs) by adopting the NeuroMark pipeline [10].
Fifty-three pairs of ICs and TCs were selected and arranged
into seven functional domains based on the spatial location,
and seven domains include subcortical (SC), auditory (AU),
sensorimotor (SM), visual (VI), cognitive control (CC), de-
fault mode (DM), and cerebellar (CB). In this work, we use
z-scored TCs in the analysis.

C. Windowless Wavelet-based dAFNC (WWdAFNC)

We used a windowless wavelet-based functional network
connectivity measure as detailed in [6] to investigate time-
varying connectivity between brain networks. The coupling
status of networks at each timepoint ¢t €{1,2,...,T} is
represented using WWdAFNC, a wavelet-based measure. The
WWAENC starts by performing a continuous wavelet trans-
form of each univariate network timeseries s (¢) using the
complex Morlet wavelet at J = 20 evenly spaced frequen-
cies. For each univariate network timeseries, this results
in a complex-valued multivariate time-frequency domain
timeseries (mTFTs), Sy (t) € C”.

Assuming we have NV samples and k TCs for each sample
as input S = [s1, 82, ..., 53], we decompose k—th network’s
time-courses sy into P, € C’/*7T and let P,g’t € C denote
the wavelet coefficient that represents the power and phase
at frequency j in network £ at time ¢. The network connec-
tivity was then calculated by taking both power and phase
synchrony into account. Power-weighted phase synchrony is
used to compute the WWAFNC between k—th and 1-th at ¢:

20 4 +
Connj,; = Z ka—i_plcos(@}fc — o) (1)
j=1
where p! and 0! are the power and phase coefficient for
network k at time ¢, respectively.

D. Time Attention-based LSTM (TA-LSTM)

The attention mechanism was proposed and proved faster
and more accurate than other state-of-art models [11], and
also was proved efficiently to overcome the vanishing gra-
dient issue in the gradient-based interpretation approach [8].
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Meanwhile, we aim to build attention on the high-level time
dimension feature after sequence learning instead of the
general pooling computation after the attention layer. The
time attention layer consists of scaled dot-product attention
[11] with half dropout followed by global pooling over the
time dimension. The time attention-weighted output ¢; from
the attention layer is computed by:
J T

Ct = LZatt X €5 and Qg = U(m

lesll 4= el

o is softmax function, e;; is hidden neural status of the last
LSTM layer, q;; is the query matrix produced by a half
random dropout from e;;. The TA-LSTM model consists
of three LSTM layers with 64 hidden cells, the time-
summarized attention layer, and one softmax layer to output
the class probability. The architecture is shown in Figure 1.

) @

III. RESULT

In this section, we report model performance and the
interpretation of how the model learned on both temporal
pattern and network connectivity level.

A. Model Performance on learning dFNC

We evaluated WWAFNC and SWCAFNC feature repre-
sentations by training with TA-LSTM model in the ten-
fold cross-validation manner. SWCAFNC was computed
from NeuroMark preprocessed rs-fMRI in a sliding-window
approach with the window size of 20 TR (44s) in steps
of 1TR. In each fold, all 94 data were divided into 90%
of training and 10% of testing. For every ten-fold cross-
validation, each scan was tested once. We repeated ten-fold
cross-validation five times with different shuffle parameters,
resulting in 50 trials. We used the mean of 50 trials’ AUC
(Area Under the Curve), accuracy, sensitivity, specificity as
the evaluation metrics. The performance is shown in Figure
2. The WWAFNC achieved 0.789 of AUC and 79.3% on the
accuracy, increased an average of 0.06 on AUC metric, and
3.1% on accuracy compared to SWCAFNC.

Metric = Metric = Metric = Metric =
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Fig. 2. Mean Model Performance of Prediction of RMCI vs. PMCI

B. Visualization of Most Salient Time Intervals

In the preceding section, we showed that our model trained
on WWAFNC features could perform well in predicting the
progression/ recovery of MCI patients in the next three years.
In this section, we report the interpretation on the group-
distinct brain function connectivity biomarkers in temporal
patterns level. We constructed the saliency maps using the
approach proposed in [7]. It applies the backpropagation

algorithm to compute the gradient of the predicted class score
y. (before the Softmax layer) with respect to each input to
construct the saliency maps with the same dimensionality as
the trained features.

To analyze the temporal patterns from the saliency maps,
we first averaged of all the connectivity at each t. We ac-
cessed the “strongly-contributing” time points (refer as ) by
thresholding with the upper 90" percentile. The temporally
highlighted patterns for both groups are shown in Figure 3(a).
In the saliency maps, we observed the continuous highlighted
intervals C in RMCI tend to last longer than in PMCL
We performed the independent 2-sample t-test between the
length of CRJQC 7 and Cp;/[cj, and_‘there is the sign_iﬁcant
difference between two groups (Crmeor =378, Cpyer =
2.99, p-value = 7.7¢~3). The kernel density estimates shown
in Figure 3(b), show a clearer pattern that c greater than
or equal to three is the separator point: RMCI has a larger
proportion of length of c greater or equal to three and verse
vice for PMCI. We evaluated three more thresholds that
equally range between 0.8 to 0.9 to broaden the range of
“strongly-contributing” cutoffs. The results support the same
conclusion that the highlighted time intervals in RMCI tend
to last longer than in PMCI (Figure 3(c)).

C. Group-wise Connectivity Patterns within Intervals

We performed the statistical analysis on the cellwise prop-
erties on the “strongly-contributing” time intervals. Based
on the observations reported in the preceding section, we
selected all the C greater than or equal to 3. The independent
samples t-test with multiple comparison correction results
shown in middle plot of Figure 4. We also performed two
additional statistical analyses for validation tests by applying
no thresholding and 10% bottom gradient thresholding, and
results are shown in the left and right plots of Figure 4.
The global (no thresholding) cellwise plot shows few levels
of significant difference; and no significant cells after FDR
correction. The 10% lower thresholding that is evaluated for
representing the non-contributing cellwise attributes behave
in the opposite direction to the “strongly-contributing” and
show less significance. The validation tests elucidate that the
model is not strengthening the global-wise attributes of group
difference for feature learning and show the discriminative
temporal patterns that extracted in the saliency maps. With
excluding the global cellwise connectivity patterns, we ob-
served that the RMCI group, compared with the PMCI group,
shows significant high connectivity in CC-DM, CC-VI, CC-
CB, VI-SM, and VI-SC, and low connectivity in VI-VI, VI-
CB, CC-CC.

IV. CONCLUSION AND DISCUSSION

Here our approach introduces a feasible pipeline to capture
transiently realized connectivity biomarkers for advancing
cognitive decline by exploiting the time-dependent feature
learning of the TA-LSTM model. The highlighted “highly
contributing” time intervals show few overlaps with the
global average map, and the global average map has no
significant elements after FDR correction, indicating the
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Fig. 4. T-test for differences between RMCI and PMCI in mean cellwise WWAFNC connectivity: all samples (left); within intervals exceeding the 90%
upper thresholding for saliency (middle); within intervals under the 10% lower saliency thresholding (right). For the leftmost panel, we applied the no
thresholding, for the middle we used intervals of length at least 3 exceeding the 90% upper saliency threshold, and for the left we used intervals of length
at least 3 with saliency under the 10% bottom saliency threshold computed from all WWdJFNC. We averaged the connectivity features within time intervals
and performed the 2-sample T-test with multiple comparison correction (False Discovery Rate Correction ¢ = 0.05). Red means the group average of RMCI
is significantly greater than PMCI (p < 0.05(F DR)), blue means the group average of PMCI is significantly greater than RMCI (p < 0.05(FDR))

group-wise time-varying patterns do not consistently exist
in whole scan, and the patterns would be faded out in the
average map. The low-vs-high saliency comparison validates
time intervals contain different information with few rela-
tionships to the final prediction scores. Therefore, capturing
the “highly contributing” time intervals over the full scan and
investigating the corresponding connectivity patterns expands
our knowledge of dynamic biomarkers for the future recovery
or cognitive decline of impaired patients. We believe that
the power to localize connectivity patterns whose transient
appearance on intervals retained through sequential process-
ing with memory in long short-term memory networks war-
rants continued focus on interpretable LSTMs. Furthermore,
the additional accuracy achieved by using “instantaneous”
WWAEFNCs in this model suggests that greater temporal
resolution of the input data can be productively exploited by
LSTMs compared with SWCAFNC in which with the corase
time resolution, highlighting the importance of continuing to
refine our measures of time-varying connectivity.
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