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A B S T R A C T

Cardiovascular diseases are a leading cause of morbidity and mortality worldwide. To diagnose
cardiac diseases, physicians often utilize a combination of medical history, physical examina-
tion, and several diagnostic tests, such as electrocardiograms (ECG/EKG), echocardiograms, and
stress tests. Early detection and effective management of cardiac diseases play a crucial role in
improving patient outcomes and reducing healthcare burden. To address this concern, we in-
troduce a novel edge-computing approach for cardiac healthcare using a smartphone application
(CardioHelp) that combines heart rate monitoring with the detection of abnormal heartbeats in
individuals. Our approach centers around a user-friendly smart-health application designed to vi-
sualize ECG signals, track and monitor heart rate continuously, and recognize and notify users of
any anomalies through advanced beat-by-beat ECG analysis algorithms and artificial intelligence
(AI) techniques including machine learning and deep learning. Our system includes a custom
wearable ECG data collection system that can transfer data to CardioHelp in real-time. In this
study, we have used the MIT-BIH Arrhythmia dataset to train deep learning models using intri-
cate patterns and features representative of various heart conditions. Among the deep learning
models, the Long Short-Term Memory (LSTM) demonstrated superior performance, obtaining an
accuracy of 98.74% and precision and recall of 99.95% and 99.86%, respectively. By transferring
the MIT-BIH Arrhythmia Database’s test dataset through our application as mock real-time data,
we assessed our CardioHelp application’s accuracy in identifying and classifying various heart
conditions. The LSTM model is found to be the most accurate model providing an accuracy of
95.94% for ECG beat classification. The results confirmed the effectiveness of our developed
smartphone system, demonstrating its ability to accurately detect and classify cardiac conditions.
As our novel approach presents a complimentary cardiac healthcare system using a smart health
application, this CardioHelp has the potential to significantly enhance preventive care, enable
early intervention, and improve overall cardiovascular health outcomes.

1. Introduction

Cardiac disease, also known as cardiovascular disease (CVD), refers to a group of conditions that affect the heart and blood arteries, such as
coronary artery disease, stroke, heart failure, and peripheral artery disease. CVD is a global health burden, responsible for a significant number
of deaths and disabilities each year (Glovaci et al. (2019)). Risk factors for CVD include modifiable factors such as an unhealthy diet, physical
inactivity, tobacco use, and excessive alcohol consumption, as well as non-modifiable factors such as age, gender, and family history. Untreated

∗Corresponding author: Tel.: +1-806-805-1565;
e-mail: uutsha@ttu.edu (Ucchwas Talukder Utsha), bmorshed@ttu.edu (Bashir I. Morshed)

© 2024 published by Elsevier. This manuscript is made available under the Elsevier user license
https://www.elsevier.com/open-access/userlicense/1.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S2352648324000011
Manuscript_dc997eb9f976739f60bd6a2dd9af1526

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S2352648324000011


Ucchwas Talukder Utsha et al. Smart Health (2024)

heart disease has the potential to result in severe consequences such as heart attacks or strokes (Swanoski et al. (2012)). Detecting and managing
CVD in its early stages is essential for preventing complications and improving outcomes. Delayed disease diagnosis results in complex treatments
and reduced quality of life for patients, leading to increased healthcare burdens and costs.

Detecting diseases at earlier stages improves treatment outcomes. While modern technology has advanced clinical healthcare with precision
diagnostics and remote consultations, early disease detection in pre-clinical living lab environments remains a challenge. Continuous analysis of vi-
tal signs (heart rate, respiratory rate, oxygen saturation, and blood pressure) can predict or detect neonatal pathophysiology, offering the potential to
improve outcomes and mitigate neonatal diseases using big-data analytics (Kumar et al. (2020)). Several methods are commonly used for detecting
heart problems, including electrocardiograms (ECG), echocardiograms, cardiac catheterization, nuclear imaging, and cardiac magnetic resonance
imaging (MRI). One widely used method for detecting heart problems is analyzing electrocardiogram (ECG) signals. Wearable devices and smart
health (sHealth) apps are becoming more popular as Internet-of-Things (IoT) technology is integrated into heart disease monitoring (Walker &
Muhlestein (2018)). These devices can continuously monitor and record real-time data on an individual’s physiological state and physical activi-
ties. Modern wearable sensors possess the remarkable ability to capture a variety of physiological indicators, including electrocardiogram (ECG),
electromyogram (EMG), heart rate (HR), body temperature, respiration rate (RR), etc (Pantelopoulos & Bourbakis (2009)). Wearable sensors are
connected to IoT devices via Bluetooth Low Energy (BLE), ZigBee, and ANT protocols for data transmission while BLE typically exhibits lower
power consumption (Dementyev et al. (2013)).

Smart Health applications use advanced algorithms and machine learning to analyze ECG signals, monitor heart rate, enable early detection of
heart diseases, and provide timely alerts for intervention. We found related articles on mobile apps for detecting CVDs using different technologies.
Lee et. al developed a novel QRS detection algorithm and applied it to the analysis of heart rate variability (HRV) of patients with sleep apnea (Lee
et al. (2005)). Galli et. al presented a Holter monitor as a portable device that records a person’s heart activity continuously for 24 to 48 hours,
allowing for the detection of abnormal heart rhythms and other cardiac abnormalities during daily activities (Galli et al. (2016)). Samuel et. al
proposed a hybrid method for heart failure (HF) risk prediction based on ANN and Fuzzy analytic hierarchy process (AHP) techniques (Samuel
et al. (2017)). KardiaMobile is a portable ECG device that can be attached to a smartphone, enabling individuals to record and monitor their heart
activity anytime and anywhere, facilitating early detection of potential cardiac issues (Koltowski et al. (2021)). It has been demonstrated to be
successful in diagnosing atrial fibrillation (AF) in clinical investigations, with a sensitivity of 96.6% and a specificity of 94.1% (William et al.
(2018)). Mazaheri et. al also presented a computer-aided diagnosis (CAD) system for automated classification and accurate diagnosis of seven
types of cardiac arrhythmias using ECG signals by combining morphological, frequency, and nonlinear feature extraction techniques (Mazaheri
& Khodadadi (2020)). An electrocardiogram (ECG) check is a portable device, like KardiaMobile, that uses two or more electrodes to record the
electrical activity of the heart (Haverkamp et al. (2019). With a high detection rate for AF, the ECG Check showed acceptable sensitivities and
specificities in identifying several abnormal rhythms. Apple Watch records heart rate as photoplethysmography (PPG) waveforms during periods
of minimal arm movement. If an irregular heart rate is detected, the algorithm triggers tachograms. After receiving 4 confirmatory tachograms,
the participant is alerted via phone notification to connect with a Telehealth doctor for further evaluation (Raja et al. (2019)). iHealth Rhythm
and QuardioCore are some other devices that offer convenient and accessible means for individuals to monitor their heart health through ECG
measurements Ali et al. (2021); Kuzmin et al. (2017). Previously, a different smart health framework had been developed by our research team
using body-worn flexible Inkjet-printed (IJP) sensors, commercial wearables like smart wristbands, a scanner on a printed circuit board, and
specialized smartphone software (Rahman et al. (2022)).

In the field of healthcare, the integration of artificial intelligence (AI) has revolutionized the detection and diagnosis of abnormalities in
various medical conditions, including cardiovascular health. Altan et. al proposed a model using a Deep Belief Network (DBN) classifier that
classified the MIT-BIH Arrhythmia Database heartbeats into 5 main groups defined by ANSI/AAMI standards (Altan et al. (2016)). In our study,
we have successfully integrated AI techniques, particularly in the form of deep learning models, to detect abnormalities in electrocardiogram (ECG)
signals. Our CardioHelp application is based on Smart Health Integrated Framework and Topology (SHIFT) architecture that preserves Mobile
Health (mHealth) for individuals to self-monitor their health and allows participants to share individual health severity data with doctors for further
inspection (Morshed (2021)). This application has high scalability and low latency in addition to being low-cost and real-time.

Fig. 1: Overall architecture of the system under development by our research team.
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Fig. 2: Block diagram of main interactions of our CardioHelp smartphone application.

The main novelties of the proposed system include:

• CardioHelp provides a real-time graphical representation of the ECG signal, allowing users to visualize the collected signal and any issues
(such as noisy data indicating issues with ECG electrodes) so that the issues can be resolved. This will increase the robustness of the system
and the trust of the users.

• The application includes a heart rate monitoring feature that accurately measures and tracks the user’s heart rate. It uses advanced algorithms
to analyze the ECG signals and extract valuable insights that can detect irregularities or abnormal heartbeats.

• Users can store ECG data and share the information with stakeholders (such as healthcare professionals or cardiologists). This promotes
seamless communication and collaboration between users and their healthcare providers, facilitating more informed decision-making and
personalized care.

The remainder of this article is organized as follows: Section 2 describes the methodology used in this study, including application design,
ECG data collection method, signal preprocessing, heart rate visualization, pre-trained model, and application validation. Section 3 focuses on
the experimental details and presents the obtained results including heart rate comparison with KardiaMobile and detection of abnormalities. The
experimental results are discussed in Section 4, while potential avenues for further research are highlighted in Section 5. Finally, the conclusions
are drawn in Section 6.

2. Methodology

The entire setup of ECG monitoring and detecting diseases consists of some electrodes that are attached to the chests/wrists, a front-end ECG
data collection device based on an AD8232 chip (Analog Devices, Wilmington, MA), and the CardioHelp application. Figure 1 shows the overall
architecture of the entire system. The embedded system consists of Sparkfun nRF 52840 mini that is connected to the application via Bluetooth
Low Energy (BLE) V5.3. Then the application collects ECG signals from users and provides a visual display on the screen. CardioHelp displays
real-time heart rates and detects abnormal heartbeats, which are subsequently presented within the application’s interface. These advanced features
enable users to actively monitor their heart rate and promptly identify any irregularities or abnormal cardiac rhythms. The application provides
users with immediate feedback and actionable insights regarding their cardiac health through a data-sharing feature that enables users to securely
transmit their cardiac data to healthcare professionals. This feature promotes effective remote patient monitoring and allows for quick medical
intervention.

2.1. Application Design

The CardioHelp application offers a seamless experience for users to access and monitor their ECG data, track their heart rate, detect any
irregular cardiac rhythms over time, and share ECG recordings with their healthcare providers, enabling remote monitoring and diagnosis. Figure
2 displays the block diagram of the CarioHelp application.

For using the application, firstly, users are required to enter their metadata, with only the zip address being mandatory while others remain
optional. Users can confidently use this application without providing any personal data. Then, users can proceed to the Device Connect and
see the available devices to be connected via Bluetooth Low Energy (BLE) for data collection. The users can monitor real-time data on the
ECG signal plotter, and then visualize their heart rate and track any abnormalities over an extended period. The ECG recordings and heart rates
are stored in separate CSV files, which are located in a specific folder on the user’s smartphone. In Android 10 (API level 29) and higher,
applications are required to request the MANAGE_EXTERNAL_STORAGE permission to obtain write access to shared storage. Requesting the
WRITE_EXTERNAL_STORAGE permission alone may not be sufficient to create files in specific directories.
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The collected health data undergoes a secure process within the CardioHelp application. After the application is closed, all the data is
automatically compressed into a ZIP archive to facilitate convenient transmission. Users have control over sharing, and initiating the process by
selecting physicians’ email addresses. The ZIP archive, containing metadata, ECG data, and heart rates, is then attached to an email and sent to
the chosen physicians, ensuring that sensitive health information remains protected from unauthorized access. This method ensures that the data
is securely transmitted to healthcare professionals for further analysis and evaluation. By following a user-friendly interface, CarioHelp empowers
individuals to take control of their health and make informed decisions based on their ECG data.

2.2. ECG Data Collection

ECG data refers to the electrical activity of the heart recorded over time. It provides valuable information about the heart’s rhythm, rate,
and overall cardiac health. ECG data is obtained through the use of electrodes, which are small sensors that detect and transmit electrical signals
generated by the heart. We collect ECG data through our custom ECG data collection device which contains a commercial nRF 52840 mini
development board (Sparkfun, USA) and an AD8232 chip (Rahman et al. (2023)). The board is used in the processing unit that is paired with the
application via Bluetooth. The device is equipped with a 3.7V nominal voltage Lipo battery (Pkcell LP552530), providing a capacity of 350 mAh.
Despite using gel electrodes for collecting ECG data, the device is portable and can also employ other types of electrodes, such as metal and IJP
electrodes. The most common placement involves attaching electrodes to the chest, wrists, and ankles. Wrist-worn devices offer the advantages of
long-term monitoring during regular activities and a higher level of comfort compared to finger-worn acquisition methods (Nardelli et al. (2020)).
The quality of the ECG signals acquired from the wrists can be influenced by various factors, such as the accuracy of the measuring device and its
positioning relative to the heart. Generally, ECG signals obtained from the chest exhibit higher quality and greater reliability compared to signals
obtained from the finger or wrist (Lourenço et al. (2011)). The Institutional Review Board (IRB) at Texas Tech University granted IRB approval
for this study after a thorough consideration of the study protocol and risk factors (IRB2020-783).

2.3. Signal Pre-processing

Signal pre-processing of real-time ECG data is a crucial step in enhancing the quality and reliability of the acquired signals. It consists of a
set of approaches focused on decreasing noise, eliminating artifacts, and increasing overall signal integrity for correct analysis and interpretation.
In CardioHelp, the ECG signals that are collected from the embedded system are pre-processed where the frequency range of interest for ECG
signals is between 0.5 Hz and 150 Hz (Golden et al. (1973)). The lower cutoff frequency of 0.5 Hz is chosen to remove any DC offset or drift in the
signal and it captures the slow variations related to baseline wander. The upper cutoff frequency of 150 Hz is chosen to remove any high-frequency
noise or artifacts in the signal and it captures the rapid changes associated with the electrical activity of the heart. The ECG signal is filtered on
CardioHelp using bandpass filtering which allows for the selection of a specific frequency range of interest while attenuating frequencies outside
this range. This targeted filtering approach helps to remove noise and artifacts that may be present in the ECG signal.

2.4. Heart Rate Visualization

The Pan-Tompkins algorithm is commonly used for QRS complex detection in ECG signals, which we use to calculate the heart rate on the
CardioHelp application. Here are the necessary steps we followed to calculate the heart rate using the Pan-Tompkins algorithm:

1. Pre-processing: First, we applied a bandpass filter to the raw ECG signal to remove unwanted frequencies and retain the QRS complex.
2. Differentiation: Then, we differentiated the filtered signal to enhance the steepness of the QRS complex.
3. Squaring: After that, we squared the differentiated signal to emphasize the QRS complex peaks.
4. Integration: Then, we applied integration to smooth the squared signal and suppress noise. We used Sliding Window Technique to sum up

the squared values over a specific window size.
5. Peak Detection: Then, we determined a suitable threshold level based on the signal characteristics and compared the integrated signal with

the threshold to locate the QRS complex peaks, detecting local maxima as potential R-peaks.
6. R-R Interval Calculation: Lastly, we calculated the R-R intervals by determining the time intervals between successive R-peaks in the

ECG signal. The average R-R interval is used to calculate the heart rate in beats per minute (BPM).

Also, we showed the Average Heart Rate on the application to get a better view of the heart conditions of the user. We used Sliding Window
technique for that.

2.5. Deep Learning Models

In the CardioHelp application, we employed pre-trained models for real-time medical condition diagnosis. Figure 3 illustrates the training
of the deep learning models and their subsequent utilization in the application for beat detection purposes. We used the MIT-BIH Arrhythmia
Database for training the model, which contains ECG recordings of patients with different arrhythmias (Goldberger et al. (2000)).

We annotated the ECG recordings with corresponding labels from the five classes: N (normal heartbeats), SV (Supraventricular Ectopic
beats), V (Ventricular Ectopic beats), F (Fusion beats), and Q (Unknown beats). After that, we normalized the ECG signal amplitudes to bring
them to a common scale. We divided the records into training and testing datasets. The training dataset is used to train the models before using
real-time data on the CardioHelp application. We trained three deep learning models, namely Artificial Neural Network (ANN), Convolutional
Neural Network (CNN), and Long-Short Term Memory (LSTM) on a Python platform, resulting in impressive accuracies of 98.08%, 98.65%, and
98.74% respectively. Figure 4 represents the model architecture of all three models. The superior performance of the LSTM model can be due
to its effective handling of the various temporal structures present in ECG signals. The LSTM excels at distinguishing tiny yet critical patterns
required for precise beat detection by using its ability to successfully capture and utilize information over long sequences.

4



Ucchwas Talukder Utsha et al. Smart Health (2024)

Fig. 3: A flowchart of our ECG signal classification approach.

Fig. 4: Architectural representations of (a) Artificial Neural Network (ANN), (b) Convolutional Neural Network (CNN), and (c) Long Short-Term Memory (LSTM) models designed
for real-time beat detection in the CardioHelp application.

2.6. Using Pre-Trained Models on the Application

Post-training, the pre-trained models were integrated into our Android Studio Java application for real-time utilization, for that, we followed
these steps:

1. Save and Convert the model to TensorFlow Lite format: After training the model on Python, we saved it in a format that can be loaded
by TensorFlow Lite on Android Studio.

1..1 First, we saved the model as a .h5 file using the Keras model.save() method.
1..2 Then, we converted the pre-trained model to .tflite file using the TensorFlow Lite converter which is used as a pre-trained model on

the CardioHelp application.

2. Add the model in the android application: After that, we loaded the .tflite file on Android Studio from File− >Other− >Tensorflow Lite
Model. Android Studio will automatically add the file to the ml folder in the project structure.

3. Add dependency: Then, we added the TensorFlow Lite dependency to the project’s build.gradle file: implementation ‘org.tensor f low :
tensor f low − lite − support : 0.1.0′ and implementation ‘org.tensor f low : tensor f low − lite − gpu : 2.3.0′.

4. Load the model: After that, we loaded the model from the ml folder and created a ByteBuffer object to hold the input data.
5. Get the predicted class: Finally, we passed the ECG data through the TensorFlow Lite interpreter that performed the necessary calculations

to get the predicted class.
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Fig. 5: Snapshots from CardioHelp smartphone application: (a) Home screen, (b) MetaData Collection, (c) Display of available devices, (d) Analysis modules, (e) Incoming streaming
raw data, (f) Real-time plot of ECG trace, Heart Rate, and Cardiac Beat type (detected by AI algorithm).

2.7. Application Validation

To validate the performance of the pre-trained models, we utilized the remaining MIT-BIH Arrhythmia testing dataset. First, we selected
one pre-trained model and then passed the testing samples through the model in the application and compared the predicted outputs with the
corresponding ground truth labels. To incorporate the MIT-BIH testing dataset into the application, we first imported the dataset and substituted
the real-time ECG data with the testing dataset’s data. The ECG signals from the testing dataset were then passed as input to the pre-trained model.
The model performed beat classification in the CardioHelp application, assigning each beat to a specific category. We did this with all three of
the pre-trained models individually. The models’ predictions were subsequently analyzed, and their performance was evaluated using confusion
metrics. This process allowed us to utilize the pre-trained model effectively for accurate beat detection and classification within the context of the
MIT-BIH testing dataset in the application.

Based on the successful validation of the pre-trained model with the MIT-BIH testing dataset, we can now proceed to conduct a pilot study
on patients using real-time ECG data. With the availability of real-time data, the application can effectively detect abnormalities in the ECG
signals, allowing for continuous monitoring and timely identification of any irregularities or cardiac issues. Figure 5 shows some snapshots of the
CardioHelp application on real-time ECG data. In the Plotter screen of the application, real-time ECG signals, heart rates, and cardiac beats are
displayed.

Fig. 6: Real-time data collection and analysis with concurrent data capture with CardioHelp and KardiaMobile Applications: (a) Proper ECG signals and (b) Noisy signals.

3. Results

3.1. Heart Rate Comparison with KardiaMobile

In our previous work, we evaluated the performance of the CardioHelp application in terms of heart rate measurements with the KardiaMobile
device (Utsha & Morshed (2023)). The objective was to evaluate the accuracy and reliability of the application in heart rate measurement. At
that time, we collected data from 10 participants for a duration of 5 minutes each and compared the heart rate obtained from our application
with KardiaMobile. CardioHelp application achieved a heart rate detection accuracy rate of 95-99%. This comparison provides insights into the
application’s performance and its potential as a convenient tool for heart rate monitoring in real-world scenarios.
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Figure 6 shows an illustration of the real-time data collection process. Figure 6(a) shows that the user’s ECG signal is normal and that the
average heart rate is 79 bpm on our application and KardiaMobile. The electrodes can be detached to produce fake noise, which leads to a Signal
with noise (Figure 6(b)).

In this study, we collected data from three participants in a resting state for a duration of 30 minutes and conducted a simultaneous comparison
with KardiaMobile. The comparison can be observed in Figure 7.

(a) (b) (c)

Fig. 7: Comparison of heart rate computation between CardioHelp application and KardiaMobile application on (a) Subject 1, (b) Subject 2, and (c) Subject 3.

We also calculated the average Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and R-squared (R2) value of three participants
by comparing the heart rate data obtained from our application with the data obtained from KardiaMobile. In the following equations, yi represents
the truth values, ŷi represents the predicted values, and ȳ represents the mean of the truth values.

1.

MAE =
1
n

n∑
i=1

|yi − ŷi |

MAE measures the average absolute difference between the truth value of Heart Rate which is from KardiaMobile and predicted values
which is from the CardioHelp application. It provides a measure of the average magnitude of errors without considering their direction.
The calculated MAE value is 0.75, indicating that the typical absolute deviation of the heart rates predicted by the CardioHelp application
is closer to the heart rates from KardiaMobile.

2.

MS E =
1
n

n∑
i=1

(yi − ŷi)2

RMS E =
√

MS E

The calculated RMSE value is 1.05 which indicates that the heart rate predictions closely match the actual values, reflecting high accuracy
and minimal error.

3.

R2 = 1 −

∑n
i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

Here, the R2 value is 0.73 indicating that approximately 73% of the total variation in KardiaMobile’s heart rate (dependent variable) can
be explained by the heart rate predictions from CardioHelp (independent variable). This suggests a relatively good relationship between
the predicted and actual heart rates, with the model accounting for a significant portion of the variability in KardiaMobile’s heart rate data.
However, it’s important to note that the 73% R2 value is partly due to the difference in data collection methodologies.

There is a significant distinction in data handling between the CardioHelp and the commercial KardiaMobile application. Our CardioHelp
application collects real-time data and displays heart rates using a moving window average, while KardioHelp updates heart rates every 30 seconds,
initiating a new calculation each time. This disparity in data handling may lead to a mismatch, and we posit that our application’s approach, with
continuous real-time updates, contributes to superior performance compared to KardioHelp.

During our study, we also gathered data from three participants under two different conditions: resting state and walking state, using our
CardioHelp application. Each session lasted for 5 minutes. Figure 8 presents a comparison between the heart rates observed during these two
states. It was observed that there was a difference of approximately 5-10 beats per minute (bpm) between the resting state and walking state heart
rates. This finding highlights the impact of physical activity on heart rate and underscores the ability of our application to capture and analyze such
variations effectively.

3.2. Detection of Abnormalities

The proposed abnormality detection algorithms achieved high accuracy in accurately identifying and classifying abnormal ECG patterns on
the MIT-BIH dataset during training. Figure 9 presents a comparative analysis of the performance of various deep-learning techniques in detecting
and classifying cardiac rhythms. First, we implemented the algorithm on a Python platform, ensuring its accuracy and reliability. The ANN algo-
rithm achieved an accuracy of 98.08% in detecting abnormalities, while the CNN algorithm achieved 98.65% accuracy, and the LSTM algorithm
outperformed them both with an accuracy of 98.74%. Then we integrated this pre-trained model as .tflite format on our application. To evaluate
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(a) (b) (c)

Fig. 8: Comparison of heart rates using CardioHelp Application for resting state and walking state on (a) Participant 1, (b) Participant 2, and (c) Participant 3.

the performance of the pre-trained model, the MIT-BIH testing dataset was passed as input into the CardioHelp application. These predicted labels
were then compared with the ground truth values of the dataset, allowing for an assessment of the model’s accuracy and performance in correctly
classifying different cardiac rhythms and abnormalities. We achieved remarkable accuracy rates of 90.74% on ANN, 93.91% on CNN, and an
exceptional 95.94% on LSTM after passing the MIT-BIH testing dataset as input instead of real-time ECG data. This indicates the robustness and
reliability of the models in accurately detecting and classifying various cardiac rhythms and abnormalities in real-time scenarios.

Fig. 9: Performance of deep learning classifier algorithms and their effectiveness on CardioHelp application.

The performance of the pre-trained models in classifying the MIT-BIH testing dataset was evaluated using confusion matrices, as depicted in
table 1. The table is organized into distinct sections for each algorithm, with rows representing true classes (actual beats) and columns representing
predicted classes by the respective models. The values in each cell denote the corresponding count of ECG beats falling into the specified category.
For instance, in the ANN section, the top-left cell represents the count of true positives for normal beats (N), and the adjacent cells represent true
positives for other beat types. The row and column headers indicate the true and predicted beat types, respectively. In our application, the LSTM
model outperformed, successfully detecting 17,916 normal beats out of 18,118 data points, 388 SV (Supraventricular) beats out of 556 data points,
1,111 V (Ventricular) beats out of 1,448 data points, 75 F (Fusion) beats out of 162 data points, and 1,513 abnormal beats out of 1,608 data points.

Arrhythmia refers to an abnormal heart rhythm characterized by irregular or abnormal electrical activity in the heart. SV beats, V beats, and
Fusion beats are the three types of arrhythmia that can occur in the heart. We classified a beat as Arrhythmic if any SV, V, or Fusion beats are
detected. Figure 10 shows some snapshots of the CardioHelp application after the detection of Normal and Noisy beats. When arrhythmic beats
occur, the application should display Arrhythmic instead of Normal or Noisy along with the corresponding timestamp.

ANN CNN LSTM
N SV V F Q N SV V F Q N SV V F Q

N 17067 60 646 271 74 17711 53 216 72 66 17916 24 65 58 55
SV 139 337 77 3 0 141 390 22 2 1 146 388 17 3 2
V 88 74 1160 38 88 95 187 995 23 148 139 84 1111 27 87
F 75 24 23 33 7 70 19 5 67 1 60 12 14 75 1
Q 46 293 1 0 1268 126 68 18 0 1396 48 39 2 6 1513

Table 1: Comparison of performance metrics for ANN, CNN, and LSTM algorithms in various types of ECG beat classification.

4. Discussion

The model’s performance heavily relies on the availability and diversity of training samples. Table 2 represents the performance evaluation of
our pre-trained models on the CardioHelp application for various heartbeats. In the MIT-BIH dataset, the number of SV and F beats is relatively
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Fig. 10: Visualization of ECG data and beat types: (a) Normal signal, and (b) Noisy signal.

smaller compared to N, V, and Q beats, resulting in a limited representation of SV and F beats in the training phase. As a result, the model did not
learn the distinct characteristics and patterns of SV and F beats as effectively as it did for N, V, and Q beats.

While achieving an impressive accuracy of 95.94% in detecting abnormalities using the LSTM algorithm on the application, it is important to
note that a majority of the accurately predicted beats belong to the Normal category. This higher accuracy is mainly driven by the abundance of
Normal beats in the training dataset, which allows the model to perform well in classifying them correctly. However, it is crucial to emphasize that
the lack of SV and F beats compared to N, V, and Q beats during training led to lower accuracy in predicting these beat types in the CardioHelp
application. A poor accuracy rate may fall short of the demanding standards required for effective arrhythmia identification and management in
healthcare contexts, where precision and reliability are paramount. Furthermore, the accuracy for Fusion (F) beats is significantly lower than other
beat types. This is because of the scarcity of F beats in the MIT-BIH dataset. Since the model had limited exposure to F beats during training, our
application struggled to classify them in the application accurately. F beats are considered relatively rare compared to other cardiac beats (de Chazal
& Reilly (2003)). F beats occur when electrical signals from both the atria and ventricles partially merge which results in a complex waveform that
combines characteristics of both normal atrial and ventricular beats (Miller et al. (2006)). Their infrequency, relative to other beats, contributes to
dataset imbalance, resulting in lower accuracy in detecting these specific arrhythmic beats. Dutta et. al proposed an efficient neural network with
convolutional layers to classify significantly class-imbalanced clinical data curated from the National Health and Nutritional Examination Survey
(NHANES), to predict the occurrence of Coronary Heart Disease (CHD). Still, they ended up getting a classification power of 77% for presence
and 81.8% for the absence of CHD (Dutta et al. (2020)). This highlights the importance of having a balanced and diverse dataset of both abnormal
and normal beats during the training phase to ensure better performance across all beat types.

Table 3 presents a comparative analysis of key features in smart health (sHealth) and mobile health (mHealth) applications. It aims to provide
insights into different aspects such as data collection medium, connectivity, algorithms, functionalities, and future work of these applications. We
compared the features of the other applications with our CardioHelp application. By juxtaposing CardioHelp with other applications, we gained a
comprehensive understanding of its unique attributes and identified areas of potential improvement. This analysis enhances our understanding of
CardioHelp’s position in the broader landscape of sHealth/mHealth applications, enabling us to assess its strengths and identify opportunities for
further development.

We used the Samsung Galaxy S10e as a test environment. We have carefully considered the power consumption, memory usage, and overall
performance to ensure a seamless user experience. Based on our estimates, CardioHelp consumes minimal battery power, allowing for more than
60 hours of continuous operation on a single charge. It effectively manages memory usage, utilizing only 21.16 MB for active data processing
and predictive computations. Even on devices with limited memory capacity, smooth performance is ensured by effective memory management.
The application securely stores collected data in CSV format within a dedicated folder. To optimize storage space, the app automatically converts
the data folder into a compressed .zip file that can be shared with the physician. Once the conversion is complete, the app automatically deletes
the folder, ensuring efficient storage management without compromising data integrity. We conducted a thorough performance analysis using the
Profiler tool in Android Studio. We found that CPU consumption continuously stayed below 20%, demonstrating effective use of the system’s
resources. Furthermore, the app’s energy consumption was minimal, ensuring a light impact on the device’s battery life.

Only a limited number of sHealth or mHealth applications offer the valuable functionality of ECG signal visualization, providing users with
the ability to observe their heart rate. Furthermore, our application possesses the capability to detect abnormalities in the ECG signal. Users receive
notifications and insights regarding any potential irregularities or anomalies. Moreover, CardioHelp offers the convenience of seamlessly sharing
the captured ECG data with healthcare professionals. Users can easily transmit their ECG recordings to physicians or other medical experts for
further analysis and evaluation. This functionality promotes effective remote monitoring and enables healthcare providers to review the data and
offer appropriate medical guidance and interventions, ultimately facilitating improved patient care and outcomes.
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Table 2: Performance evaluation of pre-trained models on CardioHelp application for each beat type.

ECG beat type MIT-BIH test
dataset samples

ANN algorithm CNN algorithm LSTM algorithm

Precision
(%)

Recall
(%)

F1 Score
(%)

Precision
(%)

Recall
(%)

F1 Score
(%)

Precision
(%)

Recall
(%)

F1 Score
(%)

N (Normal) 18118 98.00 94.20 96.06 97.62 97.75 97.68 97.85 98.89 98.37
SV (Supraventricular Ectopic) 556 42.77 60.61 50.15 54.39 70.14 61.27 70.93 69.78 70.35

V (Ventricular Ectopic) 1448 60.83 80.11 69.15 79.22 68.72 73.60 91.89 76.73 83.63
F (Fusion) 162 9.57 20.37 13.02 40.85 41.36 41.10 44.38 46.30 45.32

Q (Unknown Beat) 1608 88.24 78.86 83.28 86.60 86.82 86.71 91.25 94.09 92.65

Overall 21892 Accuracy (%) Accuracy (%) Accuracy (%)
90.74% 93.91% 95.94%

5. Limitations and Future Work

At present, the CardioHelp application can detect abnormal beats, including some types of Arrhythmia, monitor ECG signals and instantaneous
Heart Rate, and store and send data to physicians. Our next goals are to conduct pilot studies to validate the effectiveness and reliability of the
CardioHelp application in real-world scenarios and promote its adoption in healthcare contexts. Due to the complexity of our system’s design,
collecting data while jogging, walking, or performing any other activity is extremely difficult. Some wearable or IoT gadgets included in the
package can be enhanced in the future. Our future development involves integrating an Inertial Measurement Unit (IMU) sensor into our embedded
system to collect 3-axis accelerometer data, aiming to enhance our system’s capabilities for respiration rate detection. We will add an additional
plotter alongside ECG signal monitoring to facilitate respiratory signal monitoring. Using heart and respiration rates will enable us to develop more
sophisticated and personalized healthcare interventions, contributing to improved monitoring, diagnostics, and overall well-being for individuals.
We will also focus on minimizing the size and complexity of the developed wearable device, making it more compact, robust, and user-friendly.

Based on our observations, the pre-trained models, especially the LSTM model, have demonstrated effective performance in detecting normal
and unknown beats, but the false-negative rate in detecting arrhythmias versus normal heart rhythms within the CardioHelp application raises
concerns. Our CardioHelp application also couldn’t perform very well in SV and F beats detection. Such a misdiagnosis rate, though seemingly
small, can have significant implications for clinical applications. To address this concern, an in-depth examination of the algorithms and the
characteristics of the data it processes is crucial. We will thoroughly analyze some factors such as the diversity of arrhythmias, the quality of input
data, and the sensitivity of the detection model. The MIT-BIH Arrhythmia dataset exhibited imbalances among different arrhythmia classes, with
some classes having significantly fewer instances than others. However, we firmly believe that it can be further improved by training the model
on a broad dataset that includes a substantial amount of abnormal beats. Furthermore, the dataset’s origin from a specific medical context and
the manual annotations of ECG recordings introduce the potential for subjective interpretation. While some specific cardiac beats are rare, we
address potential challenges by meticulously recording all ECG data in our application. Our system allows comprehensive data storage of all ECG
data along with patients’ metadata and heart rates. This extensive dataset facilitates cross-validation with medical experts and offers an avenue
for precise labeling. Moreover, the labeled dataset serves as a valuable resource for continuous enhancements in our algorithms. This factor can
influence the accuracy and reliability of the model during the training process. By providing more diverse abnormal beats while training, the model
can learn their unique features more effectively. Then, the algorithm’s integration into the application will undoubtedly result in improved accuracy
in real-time beat detection. This will help mitigate the false-negative rate and enhance the overall performance of the CardioHelp application.

Also, we intend to implement the Hybrid (CNN+LSTM) and GAN (Generative Adversarial Network) algorithms. The Hybrid (CNN+LSTM)
algorithm combines CNN and LSTM networks to leverage both spatial and temporal features in the data. CNN excels at capturing spatial patterns
in ECG signals, while LSTM is effective in capturing temporal dependencies. By integrating these two architectures, the Hybrid model aims to
enhance the overall accuracy of abnormal heartbeat detection by considering both local and sequential information. Combining CNN and LSTM
architectures in a hybrid model often results in improved performance compared to using either model in isolation, making it well-suited for ECG
analysis. Also, we can use the GAN algorithm which can be used to create artificial data that closely matches abnormal heartbeats. The GAN
can learn to provide accurate representations of these beats by training the model on a wide variety of abnormal beats. Augmenting the dataset
with more instances of under-represented beat types is a viable strategy to address the scarcity of rare arrhythmic beats. By incorporating synthetic
data into the training dataset, we aim to improve the representation of abnormal arrhythmic beats. This augmentation strategy not only enriches
the diversity of the dataset but also contributes to refining the performance of our detection algorithms. The utilization of this augmented dataset
enhances the algorithms’ ability to accurately identify and classify abnormal cardiac beats within the CardioHelp application.

Although validation of our CardioHelp application by an expert cardiologist is currently pending, we are dedicated to performing a subgroup
analysis as we already have obtained IRB approval. We will also introduce a feature prompting new users for a review upon exiting, ensuring
a one-time occurrence. These reviews will be showcased on the app store to enhance transparency and provide a platform for users to share
their experiences. Prioritizing user experience, we will involve end-users in the design process to ensure seamless alignment with their needs.
Concurrently, we will integrate a concurrent respiratory signal visualization alongside the ECG data. This dual-monitoring capability provides
users with a more holistic view of their cardiovascular and respiratory health, offering a comprehensive understanding of physiological dynamics.
Interactive educational content, including tutorials and quizzes, will be developed to educate and engage users. Such content not only educates
users but also keeps them engaged and invested in their well-being. Concurrently, pilot studies with a user group will be conducted to gather
empirical feedback. User feedback will serve as a valuable source for identifying specific areas for enhancement.
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Table 3: Comparative Analysis of Key Features in Smart Health and Mobile Health Applications

Study reference Data collection medium Connectivity Algorithms Functionalities Future work

KardiaMobile
(Hickey et al. (2016))

AliveCor Kardia
Mobile metal

electrodes
Bluetooth

Supervised Machine
Learning (classification)

Heart Rate (HR)
monitoring, Atrial
fibrillation (AF)

detection and
iHEART text messages

False Positive rate
minimization

HR monitoring
from in-ear pressure

variance by
wearable sensing

(Park et al. (2015))

Piezoelectric
film sensor and

a hardware
circuit module

Radio Frequency (RF)
on the 2.4 GHz band

In-ear pulse
waves (EPW) peak
detection algorithm

HR monitoring
from the ear canal

surface, HR’s
sensitivity of 97.25%

and a positive
predictive value

of 97.17% was found

Overcome sensitivity
to the user’s

motion and monitor
HR continuously

HeartMapp
(Athilingam et al. (2016))

Chest-worn Bluetooth
sensor with built-in

algorithms from
Zephyr BioHarness™ 3

and/or BioPatch

Bluetooth
Supervised Machine

Learning

Chronic Heart
Failure (CHF)

symptom monitoring,
improve self-care
skills, adherence

to medication, diet
and physical activity

Replace chest-worn
sensors with wrist-worn

sensors, and test
HeartMapp for its

efficacy in a clinical
trial

Seamless User-centred
Proactive Provision
Of Risk-stratified

Treatment for
Heart Failure

(SUPPORT-HF)
(Rahimi et al. (2015))

A blood pressure
(BP), heart rate
monitor and an

electronic weighing scale

Bluetooth
Unsupervised Machine

Learning

Heart failure
home monitoring,
alerts and medical
recommendations

More user engagement
needed for more

accurate prediction
of risks, increase

wearable accuracy

TeleClinical Care (TCC)
(Indraratna et al. (2022))

Bluetooth-enabled
peripheral devices:

sphygmomanometer,
weighing scale and

activity monitor

Bluetooth Not Specified

Telemonitoring and
education for patients
with Acute Coronary
Syndrome (ACS) or
Heart Failure (HF)

Increase sample
size and consider
the inclusion of

participants

Wearable Mobile
Electrocardiogram
Monitoring System

(WMEMS)
(Tseng et al. (2013))

Dry foam electrodes,
an ECG acquisition

module, and a
wearable ECG vest

Bluetooth V2.0,
and GSM

HR detection algorithm
Long-term ECG,
HR monitoring

Detect and validate
AF from R-wave

RITMIA™
(Reverberi et al. (2019))

Two electrodes
integrated on the
chest belt sensor

Bluetooth Low
Energy (BLE)

Weighted combination
assessment of RR
interval variability

and randomness/chaos
algorithm

(Supervised Machine
Learning)

HR monitoring,
diagnosis of AF

recognized “probable AF”
rhythm with 97%

sensitivity and 95.2%
specificity

Classify irregular
rhythms, such as
Atrial Flutter and
presumably Atrial

Tachycardias

HeartKeeper
(de la Torre-Díez et al. (2016))

Personal health data
by application

Not specified
Unsupervised Machine

Learning

Medical
recommendations, and

alerts

Validate the app,
fix errors and

wrong behaviors,
improve the usability

of the mobile app

mHealth tool
(Baek et al. (2018))

IoT device Not specified Not specified

Self-management (blood
pressure, blood sugar

test, body weight),
Atrial Fibrillation

(AF) and hypertension

Patient’s diet
inclusion, integrate

app system with EMR
(Electronic Medical

Record) systems

HeartMan DSS
(Bohanec et al. (2021))

Sensing wristband and
other devices
(bp monitor,

environmental sensors)

Wireless Communication
Protocol

Supervised Machine
Learning, Classic

Differential Evolution
Algorithm

Physical exercise
management, monitoring

and Heart Failure
risk detection

Enhanced patient
lifestyle adaptation,
activity recognition

methods, and optimize
module integration

CardioHelp
(Proposed Work)

IoT device (consists
of Sparkfun nRF

52840 min, AD8232
chip), Gel/Inject

Printed(IJP) electrodes

Bluetooth Low Energy
V5.3

Pan-Tompkins algorithm,
Supervised Machine

Learning (Classification)

Continuous ECG signal
and HR monitor, detect

abnormal heartbeats,
alert patients, and

store data for
further inspection

Make embedded systems
more user-friendly,
improve algorithms

for accurate abnormality
detection
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6. Conclusion

In this study, we presented a smartphone application that can continuously monitor ECG data, display Heart Rate, and detect cardiac ab-
normalities using edge-computing with a pre-trained deep-learning classifier. The CardioHelp application demonstrates promising capabilities in
real-time ECG beat detection and classification, providing valuable insights into real-time and continuous cardiac health monitoring. We used the
MIT-BIH test dataset to evaluate our AI model, and the findings suggest that our application can accurately detect various heart conditions. Along
with the developed wearable device, this system holds great potential to be a valuable tool for the early detection and identification of cardiac
problems in smart health applications. Further development, validation, and adoption of the application in clinical settings are necessary to unlock
its full potential and contribute to improved cardiac health management.
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