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Abstract—This paper introduces a novel edge-computing wear-
able device for real-time beat-by-beat electrocardiogram (ECG)
classification. Early detection of heart disease can prevent and
improve the patient’s health and minimize the load on healthcare
professionals. The proposed wearable integrates the pre-trained
artificial intelligence (AI) model with the device firmware to
detect abnormal ECG beats. The wearable contains a custom
printed circuit board (PCB) connected to a commercial Bluetooth
system on chip (SoC) to process ECG signals. The AI-integrated
firmware is programmed into 32 bit ARM® Cortex™ based
SoC. Data pre-processing, feature extraction, and inferencing are
done on the SoC. The smart wearable is tested by passing the
MIT-BIH test dataset through the wearable system as sample
real-time data. The accuracy of the proposed device is assessed
by testing normal and 4 abnormal ECG beats. The ANN model,
after testing, provides an accuracy of 90.6% with a precision
of 95.6% and a recall of 95.1%. The system consumes low
power, a maximum of 128 mW, and offers a low latency of 6
ms for inferencing. The wearable is also tested on 5 subjects.
The proposed wearable is smart, low-powered, and suitable for
real-time regular cardiac monitoring. The performance indicates
the device can effectively detect abnormal heart rhythms.

Index Terms—smart wearable, edge computing, electrocardio-
gram, artificial neural network (ANN), real-time classification

I. INTRODUCTION

Coronary heart disease can be critical and can lead to loss
of life. With a rapidly increasing number of cardiac patients,
many of these patients learn about their cardiac disease after
they go through any symptoms or, certain illnesses [1]. Regular
monitoring of the electrocardiogram (ECG) can prevent any
underlying heart issues. Many clinical methods are already
available to diagnose cardiac health. However, the users might
not prefer clinical services for daily monitoring, especially
those, who do not possess any symptoms of cardiac disorder.
Wearable devices have been developed to store and analyze
ECG data at a later time [2]. However, these applications lack
real-time data classifications.

Several deep learning algorithms have already been intro-
duced to detect the abnormalities from the cardiac signal
[3-4]. ANN-based cardiac disease detection consumes less
memory and processing power which makes it suitable for

integration in smart wearable systems [5]. Mobile health
(mHealth) applications are used to offer real-time detection
but, with a cost of higher latency and more consumed power
for inferencing [6].

The proposed wearable is a low-power device that offers
real-time inferencing with a low latency of 6 ms. This imple-
ments an ANN-based model to detect 5 different beats of ECG:
N (Normal), SV (Supraventricular Ectopic), V (Ventricular
Ectopic), F (Fusion), and Q (Unknown) beats. The system
takes low power and latency as all signal processing and
inferencing are performed on a 32-bit Bluetooth low energy
(BLE) system on chip (SoC). The MIT-BIH dataset is used for
training and testing [7]. The ANN model is trained in Edge
Impulse® platform suitable for developing AI models for edge
devices [8]. The platform provides the pre-trained model as
a C++ library [9]. The library is then merged into the SoC
firmware to perform AI classification from the wearable.

II. SYSTEM ARCHITECTURE

In this section, the overall hardware-firmware codesign and
the neural network (NN) architecture are discussed.

A. Hardware Design

The wearable device includes three main hardware blocks:
the custom printed circuit board (PCB), the power unit, and
a commercial board with the processing unit. Fig. 1 presents
an overview of the system. The custom PCB incorporates an

Fig. 1. Overall architecture of the proposed system.
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AD8232 chip (Analog Devices, USA) and filtering circuitry to
form an analog front end (AFE). The AFE captures the analog
ECG data with the help of 3 commercial gel electrodes placed
on the chest.

The analog signal is processed by the nRF52840 Sparkfun
mini (Sparkfun, USA) board. The board includes the Bluetooth
5.3 SoC that features a Raytac MDBT50Q-P1M module with
a 32-bit ARM® Cortex™ CPU and 2.4 GHz Bluetooth
radio. The power unit uses a rechargeable Lipo battery (Pkcell
LP552530) of 350 mAhr. The Sparkfun mini board provides
the charging circuitry. Fig. 2 presents key hardware modules.

Fig. 2. Custom device: a) custom PCB and b) Bluetooth SoC and power unit.

The system uses timer interrupt and direct memory access for
efficient data processing. A detailed hardware description is
given in a previous work [10].

B. Firmware Design
The firmware of the wearable includes a deployed ANN

model, ECG data processing, and Bluetooth transmission (Tx)
protocol. After training the ANN model in the Edge Impulse®

platform, the model is deployed as a C++ library. The library is
integrated with the rest of the firmware code and programmed
into the 32-bit ARM® Cortex™ CPU (64 MHz) SoC. An
overall design of the device firmware is shown in Fig. 3.

1) Pre-processing: ECG data is obtained from the AFE at
a sampling rate of 360 Hz, the same as the MIT-BIH data
sampling rate. Sampled signals are filtered through a band
pass filter (BPF). The lower cutoff frequency of the BPF is
chosen 0.5 Hz to remove any DC offset and the higher cutoff
frequency is chosen 150 Hz to remove any artifacts.

Fig. 3. Flowchart of the device firmware.

2) Pretrained model: As shown in Fig. 3, the filtered ECG
data are normalized to a range of 0 to 100 and saved inside
a circular buffer. The features are extracted when the buffer
has stored 185 samples, equal to the input frame size of the
NN. The inference thread is then executed to classify the ECG
beats into 5 possible classes: N, SV, V, F, and Q. Data pre-
processing, feature extraction, and classification are done in
real-time, on SoC.

Fig. 4. The architecture of the ANN model.

Fig. 4 depicts the architecture of the ANN model. The pre-
processed raw data are used as the input features. The input
layer has 185 features followed by 3 dense layers. The number
of neurons is 32, 64, and 128 respectively at each dense layer.
The deployed ANN model is trained by 100 epochs. The
model takes 77.6 kB of flash, 2.3 KB usage of peak RAM,
and ∼ 6 ms for inferencing.

3) BLE data transmission: The BLE data Tx starts once
the inference result is ready. Each BLE packet contains the
ECG samples and the predicted label. A BLE gatt Nordic
UART service (NUS) is used to transmit the data to the mobile
application at a rate of 115200 baud. The device utilizes a
BLE data rate of 1 Mbps. The firmware is developed under
Visual Studio Code® environment. USB bootloading technique
is used to flash the firmware code. Required compiler and
linker flags are added to the makefile to merge C++ libraries
to the project. The size of the application is ∼ 137 KB.

III. RESULTS

In this section, the train-test performance of the pre-trained
ANN model is presented as well as the real-time data acqui-
sition from the smart wearable is illustrated.

Table I gives the performance over the validation set, the
time, and memory consumption by the BLE SoC for different
ANN architectures. The MIT-BIH dataset is split into 60%-
20%-20% for training, validation, and testing respectively. NN

TABLE I
VALIDATION SET PERFORMANCE OF THE BLE SOC FOR THE ANN

MODEL WITH 3 DENSE LAYERS: LAYER 1, 2, 3 (L1, L2, L3)

Number of
neurons

(L1, L2, L3)

Inference
time
(ms)

RAM
usage
(KB)

Flash
usage
(KB)

ANN
Accuracy

(%)
16, 32, 64 6 2.2 34.3 95.8
24, 48, 96 6 2.2 53.8 96.0

32, 64, 128 6 2.3 77.6 97.4
64, 128, 256 16 2.9 224.1 97.5
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with less number of layers can infer fast but provide low
accuracy. With 3 dense layers, the accuracy tends to increase
as the number of neurons is incremented. Meanwhile, NN
models with a higher number of neurons tend to provide
similar accuracy but consume more RAM, flash memory, and
inferencing time. Considering all the constraints, the ANN
model with 32, 64, and 128 neurons is chosen for the proposed
wearable. Table I refers to the validation set accuracy after 100
epochs for the unoptimized float32 model. The performance
data are provided by the Edge Impulse® studio.

Fig. 5. Smart wearable: (a) setup of the wearable, (b) classification results
sent to the mobile application

Fig. 5(a) shows the real-time data acquisition setup where
the custom wearable is put on the chest pocket. 3 commercial
gel electrodes are used to get the electrical activity of the heart.
The wearable is responsible for data capture, pre-processing,
feature extraction, and beat classification. The predicted beat
as well as the ECG samples are sent by the wearable to
a custom mobile application. The purpose of the mobile
application is only to visualize the wearable performance. As
presented in Fig. 5(b), the ECG data and classification results
transmitted by the BLE are observed in the mobile application.

TABLE II
THE PERFORMANCE METRICS OF THE ANN MODEL FOR VALIDATION SET

N SV V F Q
N 14219 36 64 27 31

SV 123 326 10 0 10
V 72 4 1066 12 3
F 14 0 10 107 0
Q 23 1 6 1 1346

87,555 ECG beats of 5 classes are used to train and validate
the ANN model. The model is tested by passing 21,892 MIT-
BIH test samples into the wearable device as mock data.
The training, validation, and test split ratio is 60%-20%-
20% respectively. The validation set performance of the ANN
model is depicted in Table II. The table provides the confusion
matrix for all 5 classes, where, the rows represent the true or,
expected classes and columns represent the predicted classes.
The values inside each cell indicate the number of ECG
beats predicted for different classes. For the validation set,
the overall accuracy of the ANN model is found 97.4%.

TABLE III
THE PERFORMANCE METRICS OF THE PRETRAINED ANN MODEL FOR

TEST DATASET IMPLEMENTED ON SOC FIRMWARE

N SV V F Q
N 17581 41 319 130 47

SV 134 356 57 0 9
V 72 4 1276 19 77
F 31 5 6 114 6
Q 38 56 3 0 1511

The ANN model is tested from the wearable device with a
minimum confidence rating of 0.8. The MIT-BIH test dataset
is added to the SoC firmware for classifying ECG beats. Table
III provides the wearable performance for the test dataset
where rows and columns have the same representation as Table
II. The smart wearable has successfully detected 17581 N
(Normal) beats out of 18118 N beats. Similarly, 356, 1276,
114, and 1511 beats are successfully detected out of 556, 1448,
162, and 1608 SV, V, F, and Q beats respectively.

TABLE IV
PERFORMANCE EVALUATION OF THE PRE-TRAINED MODEL

ECG
beats

MIT-BIH
test samples

Precision
(%)

Recall
(%)

F1 score
(%)

N 18118 98.45 97.03 97.73
SV 556 77.05 64.02 69.93
V 1448 76.82 88.12 82.08
F 162 43.34 70.37 53.64
Q 1608 91.58 93.97 92.76

Overall 21892 Accuracy: 90.6 %

Table IV provides the performance of the pre-trained model
on the wearable device. The device can effectively detect all
5 classes. The MIT-BIH dataset contains limited instances of
SV and F beats. The performance of SV and F beat detection
can be enhanced if more data are added. SV, V, and F beats
are the three forms of arrhythmia that can be used to detect
abnormalities from the ECG stream.

TABLE V
PERFORMANCE OF THE PROPOSED WEARABLE ON 5 SUBJECTS (SX)

Subjects
(Sx)

Detected ECG Beats
N SV V F Q

S1 147 0 2 0 2
S2 161 1 2 0 0
S3 175 0 0 0 1
S4 162 0 3 0 1
S5 153 1 2 0 1

The proposed wearable is used for real-time cardiac beat
detection on 5 different subjects for a 2-minute duration. The
project has IRB approval (Texas Tech University IRB approved
IRB2020-783) and written consent was taken before taking the
data. The subjects were 3 male and 2 female aged between 20
to 30 years with no known cardiac abnormalities. As shown
in Table V, most of the beats are detected as normal beats.
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IV. DISCUSSION

The proposed wearable implements a pre-trained ANN
model to detect the heartbeats. The device consumes a max-
imum of ∼ 128 mW power during the BLE data transfer
process making it suitable for low-power applications. An
oscilloscope (Model. Rigol MS05104) is used to measure the
power consumption. Similarly, the average power is measured
as ∼ 15 mW during an active session and ∼ 1.5 mW of power
during sleep mode. The device offers a low latency of 6 ms for
inferencing, a major requirement for real-time operation. The
latency is also measured with the help of an oscilloscope. To
measure the latency, a digital output pin of the SoC is turned
on and off respectively, before and after the inference thread.
The corresponding duration of voltage shift is noted from the
oscilloscope to find out the actual latency.

TABLE VI
PERFORMANCE COMPARISON BETWEEN THE PROPOSED WORK AND

OTHER AI IMPLEMENTED HARDWARE

Properties Enériz
et al. [11]

Kwiatk-
owski
et al. [12]

Wang
et al. [13]

Huang
et al. [14]

Ezekiel
et al. [15]

This
work

Hardware Xilinx
7020
FPGA,
100 MHz

ARM
Cortex
M7 CPU,
100 MHz

GRU-
MT-
ABN

STM32F7,
216 MHz

TE0802
FPGA,
133 MHz

ARM
Cortex
M4 CPU,
64 MHz

Application SHW SHW Cloud SHW SHW SHW
Signal type PCG PCG ECG ECG ECG ECG
NN model U-Net

CNN
Tiny
CNN

RNN LSTM ANN ANN

# of class 4 3 2 6 2 5
Accuracy,
%

90.5 91.6 95 90 95.9 90.6

Inference,
ms

29 12 250 1000 41.99 6

Power 722 mW - 1200 J/s 137.4 mW - 128 mW

Table VI provides a comparative analysis of this work with
other smart wearable devices. Applications are mostly based
on either CPU or, FPGA-based smart hardware (SHW) or
cloud computation. Mainly two types of signals, phonocar-
diogram (PCG) and ECG are analyzed by existing works. The
proposed device offers a reasonable testing accuracy of 90.6%
compared to other devices as well as, provides lower latency
and lower power during real-time cardiac monitoring.

V. CONCLUSION

An AI-integrated edge computing wearable device is pro-
posed in this paper. The device is a low-power solution
with fast computational ability. The smart wearable shows
promising performance in real-time ECG beat classification.
The MIT-BIH dataset is used to train the ANN model and the
results indicate that the wearable can effectively and accurately
detect different heart-beats. The performance is evaluated by
the MIT-BIH test dataset and 5 volunteer data. The wearable
can serve as a system for early detection and continuous
monitoring of cardiac abnormalities.

The wearable shows great potential for cardiovascular health
management. By completing an extensive amount of compu-
tation with a limited resource, the device is offering a fast and
low-power solution. In the future, we will focus on optimizing

the NN model for efficient operation. We intend to validate the
real-time ECG beat detection by an expert cardiologist.
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