
Nonlinear Correct and Smooth for Semi-Supervised
Learning

1st Yuanhang Shao
Department of Computer Science

Florida State University
Tallahassee, USA
shao@cs.fsu.edu

2nd Xiuwen Liu
Department of Computer Science

Florida State University
Tallahassee, USA

liux@cs.fsu.edu

Abstract—Graph-based semi-supervised learning (GSSL) has
been used successfully in various applications, with existing
methods leveraging the graph structure and labeled samples
for classification. Label Propagation (LP) and Graph Neural
Networks (GNNs) both iteratively pass messages on graphs,
where LP propagates and updates node labels across the graph
and GNN aggregates node features from their neighboring nodes.
Recently, combining LP and GNN has led to improvements in
performance, yet the joint utilization of labels and features in
higher-order structures of graphs, such as triangles, remains un-
explored. Therefore, we introduce Nonlinear Correct and Smooth
(NLCS), a combined post-processing method that incorporates
non-linearity and higher-order representation into the residual
propagation to address intricate node relationships effectively.
Systematic evaluations show that our approach achieves remark-
able average improvements of 13.2% over base prediction and
2.1% over the state-of-the-art post-processing method on six
commonly used datasets. Comparisons and analyses reveal that
our method enhances the prediction accuracy of nodes with
complex architecture by effectively utilizing triangle relationships
within graphs.

Index Terms—Residual Propagation, Semi-Supervised Learn-
ing, Graph.

I. INTRODUCTION

Graphs are indispensable in the realm of big data for repre-
senting data generated from non-Euclidean domains, as they
consist of interconnected nodes carrying complex relationships
and dependencies between entities. Recently, the growing
variety of graph-based real-world applications, such as social
networks [1], citation networks [2], and recommendation sys-
tems [3], have heightened the necessity for effective models
to capture the underlying intricate relationships. Graph-based
semi-supervised learning (GSSL) aims at node classification
in graphs with limited labeled data, relying on the homophily
[4] where neighboring nodes tend to have the same labels or
similar features, a principle widely exploited in existing GSSL
methods. Many recent studies in GSSL have primarily focused
on graph representations using both labels and features [5]–
[10]. Effectively and jointly leveraging labels, features, and
higher-order representations to maximize the generalization
performance of GSSL is still under exploration.

Traditional approaches in GSSL have primarily focused
on utilizing homophily within labels to develop smoothing
techniques, ranging from early methods like random walks

[11] to more recent label propagation (LP) [12]. The standard
LP algorithm spreads the known labels to adjacent neigh-
bors through edges iteratively. Further research introduces
an interpretable objective function to enhance modeling ca-
pacity by incorporating higher-order representations (such as
triangles, 3-cliques, etc.) [13]. On the other hand, Graph
Neural Networks (GNNs) focus on learning expressive node
representations and smoothing node features [14]. Unlike fully
connected networks treating inputs as an ordered list, GNNs
generalize neural networks to effectively capture the complex
relationships of graphs through aggregating neighbor features
and smoothing to reduce noise [6], [15], [16]. Nonetheless,
GNNs are sensitive to hyperparameters and lack meaningful
representation for the smoothed output [15]–[18]. Recent
studies have shown that a combination of label spreading
with deep learning approaches can yield competitive perfor-
mance [5], [7], [8]. These works emphasize the advantages of
using labels as auxiliary knowledge rather than exclusively
relying on features. Consequently, the development of an
approach capable of learning node representation and enhanc-
ing its interpretable modeling capacity to effectively capture
graph topology could further unify these two directions and
strengthen existing combined methods. To date, there has been
limited exploration of higher-order graph structures within the
realm of combined methods involving propagation algorithms
and neural networks.

To explore the aforementioned area, we propose Nonlinear
Correct and Smooth (NLCS), a combined method that jointly
leverages labels and features. NLCS starts by utilizing a
neural network model to learn node representations as base
prediction and then propagates residuals to correct labels using
nonlinear and higher-order relationships. Specifically, NLCS is
inspired by Correct and Smooth (C&S) [5], where our work
explores how the post-processing enhances modeling ability by
integrating non-linearity and higher-order representation into
the residual propagation. Unlike linear propagation, the intro-
duction of residual propagation over triangles effectively dis-
criminates misclassified nodes to improve prediction accuracy.
Through extensive analysis and experimentation, the proposed
method shows improvements both locally and globally, thereby
validating the effectiveness of our joint utilization of labels and
features on higher-order residual propagation.
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Fig. 1: Overview of NLCS. The nonlinear propagation of
triangles reveals structural disparities between the left-hand
and right-hand sides, a distinction not achievable through
linear propagation.

II. RELATED WORK

In recent years, significant progress in graph analysis has
led to various new and improved methods for solving GSSL.
Here we provide a brief review to investigate approaches in
three categories: LP, GNNs, and combined methods.

Label propagation (LP) is a well-known technique for
spreading known labels to unlabeled nodes based on the
homophily principle. Zhou et al. [12] proposed the standard
LP algorithm, which is an iterative propagation function
spreading labels via the structure of graphs. Moreover, Tudisco
et al. [13] proposed a nonlinear label spreading function,
incorporating the higher-order structure of graphs, known as
Nonlinear Higher-order Label Spreading (NHOLS). Notably,
the NHOLS outperforms the GraphSAGE, a two-layer GNN
that incorporates concatenation-based skip connections to alle-
viate over-smoothing, while NHOLS achieves superior perfor-
mance by leveraging nonlinear mixing functions and spreading
information over hyperedges. Prokopchik et al. [19] further
extended the diffusion process of NHOLS by spreading the
concatenation of features and labels on hypergraphs via a new
hypergraph regularization term. These approaches indicate
that the propagation technique can effectively leverage the
advantages of known labels and nonlinearity.

Graph Neural Networks (GNNs) are deep neural networks
designed to operate on graph-structured data utilizing the
inherent structure and relationships within graphs for solving
various graph-based tasks [6], [7]. GNNs generally aggregate
information from neighbors to generate new node representa-
tions, which reduce noises in node features to achieve promis-
ing performance in GSSL [20], [21]. Meantime, the GNN-
based models have shown indistinguishable representations of
nodes across different labels caused by over-smoothing and
information loss [15]–[17], [22].

Therefore, recent studies focus on understanding insights
of GNNs and techniques to alleviate over-smoothing, such as
skip connection, graph normalization, random dropping [15],

[16], [18], [23]–[25]. Li et al. [15] highlight that the graph
convolutional network (GCN) is a special form of Laplacian
smoothing, which can smooth the noise of node features. How-
ever, this smoothing process can lead to less distinguishable
features among different clusters. In the attempt to elucidate
the effectiveness and limits of GNNs, Chen et al. [26] show
that deeper GNNs are more susceptible to over-smoothing.
Even though the initial and jumping connection improves
the performance of deep GNNs, the normalization techniques
exhibit inconsistent performance on different GNN backbones
and become unstable with deeper networks; and the random
dropping mitigates performance degradation but fails to im-
prove deep GNNs consistently. Furthermore, Oono et al. [17]
emphasize that a deeper network and the introduction of non-
lineality can aggravate the over-smoothing issue. From these
studies, there is still a trade-off between smoothing noise and
making node features distinguishable, and the effectiveness of
initial and jumping connections suggests the importance of
preserving the original feature vectors and their correlation
with labels. Intuitively, exploring alternative methods that
leverage the labeled data and mitigate information loss caused
by aggregation is worthwhile.

Combined methods combine GNNs with regular neural
networks or LP to improve prediction accuracy, which has
gained increasing interest in recent years [5], [7]–[10], [27].
Ding et al. [7] propose a framework (known as Meta-PN) that
treats the predictions of an adaptive label propagator as pseudo
labels and utilizes multi-layer perceptron (MLP) to predict
the labels of entire graph based on these pseudo labels. On
the other hand, in contrast to the learning schema of Meta-
PN, Huang et al. [5] propose a different approach with their
simple post-process step (C&S) based on residual propagation
and smoothing to improve the base prediction of deep neural
networks, including MLP and GNNs. This approach provides
a new perspective for solving semi-supervised learning and
opens up new avenues for exploring the combination of
LP and deep neural networks. Similarly, Wang et al. [8]
introduce the concept of influences and study the influences of
features and labels in label propagation algorithm (LPA) and
graph convolutional neural networks (GCN). They proposed
a unified model to make the edges trainable based on label
influence, as nodes with the same label should have strong
connections. Another notable work, Jia et al. [27] propose
a Markov random field model (MRF) for node attributes
generation, such that the label propagation, linearized graph
convolutional network, and their combination can be derived
as conditional expectations under the MRF model. Han et
al. [10] proposed a framework from a multi-view learning
perspective consisting of a single-level optimization problem
by introducing a latent variable to capture three different views
of graphs: features, labels, and graph structure. Overall, label
propagation proves to be a flexible method that can be applied
to labels, features, residuals, and smoothing. These combined
methods show great promise in utilizing labels and features
jointly to solve semi-supervised learning tasks. However, none
of these combined methods have explored the potential of
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higher-order representation. By conducting nonlinear higher-
order residual propagation (specifically via triangles) on top
of base predictions, our approach NLCS achieves superior
performance on GSSL.

III. PRELIMINARY

A. Problem Definition

Given an undirected graph G = (V,E, ω), where V =
{v1, v2, . . . , vn} represents the set of n nodes, each of which
can be assigned one of the labels from the set of classes
{1, . . . , c}, and E ⊆ V × V represents the set of m edges,
and each edge e ∈ E is associated with a positive weight
ω(ij) > 0. This set of nodes V has their corresponding feature
vectors represented as X ∈ Rn×p. The graph-based semi-
supervised classification problem aims to predict the labels of
a subset of unlabeled nodes U ⊂ V using a small, disjoint,
and labeled subset L ⊂ V , based on the labels of the known
subset and the features of nodes, where U + L = V . For
this given graph G, let A be the adjacency matrix of G,
such that Aij = ω(ij), ij ∈ E, and Aij = 0 otherwise;
DG = Diag(d1, d2, . . . , dn) be the diagonal degree matrix;
and S = D

− 1
2

G AD
− 1

2

G be the normalized adjacency matrix.

B. Definition of Hypergraph

Consider a 3-regular hypergraph H = (V, ε, τ) representing
the weighted graph G, where V is the vertex set containing
n unique vertices, ε ∈ V × V × V is a set of hyperedges,
where each hyperedge is a subset of V containing exactly
three vertices as a triangle, and τ is the weight function of
hyperedges, such that τijk > 0. For this given hypergraph H ,
the third-order adjacency tensor is defined as A, where Aijk =
τijk and 0 otherwise. Furthermore, the diagonal matrix of the
hypergraph is defined as DH = Diag(δ1, . . . , δn), where the
vertex degree is defined as δi =

∑
jk τ(ijk), ijk ∈ ε.

IV. NLCS

Figure 1 illustrates the overall workflow of our proposed
NLCS. In this example, vertices can be represented by their
feature vectors x = {x1, . . . , x7}. Neural networks serve as
base predictions to learn the representations of nodes and then
map these representations to labels l = {l1, . . . , l7}. The base
prediction is possible to generate wrong predictions like x1,
where its true label is 0 and prediction is 1. After the base
prediction, the residual of neighboring nodes is assumed to be
similar in base prediction, such that the error can propagate
through a pair of edges in the triangle to distinguish two
sides of the graph structure and correct the wrong prediction.
Finally, NLCS applies the nonlinear smoothing over corrected
predictions to get the final classification results.

A. Nonlinear Correct Stage

Our approach is a post-processing step including two stages,
where the first stage aims to improve the prediction accuracy of
base prediction by propagating residuals via the higher-order
structure of graphs. This residual propagation assumes that the
errors of neighboring nodes are likely similar to those in the

base prediction results [5]. However, the neighbors are more
complex in real-world graphs and not necessarily surrounded
by the same labels, which can mislead the prediction, such as
in Figure 2. In order to resolve the ambiguity of prediction,
such as the same number of neighbors with different labels
or various labeled neighbors, triangles can be a meaningful
topology in the graphs from real-world applications [28]. This
meaningful structure of graphs prompts that the use of higher-
order residual propagation to correct the base prediction is
worthwhile. First of all, NLCS uses the graph and the 3-
regular graph notation defined in section III, where a 3-regular
hypergraph is constructed from the existing structure of a
graph, which considers the set of triangles as hyperedges of H
and the cosine of the angle of triangles as the weight function
of H . Then, we define an error matrix E ∈ Rn×c based on the
one-hot-encoding matrix Y ∈ Rn×c regarding the node labels,
where c is the number of labels and Yij = 1 if node i ∈ L for
label j, and 0 otherwise, which is split into two parts:

EL = XL − YL, EU = 0, (1)

where XL is the base prediction of labeled nodes, and the
error is the residual on labeled and 0 on unlabeled. Then, we
propagate errors at node i to neighboring nodes of i which
should increase the similar error to surrounding nodes. We
utilize the nonlinear label spreading technique of Tudisco et
al. [13] by using the nonlinear mixing functions σ : R2 → R
to define the tensor mapping F : Rn×c → Rn×c regarding the
error matrix entrywise as follows:

F (E)i =
∑
jk

Aijkσ(Ej , Ek). (2)

This tensor mapping aggregates errors from neighbors of
triangles via a nonlinear mixing function, such as triangles
which consider errors from two adjacency nodes of a triangle
and its cosine of the angle. Then, the nonlinear mapping for
the error matrix is denoted by:

S(E) = D
− 1

2

H F (D
− 1

2

H E). (3)

At last, the residual propagation is iterated by:

E(t+1) = αS(E(t)) + βSE(t) + (1− α− β)Y, (4)

where the initial vector E(0) = E. This iteration function
propagates the error in third-order adjacency representation or
higher, in which the higher-order propagation is nonlinear. The
error propagation is provable under a Gaussian assumption in
regression problems [29], and the errors in equation 4 need
normalization to adjust the scale of residual. We adopt the
Autoscale [5], in which the scale of the error is approximated
with the average error of the labeled nodes. The L1-norm for
labeled nodes is denoted as:

λ =
1

|L|
∑
j∈L

||ej ||1, (5)

where ej ∈ Rc is the jth row of E. Eventually, the base
prediction of unlabeled nodes is corrected by the error that
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is propagated through the higher-order nonlinear function as
follows:

X ′
i = Xi + λ

Êi

||Êi||1
, i ∈ U, (6)

where Êi is the approximated error of ith unlabeled node after
the error propagation iteration in equation 4.

B. Nonlinear Smooth Stage

After the correction using propagated residual, our approach
conducts smoothing based on corrected labels. Considering the
diversity of graphs, the residual correction handles heterophily
neighbors to provide good estimations. The corrected pre-
dictions of unknown labels are considered relatively accurate
compared to base predictions. Therefore, smoothing can refine
and improve the overall prediction accuracy by applying
additional label propagation over the entire graph. This step
utilizes the best predicted labels G ∈ Rn×c:

GL = YL, GU = X ′
U , (7)

where the labeled nodes use the true label of training and the
unlabeled nodes use the corrected prediction in equation 6.
Subsequently, the final prediction Ŷ is approximated itera-
tively using the nonlinear higher-order label spreading function
G(t+1) = (αS(G(t))+βSG(t)+(1−α−β)Y )/φ(G(t)), where
G(0) = G and φ denotes the normalization term [13]. Finally,
for each node i ∈ U , the prediction of the label is assigned as
the one with the highest probability among the classes denoted
as argmaxj∈{1,2,...,C}Ŷij .

Application Dataset |N | |E| |L|
Social Rice31 3,560 317,828 9
Social Caltech36 590 25,644 8
Citation arxiv 169,343 2,315,598 40
Citation Cora 2,708 10,556 7
Citation CiteSeer 3,327 9,104 6
Citation PubMed 19,717 88,648 3

TABLE I: Dataset and graph size.

V. EXPERIMENT EVALUATION

In this section, we conduct empirical evaluations to assess
the performance of the NLCS. Our analysis aims to investigate
the following questions:

Question 1 (Q1): Can the utilization of the nonlinear
higher-order structure of graphs improve performance in real-
world graphs?

Question 2 (Q2): How does the higher-order representation
affect the prediction results in each stage of NLCS?

Question 3 (Q3): How do the base prediction and post-
processing steps influence each other and end up with such
improvement?

In order to answer these questions, NLCS is compared
against C&S over three base prediction models and six
datasets. We performed an in-depth analysis of the NLCS by
analyzing the distribution of output values from both network
models and each post-processing stage. Additionally, we inves-
tigate the impact of post-process steps on base prediction via

the training process. By conducting thorough experiments, we
aim to gain insights into the performance and interpretability
of the proposed method.

A. Experiment Setup

Baselines: We compare NLCS to several baselines includ-
ing propagation algorithms and network models: standard label
propagation (LP) [12], nonlinear higher-order label spread-
ing (NHOLS) [13], plain linear (PL), multi-layer perceptron
(MLP), and graph attention network (GAT) [30]. For each
of the baseline methods, we train on 10 random initialized
network models and apply both our post-processing step and
C&S to analyze their performance via six commonly used
datasets. We provide the source code link1 for our experiments.

Datasets: We evaluate the performance of each baseline us-
ing the datasets listed in Table I, where Rice31 and Caltech36
are provided in source code1 and other datasets are public by
Yang et al. [31] and Hu et al. [32]. For each dataset, we split
it into train, validation, and test subsets based on the ratio of
known labels (k). The split is performed by randomly selecting
an equal number of samples from each class, with ratio
k, (1−k)

2 , and (1−k)
2 respectively. The same split is applied

consistently across different baselines for a fair comparison.
Considering the size of Caltech36, the percentages of known
labels are set to 10% and 20% in Table II, while the other
dataset remains 5% and 10%. It should be noted that the social
network datasets do not include node features, whereas the
citation network datasets are the opposite.

Parameters: We systematically explore the constant param-
eters α and β in Eq. 4 by varying them from range 0 to 1,
with increments of 0.1. The provided source code includes the
optimal parameter settings that we have discovered through
extensive experimentation. Additionally, for the propagation
function, we employ a fixed constant number of iterations
(t = 50), which has proven to be sufficient for convergence.
Regarding the training of neural network models, all experi-
ments run for 1000 epochs with learning rates ranging from
0.01 to 0.001, depending on the specific dataset. The multi-
layer models (MLP and GAT) consist of 256 hidden neurons
and a dropout rate of 0.5.

B. Performance Evaluation (Q1, Q2)

We compare the performance of base predictions after
applying our post-processing step with C&S and other neural
network models. As shown in Table II, NLCS improves
the average accuracy by 19.77%, 11.14%, and 8.69% across
all datasets when compared to PL, MLP, and GAT base
predictions, respectively. On the other hand, the C&S improves
the average accuracy by 16.96%, 9.19%, and 7.82% across
all datasets with PL, MLP, and GAT base prediction. The
plain linear network model exhibits low accuracy on all
datasets when the node features are unavailable as expected.
Meanwhile, the MLP and GAT effectively learn the node
feature representations for classification.

1Code Repository: https://gitlab.com/Shao1206/nlcs
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Application Rice31 Caltech36 Cora
5% 10% 10% 20% 5% 10%

LP 80.80 87.51 70.38 78.03 69.68 74.49
NHOLS 86.95 89.93 82.41 85.63 65.99 72.14
PL 58.19 ± 0.10 71.83 ± 0.32 41.08 ± 0.63 49.80 ± 0.51 46.94 ± 0.06 54.94 ± 0.04
PL+C&S 82.31 ± 0.10 88.51 ± 0.10 76.58 ± 1.56 79.83 ± 0.20 60.11 ± 0.11 79.02 ± 0.20
PL+NLCS 87.44 ± 0.05 90.77 ± 0.06 81.88 ± 0.47 84.62 ± 0.15 77.22 ± 0.08 80.71 ± 0.05
MLP 69.33 ± 0.66 79.84 ± 0.61 46.93 ± 1.88 57.27 ± 1.81 58.74 ± 0.86 63.80 ± 0.81
MLP+C&S 72.72 ± 0.97 81.69 ± 0.67 72.49 ± 2.14 75.58 ± 1.23 75.32 ± 1.08 80.48 ± 0.74
MLP+NLCS 78.35 ± 0.90 85.16 ± 0.46 80.58 ± 0.82 83.92 ± 0.73 75.76 ± 0.51 80.26 ± 0.37
GAT 73.20 ± 0.27 81.15 ± 0.62 30.95 ± 1.39 47.55 ± 1.63 78.40 ± 0.32 80.93 ± 0.66
GAT+C&S 78.32 ± 0.70 84.86 ± 0.60 79.20 ± 1.11 80.51 ± 0.77 79.35 ± 0.46 81.51 ± 0.60
GAT+NLCS 82.65 ± 0.45 87.09 ± 0.30 80.60 ± 0.41 84.70 ± 0.48 79.51 ± 0.33 81.26 ± 0.44

Application CiteSeer Arxiv PubMed
5% 10% 5% 10% 5% 10%

LP 49.01 53.43 65.48 67.62 79.12 79.94
NHOLS 46.69 51.87 64.58 66.67 76.30 79.92
PL 52.28 ± 0.08 58.50 ± 0.19 48.53 ± 0.06 50.15 ± 0.02 76.91 ± 0.03 79.52 ± 0.03
PL+C&S 61.70 ± 0.11 64.80 ± 0.12 67.24 ± 0.04 68.55 ± 0.01 81.75 ± 0.04 81.83 ± 0.01
PL+NLCS 62.81 ± 0.09 65.64 ± 0.13 65.72 ± 0.05 67.99 ± 0.01 80.76 ± 0.07 80.32 ± 0.06
MLP 50.00 ± 1.38 63.28 ± 0.83 68.33 ± 0.10 70.16 ± 0.05 79.16 ± 0.25 81.88 ± 0.33
MLP+C&S 59.72 ± 1.14 69.20 ± 0.94 70.80 ± 0.08 72.35 ± 0.07 83.43 ± 0.25 85.22 ± 0.22
MLP+NLCS 62.62 ± 0.57 68.08 ± 0.89 69.39 ± 0.08 71.29 ± 0.13 82.67 ± 0.32 84.26 ± 0.15
GAT 64.26 ± 0.77 67.19 ± 0.49 70.13 ± 0.17 71.87 ± 0.08 84.20 ± 0.26 85.60 ± 0.25
GAT+C&S 65.34 ± 0.63 67.48 ± 0.57 71.24 ± 0.13 72.69 ± 0.05 84.34 ± 0.21 85.13 ± 0.12
GAT+NLCS 64.94 ± 0.53 66.97 ± 0.58 70.44 ± 0.12 72.17 ± 0.04 84.43 ± 0.24 85.62 ± 0.24

TABLE II: The prediction accuracy on six real-world datasets.

Application Rice31 Caltech36 Cora
5% 10% 10% 20% 5% 10%

PL 58.19 ± 0.10 71.83 ± 0.32 41.08 ± 0.63 49.80 ± 0.51 46.94 ± 0.06 54.94 ± 0.04
+LC 73.36 ± 0.10 84.34 ± 0.24 72.64 ± 2.28 77.41 ± 1.50 55.06 ± 0.11 68.80 ± 0.49
+C&S 82.31 ± 0.10 88.51 ± 0.10 76.58 ± 1.56 79.83 ± 0.20 60.11 ± 0.11 79.02 ± 0.20
+NLC 80.57 ± 0.27 88.04 ± 0.24 71.47 ± 1.73 77.71 ± 1.78 54.96 ± 0.14 68.43 ± 0.55
+NLCS 87.44 ± 0.05 90.77 ± 0.06 78.08 ± 0.78 81.88 ± 0.47 77.22 ± 0.08 80.71 ± 0.05

Application CiteSeer Arxiv PubMed
5% 10% 5% 10% 5% 10%

PL 52.28 ± 0.08 58.50 ± 0.19 48.53 ± 0.06 50.15 ± 0.02 76.91 ± 0.03 79.52 ± 0.03
+LC 58.62 ± 0.08 62.76 ± 0.04 61.43 ± 0.20 63.88 ± 0.02 81.88 ± 0.09 82.01 ± 0.04
+C&S 61.70 ± 0.11 64.80 ± 0.12 67.24 ± 0.04 68.55 ± 0.01 81.75 ± 0.04 81.83 ± 0.01
+NLC 59.83 ± 0.12 63.91 ± 0.08 57.27 ± 0.19 61.09 ± 0.02 78.90 ± 0.08 79.21 ± 0.05
+NLCS 62.81 ± 0.09 65.64 ± 0.13 65.72 ± 0.05 67.99 ± 0.01 80.76 ± 0.07 80.32 ± 0.06

TABLE III: The performance on each post-processing step using linear and nonlinear, where LC means linear correction and
NLC means nonlinear correction.

Notably, the performance of two social network datasets
is further improved by 5.27% when applying our nonlinear
higher-order error spreading compared to the C&S across
all three base predictions. This improvement is particularly
significant because social network datasets lack node feature
information, limiting the performance of MLP and GAT
models. In this case, the combination of base prediction
with nonlinear post-processing surpasses the performance of
sophisticated neural network models.

In the case of citation networks, NLCS achieves an average
improvement of 5.19% on Cora and CiteSeer compared to
C&S with PL. The performance of NLCS is competitive
against C&S using MLP and GAT base predictions. However,
when comparing our results to citation network baselines, it
is noteworthy that NLCS is marginally below C&S by an
average of 0.79% in Arxiv and PubMed datasets. These results

are consistent with research showing that both NLCS and
C&S exhibit the same performance patterns across different
real-world datasets. A possible explanation is that there are
relatively sparse graphs with a lower node-to-edge ratio where
NLCS has less higher-order structure to utilize. Overall, NLCS
improves the performance by 7.3% on average across all three
base prediction models in all four citation datasets.

From these demonstrated results, the post-processing step
yields greater improvements when the node features are not
directly associated with labels, and the network models strug-
gle to learn the representation of nodes. This observation aligns
with the notation of feature and label influence that has been
discussed in [8]. Moreover, NLCS shows its effectiveness by
yielding lower standard deviation (STD) in 72.2% of cases
and higher accuracy in 58.3% of cases compared to C&S.
This indicates that NLCS provides more consistent and reliable

Authorized licensed use limited to: Florida State University. Downloaded on February 05,2025 at 15:18:19 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2: The subgraph visualization showcases the NLCS results of center node 53 and its one-hop neighbors from the Rice31
dataset with 10% known labels.

(a) Rice31-5% (b) Rice31-10% (c) Cora-5% (d) Cora-10%

Fig. 3: The prediction accuracy at different ranges of clustering coefficient.

results with improved prediction accuracy utilizing higher-
order representation.

C. Distribution Analysis (Q3)
To gain insights into the effectiveness of the post-processing

step, we conducted an output value distribution analysis at
individual nodes and their neighbors. As shown in Figure
2, we select an individual node (Node 53) from the Rice31
dataset and illustrate the output value distribution of the center
node regarding different classes at each step on the right-
hand side (base prediction, nonlinear correction, and nonlinear
smoothing, respectively). Additionally, we provide the number
of correct predictions for its adjacency nodes at the bottom,
where the red line indicates the total number of neighbors.
Based on the observation of this subgraph, it is obvious that the
neighbors of this individual node belong to multiple classes,
which makes accurate predictions challenging. Remarkably,
for this individual node, even though both the node itself
and its neighbors are unlabeled, our method successfully
predicts 13 out of 14 neighbors in this subgraph. This success
is due to the prevalent triangular structure observed in the
subgraph, which our method utilizes effectively by leveraging
higher-order representation to improve prediction accuracy.

Moreover, we analyze the prediction accuracy corresponding
to the ranges of clustering coefficient from 0 to 0.6 in Figure
3. This range corresponds to the majority of nodes in the
dataset. Notably, NLCS consistently outperformed both the
base prediction and C&S methods across different coefficients.
Overall, by incorporating higher-order representation in the
correction and smoothing approaches, our methodology shows
modeling flexibility in complex relationships while improving
performance consistently.

We further analyzed the output value distribution from an
overall perspective at each stage of our method: base predic-
tion, correction, and smoothing. In Figure 4, we observe the
classification change by selecting the first two classes of nodes
and visualizing the difference between the first two output
values. Figures 4a and 4c illustrate that the base prediction is
capable of distinguishing between classes based on the feature
vectors. However, the misclassification happens when the
difference value is greater than 0 in Label 0 and smaller than
0 in Label 1. Figure 4b - 4d demonstrates that the overlapping
area decreases after correction and smoothing, indicating a
reduction in incorrect classifications and an improvement in
accuracy. This trend is more significant in the analysis of the
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(a) Rice31 (b) Rice31 (c) Cora (d) Cora

Fig. 4: The distribution of the difference value between the first two output values regarding base prediction and correction
for the Rice31 and Cora datasets.

(a) (b) (c) (d)

Fig. 5: The PCA visualization on each step’s output of Rice31 with 5% known labels.

(a) (b) (c) (d)

Fig. 6: The accuracy during the training to the base prediction model, nonlinear correction, and NLCS.

Cora dataset, as shown in Figure 4c to 4d.
To intuitively understand how our method clusters nodes

in a spatial domain, we visualize the multidimensional out-
put vectors of prediction using principal component analysis
(PCA). The results of Figure 5 demonstrate the 2-dimensional
plots of the output value from linear layer, PL model, correc-
tion, and smoothing. The results show that the neural network
learns the representation of nodes and provides a baseline
of accuracy. Subsequently, the nonlinear correction further
brings the cluster to a more confident level, and the nonlinear
smoothing compresses the information into a lower dimension.

D. Accuracy Timeline and Complexity

We analyzed the accuracy during the training process of the
base prediction and after applying NLCS post-processing steps

to assess performance stability. Figure 6 shows the testing
accuracy during the training and applies NLCS on every
100 epochs. The plots show that our post-processing steps
consistently improve the performance over time. Although the
specific benefits gained from these two steps may vary de-
pending on the dataset, the overall performance trend remains
the same. This suggests that NLCS is robust and stable, even
when the base prediction is not well-trained.

Considering the hypergraph definition in section III-B, our
method entails an increased computational complexity, which
is attributed to both the initial construction of hypergraphs and
the subsequent error propagation steps. The construction of the
hypergraph is executed once and carries a time complexity
of O(Tr(DG)2

|V | ), where Tr(DG) =
∑n

i=1(DG)ii is the sum
degree of nodes. The higher-order error propagation has a
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linear time complexity of O(|ε|) with respect to the number
of hyperedges ε which directly correlates with the number
of triangles. These complexities underscore the impact of
the graph structure, specifically, the higher-order structure
connections, on the computational demands of our method.

VI. CONCLUSION

We have demonstrated the significant potential of incor-
porating nonlinearity and higher-order structures in post-
processing steps for GSSL. By effectively utilizing both labels
and features in a higher-order manner, NLCS exhibits more
effective modeling capabilities compared to C&S and advances
the exploration of joint utilization in this context. Our results
have shown substantial advantages of incorporating higher-
order structures in graph-based learning. The proposed NLCS
can be flexibly employed as a post-processing step after
various neural network models, showcasing a broader applica-
bility of the higher-order concept in the graph research area.
Our results indicate that both nonlinear and linear methods
show varying degrees of effectiveness across different datasets.
This variability provides a future research direction: a unified
framework capable of discerning the unique characteristics of
local graph structures and customizing solutions to optimize
performance. As we continue to explore this direction, we
anticipate further advancements in the field, preparing the way
for more sophisticated and efficient graph learning methods.
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