
Cryptanalysis of TRUTH: fixing a protocol to make
it 5G-compliant

J. Munilla
Dpt. of Telecommunication Engineering

University of Málaga
Málaga, 29071, Spain
Email: jmf@uma.es

M. Burmester
Department of Computer Science

Florida State Unviersity
Tallahassee, Florida, 32304, USA.

Email: burmester@cs.fsu.edu

P. Caballero-Gil
Dept. of Computer Science and AI

University of La Laguna
La Laguna, Tenerife, Spain
Email: pcaballe@ull.edu.es

Abstract—Trust and security are critical deployment require-
ments for Industrial Internet of Things (IIoT) networks. A recent
protocol, called TRUTH, integrates security mechanisms for
authentication and privacy alongside a Dempster-Shafer based
trust model, to assess the trustworthiness of collected data. We
analyze this protocol and show that it does not comply with
the implementation requirements of the 5G standard, and that
flaws in the identification of involved parties hinder its adoption
by 5G devices. We show how to fix this protocol and tailor it
for the specific 5G implementation constraints, by enhancing
its computational and communication performance. Finally, we
show how to prove the security of this fixed protocol (TRUTH+)
using the Tamarin automated verification tool.

I. INTRODUCTION

The 5th-generation (5G) of cellular networks, developed by
the 3rd Generation Partnership Project consortium (3GPP),
was designed to support IIoT applications. Specifically, 5G
offers the Massive Machine-Type Communications (mMTC)
service. For such applications, security is a critical require-
ment, however achieving it poses significant challenges.

Soleymani et al. recently presented a Trust and Authen-
tication scheme [1], called TRUTH, that combines a trust
model based on evidence theory (Dempster-Shafer Theory
(DST)) with a privacy-preserving authentication scheme. This
ensures the trustworthiness and reliability of data collected
by sensors, maintaining privacy and integrity of data while
in transit. However, despite its security claims, in this paper
we shall show that it deviates significantly from the security
requirements for devices as specified by the 3GPP standard [2],
and that it has functional flaws that prevent its implementation
in practical IIoT 5G networks. We propose fixes that align with
the security goals, architecture, and requirements of the 5G
standard. This paper targets implementation technicians who
need to be aware of possible security vulnerabilities of IIoT
protocols, and 5G-6G and beyond experts seeking a compre-
hensive understanding of mobile security and methodologies
for crafting protocols to comply with security standards.

The rest of the paper is organized as follows: Section II
provides an overview of 5G security procedures, Section III
describes the TRUTH protocol, and Section IV analyses it,
highlighting its main shortcomings. Section V describes a 5G-
compliant version TRUTH+. We summarize our conclusions
in Section VI.

For reference, Table I below lists some of the general
notation employed in our protocol descriptions.

TABLE I
GENERAL NOTATION

Notation Description
⊕ Exclusive-or operation
|| Concatenation
SK-x Private key of user x for an asymmetric cryptosystem
PK-x Public key of user x for an asymmetric cryptosystem
EPK-x(M) Encryption of M using the public key of user x
EPK-x(M, r) Randomized encryption of M using the nonce r
DSK-x(M) Decryption of M using the private key of x
SSK-x(M) Signature on M using the private key of user x
VPK-x(S,M) Signature verification on M using the public key of x
h(M) Hash of M
SQx-y Sequence Number of users x and y stored by x
Kx/y Long-term symmetric key shared by x and y
V ← x Value x is assigned to V
M ⇒ V V is obtained from M
TS Timestamp

II. 5G STANDARD SECURITY

A. Security Architecture

The security architecture of 5G systems is outlined in the
Technical Specifications 33.501 of the 3GPP consortium [2]
(referred to as TS 33.501 henceforth). This architecture is
segmented into two domains: subscriber and network. The
subscriber domain encompasses the User Equipment (UE),
whereas the network domain has two elements: the Home
Network (HN) and the Serving Network (SN). SN connects
the UE with the HN, providing wireless access through its base
stations, called Next Generation NodeBs (gNBs). SN and HN
may belong to the same operator or different operators, as is
the case in roaming scenarios. The UE contains the Mobile
Equipment (ME) of the subscriber, commonly a smartphone
or IoT device, equipped with a Universal Subscriber Identity
Module (USIM). The USIM has cryptographic capabilities and
stores the subscriber’s credentials provided by the network
operator.

The communication between UE and gNB is referred to as
the Access Stratum (AS), while communication between UE
and HN is termed Non-Access Stratum (NAS). In the 5G threat
model, it is assumed that UE and SN are connected over an

20
24

 In
te

rn
at

io
na

l S
ym

po
siu

m
 o

n
N

et
w

or
ks

, C
om

pu
te

rs
 a

nd
 C

om
m

un
ic

at
io

ns
 (I

SN
CC

) |
 9

79
-8

-3
50

3-
64

91
-0

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IS
N

CC
62

54
7.

20
24

.1
07

58
95

0

Authorized licensed use limited to: Florida State University. Downloaded on February 05,2025 at 15:39:46 UTC from IEEE Xplore. Restrictions apply.

untrusted wireless channel, while SN and HN communicate
through a trusted channel. Adversarial capabilities are com-
monly modeled using the Dolev–Yao (DY) threat model [3],
where active adversaries control the network and can intercept,
inject, manipulate or drop messages.

B. 5G-AKA protocol

Prior to a UE being able to communicate securely, TS
33.501 mandates an authentication process, irrespective of
the service or network access they request (agnostic access
network). The purpose of this primary authentication is to
enable mutual authentication between UE and the network,
and generate an anchor key KSEAF, used to derive session
keys for securing communication channels. For primary au-
thentication, TS 33.501 proposes the 5G Authentication and
Key Agreement protocol, 5G-AKA (or alternatively, the legacy
EAP-AKA).

The 5G-AKA protocol utilizes several cryptographic mecha-
nisms: the exclusive-or operation for one-time pad encryption,
an asymmetric encryption scheme (based on elliptic curves or
proprietary to the HN) with public key PK-HN, and private
key SK-HN, stored in HN, a key derivation function KDF,
based on the hash function SHA256, and seven one-way keyed
authentication and key generation functions: f1, f2, f3, f4, f5,
and f1∗, f5∗. The standard does not specify an implemen-
tation for these keyed functions but only that they must be
cryptographically secure and mutually independent; the 3GPP
consortium developed an example, called the MILENAGE
algorithms [4].

To execute the protocol, the USIM stores privately:
• The Subscription Permanent Identifier (SUPI), which

uniquely identifies UE.
• A long-term secret key K, which is different for each

subscriber.
• The public key PK-HN of HN.
• A sequence number SQUE, incremented with each proto-

col execution to prevent replay attacks.
HN stores the private key SK-HN of the asymmetric cryptosys-
tem and also, for each subscriber, the SUPI and its own ver-
sion of the sequence number, SQHN. Randomized asymmetric
encryption is used to conceal the subscriber identity, defined
by SUCI = EPK-HN(SUPI, re), with re a random bitstring.
In practice, this asymmetric scheme works more like a Key
Encapsulation Mechanism (KEM). Specifically, one of the two
ECIES (Elliptic Curve Integrated Encryption Scheme) profiles
described in the 3GPP specifications is utilized to generate
ephemeral keys. These in turn, are used to derive new keys that
encrypt the SUPI using an AES-based symmetric cipher. Thus,
the SUPI is never sent in the clear to prevent the “International
Mobile Subscriber Identity” (IMSI) catcher attacks [5].

Additionally, a Global Unique Temporary Identifier (GUTI)
can be used to identify the UE [6]. This is a temporary identity
assigned to UE which replaces the SUCI, thus avoiding a
public key encryption and a random number generation.

Fig. 1 describes the flows of the 5G-AKA protocol, which
has three phases:

SUCI or GUTI

SUPI or SUCI, SNname
Phase 1

Phase 2

SUCI

(Identifier Request Message)

generate new random R

MAC f1(K, SQHN || R), AK f5(K, R)

CONC SQHN  AK, AUTN CONC || MAC

RES f2(K, R), SQHN SQHN+1

CK f3(K, R), IK f4(K, R)

XRES KDF(CK||IK,SNname||R||RES)

HXRES SHA256(R||XRES)

KAUSF KDF(CK||IK,SNname||CONC)

KSEAF KDF(KAUSF,SNname)

R, AUTN, HXRES R, AUTN

 CONC, MACAUTN, AK f5(K, R)

 SQHNCONC  AK, MAC* f1(K, SQHN || R)
 Check:

 i) MAC=MAC*

 ii) SQUE ≤ SQHN < SQUE +D
 If correct:

 SQUE SQHN +1, RES* f2(K, R)

 CK f3(K, R), IK f4(K, R)

XRES* KDF(CK||IK,SNname||R||RES*)

KAUSF KDF(CK||IK,SNname||CONC)

KSEAF KDF(KAUSF,SNname)

XRES*

XRES*

Check: XRES*=XRES
KSEAF, SUPI

Phase 3

USIM

CK, IK, RES*

ME

HXRES* SHA256(R||XRES*)

Check: HXRES*=HXRES

UE
SUPI/GUTI, SNname, K, SQUE, PK-HN

SN
GUTI/SUPI, SNname

HN
SUPI, K, SQHN, SK-HN

NAS SECURITY MODE COMMAND

AS SECURITY MODE COMMAND

Fig. 1. 5G-authentication and key agreement (AKA).

Phase 1. UE initiates the protocol by identifying itself. If
UE does not have a valid GUTI, then it computes and sends
a SUCI to SN, that relays it to HN.

Phase 2. Challenge-response authentication. Upon re-
ceiving an authentication request, HN generates a random
number R, used as a challenge, and an authentication value
AUTN. Upon UE receiving {R, AUTN}, USIM retrieves
SQHN, computes the MAC, and checks that: (i) the MAC
is correct and therefore the message is authentic; (ii) the se-
quence number SQHN has not been replayed (SQHN ≥ SQUE),
and is within a specified range (SQHN < SQUE + ∆), to
prevent de-synchronization attacks by forcing the counter to
wrap around. If i) fails, then a “MAC failure message” is
sent. If i) is correct but ii) fails, then a “Synchronization fail-
ure message” is sent along with a re-sync token to inform
HN of the value SQUE in a hidden way (masked with f5∗ and
authenticated with f1∗). Otherwise, i) and ii) are correct, USIM
updates SQUE, computes RES∗ (using f2), CK (using f3), IK
(using f4), and forwards these to ME. ME then derives the
anchor key KSEAF, and computes and sends XRES∗ to SN.
SN verifies the hashed value of the response, and if correct,
forwards it to HN. Finally, HN verifies the response and if
correct, sends KSEAF to SN.

Phase 3. Security mode command procedure. A suc-
cessful 5G-AKA ends with the derivation of the anchor key
KSEAF by both HN and UE. The standard does not specify
any additional key confirmation query for KSEAF so that the
authentication is implicit and only confirmed when a “Security
Mode Command Procedure” is executed correctly [7], [8]. This

Authorized licensed use limited to: Florida State University. Downloaded on February 05,2025 at 15:39:46 UTC from IEEE Xplore. Restrictions apply.

ensures that the session anchor keys computed by both parties
agree and verifies the security capabilities of UE to prevent
bidding-down attacks.

Along with authentication and privacy, 5G-standard security
goals include: confidentiality of KSEAF even if the attacker
learns session keys established in other sessions (previous or
subsequent) and unlinkability against passive adversaries. It is
important to note here that the Linkability of AKA Failure
Messages (LFM) attacks, which enable tracing a specific tag
using the “failure messages” in case of failed authentication,
do not compromise this security goal, since these attacks rely
on the presence of an active adversary [9].

III. TRUTH PROTOCOL

TRUTH [1] combines a trust model and an AKE1 protocol
to achieve: authentication, data integrity and confidentiality,
anonymity and data trustworthiness. In this paper, we focus
on the latter, setting aside the trust model.

This protocol utilizes a network layered architecture con-
sisting of users U, cloud servers CS and gateways GW. Users
seek access to information collected by sensor nodes (SNs).
Users do not communicate directly with sensors; instead, they
request information from cloud servers (CS). These servers
then contact appropriate gateways that access the sensors. A
communication channel is established between U and GW
to exchange this information. In addition to these parties,
the protocol involves a trusted authority (TA) responsible for
distributing cryptographic material among all parties through
a secure channel. Communication between U, CS, and GW
adheres to the 5G communication standard and is susceptible
to Dolev-Yao threats (Section II-A). The TA and the CS are
presumed to be fully trusted entities [1, Section III.A].

This protocol comprises three phases: an initialization
phase, a user pseudonym generation phase, and an authen-
tication phase.

In the initialization phase, TA generates the system parame-
ters of an elliptic curve cryptosystem of order q, a prime, and a
one-way hash function h : {0, 1}∗ ← Z∗

q . Then TA distributes
securely private keys to U, CS and GW: SK-U, SK-CS and
SK-GW, and publishes the corresponding public keys: PK-U,
PK-CS and PK-GW. Next TA chooses a master key ψ and
provides a password PWDU to each user. In this architecture,
CS and GW use pseudonyms CIDCS = h(IDCS||SK-CS||ψ),
GIDGW = h(IDGW||SK-GW||ψ), respectively, computed using
their real identities: IDCS and IDGW. It is worth noting that,
although not explicitly described, TA must share the master
key ψ with CS (and also with GW if GIDGW is not pre-
computed), since it is necessary, as explained later, for the
execution of Step 2.

In the user pseudonym generation phase, the user with real
identity IDU and password PWDU, generates a pseudonym
UIDU, and sends {IDU, PWDU,UIDU} to TA. TA then com-
putes SIDU = h(UIDU||ψ), and sends to U and the relevant

1The acronym AKE is employed here for consistency with the original
paper. Both AKA and AKE essentially denote the same process.

cloud servers: {UIDU, SIDU}. These pseudonyms will be valid
for a limited time, after which, new ones should be generated.

Then the third phase commences. Fig. 2 sketches the flows
involved in this AKE process of the TRUTH scheme among
a user Ui, a cloud server CSk, and a gateway GWj. This
phase includes the following steps:

Step 1. Ui chooses a random number ru and computes:
B1 ← ru⊕ h(UIDUi∥SIDUi), B2 ← h(ru) ⊕ UIDUi

B3 ← h(SIDUi ∥ru∥UIDUi), M1 ← {B1, B2, B3,TS1},
and SSK-Ui(M1), a digital signature.

Ui then submits to CSk the encryption:
1) F1 ← EPK-CSk (M1, SSK-Ui (M1)).

Step 2. CSk decrypts F1 and then verifies the signature and
the correctness of the timestamp (this should be within an
acceptable window ∆T). If both are correct, CSk computes
SID∗

Ui
← h(UIDUi∥ψ), r∗u ← B1⊕ h(UIDUi∥SID∗

Ui
) and B∗

3 ←
h(SID∗

Ui
∥ r∗u ∥UIDUi), and checks that: B∗

3

?
=B3. If this is

correct, CSk generates rcs and rsk, computes:
B4 ← rcs ⊕ h(GIDGWj), B5 ← r∗u ⊕ h(GIDGWj∥CIDCSj),
B6 ← h(GIDGWj∥rcs∥CIDCSj), B7 ← rsk ⊕ rcs ⊕ ru,
M2←{B2,B4,B5,B6,B7,TS2}, and SSK-CSk(M2).

and submits to GWj the encrypted request,
2) F2 ← EPK-GWj(M2), SSK-CSk(M2)).

Step 3. GWj decrypts F2, verifies the signature and the
correctness of the timestamp. If both are correct, it computes:
r∗cs ← B4 ⊕ h(GIDGWj), r

∗∗
u ← B5 ⊕ h(GIDGWj ∥ CIDCSk),

UID∗∗
Ui
← B2 ⊕ h(r∗∗u) and B∗

6 ← h(GIDGWj ∥r∗cs∥CIDCSk),

and checks if B∗
6

?
=B6. If so, CSk is authenticated. Then GWj

generates rgw, computes:
B8 ← rgw⊕h(CIDCSk), B9 ← h(CIDCSk ∥rgw ∥GIDGWj),
M3 ← {B8, B9,TS3}, and r∗sk ← B7 ⊕ r∗cs ⊕ r∗∗u

and submits to CSk the encrypted request,
3) F3 ← EPK-CSk (M3, SSK-GWj (M3)).

GWj is now ready to compute the session key SK ←
h(UID∗∗

Ui
∥r∗∗u ∥r∗cs ∥rgw ∥r∗sk ∥CIDCSk ∥GIDGWj).

Step 4. CSk decrypts F3, and verifies the signature and times-
tamp. If both are correct, it computes: r∗gw ← B8⊕h(h(IDCSk ∥
SK-CSk ∥ψ)) and B∗

9 ← h(CIDCSk ∥r∗gw ∥GIDGWj), and checks

if B∗
9

?
=B9. If so, GWj is authenticated and CSk computes:
B10 ← h(ru)⊕ GIDGWj , B11 ← r∗gw ⊕ h(SID∗

Ui
)

B12 ← h(UIDUi ∥rcs ∥rgw ∥GIDGWj),
M4←{B4,B7,B10,B11,B12,TS4}, and SSK-CSk(M4))

and submits to Ui the encrypted response,
4) F4 ← EPK-Ui(M4, SSK-CSk(M4)).

Step 5. Ui decrypts F4 and verifies the signature and times-
tamp. If correct, Ui computes: GID∗

GWj
← B10 ⊕ h(ru),

r∗∗gw ← B11 ⊕ h(SID∗
Ui

), r∗∗cs ← B4 ⊕ h(GID∗
GWj

), B∗
12 ←

h(UIDUi ∥ r∗∗cs ∥ r∗∗gw ∥GID∗
GWj

), and checks if B∗
12

?
=B12. If

so, CSk (and consequently GWj) is authenticated. Then Ui
computes r∗∗sk ← B7⊕ r∗∗cs ⊕ ru and: SK← h(UIDUi∥ru∥r∗∗cs∥
r∗∗gw ∥r∗∗sk ∥CIDCSk∥GID∗

GWj
).

Authorized licensed use limited to: Florida State University. Downloaded on February 05,2025 at 15:39:46 UTC from IEEE Xplore. Restrictions apply.

SNs

 Trust

Evaluation

Secure Data Exchange using SK

Ui

CSk GWj

 1 1 2 3 1, , ,TS=M B B B

k i1 PK-CS 1 SK-U 1=E (,S ())F M M

 2 2 4 5 6 7 2, , , , ,TS=M B B B B B

j k2 PK-GW 2 SK-CS 2=E (,S ())F M M

 3 8 9 3, ,TS=M B B

k j3 PK-CS 3 SK-GW 3=E (,S ())F M M

 4 4 7 10 11 12 4, , , , ,TS=M B B B B B

i k4 PK-U 4 SK-CS 4=E (,S ())F M M

i k j

** **

7
* ** ** ** *

U CS GW(UID || || || || || CID || GID)

  


sk cs u

u cs gw sk

r B r r

SK h r r r r
i k j

* * **

7
** ** * *

U CS GW(UID || || || || || CID || GID)
sk cs u

u cs gw sk

r B r r

SK h r r r r

  



Fig. 2. Flows of the TRUTH Authenticated Key Exchange protocol.

IV. CRYPTANALYSIS OF TRUTH

The TRUTH protocol has design flaws and imposes hard-
ware requirements that diverge significantly from the original
5G-AKA protocol.

a) User Identification. In each step of this protocol,
the sender digitally signs a message with its private
key, encrypting both the message and signature with the
receiver’s public key: Ft = EPKReceiver(Mt, SSKSender(Mt)),
with t = 1, 2, 3, 4. Thus in Step 2, upon receiving F1, CSk
decrypts it using its private key, and verifies the signature
using the public key of Ui. The problem here is that CSk faces
uncertainty about the sender’s identity (it does not know who
the sender is, it could be any user). Consequently, CSk cannot
determine which public key to use for verifying the signature.
Although CSk might attempt to acquire this information
from the decrypted messages B1, B2, B3, this is not possible
without the pseudonym UIDUi . Similarly, CWj encounters
the same issue upon receiving F2. The only possible solution
seems to be verifying the digital signature using the public
key of every possible sender, until a match is found where
VPK−x(SSKSender(Mt),Mt) = TRUE, for a possible sender x
(users in Step 2 and cloud servers in Step3). However, this
approach, although possible, is highly vulnerable to DoS
attacks; an adversary sending a “dummy flow” could trigger
numerous signature verifications (asymmetric computations).
It is evident therefore that the protocol must be modified to
include sender identification information (as 5G-AKA does).

b) Asymmetric encryption & digital signing. The
use of asymmetric encryption and digital signing incurs
substantial computation time and load, which 5G aims
to minimize. Asymmetric computations can incur costs
thousands of times greater than those associated with
symmetric computations [10]. In the context of IIoT, where
a huge number of devices are deployed, reducing hardware
complexity, computation workload and communication
overhead becomes essential.

c) Redundant symmetric/asymmetric authentication. In
the exchanged encryptions, Ui, CSk,GWj, and again CSk,
are authenticated by checking the correctness of messages

B3, B6, B9 and B12. However, it is uncertain if this is needed
for authentication, since the verification of the digital signa-
tures already authenticates the sender, and the use of times-
tamps guarantees freshness. Notably, timestamps are absent
in the Bx messages, thus, these messages, in isolation and
without the subsequent asymmetric operations, cannot serve
for party authentication. It follows that this combined use of
symmetric and asymmetric authentication increases the overall
computation workload without offering additional benefits.
The protocol should be changed to remove this hybrid authen-
tication and clearly define the authentication conditions [11]

d) Timestamps vs sequence numbers. Employing
timestamps presents practical challenges, particularly in
environments like the IIoT, where synchronization among
numerous intermittently connected devices is notably difficult.
In these cases, the use of sequence numbers is preferable (as
5G-AKA does).

e) Master key sharing & pseudonym updating. Sharing
the master key ψ, used in generating user pseudonyms, with
every CSk poses a risk of compromising the entire system if
any component is compromised. To mitigate this risk, it is
advisable to avoid such widespread key sharing. Moreover,
managing pseudonym updates by the TA, distributing fresh
pseudonyms to involved parties, can be inefficient and chal-
lenging, especially when numerous devices are intermittently
offline. Instead, employing dynamic pseudonyms, derived
from previous or stored information, would offer a more
efficient approach. This method allows for the concealment
of permanent identifiers, mirroring the approach seen in the
5G standard’s use of SUCIs and GUTIs.

Finally, it is noteworthy that TRUTH establishes an infras-
tructure assuming transitive trust: users delegate the selection
of their service provider to a trusted third party (a cloud
server), which, in turn, chooses trustworthy gateways/sensors
for them. In some cases, trust cannot be assumed to be
transitive, and the infrastructure and the protocol should be
redesigned.

V. A 5G-COMPLIANT VERSION: TRUTH+

We present a 5G-complaint version of TRUTH, TRUTH+,
that addresses the security concerns raised in the previous
section. The main modifications involve:

– SUPI/GUTI pseudonyms for sender identification.
– Limited use of asymmetric encryption: used only when

strictly necessary, as in 5G-AKA for identifying purposes,
and not for authentication.

– Authentication via shared symmetric keys: in line with
5G-AKA, authentication relies on a proof of knowledge
of shared keys.

– Sequence Numbers instead of Timestamps.

A. TRUTH+ Description

The real identities of the parties IDUi (SUPI in 5G),
IDCSk

and IDGWj
are never transmitted in the clear. Instead,

either GUTI or SUCI is employed based on flag values

Authorized licensed use limited to: Florida State University. Downloaded on February 05,2025 at 15:39:46 UTC from IEEE Xplore. Restrictions apply.

that distinguish normal or completed previous communica-
tions (flag = 0) and uncompleted previous communications
(flag = 1). Initially, flagUi = flagCSk = 1, and the parties
share symmetric keys KUi/CSk , between between Ui and CSk,
and KCSk/GWj , between and CSk and GWj. Additionally, the
parties share loosely synchronized sequence numbers, each
party storing its own version (akin to 5G-AKA). Fig. 3 shows
the flows of TRUTH+, including the computation by the
different parties. It comprises the following steps:

I k

I k

i i k i k i

k

**

KS U /CS

**

U /CS KS

U U /CS U CS U

* **

KS CS

SID DAT1 f3(,)

XRES1 KDF(, SID || RES1|| ||)

GUTI f4(, SQ), 0

KDF(SID || ID , || ||)

compute : and

check :

if correct, compute :

and

−

 

 



cs

cs gw

s u cs gw

K r

K r r

K flag

K r r r

SNs

 Trust

Evaluation

Secure Data Exchange using Ks

Ui

CSk GWj

i i k i kU U /CS U CS, , SQ −flag K k i k k j

k i k j i

CS k U /CS CS /GW

CS U CS GW U

, SK-CS , ,

 SQ , SQ , ID− −

flag K K
k j

j k k

j CS /GW

GW CS CS

SK-GW ,

 SQ , ID−

K

i i

k i i k

i i k i k i k

U U

PK-CS U U CS 1

U U CS U CS U /CS

0 (normal execution) : ID1 GUTI

(interrupted execution) ID1 E (ID || SQ ,)

1, SQ SQ 1, RES1 f2(,)

if

else :

generate and compute :

−

− −

= 



  + 

e

u

u

flag

r

r
flag K r

i i k k i

i i k k i i k k i

* *

U U CS CS U
* *

U U CS SK-CS U U CS CS U

ID1 GUTI : SQ SQ

ID || SQ D (ID1), ID SQ SQ

if

else : and check : and

− −

− − −

= 

 

k i i k i i k k i

i k

* *

CS U U CS U U /CS CS U

*

U /CS KS

: SQ SQ 1, GUTI f4(, SQ)

RES1 f2(,), SID

if correct, compute and

 generate and a secret value , and continue :

− − − + 

 u cs

K

K r r

 2 = ID2, MAC, DAT2, , u csF r r

k k j j k

k k j j k k j j k

* *

CS CS GW GW CS

* *

CS CS GW SK-GW CS CS GW GW CS

ID2 GUTI : SQ SQ

ID || SQ D (ID2), ID SQ SQ

if

else : and check : and

− −

− − −

= 

 

 3 = XRES2, gwF r

k j

I k

I k k k j k j k

CS /GW

*

U /CS KS

U /CS KS CS CS /GW CS GW CS

XRES2 KDF(, RES2 ||)

XRES1 KDF(, SID || RES1 || ||)

DAT1 f3(,) SID , GUTI f4(, SQ), 0

check :

if correct, compute :

−



   

gw

cs gw

cs

K r

K r r

K r K flag

=
?
=
?

 4 = XRES1, DAT1, ,cs gwF r r

=
?
=
?

 1= ID1, uF r

k k

j k k j

k k j k j k j

k j

CS CS

PK-GW CS CS GW 2

CS CS GW CS GW CS /GW

CS /GW

0 (normal execution) : ID2 GUTI

(interrupted execution) ID2 E (ID || SQ ,)

1, SQ SQ 1, RES2 f2(,),

DAT2 f3(,) SI

if

else :

compute :

−

− −

= 



  + 

 

e

cs

cs

flag

r

flag K r

K r
k jKS CS /GW KSD , MAC f1(, SID ||) uK r

j k k j k k j j k

k j k j

* *

GW CS CS GW CS CS /GW GW CS

* *

KS CS /GW CS /GW KS

: SQ SQ 1, GUTI f4(,SQ),

SID DAT2 f3(,) MAC f1(, SID ||)

if correct, compute

 and checks :

− − − + 

  cs u

K

K r K r

k j

k j k

*

CS /GW

* *

CS /GW KS CS

RES2 f2(,),

XRES2 KDF(, RES2 ||) KDF(SID || ID , || ||)

if correct, generate and compute :

and

 

 

gw cs

gw s u cs gw

r K r

K r K r r r

=
?
=
?

Fig. 3. TRUTH+: an example of 5G-compliant version of TRUTH.

Step 1. Ui creates a log-in request (F1) depending on the value
of its flag:

if flagUi =0: ID1← GUTIUi ,
else: ID1← EPK-CSk(IDUi∥SQUi-CSk

, re1).
If flagUi =1, the asymmetric encryption includes the sequence
number (as proposed in [12] for 5G-AKA). Note that this
hardly increases the computational complexity of the asym-
metric computation, since, as explained in Section II, this
operates as a KEM. Then, it chooses a nonce ru, updates
flagUi and SQUi-CSk

, computes RES1 and sends to CSk:
1) F1 = {ID1, ru}.

Step 2. Upon receiving F1, CSk retrieves IDUi and SQ∗
Ui-CSk

from ID1. If GUTI∗Ui
is received, the sequence numbers are

synchronized. Otherwise, this is retrieved from the randomized
asymmetric encryption using its private key SK-CSk, and must
be greater than the last previously accepted sequence number.
Note that here there is no need to check that this number

is within a certain range (∆) because the probability of an
adversary computing a valid message ID1 that includes the
secret value IDUi along with a new valid sequence number is
negligible. If a valid user and sequence number are identified,
CSk updates its version of the sequence number, according
to the received value, SQCSk-Ui

← SQ∗
Ui-CSk

+1 and GUTI∗Ui

← f4(KUi/CSk , SQCSk-Ui
), generates a nonce rcs and a secret

value (unique for each session) SIDKS, computes RES1∗,
ID2 depending on the value of flagCSk , RES2, DAT2, MAC,
updates flagCSk and SQCSk-GWj

, and sends to GWj:
2) F2 = {ID2,MAC,DAT2, ru, rcs}.

Step 3. Upon receiving F2, GWj retrieves IDCSk and SQ∗
CSk-GWj

from ID2. If a valid cloud server and sequence number are
identified, GWj updates its sequence number, according to the
received value, SQGWj-CSk

← SQ∗
CSk-GWj

+ 1 and GUTI∗CSk
←

f4(KCSk/GWj , SQGWj-CSk
). Then, it retrieves SID∗

KS ← DAT2⊕
f3(KCSk/GWj , rcs) and checks: MAC

?
= f1(KCSk/GWj , SID∗

KS ∥
ru). If correct, GWj generates a nonce rgw, which identifies
the session, computes RES2∗, XRES2 and the session key Ks,
and sends back to CSk:

3) F3 = {XRES2, rgw}.
Step 4. Upon receiving F3, CSk checks that: XRES2

?
=

KDF(KCSk/GWj ,RES2∥rgw). If correct, it updates GUTICSk←
f4(KCSk/GWj , SQCSk-GWj

), sets flagCSk←0, computes XRES1,
DAT1, and sends to Ui:

4) F4 = {XRES1,DAT1, rcs, rgw}.
Step 5. Upon receiving F4, user Ui computes: SID∗∗

KS ←
DAT1 ⊕ f3(KUi/CSk , rcs), and checks the received response:

XRES1
?
=KDF(KUi/CSk , SID∗∗

KS ∥ RES1 ∥ rcs ∥ rgw). If this
is correct, Ui updates GUTIUi ← f4(KUi/CSk , SQUi-CSk

), sets
flagUi←0 and computes its version of the session key:

K∗
s ← KDF(SID∗∗

KS ∥ IDCSk , ru ∥rcs ∥rgw).

B. TRUTH+ Analysis

As in 5G, TRUTH+ guarantees (implicit) mutual authen-
tication between GWj and Ui with the confirmed use of the
session key KS , which cannot be retrieved by an adversary
without knowing the session secret value SIDKS, generated and
shared secretly by CSk with GWj and Ui using KCSk/GWj and
KUi/CSk , respectively. The confidentiality of the session key
Ks is kept even if the adversary learns previous or subsequent
session keys since CSk generates independent (unlinkable)
values SIDKS for each session. The identities of the parties
remain anonymous since they are never sent in clear; ID
values are used to identify the parties. ID computation depends
on the session state (indicated by the flag bit): asymmetric
IDs (SUCI) are only used with interrupted sessions while
symmetric IDs (GUTI) are used with completed ones. For Ui, a
session is completed if CSk is authenticated with the reception
of XRES1; the computation of which involves KUi/CSk and
the fresh value ru. Likewise, CSk authenticates GWj with
XRES2, which involves KCSk/GWj and the fresh value rgw. If
a valid GUTI is employed, then the sender’s sequence number

Authorized licensed use limited to: Florida State University. Downloaded on February 05,2025 at 15:39:46 UTC from IEEE Xplore. Restrictions apply.

(for that message) coincides with that stored by the receiver.
Otherwise, the receiver checks that this is not being replayed
by checking that the received sequence number has not been
previously used. Note that the probability of an adversary
to forge valid ID with larger values of SQ is negligible, as
it requires knowing the secret value ID. As a consequence,
the adversary cannot force the counter to wrap around and it
makes unnecessary to check that SQ is within a certain range
∆. Note that as with 5G-AKA, an active adversary can inter-
cept the initial flow F1 and replay it later. CSk would accept
this replay and send a valid F4 to the adversary. However,
without knowledge of the key KUi/CSk , the adversary is unable
to compute the session key, thereby preventing the attack
from progressing further. Finally, TRUTH+ guarantees the
unlinkability of the parties since ID values are never repeated;
GUTIs are updated every time the session is completed and
if they are not, randomized asymmetric encryption is used.
All messages include fresh values generated by the parties to
prevent adversaries from forcing recognizable computations.

Tables II and III show the improvement in computational
and communication performance. For the computational cost,
we focus on symmetric and asymmetric computations, dis-
regarding other simple operations such as exclusive-or and
concatenation. For the communication cost, we assume that
the output of the asymmetric encryption is at least the length
of the input message, and, referencing [1] and TS 33.501, the
following lengths are assumed for the different blocks in the
messages: 128 bits for the outputs of 5G functions f1-f5, 160
bits for the outputs of hash functions and random numbers,
128 bits for ID, 256 bits for the signatures and KDF, and 32
bits for the timestamps and sequence numbers.

TABLE II
COMPUTATIONAL COST

Scheme Ui CSk GWj CSk Ui Total
Step 1 Step 2 Step 3 Step 4 Step 5

TRUTH 2A+3S 4A +6S 4A+6S 4A+5S 2A+5C 16A+25S
TRUTH+ 0/1A+1S 0/2A+5S 0/1A + 6S 4S 4S 0/4A+20S

S: symmetric computation, A: asymmetric computation.

TABLE III
COMMUNICATION COST (IN BYTES)

Scheme F1 F2 F3 F4 Total
TRUTH 96 136 76 136 444 Bytes
TRUTH+ 36 88 52 88 264 Bytes

For security verification, the Tamarin verification tool has
been used [7]. We have developed rules (initialization, key
leakages, protocol rules...) and lemmas (executability, secrecy,
agreements...) to check the security of the protocol along
with specific restrictions to prevent the identification problem
detected in TRUTH. In particular, as Tamarin Prover deals
cryptographic primitives as function symbols and not as algo-
rithms, the verification check of the identity and the extraction
of the sequence number from the asymmetric randomized

encryption have been modelled by splitting it into three
different terms:

<EPK(ID∥SQ, re)>⇔<EPK(ID)⊕re,EPK(SQ)⊕re,EPK(re)>

and verifying the identity using the restriction as follows:
“Eq(ID, adec(term1 XOR adec(term3, skS), skS)), Verified($S,
ID)]”, where skS is the private key of the asymmetric scheme
of the verifying party S (!Pk($S, pk(∼skS))).

VI. CONCLUSIONS

This paper analyzes a recently published protocol, TRUTH,
demonstrating a flaw in the identification of the sender and
significant divergences with the design criteria of the 5G
standard. Furthermore, the extensive reliance on asymmetric
cryptography, the use of synchronized timers, and master key
sharing raises serious concerns regarding the practical deploy-
ment of the protocol. Finally, we propose fixes that address
these issues and reduce the communication and computation
workloads.

ACKNOWLEDGMENT

This research was supported by the BIOSIP Research
Group (TIC-251), and partly funded by the projects:
“Massive AI for the Open RadIo b5G/6G network
(MAORI)”, PID2022-138933OB-I00: ATQUE, funded by
MCIN/AEI/10.13039/501100011033/FEDER, EU, and by
NSF under Grant 2146354.

REFERENCES

[1] S. A. Soleymani, S. Goudarzi, M. H. Anisi, H. Cruickshank, A. Jindal,
and N. Kama, “Truth: Trust and authentication scheme in 5g-iiot,” IEEE
Transactions on Industrial Informatics, vol. 19, no. 1, pp. 880–889,
2023.

[2] Security architecture and procedures for 5G system, document TS
33.501, V16.8.0, 3GPP, Sep. 2021.

[3] D. Dolev and A. Yao, “On the security of public key protocols,” IEEE
Trans. Inf. Theory, vol. 29, no. 2, pp. 198–208, Mar. 1983.

[4] 3G Security; Specification of the MILENAGE algorithm set: an example
algorithm set for the 3GPP authentication and key generation functions
f1, f1*, f2, f3, f4, f5 and f5*; Document 5: Summary and results of
design and evaluation, document TR 35.909, V16.0.0, 3GPP, Jul. 2020.

[5] A. Shaik, R. Borgaonkar, J.-P. Seifert, N. Asokan, and V. Niemi,
“Practical attacks against privacy and availability in 4G/LTE,” in Proc.
23nd Annual Netw. Distrib. System Secur. Symp. (NDSS), Feb. 2016, doi:
10.14722/ndss.2016.23236.

[6] Numbering, addressing and identification, document TS 23.003,
V17.3.0, 3GPP, Sep. 2021.

[7] D. Basin, J. Dreier, L. Hirschi, S. Radomirovic, R. Sasse, and V. Stettler,
“A formal analysis of 5G authentication,” in Proc. AMC SIGSAC Conf.
Comput. Commun. Secur. (CCS), Oct. 2018, pp. 1383–1396.

[8] D. Segura, J. Munilla, E. J. Khatib, and R. Barco, “5g early data
transmission (rel-16): Security review and open issues,” IEEE Access,
vol. 10, pp. 93 289–93 308, 2022.

[9] H. Khan and K. M. Martin, “A survey of subscription privacy on the
5G radio interface - The past, present and future,” J. Inf. Secur. Appl.,
vol. 53, Aug. 2020, Art. no. 102537, doi: 10.1016/j.jisa.2020.102537.

[10] S. Patonico and A. Braeken, “Identity-based and anonymous key agree-
ment protocol for fog computing resistant in the canetti–krawczyk
security model,” Wireless Networks, vol. 29, 07 2019.

[11] J. Munilla, M. Burmester, and R. Barco, “An enhanced symmetric-key
based 5G-AKA protocol,” Comput. Netw., vol. 198, Oct. 2021, Art. no.
108373, doi: 10.1016/j.comnet.2021.108373.

[12] A. Braeken, M. Liyanage, P. Kumar, and J. Murphy, “Novel 5g authen-
tication protocol to improve the resistance against active attacks and
malicious serving networks,” IEEE Access, vol. 7, pp. 64 040–64 052,
2019.

Authorized licensed use limited to: Florida State University. Downloaded on February 05,2025 at 15:39:46 UTC from IEEE Xplore. Restrictions apply.

