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Abstract—Most large-scale storage systems employ erasure
coding to provide resilience against disk failures. Recent work has
shown that tuning this redundancy to changes in disk failure rates
leads to substantial storage savings. This process requires code
conversion, wherein data encoded using an [n!, k'] initial code
has to be transformed into data encoded using an [n”, k”] final
code, a resource-intensive operation. Convertible codes are a class
of codes that enable efficient code conversion while maintaining
other desirable properties. In this paper, we focus on the access
cost of conversion (total number of code symbols accessed in the
conversion process) and on an important subclass of conversions
known as the merge regime (combining multiple initial codewords
into a single final codeword).

In this setting, explicit constructions are known for systematic
access-optimal Maximum Distance Separable (MDS) convertible
codes for all parameters in the merge regime. However, the
existing construction for a key subset of these parameters, which
makes use of Vandermonde parity matrices, requires a large
field size making it unsuitable for practical applications. In this
paper, we provide (1) sharper bounds on the minimum field size
requirement for such codes, and (2) explicit constructions for
low field sizes for several parameter ranges. In doing so, we
provide a proof of super-regularity of specially designed classes
of Vandermonde matrices that could be of independent interest.

I. INTRODUCTION

Erasure codes are used widely in modern large scale
distributed storage systems as a means to mitigate data loss
in the event of disk failures. In this context, erasure coding
involves dividing data into groups of k£ chunks that are each
encoded into stripes of n chunks using an [n, k] erasure code.
These encoded chunks are then stored across n distinct storage
nodes in the system. The code parameters n and k determine
the amount of redundancy added to the system and the degree
of durability guaranteed.

There are various classes of codes that are commonly used in
real-world systems. For example, systematic codes are those in
which the original message symbols are embedded among the
code symbols. This is highly desirable in practice as in the event
that there are no observed disk failures, there is no decoding
process needed to recover the original data. Systematic codes
with Vandermonde parity matrices (see §II-A) are even more
advantageous as there are known efficient algorithms utilizing
Fast Fourier Transform (FFT) for computing the product
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between vectors and Vandermonde matrices [1], [2], speeding
up the encoding process. This attribute is becoming increasingly
important given the recent trend to use wider (high k) and
longer (high n) erasure codes [3], [4]. Additionally, Maximum
Distance Separable (MDS) codes are a subset of erasure codes
that require the least amount of additional storage in order to
meet a specific failure tolerance goal. An [n, k] MDS code
can tolerate loss of any n — k out of the n code symbols.
In this paper, our interest is on systematic MDS codes with
Vandermonde parity matrices.

Recent findings by Kadekodi et al. [5] reveal the dynamic
variability in disk failure rates over time. Their research
highlights the potential for meaningful savings in storage and
associated operational expenses through tuning code parameters
to observed failure rates. However, the resource overhead
associated with the default approach of re-encoding all of the
data in order to modify n and k is prohibitively expensive [6].

The code conversion problem introduced in [6] formalizes the
problem of efficiently transforming data that has been encoded
under an [nf, k'] initial code C’ to its new representation under
an [n% k] final code CF'. One of the key measures of the
cost of conversion is the access cost, which represents the
total number of code symbols accessed (read/written) during
conversion. Convertible codes [6] are a class of codes that
enable efficient conversion while maintaining other desirable
properties such as being MDS and systematic (more details in
§II-B).

Among various types of conversions, the merge regime,
where k" = Mk! for any integer A > 2 (i.e., combining
multiple initial codewords into a single final codeword), is
the most important one. First, the merge regime requires the
least resource utilization [7] among all types of conversions
and hence are a highly favorable choice for practical systems.
Second, constructions for the merge regime are key building
blocks for the constructions for codes in the general regime
which allows for any set of initial parameters and any set of
final parameters [7]. In this paper, our focus is on systematic
MDS convertible codes in the merge regime.

In [6], the authors established lower bounds on the access
cost of conversion and provided constructions of access-optimal
convertible codes for all parameters in the merge regime. Let
us denote 71 := n? — kT and ¥ := n¥ — k¥, (which correspond
to the number of parity symbols in the initial and final codes
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if the codes are systematic). For cases where r! > rf (i.e.,
when the initial configuration has more parities than the final
configuration), the authors provide explicit constructions of
systematic MDS access-optimal convertible codes over fields
of size linear in nf. For cases where I < r¥ (ie., when
more parities are needed in the final configuration than in
the initial), it has been shown [6] that the access cost of
conversion for MDS erasure codes is lower bounded by that of
the default approach to decode and re-encode all of the data.
As a consequence, it is not possible to realize any savings with
specialized code constructions.

However, in the case where r{ = r¥, the best-known
construction requires a minimum field size of p” for any
prime p and some D € ©((n%)?) [6]. This field size is far
too high for efficient practical implementations. Most current
instruction-set architectures are optimized to operate on bytes
of data at a time. Utilizing erasure codes defined over larger
field sizes can hamper the encoding/decoding speed. Hence
most (if not all) practical implementations of storage codes
use Fa56 (which translates each field symbol to a one-byte
representation). Thus, the problem of constructing low-field-
size access-optimal convertible codes remains open for the
case rf = rF.

In this paper, we study the setting of systematic MDS access-
optimal convertible codes in the merge regime in the case where
r! = r¥. The best known construction of convertible codes in
this setting is a systematic code with a very specific choice
of super-regular Vandermonde parity matrix with a singular
degree of freedom [6] (as will be detailed in §II-A). In §III,
we improve on this construction by allowing more freedom
in the choice of scalars of the Vandermonde matrix. We then
study the minimum field size ¢*(k,r) required for existence
of the underlying k x r super-regular Vandermonde parity
matrices of such codes. We provide two lower bounds on the
minimum field size required, one applicable for codes over
general prime power fields (Theorem 1) and one for codes over
fields of characteristic 2 where k& > r (Theorem 2). For fields
of characteristic 2, the bound takes the form ¢*(k,r) > Q(2").
Additionally, we establish an upper bound ¢*(k,r) < O(k")
(Theorem 3), which in turn results in an improved upper bound
q < O((k* )TF) on the field size required for the existence
systematic MDS access-optimal convertible codes in the merge
regime in the case where 7/ = ¥

Furthermore, in §IV, we provide the first explicit low-field-
size constructions of convertible codes in this setting for
several parameter ranges via constructing their corresponding
super-regular Vandermonde parity matrices. The proposed
construction makes use of field automorphisms in designing
the Vandermonde matrices. For any general prime power field
F, where ¢ = p», we find explicit constructions of k x 3
super-regular Vandermonde matrices for all £ such that £ < w
(Theorem 4). This, in turn, gives us a construction of systematic
MDS access-optimal convertible codes for all parameters in
the merge regime such that ¥ = r/ < 3 and k¥ < w. For
any finite field F, where ¢ = 2“ (that is, characteristic 2),
we present a stronger result covering a larger range of k by

showing that the same proposed construction is super-regular
for all k£ such that & < ¢ (Theorem 5).

These results are also of independent interest beyond the
setting considered in this paper as systematic MDS codes
with Vandermonde parity matrices serve as the base codes for
bandwidth-optimal convertible codes [8], [9] and have also
been studied in various other settings [2], [10], [11].

II. BACKGROUND AND RELATED WORK

Let us begin with an overview of important concepts and
notation referred to throughout this paper, along with a literature
review of previous related work.

A. Systematic MDS codes and Vandermonde matrices

An [n, k] linear erasure code C with generator matrix G €
M(F)jxp, over a finite field F is said to be systematic, or in
standard form, if G = [Ix | P] where Iy is the k x k identity
matrix and P is a k X (n — k) matrix also known as the
parity matrix. Let m be a message and c be its corresponding
codeword under C, where m = (m;)¥_, and ¢ = (¢;)7, are
vectors of message and code symbols, respectively. As m is
encoded under C via the multiplication ¢ = m7T G, it follows
that ¢; = m; for all ¢ < k if C is systematic.

An [n,k] linear erasure code C is Maximum Distance
Separable (MDS) if and only if every k columns of its generator
matrix G are linearly independent; in other words, every k x k
submatrix of G is non-singular [12]. As a result, data encoded
by an [n, k] MDS code can withstand any erasure pattern of
n—k out symbols in any codeword and still successfully recover
the original data. If C is also systematic with parity matrix P,
this is equivalent to the property that every square submatrix
of P is non-singular [12]. Such a matrix is also referred to
as super-regular. It is useful to note that any submatrix of a
super-regular matrix is also super-regular.

A systematic code with a Vandermonde parity matrix P €
M(F ) is one where P is of the form

1 1 .1

&1 & ... &

ST S S - (1)
g ght

for some scalars § = (§;)i_; € F". Let us denote the above
k x r Vandermonde matrix as V(£). Such a matrix is not
always guaranteed to be super-regular [12] and thus careful
selection of the scalars is required to ensure the resulting
systematic code is MDS.

B. Convertible Codes [6]

Recall that a code conversion is a procedure that converts
data from its initial representation under an [n!,k!] code
C! to its final representation under an [n%, kf] code C¥.
In order to capture the potential change in dimension, let
M :=lem(k’, k¥') and consider any message m € F2/. This
is equivalent to A/ := % codewords in the initial configuration
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and \F' .= % codewords in the final configuration. Let
[i] :== {1,2,...,i} and let |S| denote the size of a set S.
Let m[S] be the vector formed by projecting m onto the
coordinates in the set S, and let C(m) stand for the encoding
of m under the code C. Let v/ := n! — k! and »¥ := nf' — k¥

Definition 1 (Convertible Code [6]): An (n!, k;n® kT)
convertible code over F, is defined by: (1) a pair of codes
(C1,CT") over F,, such that C” is an [n/, k'] code and C*" is an
[n, k¥] code; (2) a pair of partitions P! := {Pl|i € [\]}
and PF:= {Pf'| j € [\]} of [M = lem(k', k™)] such that
|P/| = k' for all P/ € P'and |PF| = k¥ for all P[" € PF;
and (3) a conversion procedure which, for any m € FM, maps
the initial set of codewords {C!(m[P]]) | P! € qu} to the
corresponding set of codewords {C*(m[P[]) | P} e PF}
over the final code.

Recall that access cost during code conversion refers to
the number of code symbols that are read or written during
conversion. Access-optimal convertible codes are those which
meet the lower bounds on access cost established in [6] that
are known to be tight. It is known that any (nf, k;n® kT
convertible code for the merge regime where 7/ = 7" formed by
a pair of systematic codes with Vandermonde parity matrices
P! = V(&) and P¥ = V,r(¢) over the same scalars is
access-optimal [6]. This is due to PF being “r¥-column block-
constructible” from PY; that is, each new parity of a merged
codeword can directly be computed as a linear combination of
the parities of the original codewords. If the parity matrices are
super-regular, then the resulting convertible code is guaranteed
to be MDS as well. The best known construction [6] of a
systematic MDS access-optimal convertible code for the merge
regime where r/ = rf is formed by a pair of systematic
codes with Vandermonde parity matrices over the scalars £ =
(9'=1)r_,, for any primitive element 6 € F. This construction
requires a field size ¢ > p” where p is any prime and D €
o((n")?) [6l.

C. Additional Notation and Preliminaries

This section presents notation and terminology used in this
paper that follows and expands on the notation introduced in
[6], and reviews some preliminaries from Galois theory that
will be used in the rest of the paper.

For any two sets I,.J, let I A J denote the symmetric
difference of I and J. For any two integers a,b, let a L b
denote that @ and b are coprime. Let x denote the vector (z;)7_,
for some 7. Let M; ; denote the entry in the ith row and jth
column of the matrix M, with both indices 1-indexed. Let
My denote the submatrix of M formed by the intersection
of the rows indexed by I and the columns indexed by .J, with
all indices 1-indexed. Let row,; (M) stand for the ith row vector
of the matrix M. Let x p be the indicator function for whether
the proposition P is true.

Let IF, denote the prime field of size p, and let us reserve
IF, for prime power fields of size ¢ = p* for some prime p
and w > 1. Let F* denote the multiplicative group of the
field, or F \ {0}. Let ord(a) denote the order of an element
a € F*. Let Flxy,...,z,] denote the ring of polynomials in

Z1,...,x, over the field F. Let Aut(F) denote the group of
automorphisms over the field F. Let S,, denote the group of
permutations of [n].

Recall that a field automorphism is a bijective map o :
F — F such that for all z,y € F, o(z + y) = o(z) + o(y)
and o(zy) = o(x)o(y); in essence, the map preserves the
structure of the field. Note also by definition, it must be the
case that 0(0) = 0 and o(1) = 1, which also gives us that
o(—a) = —o(a), o(a™!) = o(a)~!, and ord(a) = ord(c(a))
for all @ € F*. It is easy to verify that the set of fixed points
of an automorphism form a sub-field of F, termed the fixed
field of the automorphism. It is also a consequence of Galois
theory that the fixed field of an automorphism over the field
F, where ¢ = p* is always an extension of the base prime
field I, [13].

D. Related Work

The most directly related works on access-optimal convert-
ible codes [6], [7] were already discussed in §I. In this section,
we will discuss other closely related works. In addition to the
access cost, previous works on convertible codes have also
studied other costs of conversion such as bandwidth cost [§]
and locality of repair [14], [15]. In this paper, while we focus on
the access cost of conversion, the proposed new constructions
do enable better constructions of bandwidth-optimal convertible
codes as well. This is because access-optimal convertible codes
serve as the base codes of the Piggybacking framework [8]
when constructing convertible codes efficient in bandwidth
cost.

There also have been previous efforts to study the fun-
damental limits of existence of super-regular Vandermonde
matrices. Shparlinski [10] provided an upper bound on the
total number of singular square submatrices of a Vandermonde
matrix by showing that any (¢ — 1) x m Vandermonde
matrix Vy_1(&1, ..., &) over the field F, has at most 3(m —
1)(q — 1)"”Tm%11 singular m X m square submatrices where
T:= min#je[m]ord(g—;); however, this bound has been shown
to be not tight upon closer investigation [2]. Additionally, Intel’s
Intelligent Storage Acceleration Library (ISA-L), commonly
used to implement erasure coding in practice, has published
bounds on the range of parameters [n, k] over Fa56 for which its
code supports generation of super-regular Vandermonde parity
matrices, based on a very specific construction [16]. There is
no proof provided alongside these bounds; they were likely
determined by running a code script to test each submatrix for
invertibility.

In addition, there has been independent work studying
systematic linear MDS codes with various other constructions
of super-regular parity matrices. For example, it is known that
a Cauchy matrix C, that is, one of the form C; ; = (a; —H)j)_l
forall i, € [n] given two vectors (a;);_, and (b;)_, is super-
regular so long as the a;’s and b;’s are all distinct from each
other [11], [17], [18]. Additionally, Lacan and Fimes introduced
a construction of super-regular matrices formed by taking the
product of two Vandermonde matrices [2]. To add on, there
has been considerable progress in constructing super-regular
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Toeplitz matrices in the development of convolutional codes
[19]-[21]. Nonetheless, none of these alternatives are suitable
for the construction of access-optimal convertible codes.

To our knowledge, in this paper we establish the best known
bounds on the field size required for the existence of systematic
MDS access-optimal convertible codes for the merge regime
where ¥ = rI. This paper is also the first to provide, with
proof, explicit constructions of systematic MDS access-optimal
convertible codes for the merge regime where r" = r! over
practically usable field sizes.

III. FUNDAMENTAL LIMITS ON FIELD SIZE

In this section, we study a new construction of systematic
MDS access-optimal convertible codes for the merge regime
where 7/ = " that generalizes the construction introduced in
[6]. The new construction is still based on systematic codes
with super-regular Vandermonde parity matrices, but we allow
the scalars to take on any distinct nonzero values, rather than
being restricted to consecutive powers of a primitive element
in the field. By virtue of the parity matrices being Vander-
monde matrices, as detailed in §II-B, the new construction of
convertible codes remains access-optimal. Thus, a proof of
the existence of any k X r super-regular Vandermonde matrix
yields (nf, kX;n® k¥ = \kT) systematic MDS access-optimal
convertible codes for any A\ > 2, k¥ < k, and r/ = »F < r.
We will establish several bounds (Theorems 1, 2 and 3) on the
field sizes for which there exist [n, k] systematic MDS codes
with Vandermonde parity matrices. This is done by studying
their underlying super-regular Vandermonde matrices.

We start with a result which provides a requirement on
the field sizes over which such matrices exist. This result
draws upon intuition that an optimal choice of scalars for
the Vandermonde matrix would avoid selecting elements with
smaller order to avoid repetition along the corresponding
columns.

Theorem 1:  Over the field F,, a k X r super-regular
Vandermonde matrix can only exist if the following condition
holds: for every divisor m of ¢ —1 where m < k, ¢ > rm+ 1.

Proof: Omitted for brevity. Refer to full version [22]. &

For the field Fy56, for example, this result tells us that
[n =90,k = 86] and [n = 58, k = 52] systematic MDS codes
with Vandermonde parity matrices do not exist.

The next lemma is a simple consequence of viewing finite
prime power fields as vector spaces over their base prime fields.

Lemma 1: Over the field F,;, where ¢ = 2%, for any r > w,
for any S = {¢;}]_, C [F,, there must exist some nonempty
subset I C [r] such that ;& = 0.

Proof: Omitted for brevity. Refer to full version [22]. &

This lemma stems from the fact that any collection of
field elements larger than the field’s dimension must be
linearly dependent. Over fields of characteristic 2, this simply
corresponds to a nonempty subset of elements that add to O.
This will be used later to identify a singular submatrix in a
proposed Vandermonde matrix. This in turn, yields a lower
bound on the minimum field size required for the existence

of super-regular Vandermonde matrices specific to fields of
characteristic 2.

Theorem 2: Over the field F,, where ¢ = 2%, for any r, k
such that k£ > r, a k X r super-regular Vandermonde matrix
with distinct, nonzero scalars can only exist if ¢ > 2.

Proof: Omitted for brevity. Refer to full version [22].

For example, again considering Fa56, this bound informs
us that [n = 19,k = 10] systematic MDS codes with
Vandermonde parity matrices do not exist.

The first result for general fields (Theorem 1) is a tighter
bound for regimes where k > r and Im ~ k such that m < k
and m divides ¢ — 1 for a proposed field size g; in this case, we
get the bound ¢*(k,r) > Q(kr). On the other hand, the lower
bound specific to fields of characteristic 2 (Theorem 2) is more
relevant in settings such as storage in unreliable environments
which demand narrow codes with higher storage overhead, or
when when k ~ r.

We will next prove the existence of k£ x r super-regular
Vandermonde matrices over all fields of size greater than a
threshold in terms of k£ and r. We first start with a lemma that
narrows down the set of square submatrices of a Vandermonde
matrix that need to be tested for singularity to establish super-
regularity. More specifically, we show that it is sufficient to
only consider submatrices formed by a set of rows that includes
the first row.

Lemma 2:  Over the field Fy, for any r,k,¢ such that
¢ < min(r, k), for any k x r Vandermonde matrix Vj(£) with
(§i)i=y € (FX)", the submatrix H := Vj({)rx defined by
I:={o,...,a} C[k] and J := {f1,..., B¢} C [r], where
a; < aj for all ¢© < j, is non-singular if and only if the
submatrix H' := V(€)1 xs defined by I’ := {1, s — (g —
1),...,a¢ — (a1 — 1)} C [k] and J is non-singular.

Proof: Omitted for brevity. Refer to full version [22]. W

We now utilize the Schwartz—Zippel lemma [23], [24] in
a probabilistic argument for the existence of a super-regular
Vandermonde matrix given a sufficiently large field size. This,
in effect, establishes an upper bound on the minimum field
size required for the existence of super-regular Vandermonde
matrices.

Theorem 3:  Over the field Fy, for any r, k, if ¢ > 1 +
B >i—s () (522) € O(k"), then there must exist scalars
(§i)i=y € (F;)" such that the k x r Vandermonde matrix
Vi(€) is super-regular.

Proof: Omitted for brevity. Refer to full version [22]. B

Recall that the previously known upper bound [6] on the
minimum field size ¢ required for the existence of systematic
MDS access-optimal convertible codes for the merge regime
where 71 = ¥ was log ¢ < ©((n")?). Theorem 3 establishes
the improved upper bound of log ¢ < O(r'log k*'), an order
of magnitude smaller.

IV. Low FIELD S1ZE CONSTRUCTIONS

In this section, we present several explicit constructions
of systematic MDS access-optimal convertible codes in the
merge regime (that is, for (n!, k';n k¥ = A\k!) convertible
codes where A > 2), with field sizes smaller than existing
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constructions. Specifically, for general prime power fields I,
where ¢ = p", we provide explicit constructions of convertible
codes in the merge regime for all parameters such that r¥" =
rl < 3 and w > k¥. For fields F, of characteristic 2, we
present explicit constructions of convertible codes in the merge
regime for all parameters such that 7" = r/ < 3 and ¢q > k"
We do this by providing constructions of k x 3 super-regular
Vandermonde matrices for field sizes: ¢ > p* for general
prime power fields (Theorem 4) and ¢ > k for finite fields
of characteristic 2 (Theorem 5). These matrices serve as the
parity matrices for the systematic MDS codes that underlie
the aforementioned convertible codes. As every submatrix of a
super-regular matrix is also super-regular, a valid parity matrix
for three parities gives us one for any fewer than three parities
as well.

We start with a lemma that builds on the intuition to choose
primitive elements of the finite field for the scalars of the
super-regular Vandermonde parity matrix.

Lemma 3: Over the field F,, for all £ < ¢, given any
primitive element 6 € F,, given 2 < e < ¢ — 1 such that
e,e—1 L qg—1, the k x 3 Vandermonde matrix Vj(1,6,6°)
has no singular 2 x 2 square submatrices.

Proof: Omitted for brevity. Refer to full version [22]. &

Next, we introduce the idea of field automorphisms into our
construction and choice of scalars, in particular as automor-
phisms are order preserving maps. Recall some key properties
of field automorphisms from §II-C.

Lemma 4: Over the field F, where ¢ = p%, for all
k < g, given any primitive element 6 € F, and nontrivial
automorphism o € Aut(FF,) with fixed field F, the k£ x 3
Vandermonde matrix V; (1,6, 0(#)) has no 2x 2 singular square
submatrices.

Proof: First, recall that Aut(F,) is a group generated by
the Frobenius automorphism, or the map o : x — zP, and thus
any nontrivial element o € Aut(F,) is of the form o(z) = 2
for some 1 < e < w. It follows that p < p® < p¥ = g,
and because ¢ = 0 mod p, ¢ — 1 # 0 mod p and clearly
p® L g— 1. Next, see that if o has fixed field [F,,, this can only
occur if the polynomial p; (z) = #P° — x, and consequently the
polynomial ps(z) = 2P"~! — 1, have no roots in F, outside
of F,. This implies that p® —1 1L ¢ — 1, and thus we can
apply Lemma 3 to get that this matrix has no 2 x 2 singular
submatrices. ]

For the same construction of Vandermonde matrices as in
Lemma 4, we next consider its 3 x 3 square submatrices and
establish the necessary and sufficient conditions under which
they are singular. We are able to show a significantly tighter
end result for fields of characteristic 2 in particular, but a lot
of the arguments used apply to all finite fields as well. Thus,
we start with an intermediate result using the shared ideas.

Lemma 5: Over the field F, where ¢ = p¥, for all
k < g, given any primitive element § € I, and nontrivial
automorphism o € Aut(F,) with fixed field F,, the k x 3
Vandermonde matrix Vj;(1,6,0(#)) has a 3 x 3 singular square
submatrix if and only if Je;, ez € [k—1] and ¢1, co € F)S such

that e; < ez and {1,6,0(0)} are all roots of the polynomial
fl@) =c1 + coz® + x°2.

Proof: Omitted for brevity. Refer to full version [22]. W

We now arrive at the first of our major results in this
section, on explicit constructions of super-regular Vandermonde
matrices over arbitrary prime power fields.

Theorem 4: Over the field F, where ¢ = p*, for all
k < w, given any primitive element § € F, and a non-trivial
automorphism o € Aut(F,) with fixed field F,, the k x 3
Vandermonde matrix Vi (1,6, 0(0)) is super-regular.

Proof: First, note that every 1 x 1 submatrix of
Vi(1,60,0(0)) is non-singular as every element is a power
of a nonzero element of F,. Next, by Lemma 4, every 2 x 2
submatrix of Vi (1, 6, o(0)) is also non-singular. Finally, assume
for sake of contradiction that V};(1, 6, c(6)) has a singular 3 x 3
square submatrix. Then by Lemma 5, Jeq,es € [k — 1] and
c1,co € F)Y such that e; < eg and {1,0,0(0)} are all roots of
the polynomial f(z) = ¢1+cox® +2°>. However, as f € Fp[z],
it must be a multiple of the minimum polynomial of 6 in F[z],
which we know is of degree w > k > es = deg(f) as 6 is
a generator of F), resulting in a contradiction. Thus, every
3 x 3 square submatrix is also non-singular and Vj(1,6,0(6))
is super-regular, as desired. [ ]

Finally, we show an analogous but stronger result for fields
of characteristic 2. This is of particular interest as finite
fields of characteristic 2 are the most efficient choice for the
representation of data in compute nodes and on storage devices.

Theorem 5: Over the field F, where ¢ = 2%, for all
k < g, given any primitive element 6 € I, and a non-trivial
automorphism o € Aut(F,) with fixed field Fo, the k x 3
Vandermonde matrix Vi (1,6, 0(0)) is super-regular.

Proof: First, note that every 1 x 1 submatrix of
Vi(1,0,0(0)) is non-singular as every element is a power
of a nonzero element of FF,. Next, by Lemma 4, every 2 x 2
submatrix of V;(1, 8, o(6)) is also non-singular. Finally, assume
for sake of contradiction that Vj(1,6,0(0)) has a singular
3 x 3 square submatrix. Then by Lemma 5, Jey, ez € [k — 1]
and c¢1,co € FJ such that {1,6,0(0)} are all roots of the
polynomial f(x) = ¢; + cox® + 2°2. However, this implies
¢1 =cy =1, but then f(1) =1+ 1+ 1 =1, contradicting the
fact that 1 is a root of f. Therefore, every 3 x 3 square submatrix
is also non-singular and Vj(1,0,0(0)) is super-regular, as
desired. [ ]

Using this result and the Frobenius automorphism, which
is known to have fixed field F, over any finite extension
K/F, [13], we show a family of constructions of super-regular
Vandermonde matrices for fields of characteristic 2. We also
give results specific to the field Fo56, which is the most
commonly used finite field in practice.

Corollary 1: Over the field F, where ¢ = 2, for all k£ < ¢,
given any primitive element § € F,, the £ x 3 Vandermonde
matrix V(1,6,6?) is super-regular. ]

Corollary 2: Over the field Fo5g, for all k& < 256, given any
primitive element 6 € Fa56, the k£ x 3 Vandermonde matrices
Vi(1,0,0%), Vi(1,0,08), Vi(1,0,6%?), and Vi (1,6, 01%8) are
super-regular. [ ]
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