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Storage-compute disaggregation has recently emerged as a novel architecture in modern data centers, particu-
larly in the cloud. By decoupling compute from storage, this new architecture enables independent and elastic
scaling of compute and storage resources, potentially increasing resource utilization and reducing overall costs.
To best leverage the disaggregated architecture, a new breed of database systems termed storage-disaggregated
databases has recently been developed, such as Amazon Aurora, Microsoft Socrates, Google AlloyDB, Alibaba
PolarDB, and Huawei Taurus. However, little is known about the effectiveness of the design principles in these
databases since they are typically developed by industry giants, and only the overall performance results are
presented without detailing the impact of individual design principles. As a result, many critical research
questions remain unclear, such as the performance impact of storage-disaggregation, the log-as-the-database
design, shared-storage, and various log-replay methods.

In this paper, we investigate the performance implications of the design principles that are widely adopted in
storage-disaggregated databases for the first time. As these databases were usually not open-sourced, we have
made a significant effort to implement a storage-disaggregated database prototype based on PostgreSQL v13.0.
By fully controlling and instrumenting the codebase, we are able to selectively enable and disable individual
optimizations and techniques to evaluate their impact on performance in various scenarios. Furthermore,
we open-source our storage-disaggregated database prototype for use by the broader database research
community, fostering collaboration and innovation in this field.
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tributed DBMSs.
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1 INTRODUCTION
Recently, storage-compute disaggregation has risen as a widely adopted architecture in cloud data
centers such as Amazon AWS and Microsoft Azure [11, 28]. In contrast to traditional data centers
composed of monolithic "converged" servers where compute and storage are tightly coupled in the
same physical servers, in the new architecture of storage-compute disaggregation, compute and
storage are separated and connected via networking. This design enables many advantages, such
as independent and elastic scaling of compute and storage, increased resource utilization, reduced
cost, and fast crash recovery [1, 11, 17, 28, 31].
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Storage-compute disaggregation poses fundamental challenges to traditional database systems,
as they were originally designed for monolithic servers that tightly integrate compute and storage.
As a result, a new breed of databases, known as storage-disaggregated databases, has been designed
specifically for this disaggregated architecture. Notable examples include Amazon Aurora [28],
Microsoft Socrates [11], Google AlloyDB [1], Alibaba PolarDB [5, 14], and Huawei Taurus [17].
Storage-disaggregated databases generally embrace three innovative design principles that we

summarized below:
Design Principle P1: Software-level Disaggregation. They perform software-level disaggrega-
tion that decouples the storage engine (e.g., logging and storage) from the compute engine (e.g.,
SQL layer, buffering, and transactions), where the storage engine runs on the storage node and
the compute engine operates on the compute node [1, 11, 17, 28]. This design is important for
storage-disaggregated databases to introduce new optimizations, such as the log-as-the-database
mentioned below, to mitigate the network I/O overhead. However, the performance slowdown
caused by disaggregation is not well understood.
Design Principle P2: Log-as-the-Database. To reduce the network I/O overhead between the
storage engine and compute engine, besides using buffering, storage-disaggregated databases
generally embrace the log-as-the-database design, which sends only write-ahead logs to the storage
side upon transaction commit [1, 11, 17, 28], instead of sending the actual data pages as in traditional
databases. This can reduce data movement over the network. The actual data pages are then
asynchronously materialized from the storage side. However, the actual effectiveness of the log-
as-the-database design remains unclear. For instance, [28] shows the size difference between logs
and pages but overlooks that, even without the log-as-the-database approach, traditional databases
do not immediately flush pages to storage upon transaction commit, because only dirty pages are
flushed asynchronously.
Design Principle P3: Shared-Storage Design. Another crucial design principle in storage-
disaggregated databases is the shared-storage (rather than conventional shared-nothing [23, 26])
design between multiple compute nodes [1, 11, 17, 28]. The shared-storage design enhances elastic-
ity because it eliminates the need to copy or move data for newly added compute nodes as they
can share the same data with existing compute nodes. However, this design presents additional
challenges for the storage engine. Specifically, due to replication lag between the primary and
secondary compute nodes, the storage engine must support multi-version pages to accommodate
scenario where secondary compute nodes require access to older versions of a page. However, the
performance implications of this design remain unknown.
Motivation. As we can see, there is a lack of study to investigate the effectiveness of the design
principles in storage-disaggregated databases. This can be understandable as those systems are
developed by industry. Their corresponding papers [1, 5, 11, 17, 28] often focus on presenting the
final overall performance results, neglecting the impact of individual design principles.
Research Questions. As a result, many crucial research questions remain unanswered:
Q1 How much performance overhead is introduced by storage disaggregation? (Relevant to P1)
Q2 To what extent can buffering help in mitigating the performance degradation? (Relevant to

P1)
Q3 How significant is the performance improvement (for both reads and writes) due to the

log-as-the-database design? (Relevant to P2)
Q4 What is the performance impact caused by supporting multi-version pages in the shared-

storage design? (Relevant to P3)
Q5 How does multi-version storage affect checkpointing? (Relevant to P3)
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Q6 How effective are various log-replay methods within the multi-version storage? (Relevant to
P3)

Overview. In this paper, our goal is to understand the performance implications of the design
principles within storage-disaggregated databases. In particular, we aim to address the above six
research questions (Q1 to Q6) that remain unexplored.

Given that these databases, such as Amazon Aurora, Microsoft Socrates, Google AlloyDB, Alibaba
PolarDB, and Huawei Taurus, are products of industry and usually closed-source,1 we decided
to spend a significant amount of time on implementing our own storage-disaggregated database
prototype based on PostgreSQL v13.0. This hands-on implementation approach allows us to fully
understand and investigate specific optimizations and techniques, providing insights into their
effects on performance in different situations. This study leads to a collection of non-trivial findings
that are important for enhancing storage-disaggregated databases.
Contributions. This paper makes the following contributions:

• We conduct the first in-depth experimental study that investigates the effectiveness of the
design principles in storage-disaggregated databases by implementing and evaluating six
different architectures to answer the above six research questions (Q1 to Q6). In particular,
we focus on OLTP databases. We provide a series of insights that can guide the development
of storage-disaggregated databases in the future. Overall, we believe this work significantly
advances the understanding of storage-disaggregated databases.

• We open-source the disaggregated database platform that we built based on PostgreSQL
v13.0 over the last few years.
The platform incorporates six architectures (see §3) covering the key optimizations of major
storage-disaggregated databases, including Amazon Aurora [28], Microsoft Socrates [11],
Google AlloyDB [1], PolarDB [5, 14], Huawei Taurus [17], and Neon [4]. We believe this
open-source platform is particularly valuable in the field of disaggregated databases,
as these databases are often complicated and closed-source. By making it open-source, we
can significantly lower the entry barrier for research in storage-disaggregated databases.

Open-source. The code is open-sourced at https://github.com/purduedb/OpenAurora/.

2 EXPERIMENTAL METHODOLOGY
In this section, we present the experimental methodology to conduct experiments.

First, we investigate the design principles sequentially in the order of P1 (Disaggregation), P2 (Log-
as-the-Database), and P3 (Shared-Storage). This approachmirrors that ofmost storage-disaggregated
databases, including Amazon Aurora [28], Microsoft Socrates [11], Google AlloyDB [1], Huawei
Taurus [17], and Neon [4], which have applied these design principles in the same sequence. In
particular, when examining P2, we assume that P1 has been implemented, as it would not make sense
to study log-as-the-database without disaggregation. Similarly, our evaluation of P3 assumes that
both P1 and P2 have been implemented. This sequence ensures that our experimental evaluation is
not only more focused but also aligns closely with those industrial storage-disaggregated databases
mentioned above.

Second, we evaluate the performance implications of the three design principles (P1, P2, and P3)
through answering the six important research questions (Q1 to Q6), given their strong correlation
1The only open-source storage-disaggregated databases we are aware of are PolarDB [5, 14] and Neon [4]. However, we
chose to implement our database prototype rather than using them for two reasons. First, both PolarDB and Neon became
open-sourced in 2022 but our project started in 2021. Second, PolarDB is not based on the log-as-the-database principle,
making it unsuitable for studying this principle.
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Design Principles Research Questions System Architectures

Q1

Q3

Q2

Q4

Q5

Q6 A6: LogDB-MV-SR (  3.6)

A5: LogDB-MV-FR (  3.5)

A4: LogDB-MV (  3.4)

A3: LogDB (  3.3)

A2: Remote Disk (  3.2)

A1: Monolithic (  3.1)

P1: Disaggregation

P2: Log-as-the-DB

P3: Shared-Storage

Fig. 1. Relationship of Design Principles, ResearchQuestions, and System Architectures

Fig. 2. Monolithic Architecture Fig. 3. Remote Disk Architecture Fig. 4. Log-as-the-DB (LogDB)

with the principles, see Figure 1. Specifically, Q1 and Q2 are related to P1; Q3 is related to P2; and
Q4 through Q6 are related to P3.
Third, to answer the research questions (Q1 to Q6), we experiment with six different storage-

disaggregated database architectures (A1 to A6 shown in Figure 1). Except for A1, which is a
monolithic PostgreSQL database, all the other architectures (A2 through A6) are implemented by
us following existing storage-disaggregated databases.

Specifically, A2 is the remote disk architecture, which separates the PostgreSQL’s compute engine
from its storage engine, with the compute engine running on the compute node and the storage
engine on the storage node. By comparing A1 and A2, we can answer questions Q1 and Q2 to
understand the overhead of disaggregation and the effect of buffering. In A3, we add the optimization
of log-as-the-database, which only sends logs to the storage node, while in A2, both logs and data
pages are sent. By comparing A2 and A3, we can answer Q3 to know the effectiveness of the
log-as-the-database design. In A4, we add the implementation of multi-version pages to support
shared-storage among multiple compute nodes. By comparing A3 and A4, we can answer questions
Q4 and Q5 to understand the effect of multi-version pages and the impact on checkpointing. A5
and A6 are based on A4, but they implement different strategies for replaying logs. By comparing
A4, A5, and A6, we are able to answer Q6 to show the effectiveness of different log-replay methods
within multi-version storage.

Figure 1 shows the relationship between the design principles, research questions, and system
architectures.

3 SYSTEM ARCHITECTURES FOR STORAGE-DISAGGREGATED DATABASES
3.1 Monolithic Architecture
Figure 2 illustrates the architecture of PostgreSQL (v13.0), which represents the traditional mono-
lithic database. It is a disk-based database running on a single node. It serves as a reference database
when comparing with storage-disaggregated databases (detailed from §3.2 through §3.6) because
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these databases are built based on PostgreSQL. For instance, in §3.2, we decouple PostgreSQL’s
storage engine from its query engine.

3.2 Remote Disk
The traditional monolithic database architecture is not well-suited for the disaggregated architecture.
Thus, the first step in storage-disaggregated databases is to decouple the storage engine and query
engine and run them on two different nodes connected through networking. Specifically, the storage
engine operates on the storage node while the query engine runs on the compute node. This is the
Remote Disk architecture in Figure 3.
The transaction execution logic in the Remote Disk architecture is the same as that of the

monolithic architecture. However, the key difference is that all local disk reads and writes are
routed to the remote disk via RPCs rather than to a local disk.

The advantages of this software-level disaggregation are twofold. First, it enables independent and
elastic scaling of compute and storage. Second, it paves the way for introducing more optimizations,
such as the log-as-the-database design discussed in §3.3.

3.3 Log-as-the-Database (LogDB)
The Remote Disk architecture incurs performance degradation due to networking overhead. To im-
prove performance, in addition to employing buffering in the compute node, storage-disaggregated
databases typically adopt the log-as-the-database design principle [1, 11, 28]. This is the LogDB
architecture illustrated in Figure 4.

In this architecture, when a transaction is committed, it only sends the write-ahead logs (called
xlogs2 in PostgreSQL) to the storage node without sending the full data pages. The actual data
pages are generated by replaying the logs at the storage node asynchronously (see steps a and b
in Figure 4).
For the read path, the compute node will first check the local buffer. If there is a cache miss, it

will fetch the missed pages from the storage node. If the requested pages have not been replayed
yet, the storage node will replay the required logs on the fly (step 1 in Figure 4) and return the
requested pages upon completion (step 2 in Figure 4).
Compared to the Remote Disk architecture, LogDB is expected to enhance write performance

as it only sends the logs. However, its effect is non-trivial because the subtlety is that even in the
Remote Disk architecture, the transmission of data pages occurs asynchronously because the dirty
pages are not immediately flushed when a transaction is committed. They are only flushed to the
remote disk when the local buffer (in the compute node) is full. Thus, it remains unclear whether
(and when) the log-as-the-database design principle actually improves performance.

3.4 Log-as-the-Database with Multi-Version Storage (LogDB-MV)
Another important design principle in storage-disaggregated databases is the shared-storage de-
sign [1, 11, 17, 28] where multiple compute nodes share the same underlying storage. This is the
LogDB-MV architecture as illustrated in Figure 5. In this architecture, there is a single primary
(compute) node and multiple secondary (compute) nodes. Only the primary compute node supports
read and write transactions, whereas all secondary nodes can only handle read-only transactions.
Compared with the traditional shared-nothing architecture [23, 26], the shared-storage design
enhances elasticity because when new compute nodes are added, there is no need to copy or move
data, as all the compute nodes will share the same data.

2In this paper, the terms "logs" and "xlogs" are used interchangeably.
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Fig. 5. Log-as-the-Database with Multi-Version Storage (LogDB-MV)

The shared-storage design introduces additional challenges for the storage engine. Specifically,
the primary compute node sends xlogs to all secondary compute nodes for new database updates.
Nonetheless, replication lag occurs due to networking overhead. Thus, secondary compute nodes
might need to access older page versions by specifying a particular LSN. This operation is known
as GetPage@LSN [11]. Consequently, the storage engine needs to support multi-version pages in
storage-disaggregated databases.

In terms of the implementation, the storage node continuously replays the xlogs asynchronously
and stores multiple versions for each page in RocksDB. We choose RocksDB as it is a mature and
modern storage engine. While other storage-disaggregated databases have built their proprietary
storage engines, they share similar ideas with our implementation.
In particular, after the storage node receives an xlog, it asynchronously checks which page

modifications are included in this xlog. Afterward, the storage node appends this xlog’s LSN and
page id’s mapping record to the "Version Map", which is a hashmap using the page id as its key and
the version LSN list as its value (as depicted in step a in Figure 5). This "Version Map" is utilized
by the GetPage@LSN request. Following this, the storage node replay process divides the xlog into
several mini-xlogs, with each mini-xlog containing modifications for only one page. Subsequently,
it replays multiple mini-xlogs to obtain multiple updated pages (step b in Figure 5). Finally, the
storage node inserts the newly generated pages into RocksDB, using the page id combined with
LSN as its key and the page content as its value (step c in Figure 5).
For the GetPage@LSN request, the storage node will first await the replay process until it has

replayed xlogs that exceed the parameter LSN (step 1 in Figure 5). Then, it will fetch the version
LSN list from the Version Map using the request’s parameter page id. By selecting from the list, the
request will use the highest LSN that is smaller than or equal to the parameter LSN as its target
version (step 2 in Figure 5). Finally, the storage node will combine the page id and version LSN as
its key to retrieve the target page from RocksDB (step 3 in Figure 5).

However, the performance implications of the shared-storage design principle remain unknown
and complicated (that will be addressed in §5.3). This is because, on the one hand, supporting
multiple versions introduces additional performance overhead because of the higher xlog replay
overhead (as each xlog can now represent multiple pages) and the higher overhead when inserting
pages into RocksDB (as the total number of pages increases considerably due to multi-versioning).
On the other hand, multi-versioning can address the "torn page write" problem (as explained below),
which will in turn improve I/O performance. Specifically, the "torn page write" problem arises due
to the disparity in page sizes between databases and operating systems. For example, the page size
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Fig. 6. Log-as-the-Database with Multi-Version Storage and Filtered Replay (LogDB-MV-FR)

Fig. 7. XLog Replay Situations

in PostgreSQL is 8KB while the (atomic) page size in Linux is 4KB [6]. As a result, PostgreSQL
introduces "full page write" [3] to solve the problem, where the entire page is recorded in the xlog
if it is the first time being recorded after the latest checkpoint. This will unavoidably introduce
extra overhead to the database. However, the "torn page write" problem is eliminated with the
multi-version storage engine because it only appends new pages to the database instead of updating
the pages in place [1, 28].

3.5 Log-as-the-Database with Multi-Version Storage and Filtered Replay
(LogDB-MV-FR)

As mentioned in §3.4, replaying logs takes considerable time, especially in the multi-version storage
setting. To improve the performance of replaying logs, various optimizations have been developed
in existing storage-disaggregated databases. We refer to these optimizations as "Filtered Replay"
(FR) [1, 28] and "Smart Replay" (SR) [4, 5], and we will explain them in §3.5 and §3.6, respectively.
We will evaluate their effectiveness in §5.4.

We begin by discussing the motivation behind "Filtered Replay" (FR), which is used in Aurora [28]
and AlloyDB [1]. Recall that in LogDB-MV (Figure 5), when the GetPage@LSN request reaches the
storage node, it replays all the logs up to the requested LSN before returning the page. However,
this process can result in many wasted xlog replays because some xlogs may not be relevant to the
requested page. Figure 7a illustrates a situation where the relevant xlogs for the requested page are
placed at the beginning of the xlog pipeline. In this scenario, only replaying the first three xlogs is
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Fig. 8. Log-as-the-Database with Multi-Version Storage and Smart Replay (LogDB-MV-SR)

sufficient to ensure that GetPage@LSN obtains the correct page version. Figure 7b shows another
case where all the xlogs to be replayed are irrelevant to the requested page, resulting in wasted
time. In both scenarios, performance can be enhanced by filtering out non-relevant xlogs.

Figure 6 illustrates the system architecture (LogDB-MV-FR) with filtered replay. We have intro-
duced a "Quick Scan" process in the storage node to accelerate "Version Map" update, and therefore
filter unnecessary xlog replaying in GetPage@LSN request. For example, for Figure 7a, "Quick
Scan" can quickly identify that storage node can get target page’s first version by replaying the
second xlog and get second version by replaying the third xlog. Without necessary to replay xlog,
"Quick Scan" process can rapidly check the page ids related to each xlog, and update Version Map
(step a in Figure 6). And the "Replay" process sequentially replays xlogs in the background (step
b in Figure 6) and inserts the newly generated page versions into RocksDB (step c in Figure 6).
For the read path, when a GetPage@LSN request arrives at the storage node, it first awaits

the "Quick Scan" process to sequentially check xlogs with LSNs exceeding the parameter LSN.
Since the "Quick Scan" process advances LSN quickly, the waiting time is significantly shorter
than in LogDB-MV. Afterward, the storage node retrieves this page’s version list from the "Quick
Scan" process’s Version Map and determines which version it should adopt (step 1 in Figure 6).
Next, GetPage@LSN only waits for the "Replay" process to reach that version’s LSN (step 2 in
Figure 6). Finally, the GetPage@LSN request retrieves the target page version from RocksDB using
the combined page id and version LSN as its key (step 3 in Figure 6).

For example, if there is a request to retrieve page A with LSN 200 and the "Quick Scan" process
determines that the last related xlog for page A is LSN 150, then the GetPage@200 will only wait
for the replay process to replay up to LSN 150 (rather than 200) before returning the page.
However, it remains unclear on the effectiveness of the Filtered Replay approach. This will be

addressed in §5.4.

3.6 Log-as-the-Database with Multi-Version Storage and Smart Replay
(LogDB-MV-SR)

Although the LogDB-MV-FR architecture can skip many unnecessary xlogs to improve performance,
there are still some unrelated xlogs that are replayed to serve GetPage@LSN. For example, in
Figure 7a, to get target page’s second version, the replay process needs to replay the first xlog
which is unrelated with target page. As a result, there is another log replay approach (used in
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PolarDB [5, 14] and Neon [4]) that we refer to as "Smart Replay". This is the LogDB-MV-SR
architecture shown in Figure 8. It only replays the necessary xlogs related to the requested page. It
does not replay any unnecessary xlogs. An additional advantage of LogDB-MV-SR is its capability
for parallel replay, because different pages’ version lists can be replayed by different processes in
parallel instead of replaying all xlogs in sequence by one replay process.
When the storage node receives an xlog, the "Quick Scan" process asynchronously stores this

xlog’s mapping information in the Version Map, similar to LogDB-MV-FR (step a in Figure 8).
Following this, several background replay processes are initiated. Each of these processes extracts
an LSN list for a specific page id from the Version Map and executes the xlog replay operations in
parallel (step b in Figure 8). These background replay processes insert the newly generated pages
into RocksDB (step c in Figure 8). Additionally, they inform the Version Map of their progresses
in replaying the LSN list corresponding to each page id.
For the read path, when a GetPage@LSN request arrives at the storage node, it will first check

and wait for the "Quick Scan" process to examine xlogs until it exceeds its request parameter
LSN and get its target version LSN. Then, it checks whether the target version has already been
generated and saved in RocksDB (step 1 in Figure 8). If the target version has not been generated,
the GetPage@LSN request will collect xlogs from the disk and replay the related xlogs by itself
(step 2 in Figure 8), subsequently inserting the newly generated page versions into RocksDB. If
the target page version has already been generated, GetPage@LSN will directly retrieve its target
page version from RocksDB (step 3 in Figure 8).

However, prior studies have not evaluated the effectiveness of the Smart Replay approach. This
will be addressed in §5.4.

4 EXPERIMENT SETUP
4.1 Experimental Platform
By default, we use a four-node setup that includes one compute node and three storage nodes. This
configuration aligns with disaggregated databases like Aurora, Socrates, AlloyDB, PolarDB, and
Neon, which only have one writer. We chose a 3-node storage setup because Socrates, AlloyDB,
PolarDB, and Neon use 3-way replication. However, we also conducted experiments on a 6-node
storage cluster (in §5.5.5), considering that Aurora uses 6-way replication. Each storage node in our
set up is equipped with an Intel Xeon Platinum 8368 CPU (2.4 GHz), 188GB of DRAM, and a 1.5TB
NVMe SSD. The compute node includes an Intel Xeon Gold 6330 CPU (2.0 GHz), 250GB of DRAM,
and a 1.5TB NVMe SSD.

In some experiments (e.g., Figure 16), we expanded to using up to 15 read-only compute nodes,
in line with the maximum support of 15 replicas by Aurora, Socrates, AlloyDB, PolarDB, and Neon.
That is, the total number of compute nodes is 16. Each replica in these experiments is equipped
with an Intel Xeon Silver CPU (2.3 GHz), 64GB DRAM, and a 900GB NVMe SSD.

All these nodes run Linux Ubuntu 22.04, and they are connected through a 10Gb TCP/IP network.
Note that our experimental platform only includes SSDs (instead of HDDs) because SSDs are
mature enough to be widely used in modern high-performance databases [11, 20, 37] and data
centers [2, 11].

4.2 Datasets and Benchmarks
In this experimental study, we use two widely used OLTP benchmarks, namely SysBench [7] and
TPC-C [8] to understand and investigate the performance implications of the design principles
in storage-disaggregated databases. Due to space constraints, we mainly focus on the results on
SysBench and only present results on TPC-C in §5.5.1.
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Table 1. Buffer Size and Hit Ratio in SysBench

Buffer Size 1MB 700MB 8GB 64GB
Hit Ratio 0.1% 40% 80% 99.5%

(a) Read (light workload) (b) Write (light workload)

(c) Read (heavy workload) (d) Write (heavy workload)

Fig. 9. Monolithic vs. Remote Disk on SSD

For SysBench, we prepare 2,000 tables, and each table contains 200,000 tuples. The total size of
the SysBench dataset is 96GB. We use 16 threads to run the benchmark. For the buffer size in the
compute node, we utilize buffer sizes of 1MB, 700MB, 8GB, and 64GB in our experiments. These
correspond to buffer hit ratios of 0.1%, 40%, 80%, and 99.5%, respectively, as shown in Table 1.

5 EXPERIMENTAL RESULTS
5.1 Addressing ResearchQuestions Q1 and Q2

Overall Results on Reads and Writes (Figure 9). Figure 9 compares the performance of the
Monolithic and Remote Disk architectures with varying buffer sizes. We run SysBench under two
scenarios: light workload and heavy workload. For the light workload, there is a 30-second idle
time between each SysBench execution. In contrast, the heavy workload has no idle time between
consecutive SysBench runs. There are several interesting observations from the figure.

First, storage disaggregation leads to a significant performance reduction for both reads (16.4X)
and writes (17.9X). This is due to the networking overhead, as networking is slower than local
SSDs.
Second, using a buffer in the compute node enhances the read performance for the Remote

Disk architecture, as depicted in Figure 9a. The larger the buffer size, the better the performance.
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(a) Read (light workload) (b) Write (light workload)

(c) Read (heavy workload) (d) Write (heavy workload)

Fig. 10. Remote Disk vs. LogDB

However, it is interesting that the write performance does not improve much when the buffer size
exceeds 700MB, as shown in Figure 9b. This happens because, with a light workload, the dirty
pages generated are fewer than 700MB in this experiment. As a result, increasing the buffer size
does not improve the write performance since all the dirty pages are cached. We then conducted
another experiment with a heavy workload, as presented in Figure 9d, where more dirty pages are
involved. The results indicate that a larger buffer size corresponds to better performance.

However, irrespective of the workload (whether light or heavy), Figure 9b and Figure 9d demon-
strate a significant write performance gap between the Monolithic and Remote Disk architectures.
For instance, even with a 64GB local buffer (resulting in a 99.5% cache hit ratio), the write perfor-
mance in the Remote Disk decreases by 6.6X and 11.8X compared to the Monolithic architecture.
This drop in performance is because the compute node always has to transfer xlogs to the storage
node via networking for committed transactions, regardless of the size of the compute node’s local
buffer. Consequently, the speed disparity between the local SSD and remote storage is the primary
factor causing the low write performance in the Remote Disk architecture.

5.2 Addressing ResearchQuestion Q3
In this experiment, we investigate the impact of log-as-the-database design principle.

Overall Results on Reads and Writes (Figure 10). Figure 10 presents the performance compar-
ison between the Remote Disk and LogDB architectures.

Figure 10 shows that the read performance between the two architectures is comparable. However,
LogDB significantly enhances write performance, especially under heavy workloads, compared to
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(a) Remote Disk (b) LogDB

Fig. 11. Network Bandwidth Utilization for Light Workload in Figure 10b

the Remote Disk architecture. For example, the write performance is improved by 2.5X when the
buffer size is 8GB (Figure 10d).

AnalyzingRead Performance (Figure 10a and 10c). The comparable read performance between
the Remote Disk and LogDB architectures is understandable given that the workload is read-only
without any write operations. As a result, the read path for both architectures is identical, with all
pages being materialized. In Figure 13, we will evaluate the performance of read-after-write.

Analyzing Write Performance on Light Workload (Figure 10b). For the light workload, Fig-
ure 10b shows that the write performance on the Remote Disk and LogDB architectures is quite
similar. This means that LogDB does not improve much write performance in this scenario, which
is counter-intuitive as log-as-the-database is supposed to improve write performance as indicated
in [1, 11, 28].
However, under the light workload, we observe that the Remote Disk architecture does not

require flushing dirty pages in the critical path during transaction commits. This is because the
architecture has sufficient idle time to clean and flush the dirty pages in the background when the
workload is light. As a result, when new transactions arrive, it is unnecessary to flush dirty pages
on the fly due to the availability of clean buffer slots. This leads to comparable write performance
between the two architectures.

To confirm the above analysis, Figure 11 illustrates the data transmitted over the network during
a light workload where SysBench is executed five times. We can observe that the Remote Disk
architecture has a higher peak data transfer rate, given its need to flush dirty pages to the storage
node, a step not required by LogDB. Moreover, even in the absence of active transactions, the
Remote Disk might still need to flush dirty pages during idle periods if the buffer contains dirty
pages from previous transactions. If it manages to flush all the dirty pages during these idle periods
(as seen in the 1st and 3rd run), it can achieve write performance comparable to LogDB. Otherwise
(as seen in the 2nd, 4th, and 5th run), the write performance of Remote Disk may decline since the
flushing process can interfere with ongoing transactions. Hence, in the light workload with ample
idle time, the Remote Disk architecture can flush its dirty pages, resulting in write performance on
par with LogDB.

Analyzing Write Performance on Heavy Workload (Figure 10d). Figure 10d shows that
LogDB significantly improves write performance compared to the Remote Disk architecture. This
is because, under the heavy workload, the local buffer in the Remote Disk architecture tends to
become saturated with dirty pages, leaving inadequate time to flush these pages in the background.
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(a) Remote Disk (b) LogDB

Fig. 12. Network Bandwidth Utilization for Heavy Workload in Figure 10d

As a result, when new transactions arrive, the Remote Disk architecture has to send both data (due
to flushing dirty pages) and logs over the network. But LogDB only needs to send logs, leading to
higher write performance.
To validate the above analysis, Figure 12 shows the data transfer over the network under the

heavy workload, where there is no idle time between runs. Initially, the write performance of both
the Remote Disk and LogDB architectures is similar, given that the buffer pool has a sufficient
number of clean pages. Yet, after around 150 seconds, the Remote Disk’s buffer becomes saturated
with dirty pages, causing ongoing transactions to wait for the flushing of these pages before
fetching new ones from the storage node, which results in a performance drop. In contrast, LogDB
consistently maintains a higher write performance, even with occasional fluctuations, because only
logs are transferred, eliminating the need to flush dirty pages.

Overall Results on Read-After-Write (Figure 13). In this experiment, we examine the read
performance immediately after heavy writes to understand the overhead of replaying logs. This
is because under heavy writes, data pages may not be immediately materialized in the LogDB
architecture. As a result, subsequent read operations might be delayed due to the necessity of log
replay.
Figure 13 illustrates the read performance following bulk insertion with varying durations

of bulk insertion time. The figure shows that as the bulk insertion duration increases, LogDB’s
performance experiences a notable drop, while the performance of the Remote Disk architecture
remains relatively stable. Specifically, when the bulk insertion lasts for 5 minutes, LogDB lags
behind Remote Disk by 20.3%. Moreover, the gap widens when considering multi-version pages
(as discussed in §5.3). For instance, LogDB-MV loses Remote Disk by 66.2% when the insertion
duration is 5 minutes. This gap is attributed to the overhead of replaying logs.

5.3 Addressing ResearchQuestions Q4 and Q5
In this experiment, we study the impact of multi-version pages that are required to support the
shared-storage design. In particular, we answer the research questions Q4 and Q5.

Overall Results on Reads and Writes (Figure 14). Figure 14 presents the read and write com-
parisons between LogDB and LogDB-MV. Notably, given that the multi-version storage engine
can optimize (actually bypass) the "torn page write" issue [3] explained in §3.4, we first show the
write performance without optimization (see Figure 14b) to highlight the overhead introduced by
supporting multi-version pages. Subsequently, we show the optimized results that bypass the "torn
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Fig. 13. Read After Bulk Insertion

(a) Read Throughput (b) Write Throughput

(c) Read Throughput (d) Write Throughput
Bypassing "Torn Page Write" Bypassing "Torn Page Write"

Fig. 14. LogDB vs. LogDB-MV

page write" issue using multi-version pages (Figure 14d) to clearly understand the performance
implications. Note that the results in Figure 14c and Figure 14d are not relevant for systems that
do not have the torn page issue. However, since both PostgreSQL and MySQL have such issue,
studying it remains valuable.
Figure 14 shows that the multi-version storage engine mainly affects write performance and

not read performance, which is understandable since there is no need to replay logs for read-only
workloads. Thus, we will mainly focus on the write performance next. Figure 14b shows that, with
the traditional "torn page write", LogDB-MV has lower write performance than LogDB. For example,
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Fig. 15. Transferred Pages in Figure 14d

when the buffer size is 8GB, the performance slowdown is 27%. However, LogDB-MV achieves
higher write performance than LogDB if we optimize (actually bypass) the "torn page write" issue
using multi-version pages. For example, after optimization, LogDB-MV improves write performance
by 37%. This is an interesting finding that has not been discovered in previous research.

Analyzing Write Performance with "Torn Page Write" (Figure 14b). Next, we delve into
the factors contributing to the performance slowdown. This is due to the fact that supporting
multiple versions leads to increased performance overhead, both from the elevated xlog replay
overhead (since a single xlog can now correspond to multiple pages) and the added overhead during
page insertion into RocksDB (given the significant increase in the number of pages as a result of
multi-versioning).

AnalyzingWrite Performance Bypassing "Torn PageWrite" (Figure 14d). Figure 14d shows
that the write performance in LogDB-MV outperforms that in LogDB, meaning that the multi-
version storage engine enhances write performance. This enhancement stems from the fact that
page updates, due to multi-version pages, do not occur in place. As a result, they naturally address
the "torn page write" issue, leading to reduced data transfer over the network.
To have a better understanding, Figure 15 shows the network data transfer during a 10-second

SysBench write workload. In the Remote Disk architecture, the compute node must flush both
dirty pages and xlogs to the storage node. In the LogDB architecture, due to the torn-page write
issue, some xlogs do not merely contain tuple modification information; they also store the entire
data pages (8KB per data page) within the xlogs. In contrast, the LogDB-MV architecture only
requires the transfer of xlogs without the need to flush dirty pages. Moreover, with the support of
multi-version pages, its xlogs solely capture tuple modifications. As shown in Figure 15, the data
transfer for LogDB-MV is considerably less than that of the other two architectures.

Supporting Multi-Compute Nodes (Figure 16). The multi-version storage engine also allows
multiple compute nodes to share the same storage. Figure 16 shows that the read performance
scales as the number of compute nodes increases up 16 nodes. Note that there is usually a single
writer in storage-disaggregated databases such as Amazon Aurora [28], Microsoft Socrates [11],
Google AlloyDB [1], and Alibaba PolarDB [5, 14].

Impact on ofMulti-versioning onCheckpointing (Figure 17). In this experiment, we examine
the effect of multi-version pages on checkpointing, a topic overlooked in previous research. By
supporting multi-version pages in the storage engine, we can address the checkpointing challenge.
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Fig. 16. Results on Multiple Compute Nodes (Up to 16)

(a) Frequent checkpoints (b) Less frequent checkpoints

Fig. 17. Checkpoints Influence XLog Size

Checkpointing is crucial in databases since it offers a consistent database state to users in the
event of a system crash [25]. However, checkpointing incurs significant I/Os as it needs to flush
all dirty pages to disk. While the log-as-the-database design can alleviate this by only flushing
logs, the log size remains significant due to the "torn page write" problem, where PostgreSQL logs
the entire page in xlog if it is the page’s first xlog entry after each checkpoint. Figure 17 shows
the xlog size with different checkpoint frequencies in LogDB. The results indicate that after each
checkpoint, there is a noticeable increase in xlog size. However, the checkpointing issue can be
addressed very well in LogDB-MV because LogDB-MV fully bypasses "torn page write" problem
and enable xlogs only record the modifications. Consequently, the spikes in xlog size that occurred
after each checkpoint are eliminated. As a result, checkpointing becomes a "free" operation without
introducing additional overhead.

5.4 Addressing ResearchQuestion Q6
In this experiment, wewill evaluate the effectiveness of various log replaymethods by comparing the
performance between LogDB-MV, LogDB-MV-FR, and LogDB-MV-SR based on storage nodes cluster
setting. We will first use the standard SysBench read/write workload from previous experiments,
with the results shown in Figure 18. After that, we will introduce another workload, which involves
a bulk insertion followed by index creation, to best showcase the effectiveness of these log replay
methods (in Figure 19).
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(a) Read Performance (b) Write Performance

Fig. 18. LogDB-MV vs. LogDB-MV-FR vs. LogDB-MV-SR

Table 2. XLog Replay Waiting Time of GetPage@LSN

Num. of GetPage Requests Waited Replayed LSN
LogDB-MV 100000 89002096

LogDB-MV-FR 100000 24370816
LogDB-MV-SR 100000 13053248

Overall Results on Reads andWrites (Figure 18). Figure 18 shows the performance comparison
among LogDB-MV, LogDB-MV-FR, and LogDB-MV-SR. As expected, different log replay methods
affect write performance (not read performance) because there is no need to replay logs for the
read-only workload. Next, we mainly focus on writes. Figure 18 indicates that LogDB-MV-SR
outperforms the others, with LogDB-MV-FR coming next, and LogDB-MV being the slowest.
Analyzing Write Performance (Table 2). In this experiment, we execute the write workload
on LogDB-MV, LogDB-MV-FR, and LogDB-MV-SR with a 700MB buffer size. We collect the last
100,000 GetPage@LSN requests to analyze how many xlogs replayed were waited for.

Table 2 shows the results. For the LogDB-MV’s GetPage@LSN request, as described in §3.4, it
needs to wait for the storage node to advance xlog replaying until it exceeds its parameter LSN.
According to Table 2, LogDB-MV’s GetPage@LSN requests have waited for 89002096 LSNs of xlog
replaying. As mentioned in §3.5, the LogDB-MV-FR’s GetPage@LSN will truncate its xlog replaying
list to a shorter one. Table 2 shows that LogDB-MV-FR’s GetPage@LSN requests only waited for
24370816 LSNs of xlog replaying, which saves about 72.6% of waiting xlog replaying time compared
with LogDB-MV. Therefore, in Figure 18, LogDB-MV-FR’s write throughput is about 1.5X that of
LogDB-MV.
As mentioned in §3.6, LogDB-MV-SR’s GetPage@LSN request will only selectively replay the

xlogs that are directly related to its target page. In our experiment, LogDB-MV-SR replayed only
13053248 LSNs of xlog replaying, which is only 53.6% of the LSNs waited by LogDB-MV-FR. Mean-
while, LogDB-MV-SR can replay xlogs in parallel, which can further enhance its write performance.
In Figure 18, LogDB-MV-SR’s write throughput is about 1.6X that of LogDB-MV-FR.
Results onBulk Insertion andCreate IndexWorkload (Figure 19). For a better understanding
of the performance implications of LogDB-MV-FR and LogDB-MV-SR, we crafted a workload that
includes a bulk insertion followed by index creation. In this experiment (Figure 19), we employed
SysBench’s database preparation phase, which consists of two steps: (1) bulk insertion of tuples
into tables, totaling 9GB; and (2) the creation of a secondary index for the newly prepared tables.
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Fig. 19. Evaluating LogDB-MV vs. LogDB-MV-FR vs. LogDB-MV-SR on "Bulk Insertion" and "Create Index"
Workload"

For LogDB-MV, the two steps take approximately 60 seconds. During the bulk insertion phase,
the compute node consistently sends GetPage@LSN requests to the storage node. Each request
results in a notable waiting time for the log replay. As a result, during the secondary index creation
phase, LogDB-MV only has to replay a minimal amount of xlogs associated with index creation,
leading to a significantly reduced index creation time.

In contrast, for LogDB-MV-FR, the bulk insertion is completed in around 10 seconds, while the
index creation takes around 52 seconds. This is because, during the bulk insertion phase, most
GetPage@LSN requests either do not require xlog replay or only need to replay a very small number
of xlogs. As a result, a significant amount of xlogs remain to be replayed in the index creation phase.

However, LogDB-MV-SR takes about 10 seconds to complete the bulk insertion, which is com-
parable to LogDB-MV-FR. This similarity arises because there is minimal xlog replaying during
the bulk insertion phase. However, when executing the index creation workload, LogDB-MV-SR
needs to read metadata pages which require replaying a large number of xlogs. Yet, LogDB-MV-SR
selectively replays only the xlogs relevant to the desired metadata pages, deferring the replaying of
other xlogs until the database is idle. As a result, LogDB-MV-SR takes only about 13 seconds to
complete the entire preparation workload.

Impact on the Idle Time Interval Between Bulk Insertion and Create Index (Figure 20).
To better understand the performance characteristics of LogDB-MV-FR, in this experiment, we
aim to analyze the scenarios in which LogDB-MV-FR’s optimizations are effective. As depicted
in Figure 19, even though LogDB-MV-FR takes much less time during the bulk insertion phase,
it takes considerably longer in the immediately subsequent secondary index creation phase. In
Figure 20, we introduce intervals between the bulk insertion and index creation phases and test the
"Create Index" time for both LogDB-MV and LogDB-MV-FR. As shown in Figure 20, LogDB-MV’s
execution time remains consistent regardless of the interval duration. In contrast, LogDB-MV-FR’s
index creation time decreases as the interval becomes longer. When the gap between bulk insertion
and index creation reaches 60 seconds, the index creation latency for LogDB-MV-FR aligns with
that of LogDB-MV. This suggests that LogDB-MV-FR takes approximately 60 seconds to finish
replaying the accumulated xlogs in the background. Consequently, during the index creation phase,
it only needs to replay the same number of xlogs as LogDB-MV.
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Fig. 20. LogDB-MV vs. LogDB-MV-FR on "Create Index" Workload

Fig. 21. Results on TPC-C

5.5 Additional Experiments
5.5.1 Results on TPC-C. In this experiment, we evaluate the six architectures mentioned above on
the TPC-C benchmark. Note that the TPC-C differs from SysBench as it executes mixed reads and
writes. We prepare a database with 30 warehouses, and inside each warehouse, there are 30 table
sets. The overall database size is 94GB. We use 16 threads to execute the TPC-C benchmark.
Figure 21 shows the results. Overall, the results are similar to those of SysBench, though there

are some minor differences. For instance, the performance of LogDB-MV is similar to that of LogDB.
However, in SysBench, LogDB-MV clearly outperforms LogDB. This is because LogDB-MV has
better write performance than LogDB, as shown in Figure 14d, but LogDB-MV’s read performance
is worse than that of LogDB, as depicted in Figure 13. As a result, under a mixed read and write
workload, LogDB and LogDB-MV exhibit comparable performance in the TPC-C experiment.
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(a) Read Performance (b) Write Performance

Fig. 22. System A vs. LogDB-MV-SR

5.5.2 Comparison with System A. In this experiment, we compare our testbed (LogDB-MV-SR)
with an industrial storage-disaggregated database, referred to as System A for confidentiality. This
comparison aims to demonstrate the high-performance implementation of our testbed and enhance
the reliability of our findings.

Since System A is not open-sourced, we purchased System A’s cloud version with four instances:
instance-1 (4 cores and 32GB memory), instance-2 (8 cores and 64GB memory), instance-3 (16 cores
and 128GB memory), and instance-4 (32 cores and 256GB memory), each equipped with a 10Gb
network.

We made our best effort to make the comparison fair with details omitted. Figure 22 shows the
results. For read performance, System A and our testbed (LogDB-MV-SR) perform similarly because
they share the same read path. For write performance, System A is slightly better than our testbed
(but only up to 6.6%) across different instances. This means that our implementation is comparable
with System A. Thus, we are confident that the results and findings in this paper are reliable.

5.5.3 Results on 30Gb Network. In this experiment, we evaluate the impact of upgrading to a 30Gb
network. In this new setting, both the compute and storage nodes are equipped with Intel Xeon
Platinum CPUs @ 2.70GHz, 2.95TB of DRAM, and 8.7TB NVMe SSDs. The round trip latency ranges
from 0.13ms to 0.22ms, compared to 0.29ms to 0.33ms on the 10Gb network.

We benchmark the Remote Disk, LogDB, and LogDB-MV-SR architectures under both 10Gb and
30Gb networks. The results (Figure 23) show that during reads, the 30Gb network achieves improved
performance, especially with smaller cache sizes. However, when the cache size is increased to
64GB, the performance difference becomes negligible due to the high cache hit ratio of 99.4%,
meaning that almost all necessary pages are cached locally.

Regarding write performance, we observe consistent improvements across all architectures with
the 30Gb network. The main reason is that log flushing, a potential bottleneck in write performance,
is inevitable in all architectures. With a smaller cache size, the 30Gb network speeds up page
transferring and XLog flushing. With a larger cache size, it primarily accelerates XLog flushing.

5.5.4 CPU and Memory Usage. In this experiment, we examine the CPU and memory usage while
running a 96GB SysBench workload with an 8GB buffer. The CPU usage is the total utilization across
all cores. It often exceeds 100% because we use multiple CPU cores. As shown by Figure 24, we
tracked CPU and memory usage separately for reads and writes due to their different characteristics
in disaggregated databases.
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(a) Remote Disk Read (b) LogDB Read (c) LogDB-MV-SR Read

(d) Remote Disk Write (e) LogDB Write (f) LogDB-MV-SR Write

Fig. 23. Results on 10Gb vs. 30Gb Network

On the compute side, memory use stays consistent for both reads and writes across different
architectures. This is because the compute node consistently uses an 8GB buffer pool and about
2GB of extra memory for processing under SysBench. For CPU usage, we found it is higher in
the monolithic architecture during reads, because it achieves better performance than other five
disaggregated architectures. During writes, the CPU usage drops in Remote Disk, then increases
in LogDB-MV-FR and LogDB-MV-SR, aligning with the observed pattern of write performance
observed.

On the storage side, the log-based architectures consume more CPU resources compared to the
Remote Disk architecture due to the added step of log replay. Regarding memory use, during reads,
the log-based architectures need about 700MB more memory than the Remote Disk architecture.
This is because we pre-allocate a 700MB buffer pool in all log-based architectures for xlog replaying.
During writes, the LogDB-MV, LogDB-MV-FR, and LogDB-MV-SR use around 1GB more memory
than LogDB. This increase is due to these architectures employing RocksDB for storage, where
RocksDB can use up to 1GB of memory for layer merging and compaction.

5.5.5 Results on 6 Storage Nodes. In this experiment, we evaluate the impact of 6-way replication
by using a storage cluster of 6 nodes. In particular, we run SysBench on three representative
architectures: Remote Disk, LogDB, and LogDB-MV. Figure 25 shows the results. It shows that the
read performance is similar to that of a 3-node storage cluster, as the read path is not changed. For
writes, the performance drops slightly compared to the 3-node storage cluster, as described in §5,
due to the tail latency of replicating data to all 6 nodes. However, the relative performance among
the three architectures remains unchanged.
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(a) CPU Usage (b) Memory Usage

Fig. 24. CPU and Memory Usage

(a) Read Throughput (b) Write Throughput

Fig. 25. Results on 6 Storage Nodes

5.6 Discussion
In this paper, we built our testbed using PostgreSQL due to its widespread popularity. Considering
that some disaggregated databases, like Aurora and Taurus, also support MySQL, we will next
discuss how our findings relate to MySQL.
We believe that our conclusions can be extended to MySQL. This is because MySQL and Post-

greSQL share similar high-level design principles (for disaggregation), such as software-level
disaggregation, log-as-the-database, and shared storage. Although there are some differences in
details, e.g., MySQL uses double writes to deal with torn page writes, they are not expected to
change the conclusions.

6 RELATED WORK

Storage-Disaggregated OLTP Databases. This paper focuses on storage-disaggregated OLTP
databases. Examples of databases in this category are Amazon Aurora [28], Microsoft Socrates [11],
Google AlloyDB [1], Huawei Taurus [17], Alibaba PolarDB [5, 14], and Neon [4]. As mentioned in
§1, these databases typically embrace three key design principles: Software-level Disaggregation
(P1), Log-as-the-Database (P2), and Shared-Storage Design (P3). Note that apart from PolarDB
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which implemented P1 and P3, all other databases mentioned above have incorporated P1, P2,
and P3. However, previous research does not evaluate the performance impact of these individual
design principles, which is the goal of this paper.

Storage-Disaggregated OLAP Databases. While this paper focuses on storage-disaggregated
OLTP databases, there is a category of storage-disaggregated databases for OLAP databases. Exam-
ples include Snowflake [16, 29], AnalyticDB [40], Polaris [9], Redshift [12, 24], Dremel [22], Eon
Mode [27], and FlexPushdownDB [38]. However, two design principles (P2 and P3) discussed in
this paper do not apply to OLAP databases. For instance, the log-as-the-database (P2) design is not
employed in such OLAP databases due to their emphasis on read-intensive tasks. Furthermore, they
do not support multi-version pages (P3) because the replication lag between compute nodes is not a
concern, given that writes are not a primary focus. However, the design principle of software-level
disaggregation (P1) is relevant to those OLAP databases.

Memory-Disaggregated Databases. In the literature, there is a line of research working on
memory-disaggregated databases that decouple memory from compute. Examples include [21,
22, 32–35, 41, 42]. However, this paper focuses on storage-disaggregated instead of memory-
disaggregated databases. The design considerations in memory-disaggregated databases differ
from those in this paper. For instance, they all employ ultra-fast networking technologies like
RDMA [32, 35, 43] or CXL [10, 19] to match the high performance of local DRAM, whereas storage-
disaggregated databases often rely on conventional TCP/IP networking [11, 28]. Moreover, given
the high-speed of their network, they typically transmit pages from the compute node directly to the
memory node [15, 42], in contrast to storage-disaggregated databases which commonly send logs
across the network [11, 28]. As a result, many optimizations designed for memory-disaggregated
databases are not applicable to storage-disaggregated databases.

Disaggregated NoSQL Databases. There are other studies focusing on disaggregating NoSQL
databases like key-value stores [13, 18, 39], vector databases [30], graph databases [36]. However,
this paper focuses on (disaggregated) relational databases.

7 CONCLUSION
In this paper, we investigated the performance implications of the fundamental design princi-
ples, namely software-level disaggregation, log-as-the-database, and shared-storage in storage-
disaggregated databases. We studied six research questions (Q1 to Q6) and summarized the main
findings below.

Answers to Question Q1:Howmuch performance overhead is introduced by storage disaggregation?
• Storage disaggregation results in a significant performance reduction for both reads (16.4X)
and writes (17.9X) assuming the storage media are SSDs. This is because accessing storage
remotely over the network is slower than accessing local storage.

Answers to Question Q2: To what extent can buffering help in mitigating the performance degra-
dation?

• Utilizing a buffer in the compute node can enhance read performance. For instance, when
the buffer size is 8GB (80% hit ratio), the read performance gap between disaggregated and
non-disaggregated databases is 1.8X.

• Nevertheless, buffering does not significantly improve write performance, even with
a sufficiently large buffer size (e.g., reaching 99.5%). This is because the compute node must
always send xlogs to the storage node via the network when transactions are committed,
irrespective of the buffer size in the compute node.
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Answers to Question Q3: How significant is the performance improvement (for both reads and
writes) due to the log-as-the-database design?

• For writes, under light workloads, the log-as-the-database design principle does not
enhance performance. This is due to the database having sufficient idle time to clean
and flush dirty pages in the background. Therefore, it does not necessitate flushing dirty
pages in the critical path for committed transactions. However, under heavy workloads,
the performance improvement of the log-as-the-database principle is significant
(by 2.58X with 8GB buffer size). This is because the buffer pool becomes saturated with dirty
pages for heavy workloads and then new transactions would have to flush these dirty pages
on the fly without the log-as-the-database principle.

• For reads, we distinguish between two scenarios: read-only and read-after-write. For read-
only workloads, log-as-the-database design does not have much performance im-
pact as all the pages have already been materialized. However, for read-after-write, it
introduces performance overhead, e.g., 18.9% when the buffer size is 8GB, due to the cost
of relaying logs.

Answers to Question Q4:What is the performance impact caused by supporting multi-version pages
in the shared-storage design?

• With traditional "torn page write", supporting multi-version pages reduces the write per-
formance by 27% (with a buffer size of 8GB). This is because multi-versioning increases the
overhead of xlog replaying and page insertion, which causes performance drop.

• However, we observe that the introduction of multi-version pages can optimize the "torn
page write" issue. With such optimization, it improves the write performance by 37%
(with a buffer size of 8GB).

Answers to Question Q5: How does multi-version storage affect checkpointing?
• Page-based multi-version storage engine completely addresses the high I/O issue in con-
ventional database checkpointing. Multi-version pages eliminate the "torn page write"
problem, resulting in a log size much smaller than that of LogDB. As a result, checkpointing
becomes a "free" operation without introducing additional overhead in the multi-version
storage engine.

Answers to Question Q6: How effective are various log-replay methods within the multi-version
storage?

• Different log-replay approaches significantly impact write performance. Compared to
the straightforward approach, Filtered Replay (FR) enhances write performance by 1.6X.
Smart Replay (SR) further improves upon FR by an additional 1.6X, owing to its ability to
prune unnecessary xlogs replayed. Most notably, SR can achieve even higher performance
for the workload with bulk insertion followed by index creation, where SR improves FR by
7X.
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