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Optimizing LSM-based Key-Value Stores (LSM-KVS) for disaggregated storage is essential to achieve better
resource utilization, performance, and flexibility. Most of the existing studies focus on offloading the compaction
to the storage nodes to mitigate the performance penalties caused by heavy network traffic between computing
and storage. However, several critical issues are not addressed including the strong dependency between
offloaded compaction and LSM-KVS, resource load-balancing, compaction scheduling, and complex transient
errors.

To address the aforementioned issues and limitations, in this paper, we propose CaaS-LSM, a novel
disaggregated LSM-KVS with a new idea of Compaction-as-a-Service. CaaS-LSM brings three key contributions.
First, CaaS-LSM decouples the compaction from LSM-KVS and achieves stateless execution to ensure high
flexibility and avoid coordination overhead with LSM-KVS. Second, CaaS-LSM introduces a performance- and
resource-optimized control plane to guarantee better performance and resource utilization via an adaptive
run-time scheduling and management strategy. Third, CaaS-LSM addresses different levels of transient and
execution errors via sophisticated error-handling logic. We implement the prototype of CaaS-LSM based on
RocksDB and evaluate it with different LSM-based distributed databases (Kvrocks and Nebula). In the storage
disaggregated setup, CaaS-LSM achieves up to 8X throughput improvement and reduces the P99 latency up to
98% compared with the conventional LSM-KVS, and up to 61% of improvement compared with state-of-the-art
LSM-KVS optimized for disaggregated storage.
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1 INTRODUCTION
Nowadays, due to good write performance and better space efficiency, LSM-based Key-Value Stores
(LSM-KVS) (e.g., Big Table [31], Cassandra [5], LevelDB [46], and RocksDB [19]) have become
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Fig. 1. Challenges in Disaggregated LSM-KVS

the backbone data storage systems for unstructured data and supporting various applications for
cloud service providers and big internet companies [29]. Since LSM-KVS was initially designed and
widely studied based on monolithic servers and shared-nothing architectures, the LSM-KVS-based
distributed applications were developed to use thousands of LSM-KVS instances on hundreds of
servers to store sharded data. Each LSM-KVS instance uses the local server’s CPU, memory, and
storage resources and needs to share these resources with other LSM-KVS instances on the same
servers. As the application workload varies and scales up, LSM-KVS instances are facing a number
of issues including resource wasting, load balancing difficulties, and low scalability [27, 42].

Therefore, deploying LSM-KVS-based systems and applications to a disaggregated infrastructure
(or so-called disaggregated data center) has become attractive and a must in recent years [28, 56,
62, 74, 84, 85]. For example, Meta has built a new version of RocksDB to adapt to the disaggregated
Tectonic File System (called Disaggre-RocksDB), achieving availability higher than 99.99999%
[41, 42, 61]. In the storage disaggregated infrastructure, LSM-KVS is deployed at the compute node,
and all the data is stored at the disaggregated storage. Furthermore, for large cloud service providers
or large IT companies, moving data between different data centers is difficult while the LSM data
can be accessed from any data center, making cross-datacenter scenarios inevitable [42]. In this
case, accessing the data through the network can have longer latency and unpredictable throughput
compared with the locally attached SSDs. Since compaction creates most of the I/Os from LSM-KVS
(e.g., can be as high as 90% [70]), achieving near- or in-storage compaction is the main focus of
related studies, including Disaggre-RocksDB at Meta [42], Nova-LSM, [49], RocksDB-Cloud [63],
IS-HBase [28], TerarkDB [3], and Hailstorm [27].
However, existing studies [3, 27, 28, 49, 54, 63] including the state-of-the-art Disaggregated

RocksDB [42] only partially address the performance issues caused by compaction, other re-
source utilization and transient error problems are fully ignored. First, the compaction offloading
schemes proposed in the related work still tightly couple the compaction execution servers with
the LSM-KVS instance. Specifically, each LSM-KVS instance can only send compaction requests
to a pre-configured, fixed compaction server. However, since the LSM-KVS instances bound to
each compaction server may have different workloads, some compaction servers will be burdened
with heavy compaction jobs while others may remain idle. This situation leads to resource wasting
and unexpected performance regression. Second, in a single LSM-KVS instance, compaction jobs
are scheduled based on incoming orders or internal priority. However, in production, tens of KVS
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instances are deployed in the same host [22, 29]. The lack of global scheduling causes resource
contention between high and low-priority compaction jobs across instances, potentially impacting
overall performance. Before compaction offloading schemes were proposed, compaction jobs were
executed by each LSM-KVS instance individually and shard-migration was used to balance the
overall resource utilization among different servers, without the ability for global scheduling and
compaction-level optimizations. Currently, although remote compaction makes global scheduling
of compactions feasible, it’s still not addressed in current work [42]. Third, the existing design
overlooks the high overhead associated with preparing compaction jobs for remote execution (it
can even be longer than 10 seconds, as detailed in Section 3.2.3), at times making local compaction
a preferable choice. The performance and resource tradeoffs between local and in-storage com-
paction must be considered. Finally, the possible storage I/O failures, network transient errors,
and offloaded compaction execution failures are ignored in the existing work, which impacts the
robustness and reliability of near- or in-storage compaction.

To comprehensively address the aforementioned major issues, we take a holistic approach to build
a novel LSM-KVS with Compaction-as-a-Service called CaaS-LSM to achieve high-performance,
flexible, resource-efficient, and high fault-tolerant LSM-KVS design for disaggregated storage.
We propose to decouple the compaction logic from the LSM-KVS instance and execute it as a
lightweight stateless service. Instead of executing the compaction job locally, LSM-KVS encapsulates
the compaction information that is essential for an independent execution including job description,
data access authorizations, and control information in the compaction request. The compaction
requests are sent to a compaction service execution plane for near- or in-storage execution to avoid
creating network traffic between the compute and storage clusters. The execution plane consists of
a cluster of Compaction Service Agents (CSA), which are deployed inside the storage nodes or at
the compute nodes close to the storage cluster (typically one CSA per node).
More importantly, to improve the overall performance, achieve high resource utilization, and

comprehensively handle the various failures, we propose a performance- and resource-optimized
control plane in CaaS-LSM. First, the control plane decouples LSM-KVS instances from the execution
plane. LSM-KVS cluster or CSA cluster can be scaled in or scaled out without causing changes
on other components. Second, to achieve better overall performance, we propose an LSM-specific
scheduling algorithm in the control plane to properly arrange the execution order and execution
place (i.e., which CSAs should execute the job) of compaction job requests based on priorities. In
particular, the scheduling algorithm achieves dynamic allocation of compaction job requests to the
execution plane and LSM-KVS local compaction based on the available resources and compaction
job intensiveness for a better tradeoff between performance and resource utilization. Finally, to
handle various and complex errors and failures, we propose to classify the failures into service
execution failure, CSA failure, and execution plane failure and achieve fine-grained error handling.

We implement CaaS-LSM based on RocksDB [19], which is one of the most widely used LSM-KVS.
The implementation of our compaction service is merged to RocksDB 7.0 and above versions, and
the control plane of CaaS-LSM is open-sourced at GitHub 1. We evaluated our approach based
on different disaggregated storage setups, including in-rack clusters, within the same region, and
across different datacenters. In our evaluation using the standard db_bench benchmark for RocksDB
[6], compared with legacy LSM-KVS architecture (all LSM-KVS instances are at compute nodes),
CaaS-LSM can achieve up to 8X Operations Per Second (OPS) improvement, reduce up to 98%
of P99 latency, and avoid 99% of write stalls in cross-datacenter environments. In the in-rack
deployment, the OPS of CaaS-LSM surpassed SOTA Disaggre-RocksDB [42] by up to 61%. We also
integrate our proposed control plane with TerarkDB (TerarkDB-CaaS), which achieves up to 42% of

1https://github.com/asu-idi/CaaS-LSM

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 124. Publication date: June 2024.



124:4 Qiaolin Yu et al.

throughput improvement than that of native TerarkDB [3]. Moreover, to comprehensively evaluate
the end-to-end application performance improvement, we integrate CaaS-LSM with Nebula [21] (a
distributed graph database) and Kvrocks [1] (a distributed key-value store), which use CaaS-LSM as
their storage engines. For Nebula, CaaS-LSM achieves up to 8X of graph query OPS improvement
and 89% of average latency reduction compared with Nebula with legacy RocksDB. For Kvrocks,
CaaS-LSM improves up to 56% key-value query OPS and reduces the P99 latency up to 76%.

Contributions. Main contributions are summarized as follows:
• We propose the first Compaction-as-a-Service architecture (CaaS-LSM) to achieve lightweight
stateless compaction independent of the LSM-KVS instances, which is optimized for disag-
gregated storage. CaaS-LSM successfully addresses the issues of heavy network I/O penalties
and the on-demand nature of compaction with a novel stateless execution.
• Compared with existing studies including Disaggre-RocksDB and TerarkDB, CaaS-LSM
achieves better performance, higher resource utilization, and sophisticated failure handling
by introducing the novel control plane for CaaS.
• We implement and open-source CaaS-LSM based on RocksDB, and conduct comprehensive
evaluation in various deployments and real-world applications, which demonstrate the
benefits and tradeoffs.

2 BACKGROUND
2.1 LSM-based Key-Value Stores
Due to good write performance and better space efficiency, LSM-based Key-Value Stores (LSM-KVS)
(e.g., Big Table [31], Cassandra [5], LevelDB [46], and RocksDB [19]) become the backbone data
storage systems for unstructured data and supporting various applications in cloud service providers
and big internet companies [29]. LSM-KVS batch small random writes (KV-pairs) including Puts,
Updates, and Deletes in the memory write buffer, and persist KV-pairs in the write-ahead log (WAL).
When the write buffer is full, KV-pairs will be written out as a Sorted String Table (SST file) in
Level-0 (L0). SST files are organized in multiple levels and periodically merged into new SST files at a
higher level during a Compaction to eliminate the deleted or invalid KV-pairs [41, 51, 52]. However,
compaction introduces extra overhead including read/write amplifications, tuning complexity,
resource contention, performance penalties, and scheduling difficulties [7, 73, 81, 86].

2.2 Disaggregated Infrastructure
In a disaggregated infrastructure, servers are built with heterogeneous hardware resources and
form resource pools, such as computing pools, memory pools, and storage pools in the same data
center. It decouples different types of resources and can address the scalability, resource-wasting,
and management limitations of conventional monolithic server-based data center designs by adding
or removing some resources to create a much more balanced cost-effective system. Resources pools
are connected with high-speed networks [45, 78]. Storage disaggregation has been well developed,
such as Tectonic [61] at Meta and GFS [47] at Google. Applications at the compute cluster can
read/write data at the storage cluster through different interfaces such as block or file interfaces.

Since LSM-KVS is initially designed and widely studied based on monolithic servers and shared-
nothing architectures, the LSM-KVS-supported distributed applications will use thousands of LSM-
KVS instances on hundreds of servers to store the sharded data [22, 29, 41]. Each LSM-KVS instance
uses local CPU, memory, and storage resources and needs to share resources with other LSM-KVS
instances on the same server. As the application workload varies and continuously scales up, LSM-
KVS instances are facing a number of issues including resource wasting, load balancing difficulties,
low scalability, and poor elasticity [27, 42]. Therefore, deploying LSM-KVS-based applications to
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Fig. 2. Write Performance of Single Kvrocks Instance under Disaggregated Infrastructure.

a disaggregated infrastructure has become attractive and a must in recent years [28, 56, 84, 85],
illustrated by Meta’s disaggregation of RocksDB with the Tectonic File System [42], Nova-LSM for
storage disaggregated environments [49], and Rockset’s RocksDB-Cloud optimizations [63].

3 MOTIVATION AND CHALLENGES
While the emerging trend of disaggregated infrastructure provides promising and beneficial poten-
tials for LSM-KVS, it also generates several fundamental challenges. On one hand, for large cloud
service providers or large IT companies, moving data between different data centers is difficult while
the LSM data can be accessed from any data center, making cross-datacenter scenarios inevitable
[42]. Since the execution of the LSM-KVS is carried out at a compute node, all the needed data is
transferred from storage nodes through the network to the compute node. This substantial data
traffic incurs explicit performance degradation, attributable to network bandwidth contention and
increased latency as corroborated by Dong’s studies [41, 42]. The majority of the traffic is caused
by compaction. On the other hand, existing LSM-KVS is designed based on monolithic-server and
shared-nothing architecture. This lack of synergy impedes the realization of benefits associated
with storage sharing, resource elasticity, and enhanced management capabilities that fundamentally
block the comprehensive benefits imbued in a disaggregated infrastructure paradigm.

As shown in Figure 2, we run a Kvrocks instance (a RocksDB-based distributed key-value store)
with Redis benchmark Set queries for over 3 hours at in-rack and cross-datacenter disaggregated
deployment (the setup details are presented in Section 5). For the in-rack deployment, we can
observe OPS variation (varies from 75K to 100K) caused by the periodic compaction operations.
When the network bandwidth drops from 100 MB/s (in-rack) to 10 MB/s (cross-datacenter), the
Kvrocks instance shows deeper and longer OPS drops (e.g., from 37K to 1K). We analyze the
logs and observe recurrent write stalls in cross-datacenter deployments, primarily attributed to
the accumulation of compaction jobs. The concurrent execution of foreground operations and
compaction processes contends for the limited network bandwidth, resulting in the buildup of
unfinished or waiting compaction tasks. As foreground operations diminish, both CPU utilization
and the data transmitted to the storage exhibit corresponding fluctuations. In general, addressing

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 124. Publication date: June 2024.



124:6 Qiaolin Yu et al.

(a) CPU Usage Curve (b) CPU Usage Analysis of Function Calls

(c) Memory Usage Curve (d) Network I/O (Transmit and Receive)

Fig. 3. RocksDB runtime CPU usage, function call analysis, memory utilization, and network I/O (transmit
and receive).

the performance issues caused by compaction becomes a must when optimizing LSM-KVS for
disaggregated infrastructure.

3.1 Bottleneck Analysis
To comprehensively analyze the performance issues caused by the compaction of existing LSM-KVS
with storage disaggregation, we conduct a set of experiments on RocksDB. We examine several
potential factors, including CPU, memory, network latency, and I/O failures. We use RocksDB’s
db_bench to generate various workloads (configured as 16 client threads, 100B KV-pair size, 8
background RocksDB threads, 30 million random KV-pair insertion). The RocksDB instance is
reserved with 8 CPU cores and 8GB of memory, and all the data is written to a disaggregated
storage (here we use HDFS which is similar to Tectonic File System [61] at Meta). We monitor
and record CPU, memory, and network utilization as shown in Figure 3. We also use Linux perf to
analyze CPU utilization of various functions in RocksDB shown in Figure 3(b).

CPU Resource Wasting As shown in Figure 3(b), a vast majority of CPU is occupied by write
threads and compaction threads (the occupation classified as "other" in the chart is, in many cases,
a result of contention between write and compaction operations). As shown in Figure 3(a), when
the CPU utilization rate reaches its full capacity (800%), compaction and foreground operations
(e.g., Put) are competing on the CPU resources. It will lead to foreground operation throttling and
overall performance regression. On the other hand, there are substantial periods where CPU usage
significantly declines (e.g., 200%). This typically happens in two scenarios: 1), write slowdowns or
write stalls happen due to an excessive accumulation of Level 0 files. It is usually caused by a large
number of waiting compaction jobs. And 2), when the number of compaction jobs is relatively low,
the 8 background threads are not fully used. Therefore, decoupling compaction jobs from LSM-KVS
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and executing them together with proper scheduling and balancing strategies can achieve better
tradeoffs between performance and resource utilization in the disaggregated infrastructure.

Network InfluenceWith disaggregated storage, the I/O throughput and latency are determined
by the network conditions. As shown in Figure 2, when the network condition is worse (e.g.,
changing from in-rack to cross-datacenter deployment), the overall OPS drops significantly. More
seriously, compaction is the main cause of storage I/Os leading to heavy network traffic, which
results in a deeper OPS drop and a longer OPS recovery time. Therefore, dynamic allocating
compaction job requests between LSM-KVS and remote compaction workers can effectively utilize
the network resources and avoid contentions.

3.2 Limitations of Existing Studies
To mitigate the impact of compaction in disaggregated storage, existing studies propose to separate
the compaction process from the LSM-KVS instance and run it remotely [3, 27, 28, 42]. Meta has
built disaggregated RocksDB in the Tectonic File System (called Disaggre-RocksDB) [42], which
links one or more LSM-KVS instances to a specific remote compaction worker (e.g., deployed near
or in the storage cluster). However, this tightly coupled integration can potentially lead to either
compaction worker resource wasting or compaction job waiting. Similar issues also exist in the
remote compaction design of IS-HBase [28], RocksDB-Cloud [63], and Nova-LSM [49]. TerarkDB
[3] implemented remote compaction with Function as a Service (FaaS), which uses a general
job scheduling system like Mesos or Kubernetes to schedule the compaction requests. Similarly,
Hailstorm [27] monitors cluster instance availability and offloads compaction jobs to idle instances
for workload balancing. However, it cannot handle compaction jobs with different priorities and
complex transient I/O errors.

3.2.1 Inefficient Resource Utilization. Most of the existing work uses the static connection
between LSM-KVS instances and the remote compaction workers [41, 42, 49]. Due to the unbalanced
compaction job intensiveness among different LSM-KVS instances, it often happens that certain
compaction workers are extremely busy, while others remain idle. We use Disaggre-RocksDB
[42] to demonstrate such resource wasting issue. We run 8 RocksDB instances (8 RocksDB LSM-
KVS instances) in 2 compute nodes at different start times, which will trigger compactions from
different SST levels at different times. We deployed 2 compaction workers in the same region as
the disaggregated storage. Each compaction worker is responsible for the compaction jobs from 4
LSM-KVS instances. Each RocksDB instance receives the queries from 4 db_bench client threads to
generate the random write with 16 million KV-pairs (100B size) in total. The results of OPS and
P99 latency are shown in Figure 4. In Disaggre-RocksDB, since their compaction jobs are executed
until the pre-allocated compaction worker has a free worker thread, 2 of the 8 LSM-KVS instances
(db4 and db8) have much lower OPS (OPS decreases 33% from 12K to 8K as shown in Figure 4(a)).
Therefore, it is essential to decouple the LSM-KVS instances from remote compaction workers.

3.2.2 RemoteCompaction Job Scheduling Issues. For a single LSM-KVS instance, compactions
are usually scheduled based on the compaction job incoming order (i.e., FIFO) or optimized with
priority-based scheduling [26, 33, 60]. However, in production, one host usually deploys tens or
even several hundred LSM-KVS instances (e.g., cluster deployment of ZippyDB [22] or Kvrocks
[1]). Compaction jobs across different LSM-KVS instances are scheduled independently. Urgent
compactions (e.g., L0 or L1 compaction) can be delayed by long-running low-level compactions (e.g.,
bottom-level compaction). Therefore, ignoring the importance and priority difference of compaction
jobs from different LSM-KVS instances can lead to overall application performance degradation.
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(a) OPS of multiple db_bench (b) P99 latency of multiple db_bench

Fig. 4. Performance imbalance in Disaggre-RocksDB.

3.2.3 Balancing Between Local and Remote Compaction. Although executing compaction
remotely offers numerous benefits, preparing the compaction execution outside the LSM-KVS
instance can incur explicit extra overhead, which is overlooked in existing studies. We run db_bench
under various network environments on Disaggre-RocksDB [42], ensuring an abundance of CPU
and memory. Rocks-Local (execute compaction inside RocksDB instance at compute node) and
Disaggre-RocksDB (run compaction remotely at disaggregated storage nodes) are evaluated with
different deployments: in-rack Rocks-Local (IR-Local), in-rack Disaggre-RocksDB (IR-Remote),
within-datacenter Rocks-Local (WD-Local), within-datacenter Disaggre-RocksDB (WD-Remote),
cross-datacenter Rocks-Local (CD-Local), and cross-datacenter Disaggre-RocksDB (CD-Remote).
We collect the average time between the start of a compaction job and its completion (Compaction
Time), the average time of preparing remote compaction execution (Open DB Delay), and the
average elapsed time between the creation of a remote compaction job and the starting of its
execution (Total Delay), which includes the Open DB Delay (Open) and network latency.

As shown in Figure 5(a), the Compaction Time of IR-Local, IR-Remote, WD-Local, WD-Remote,
and CD-Remote are very similar. However, the situation with CD-Local is different. Owing to
the high latency of reading SST files from the disaggregated storage at another datacenter, the
compaction process is considerably slower. When inserting 18 million KV-pairs, the Compaction
Time of CD-Local is 9,469 s. Figure 5(b) indicates that the total delay (i.e., IR-Total, WD-Total,
and CD-Total) caused by remote compaction is dominated by the delay of preparing the remote
compaction execution (i.e., IR-Open,WD-Open, and CD-Open). For LSM-KVS instances with amuch
larger data scale, the compaction worker needs a longer preparation time to initialize a lightweight
compaction instance for execution since it needs more time to reconstruct the in-memory data
structure from the Manifest file.
Therefore, we need to address the delay overhead of preparing the remote compaction by

achieving the balance between remote compaction and local compaction. Remote compaction is
not a silver bullet. When LSM-KVS has enough resources (i.e., enough network and CPU resources,
and fewer compaction jobs), executing the compaction job locally at the LSM-KVS instance can be
more advantageous than executing it remotely. However, existing solutions lack the flexibility and
tradeoffs to combine the advantages of remote compaction and local compaction.

3.2.4 Failure Handling. When executing compaction remotely at the storage cluster, various
transient errors and failures can happen, such as storage I/O failure, transient errors between
the compaction worker and LSM-KVS, and failures of the compaction workers. Also, since more
software stacks, network stacks, and distributed protocols are involved during the remote I/Os
(e.g., local file systems, integrity checks, replications, and network transmissions), the failures
can happen frequently at different software levels. Therefore, a comprehensive failure handling is
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(a) Overall Compaction Time of Disaggre-RocksDB (b) Total Delay and Open DB Delay of Disaggre-RocksDB

Fig. 5. Compaction time and compaction worker open DB delay evaluation of Disaggre-RocksDB in different
deployments of disaggregated storage systems.

essential for LSM-KVS with compaction offloading to guarantee reliability and robustness, which
is fully ignored by existing studies.

3.3 Challenges
Motivated by the aforementioned analysis, we are aiming to design a novel LSM-KVS for disaggre-
gated storage with high performance, high scalability, better resource efficiency, and high fault
tolerance. However, three main challenges need to be addressed:
• How to address the scalability and dependency issues of existing compaction offloading
designs, including dynamically adding and removing compaction workers and independent
execution of compaction jobs.
• How to design a logically centralized control plane to satisfy monitoring, scheduling, and
management requirements for remote compaction execution and to decouple LSM-KVS
instances and the compaction workers.
• How to achieve high elasticity, high performance, and high fault tolerance with the con-
trol plane, including compaction job scheduling, compaction worker selection, dynamic
compaction job distribution between local and remote, and comprehensive error handling.

4 CAAS-LSM DESIGN
To resolve the aforementioned issues and limitations of existing studies on optimizing LSM-KVS
with disaggregated storage and address the main challenges, we propose a novel LSM-KVS archi-
tecture with Compaction-as-a-Service (CaaS-LSM). First, To achieve highly flexible and scalable
compaction execution, CaaS-LSM encapsulates the compaction logic as a stateless compaction
service execution function (i.e., compaction service), which can be executed independently at any
host without impacting the running state of LSM-KVS. Second, to improve the scalability and
management capability of the compaction service, we propose the compaction service execution
plane, which is responsible for executing the compaction job requests from different LSM-KVS
instances and manages the compaction workers. Third, to address the performance, resource uti-
lization, and failure handling issues, we further propose a compaction service control plane,
which decouples LSM-KVS from the execution plan, precisely manages the execution of compaction
services, and achieves sophisticated compaction job scheduling and failure handling.

4.1 System Overview of CaaS-LSM
The overall architecture of CaaS-LSM is shown in Figure 6. LSM-KVS instances are deployed on
compute nodes and their data is stored on storage nodes. Ideally, both execution and control planes
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Fig. 6. The overall architecture of CaaS-LSM.

are deployed close to or inside the disaggregated storage cluster to avoid heavy networking overhead
between compute and storage nodes during compaction. The compaction service execution plane
(discussed in Section 4.2) consists of a cluster of Compaction Service Agents (CSA). If one node
is selected for compaction service execution, a CSA daemon will be deployed at this node. When
a compaction request is created by LSM-KVS, it carries all the metadata needed to execute the
compaction job independently. Therefore, each CSA is stateless, allowing the CSA cluster to scale
in or out freely. The compaction service control plane (discussed in Section 4.3) schedules the
compaction job requests based on the priority of the compaction job and the resource of the CSAs
and LSM-KVS, handles various failures, and achieves high scalability. The communication across
LSM-KVS instances, control plane, and execution plane are lightweight metadata and control
messages, which utilize small network resources through TCP/IP protocols.
The workflow of using the compaction service in CaaS-LSM is shown as follows: 1○When an

LSM-KVS initiates a compaction job, it sends the compaction information to the connected control
plane; 2○ Upon receiving a compaction job, the control plane determining the execution place
(e.g., local or remote), sequence of the piled-up compaction jobs, and the CSA (if it is executed
remotely) based on the proposed scheduling algorithm; 3○ If all CSAs are busy, the control plane can
reassign the compaction job back to the LSM-KVS instance, allowing it to fall back to local execution
(hybrid-scheduling at Section 4.3.2); 4○ Once a CSA receives the compaction job request from the
control plane, it launches a compaction worker thread to execute the request. The compaction
worker reads the target SST files directly from the storage nodes to avoid the traffic between
LSM-KVS instances and the storage nodes. Then, the compaction worker executes the compaction
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and generates the compaction results (i.e., new SST files) at a temporary workplace; 5○ After the
execution, the CSA submits the results to the control plane; 6○ Upon receiving the successful
compaction results, the LSM-KVS instance double-checks the correctness of the execution status
and SST file information; 7○ Subsequently, the LSM-KVS instance renames and installs new SST files
by updating the Manifest and in-memory data structure. Once the new SST files are successfully
installed, the old input SST files are purged.

Since CaaS-LSM is a framework to execute the compaction job remotely as a service and retains
all the original function modules of LSM-KVS, the CaaS-LSM design is fully compatible with the
existing LSM-KVS designs and can be integrated with other LSM-KVS-related optimizations. For
example, CaaS-LSMuses the same block cache strategy, filter construction, write buffermanagement,
and compaction policies as Disaggre-RocksDB [42], which maintains the block cache, write buffer,
and block-based table builder at compute node locally. CaaS is designed as an alternative way of
executing compaction jobs with more flexibility. Even if the compaction service fails to execute
a compaction request, there is no corruption or consistency risk since the status of the LSM-
KVS will be changed only after a successful compaction job execution. To improve resource
utilization, applications can reduce the CPU resource reserved for LSM-KVS local compaction
without influencing the overall performance. Different upper-level applications that use CaaS-LSM
instances as their storage engines can share the same control plane and execution plane, which
better balances the workload and improves the CPU utilization of CSA. Note that, most of the
existing works on LSM-KVS compaction optimizations including [32, 33, 40, 48, 60, 67, 71] can be
easily integrated with CaaS-LSM as a customized compaction operator.

4.2 Compaction Service Execution Plane
We propose a logically centralized compaction service execution plane to manage compaction
workers with the help of CSAs and achieve stateless execution for compaction jobs. Though the
compaction service execution plane may increase complexity and initial setup cost, it can minimize
resource contention and achieve better tradeoffs in elasticity and scalability. The architecture of
the execution plane, CSA, and the relationship with the LSM-KVS instances and control plane is
shown in Figure 7. One CSA manages a group of compaction workers in a node. The CSA cluster
can be horizontally scaled in and out according to demand. CSA receives multiple compaction
job requests from different LSM-KVS instances based on the control plane scheduling and then
distributes these jobs to the compaction worker for execution. Each compaction worker can only
execute one compaction job at one time (single thread). For different compaction jobs, CSA can
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allocate different hardware resource capacities (can be pre-defined by user), like memory and I/O
bandwidth, to workers to precisely control the compaction execution speed.
To precisely monitor the compaction service execution status and resource utilization which

will be used by the LSM-KVS instance and the control plane for scheduling, load balancing, and
failure handling, CSA collects the CPU, memory, storage, and network utilization, compaction job
status (including SST file properties, execution time, and error information), and execution progress
periodically. The monitoring statistics are packed in CompactionServiceOutput and return to the
control plane and LSM-KVS instance.
To achieve independent and stateless service execution for compaction jobs, CaaS-LSM intro-

duces two sets of information during the compaction preparation stage in the LSM-KVS instance:
ControlMetadata and CompactionServiceInput. We propose to use ControlMetadata to carry
the compaction job metadata information provided by the LSM-KVS instance, which includes com-
paction job information: input/output file level, location, size, compaction score, and application
priority. The control plane primarily uses ControlMetadata to optimize the management of the
compaction service, such as scheduling, priority adjustment, and orchestration. On the other hand,
the CompactionServiceInput is utilized by the compaction worker to execute the compaction job,
which encapsulates the self-contained compaction job details for independent execution, including
LSM-KVS instance options, statistics, authorizations, and customized operators (e.g., users can cus-
tomize their own comparators to sort KV-pairs, read filters [17, 39, 66], or compression algorithms
[15] during compaction).

CompactionService::Start and WaitForComplete are the only two interfaces that we added
in the LSM-KVS instances such that they can create the compaction job requests and receive the
execution results from the execution and control plane. These two interfaces are also flexible and ex-
tendable since users can define their own implementations. For example, We can pack two structures
CompactionServiceInput and ControlMetadata in a request within CompactionService::Start
and send the request to the control plane. Users can directly add or change some arguments to these
two data structures. WaitForComplete will receive two execution results from compaction service:
Result and Status. Result includes the output files path, execution statistics, and the result state
(Success, Failure, and UseLocal). For example, if the Result state indicates UseLocal rather than
Failure, LSM-KVS instance can still use the legacy logic to execute the compaction job locally.
Status includes the possible error information, like Maincode, Subcode, and Severity. Maincode
indicates error’s main categories such as Timeout. Subcode shows more detailed information like
MutexTimeout, NetworkTimeout, and WaitTimeout. Severity defines the error severity level. For
example, the data corruption-related failure is a "UnrecoverableError". If a failure is caused by a
certain CSA, it is a "SoftError" and can be solved by rescheduling to another available CSA.

4.3 Compaction Service Control Plane
To address the limitations and challenges discussed in Section 3, the introduction of the control
plane has become necessary. Although introducing the control plane design may lead to the risk of a
single point of failure (addressed in Section 4.4) and the potential performance bottleneck in extreme
high request scenarios (as evaluated in Section 5.6), it can achieve better tradeoffs for the scalability
of CSAs, resources utilization, and global scheduling of compactions. Therefore, we propose a
performance- and resource-optimized control plane to manage the scheduling and execution of
compaction services as shown in Figure 6. First, the control plane maintains a list of active CSAs
in the execution plane and caches the authorized connection with LSM-KVS instances. Users can
dynamically add or remove LSM-KVS instances and CSAs without influencing the compaction
service execution to achieve high elasticity. The control plane itself is also a service, which consists
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of a number of control plane instances. Each control plane instance is responsible for handling the
compaction job requests from a group of LSM-KVS instances.

The control plane consists of three major components: Monitor, Scheduler, and Distributor.
They are responsible for monitoring the CSAs’ status, determining compaction jobs’ priority and
execution order, and distributing compaction jobs to the target CSAs respectively. The workflow
of executing a compaction service with control plane is as follows: 1) LSM-KVS instance sends a
newly created compaction job to the control plane and starts the regular check with the control
plane (e.g., every 500ms) to get the job status updates; 2) The Scheduler compares the priority of
compaction jobs and arranges their execution order; 3) The Distributor distributes the compaction
job to a CSA with available resources; 4) Upon job completion, the CSA returns the results back to
the control plane, and the LSM-KVS instance can fetch these results through regular checks. If all
CSAs are busy, the control plane queues compaction jobs to prevent jobs blocking at a CSA.

4.3.1 Monitoring. The control plane monitors the status of CSAs, the execution progress of
compaction jobs, and resource utilization. When a new CSA is deployed (e.g., dynamically added
by users to handle heavy compaction requests or to match the compaction requests from newly
added LSM-KVS instances), it will register the CSA to the Monitor. The Monitor will start the
regular heartbeat checks for CSA to collect status and resource information such as the thread pool
size, current executing task number, and available resources (e.g., memory, storage, and network
bandwidth). When a job is distributed to a CSA or CSA returns the compaction results, Monitor
will also update the latest status of the CSA.

4.3.2 Scheduling and distribution. The Scheduler is the core module of the control plane and
has three main scheduling functions to ensure that the most urgent job can be scheduled and
executed first: 1) maintaining a priority queue for the waiting compaction job requests to decide
priorities, 2) selecting the available and appropriate CSAs for compaction job execution, and 3)
dynamically scheduling the compaction jobs between local and remote.
Compaction Priority Comparison If more than one compaction jobs are queued in the

Scheduler, the Scheduler leverages ControlMetaData (e.g., input/output file level, and compaction
score) to decide the priority of compaction jobs and arrange their execution order: 1) We first
compare the compaction job trigger reasons: manually triggered compaction jobs have higher
priority than background scheduled compaction jobs; 2) we then compare the input SST file level of
the compaction. A compaction job with a higher input file level (e.g., L0 or L1) has higher priority
over the compaction jobs from the lower level (e.g., bottom-level); and 3) compaction with a higher
score has higher priority, which is calculated by the compaction policy (e.g., In RocksDB, the
compaction picker will generate a score for each compaction job). Furthermore, CaaS-LSM also
allows users to add other factors to customize the scheduling algorithm, such as the application
priority, compaction job I/O estimation, and compaction trigger types (e.g., space amplification,
read amplification, or Time-To-Live compaction).

CSA Selection and Distribution After a compaction job with the highest priority is selected to
be executed first based on the aforementioned policy, we propose to use the SST file size information
included in the ControlMetaData to estimate the resource consumption of a certain compaction
job. Then, we use the following policy to select an appropriate CSA with sufficient free resources:
1) the Scheduler filters out CSAs where the current CPU or memory utilization rate exceeds 80%; 2)
the scheduler selects the CSA with the most available resources from the remaining CSA candidates;
3) the selected CSA is compared with the estimated resources. If the resources of the selected CSA
are insufficient for the current compaction job, a message indicating a lack of resources is returned
(more details in the next paragraph). Finally, the Distributor distributes the compaction job to the
selected CSA for execution. After the execution, the result will be returned to the Distributor by
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the CSA. The detailed process is shown in Algorithm 1. Note that the algorithm for selecting
CSAs can also be easily replaced according to the actual production environment demands.

Algorithm 1 EnhancedCSAScheduling
1: procedure ScheduleCSA(controlMetaData)
2: csa← OptimizedCSASelection(controlMetaData)
3: return AgentAvailabilityCheck(csa) ? csa : ∅
4:
5: procedure ProcessTask
6: loop
7: if AdvancedTaskQueue.isEmpty() then
8: AdaptiveWait()
9: else
10: task← AdvancedTaskQueue.dequeue()
11: controlMetaData← MetaRetrieval(task)
12: csa← ScheduleCSA(controlMetaData)
13: if csa ≠ ∅ then
14: JobDispatch(csa, task)
15: else
16: AdvancedTaskQueue.enqueue(task)
17: AdaptiveWait()

Local-Remote Combined Scheduling Although fully relying on remote compaction service
can effectively optimize the overall performance, both the execution plane and control plane
introduce extra overhead (e.g., the overhead of preparing and initializing the compaction execution
as discussed in section 3.2.3). When a large number of compaction jobs accumulate in the priority
queue of the control plane and wait for CSA resources, the compaction job finishing time can be
even longer than executing them locally at LSM-KVS instances. However, how to quickly decide
the compaction job execution place (i.e., at LSM-KVS local or at the execution plane) and guarantee
a better performance is challenging.

We propose a hybrid compaction job scheduling policy to dynamically allocate the compaction
jobs between in-LSM-KVS compaction logic and remote compaction service. We include the
following information in ControlMetaData: 1) the historical execution time of recent compaction
jobs (both locally executed and execution plane executed) in a sliding window, and 2) the LSM-
KVS thread pool utilization level. To achieve accurate compaction time estimations, we propose
the following two estimation equations. The formula (1) calculates the compaction rate using a
weighted average of past and recent compaction rates. The formula (2) estimates compaction time
based on the estimated compaction rate and total SST file size. Furthermore, 𝛼 is a weighting
factor, typically chosen to be a value close to 1, such as 0.9, to balance the influence of new and old
compaction rates.

𝑅𝑎𝑡𝑒new = 𝛼 × 𝑅𝑎𝑡𝑒old + (1 − 𝛼) ×
𝐶𝑜𝑚𝑝𝑎𝑐𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒actual

SstFileSize
(1)

𝐶𝑜𝑚𝑝𝑎𝑐𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒estimated = SstFileSize × 𝑅𝑎𝑡𝑒new (2)

The control plane first estimates the compaction execution time at local and the time at the exe-
cution plane (including queuing time, execution time, and network latency) via the aforementioned
two formulas. Then, the Scheduler decides whether the compaction is executed locally or remotely
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according to the following rules: 1) If the local thread pool utilization is too high (e.g., more than
95%), execute the job remotely; 2) If a message indicating a lack of CSA resources is received,
execute the job locally; 3) If the estimated execution time of the local compaction execution is
shorter than remote execution, execute the job in its LSM-KVS instance.

4.4 Fault Tolerance and Error Handling
Considering the various types of failures and errors happening in different software stacks during
the compaction service execution, it is challenging to design a comprehensive failure-handling
logic to cover all the possible scenarios. Therefore, we propose to classify the failures in three
levels (i.e., job-level, CSA-level, and Service-level) and handle them accordingly with fine-
grained solutions, which ensures the successful execution of compaction jobs and minimizes the
performance penalties propagated to the upper-layer applications.
Job-level failure, which can be caused by the I/O, network, or even hardware errors, is indi-

cated by the returned status code. We design three levels of failure seriousness and handle them
accordingly: 1) retriable error (e.g., system errors like I/O or network errors), the control plane will
retry the execution in the same CSA; 2) solvable error (e.g., insufficient resources or connection
timeout), the control plane will reschedule the same job to another CSA; And 3) unrecoverable
error (e.g., data corruption or data access authorization denied), the control plane will return the
error info back to LSM-KVS instance.
CSA-level failure, which can be caused by CSA crashes, host failure, or network partition, is

indicated by losing CSA’s heartbeat. The control plane will first try to reconnect the CSA. If the
CSA cannot be recovered after several attempts, the control plane will remove this CSA from its
registration list and reschedule all compaction jobs to other healthy CSAs with the highest priority.

Service-level failure means the control plane cannot normally respond to LSM-KVS instance
requests due to single-point failure or network connection issues. In this case, LSM-KVS instance
will execute the compaction job locally. To make the service reliable, the control plane can be
deployed at multiple nodes with consensus algorithms (such as Raft [59] and Paxos [53]). For
example, in the Raft algorithm, if the leader node loses connection, followers will elect a new leader
to take over the service responsibility.

5 IMPLEMENTATION AND EVALUATION
5.1 Goals
We evaluate CaaS-LSM to demonstrate the following statements.

• CaaS-LSM has better performance and resource utilization than Legacy LSM-KVS (§5.4.1)
and Disaggre-RocksDB (§5.4.2) in CPU-intensive scenarios.
• CaaS-LSM can be applied concurrently with other optimizations of LSM-KVS like TerarkDB,
bringing better performance than TerarkDB’s native remote compaction (§5.4.4).
• CaaS-LSM will not negatively impact scenarios with minimal or no compaction (§5.5.1).
Furthermore, in addition to reducing CPU resource wastage (§5.4.1), CaaS-LSM also mitigates
the impact of bad network conditions (§5.5.2).
• The scheduling algorithm in CaaS-LSM is effective and the control plane will not be the
bottleneck (§5.6).
• CaaS-LSM can bring performance improvements to real-world distributed applications (e.g.,
Kvrocks, Nebula) (§5.7).
• CaaS-LSM offers comprehensive failure handling mechanisms and scalability (§5.8).
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5.2 Implementation
We implement CaaS-LSM based on RocksDB, which is a widely used LSM-KVS (e.g., as storage
engines for MyRocks [12], ZippyDB [22], MongoRocks [18], TiKV [14], Nebula [21], and Kvrocks
[1]). The implementation of compaction logic encapsulating as a stateless service is production-
ready and merged to RocksDB 7.0 and above versions [19]. We use gRPC [9] to achieve the
communications between LSM-KVS instances, control plane, and execution plane. The source code
of CaaS-LSM is available at GitHub [4].

5.3 Evaluation Setup and Methodology
Experimental Environments Our experiments are conducted in three different storage disaggre-
gation deployments, which are also discussed in Disaggre-RocksDB [42]: in-rack, within-datacenter,
and cross-datacenter. For the in-rack deployment, we use the cluster with all machines in the same
rack and connected to a 10Gbps network switch. Each machine is equipped with Intel Xeon Gold
6330 CPU, 256GB memory, and 7TB HDD. We utilize the Google Cloud Platform (GCP) to achieve
within-datacenter and cross-datacenter deployments. The compute nodes (E2) are configured with
16 vCPUs, 32GB memory, and 1-16 Gbps network (depending on the deployments and workloads)
[11]. The storage nodes are configured with 8 vCPUs, 16GB memory, 1-16 Gbps network, and large
storage space. Separately, for the within-datacenter environment, compute and storage nodes are
deployed in the same GCP region. For the cross-datacenter environment, compute and storage
nodes are deployed in 2 different GCP regions separately. In all three deployments, we configure
HDFS as the Disaggregated Storage (D-Storage), similar to the Tectonic File System at Meta.
Deployment The baseline deployment runs RocksDB instances at compute nodes, executing

compaction jobs locally and storing all RocksDB files in D-Storage (called Rocks-Local). For
CaaS-LSM, we run RocksDB instances at compute nodes and deploy the execution/control plane of
CaaS-LSM in the same region as D-Storage.We RocksDB native benchmark db_bench to evaluate the
basic performance. Moreover, we integrate CaaS-LSM with two real-world distributed applications
Kvrocks [1] and Nebula [21] to further demonstrate the end-to-end performance improvement and
the effectiveness of the control plane. Kvrocks is a Redis-compatible distributed KVS using RocksDB
as its storage engine and Nebula is a distributed graph database that uses RocksDB to persist all the
graph-related data. Based on Nebula v3.2.0 and Kvrocks v2.2.0, we added some changes to make
them compatible with RocksDB 7.0, CaaS-LSM, and HDFS libraries. We launch 4 Kvrocks instances
on 2 compute nodes (each with 2 Kvrocks instances as master), forming a Kvrocks storage cluster
by Kvrocks Controller [10]. We deploy Nebula with 2 RocksDB instances in its storage service.
Database Configuration For db_bench, we modify the option max_background_jobs and

the number of client threads to suit each specific case, while other configurations are main-
tained at their default values (16B key size, 100B value size). For Nebula, we change the option
rocksdb.block.cache to 1GB. For Kvrocks, we use the default configurations. We use direct I/O
in all evaluation to exclude the unpredictable influence of page cache [29].

5.4 Comparison with Baselines
We use the following 5 systems as baselines for performance comparison with CaaS-LSM: 1)
fundamental remote compaction schema proposed in Disaggregated RocksDB, called Disaggre-
RocksDB [42]; 2) TerarkDB [3] with both local compaction (Terark-Local); 3) TerarkDB with its
native remote compaction mode (Terark-Native); 4) To ensure a fair comparison, we also implement
the CaaS-LSM design based on TerarkDB, named Terark-CaaS; And 5) we compare CaaS-LSM with
Cassandra [5] using YCSB [35]. We use the in-rack deployment and utilize Docker to distribute
the machine resources into 8 discrete containers to run RocksDB/TerarkDB instances. For the
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(a) OPS comparison (b) P99 latency comparison

(c) CPU usage of remote endpoints (CaaS-LSM) (d) OPS comparison (CaaS-LSM vs. Cassandra) with varying
operation counts in millions (M) and write thread counts (T)

Fig. 8. Performance comparison with related work in CPU-intensive scenarios (16 client threads and 8
max_background_jobs). The OPS of CaaS-LSM surpassed Disaggre-RocksDB by up to 61%, and TerarkDB-
CaaS surpassed native TerarkDB up to 42%. Furthermore, CaaS-LSM achieves up to 240% in OPS compared
to Cassandra.

local compaction mode (i.e., Rocks-Local, and Terark-Local), each RocksDB/TerarkDB instance
is provisioned with 8 CPU cores and 8GB of memory. For the remote compaction mode (i.e.,
Disaggre-RocksDB, CaaS-LSM, Terark-Native, and Terark-CaaS), each RocksDB/TerarkDB instance
is allocated 6 CPU cores and 6GB memory, and a dedicated container (equipped with 4 cores and
1GB memory) is deployed remotely for compaction execution (1 control plane instance and 2 CSA
instances). Systematic tests are executed within these containers using db_bench, configured with
16 client threads and 8 max_background_jobs, to evaluate the CPU-intensive scenarios. We use
random_fill workload to insert 64 million KV-pairs into each RocksDB/TerarkDB instance. We
run these RocksDB/TerarkDB instances at different times to trigger compaction jobs from different
SST file levels at the same time. All SST files are stored in the in-rack D-Storage.

5.4.1 CaaS-LSM vs. Rocks-Local. Compared to the Rocks-Local, CaaS-LSM utilizes 12 fewer
CPU cores but much higher performance. Specifically, as shown in Figure 8, CaaS-LSM achieves
a 50% of OPS improvement, a 19% reduction in P99 latency, and a 49% decrease in write stall
count. It validates that the design of CaaS-LSM can effectively save CPU resources while enhancing
performance. Figure 8(c) depicts the CPU usage of the control plane and execution plane. The
resource utilization at the remote end is significantly higher compared to the Rocks-Local. This
experiment also shows that CaaS-LSM effectively addresses the resource-wasting and scaling issue
discussed in Section 3.2 shown in figure 3(a), where the original RocksDB design cannot fully utilize
local CPU resources. We also evaluate the performance of CaaS-LSM and Rocks-Local in other
cases, with details in Section 5.5.
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5.4.2 CaaS-LSM vs. Disaggre-RocksDB. As shown in Figure 8, Disaggre-RocksDB experiences
resource allocation imbalance since one RocksDB can only send the compaction job to a pre-
allocated worker lacking of scheduling for compaction jobs and workers. Even if the resources of
a certain compaction worker are fully occupied and other compaction workers are available and
waiting for the compaction job requests, the compaction jobs will continue to be queued at the
busy worker. Consequently, db4 and db8 exhibit poor P99 latency under such resource contention,
as shown in 8(b). When evaluated individually for each instance, the OPS of CaaS-LSM surpasses
that of Disaggre-RocksDB, delivering an enhancement of up to 61%. When evaluating the average
performance across eight instances, the OPS of CaaS-LSM outperforms Disaggre-RocksDB by 45%.

5.4.3 Rocks-Local vs. Terark-Local. According to Figure 8, under the same condition of using
local compaction, Terark-Local performs better than Rocks-Local since TerarkDB implements
additional optimizations (i.e., new compression scheme, new SST file format, and novel indexing)
on top of RocksDB. These optimizations are compatible with the design of CaaS-LSM. Therefore,
we implemented the CaaS schema based on TerarkDB, named Terark-CaaS, to facilitate a more
equitable comparison with Terark-Native.

5.4.4 Terark-CaaS vs. Terark-Native. Terark-Native demonstrates a better resource allocation
than the design of Disaggre-RocksDB. However, Terark-Native provides only a rudimentary level of
scheduling based on general metrics of CPU, memory, and network conditions. It does not take into
account compaction job-specific metrics such as compaction job priority and compaction job SST
file levels. As shown in Figure 8(a), the OPS of Terark-CaaS exceeds that of Terark-Native, showing
an improvement of up to 42%. In the context of average performance across eight instances,
Terark-CaaS demonstrates a 34% higher OPS compared to Terark-Native. This evaluation not
only demonstrates that the performance of the CaaS-LSM design is superior to TerarkDB’s local
compaction mode and native remote compaction mode, but also proves the versatility of the CaaS-
LSM design. The design of CaaS-LSM can be applied to other LSM-KVS implementations and is
compatible with other optimizations.

5.4.5 CaaS-LSM vs. Cassandra. We deploy Cassandra on disaggregated storage to compare
with CaaS-LSM, using Cassandra’s default configuration with a replication factor of 1. As Figure
8(d) shows, we employ a custom YCSB workload, initially loading 1,000,000 records, followed by
inserting 10,000,000/15,000,000 records using 1/2/4 threads. In the 6 cases tested, CaaS-LSM achieves
a maximum increase of 240% in OPS compared to Cassandra.

5.5 CaaS-LSM vs. Legacy LSM-KVS
In Section 5.4.1, we evaluate CaaS-LSM and legacy LSM-KVS in CPU-intensive scenarios. In this
section, we conduct a more detailed comparison between CaaS-LSM and legacy LSM-KVS with
different deployments and workloads. The six implementation and deployment combinations are:
in-rack Rocks-Local (IR-Local), in-rack CaaS-LSM (IR-CaaS), within-datacenter Rocks-Local (WD-
Local), within-datacenter CaaS-LSM (WD-CaaS), cross-datacenter Rocks-Local (CD-Local), and
cross-datacenter CaaS-LSM (CD-CaaS).

5.5.1 Evaluation of ScenarioswithMinimal orNoCompaction. We evaluate the performance
improvement of CaaS-LSM compared with legacy LSM-KVS. We use different workloads (random
read/write vs. sequential read/write) under various network conditions. Sequential write will have
much fewer or no compaction jobs compared to random write operations, which is designed to
demonstrate that our approach does not lead to performance regression with light compaction
demands. We use db_bench, configured with 1 client thread and 4 max_background_jobs.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 124. Publication date: June 2024.



CaaS-LSM: Compaction-as-a-Service for LSM-based Key-Value Stores in Storage Disaggregated Infrastructure 124:19

Random Read Write To evaluate the performance on read and write mixed queries, we use
the database generated by the RandomWrite benchmark as the base (already inserted 18 million
key-value pairs) and continue to issue queries with 50% reads and 50% writes. In this experiment,
Get queries trigger the data block read (32KB blocks) from SST files. Since the key is randomly
distributed in the whole key space, the block cache hit ratio will be low, and reading the data blocks
from D-Storage is heavily impacted by the network conditions. Therefore, for the cross-datacenter
environment, the RocksDB read OPS is lower in both Rocks-Local and CaaS-LSM. The OPS of
IR-Local, IR-CaaS, WD-Local, WD-CaaS, CD-Local, and CD-CaaS are 13130, 13855, 6037, 10071,
141, and 246 respectively. Overall, CaaS-LSM can effectively improve the OPS by 5%, 66%, and
74% at in-rack, within-datacenter, and cross-datacenter deployments respectively due to the lower
network bandwidth contention from compaction jobs.
Sequential Read and Write Theoretically, the sequential write will only trigger trivial move

compactions that do not actually read and write SST files since there is no key-ranges overlap
between SST files in different levels. In this test, for the same network condition, the OPS and
P99 latency of Rocks-Local and CaaS-LSM do not have an explicit difference if we insert 6 to 30
million KV-pairs sequentially. The OPS is about 340,000 for both IR-Local and IR-CaaS, about
200,000 for WD-Local, WD-CaaS, CD-Local, and CD-CaaS. After sequentially writing the KV-pairs,
we apply the sequential read, which is achieved by Scan (SeekRandom with 100 Next queries) in
RocksDB. When we issue 6 to 30 million range queries, the OPS is about 180,000 for both IR-Local
and IR-CaaS, about 150,000 for both WD-Local and WD-CaaS, and about 16,000 for both CD-Local
and CD-CaaS. CaaS-LSM has no performance regression on the sequential read/write queries with
minimal compactions.

5.5.2 Evaluation Across Varied Network Scenarios. We conduct a performance evaluation
under various network conditions, while deliberately disabling the resource scheduling feature of
CaaS-LSM and providing ample CPU and memory resources. The intent behind this configuration
is to isolate and focus on the impact of the network conditions. In this test, we run db_bench at
compute nodes with the random_fillworkload (random write with uniform distribution to trigger
a substantial amount of compaction), which randomly inserts KV-pairs to RocksDB. We adopt the
same six deployments as described in Section 5.5.1.

As shown in Figure 9, we insert 6 to 30 million KV-pairs with 1 client thread. The OPS of the six
scenarios is shown in Figure 9(a). IR-Local and IR-CaaS achieve the best performance because of the
fastest network speed. WD-Local, WD-CaaS, and CD-CaaS show similar OPS and latency. Generally,
IR-Local, IR-CaaS, WD-Local, WD-CaaS, CD-CaaS have stable OPS and latency but the performance
of CD-Local degrades after inserting 18 million KV-pairs. Compared to CD-Local, when inserting
18 million KV-pairs, CD-CaaS improves OPS by 8𝑋 by reducing most of the compaction network
traffic between two datacenters. As more KV-pairs are inserted, CD-Local experiences intensive
write slowdown or even write stall due to the accumulated compaction jobs and it causes very high
P99 latency, which leads to 78𝑋 higher P99 latency than CD-CaaS. According to the statistics of
RocksDB, when inserting 18 million KV-pairs, the count of write stalls is 6,693,747 in CD-Local,
whereas it is 0 in CD-CaaS. In general, CaaS-LSM shows significant performance improvement
over legacy LSM-KVS design, especially when the network condition is worse.

5.6 Control Plane Evaluation and Analysis
Scheduling Algorithm Evaluation To evaluate the effectiveness of the scheduling algorithms in
CaaS-LSM, we run multiple Nebula instances and db_bench instances with different DB sizes in a
cross-datacenter deployment to trigger concurrent compactions from applications with different
compaction types and priorities. We use 2 compute nodes to run 4 RocksDB instances, inserting 5
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(a) OPS of RocksDB (b) P99 latency of RocksDB

Fig. 9. db_bench random write performance under different data scales and deployments. CaaS-LSM shows
significant performance improvement over legacy LSM-KVS

(a) OPS of Nebula (b) Latency of Nebula

Fig. 10. Mix Nebula with other DBs to evaluate CaaS-LSM scheduling. Nebula-Random-Sche has a total OPS
of 5,669 and an average latency of 526 ms, which are about 86% lower and 6𝑋 higher than Nebula-CaaS-LSM
respectively.

million key-value pairs via db_bench to the 4 RocksDB instances. Two of the RocksDB instances
have 15 million existing key-value pairs and the other 2 are empty when we start the benchmarking.
In this way, compaction jobs with different priorities will be triggered concurrently. Concurrently,
we run Nebula to import graph data with a scale factor of 10 (12GB) in the third compute node.
We give higher compaction priority for RocksDBs in Nebula than that of db_bench. We deploy
3 CSAs at D-Storage and each CSA has one compaction worker thread to simulate the scenario
that the execution plane receives intensive compaction requests and limited available compaction
service resources. We implement a random scheduling algorithm in CaaS-LSM as the baseline,
which randomly selects a CSA to execute the compaction job. CaaS-LSM will schedule compaction
jobs based on resources, types, application priority, and SST file levels.

According to the collected results, there is almost no performance difference between the RocksDB
instances tested by db_bench because they require fewer compaction resources and the compaction
priority is lower than Nebula. As shown in Figure 10(a) and Figure 10(b), Nebula with random
scheduling (Nebula-Random-Sche) has a total OPS of 5,669 and an average latency of 526 ms which
are about 86% lower and 6𝑋 higher than Nebula using CaaS-LSM (Nebula-CaaS-LSM) respectively.
Also, Nebula-Random-Sche fails before finishing the benchmarking since too many compaction jobs
are waiting for execution and it causes serious write stalls at Nebula. Differently, Nebula-CaaS-LSM
achieves about 6𝑋 OPS (35,682) and reduces the average latency by 84% (82 ms).
Control Plane peak throughput. We evaluate the peak throughput of a single control plane

instance by issuing a large number of compaction requests concurrently. The peak OPS of a single
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Fig. 11. Kvrocks OPS, latency, and network traffic under cross-datacenter deployment. Kvrocks-CaaS
with hybrid-compaction scheduling achieves the highest overall performance compared to Kvrocks-
Local_compaction and Kvrocks-Pure-Remote.

(a) OPS of Kvrocks (b) Latency of Kvrocks

Fig. 12. Kvrocks cluster performance at three deployments. Kvrocks-CaaS provides better performance than
Kvrocks-Local in all three scenarios.

control plane instance can reach about 12,500. This level of OPS is typically more than sufficient
for most scenarios, as they are unlikely to demand over 12,500 compaction jobs per second. For
larger-scale applications that may exceed this number, we need to cluster KVS instances into groups
and each control plane instance is responsible for handling compaction requests from the assigned
group. How to achieve better load balancing for the control plane cluster will be our future work.

5.7 Evaluation on Real-World Applications
Evaluating the performance with db_bench may not be able to cover more complex scenarios in
real production. To conduct a comprehensive end-to-end evaluation, we integrate Rocks-Local
and CaaS-LSM with Kvrocks (Kvrocks-Local and Kvrocks-CaaS) and Nebula (Nebula-Local and
Nebula-CaaS). For Kvrocks, we evaluate it with the Redis benchmarks, and Nebula is evaluated
with LDBC graph benchmark [24, 43]. Kvrocks and Nebula are also deployed and tested at three
different infrastructure deployments: in-rack, within-datacenter, cross-datacenter.
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Kvrocks-Local vs Kvrocks-CaaS. To evaluate the effectiveness of the CaaS-LSM design, we first
disable the local fallback scheduling of CaaS-LSM and test the Kvrocks cluster in pure compaction
service mode under three deployments. For the execution plane of Kvrocks-CaaS, we deploy 1
control plane and 2 CSAs (each with 5 worker threads) instances in the D-Storage. We use Redis
benchmark to generate Set queries to the cluster to write the data. Internally, the Set queries
are mapped to a set of data and metadata Put operations to RocksDB instances. The benchmark
issues 400 million Set queries by 32 threads in total (the whole data set is about 80 GB). We set the
KV-pair size as 100 bytes and the key-space length as 10 billion, which is large enough to trigger
compactions in RocksDB instances. The initial databases are all empty.

We plot out the OPS and average latency in Figure 12. The performances of in-rack and within-
datacenter scenarios are similar since all machines are connected by a high-speed internal network.
With better scheduling of compaction jobs in Kvrocks-CaaS, the overall OPS is about 20% better
than that of Kvrocks-Local, and the average latency improves by 30%. In the cross-datacenter
scenario, according to the log file, Kvrocks-Local experiences compaction jobs piled and a severe
write slowdown after intensive compaction starts. In contrast, Kvrocks-CaaS runs smoothly and
improves the overall OPS by 28% and P99 latency by 65%.
Kvrocks-CaaS with hybrid-compaction scheduling in the control plane. We further

conduct evaluation on the Kvrocks-CaaS cluster with a local-remote combined scheduling control
plane under cross-datacenter deployment. Based on the scheduling design in Section 4.3.2, the
control plane will decide whether the compaction job should be executed locally or at the execution
plane of CaaS. We plot out the OPS, average latency, egress network traffic (data sent), and ingress
network traffic (data received) in Figure 11. Kvrocks-CaaS with hybrid-compaction scheduling
enabled (Kvrocks-CaaS) achieves the highest overall performance (improved by 56% and 22%)
and lowest latency (improved P99 by 76% and 30%) compared to Kvrocks-Local_compaction and
Kvrocks-Pure-Remote respectively. The network traffic of Kvrocks-CaaS and Kvrocks-Pure-Remote
is much lower and stabler than Kvrocks-Local_compaction. Since all compaction jobs are executed
by CSAs in the D-Storage, the ingress traffic is the lowest in Kvrocks-Pure-Remote. Differently,
due to the I/Os of compactions, Kvrocks-Local_compaction has explicit network traffic spikes. In
addition, Kvrocks-CaaS receives more data than Kvrocks-Pure-Remote, indicating that there are
some compaction jobs executed locally at the RocksDB instances.

Nebula-Local vs Nebula-CaaS. We use the LDBC Social Network Benchmark Data Generator
[24, 43] to generate an SF3 scale graph dataset (3.6GB) and import it to Nebula via the Nebula
importer. We evaluate Nebula-Local and Nebula-CaaS at in-rack, within-datacenter, and cross-
datacenter environments respectively. For the in-rack and within-datacenter cases, Nebula-CaaS
achieves about 30% throughput improvement and reduces by about 17% average latency compared
to Nebula-Local. For cross-datacenter Nebula-Local, when the experiment proceeds to 10,950
seconds, all operations begin to fail due to serious write stalls, and a total of 52,746,687 operations
are executed. Cross-datacenter Nebula-CaaS delivers an 8X OPS improvement and reduces latency
by 89% compared to cross-datacenter Nebula-Local.

5.8 Failure Handling and Scalability
To evaluate the failure handling and scalability in CaaS-LSM, we inject the compaction worker
failure, CSA failures (CSA cluster scale in), execution plane failure, and storage failures during
the run-time. Four CSAs are deployed and registered at the control plane. We evaluate the OPS
of Kvrocks with Redis benchmark in a write-intensive workload as shown in Figure 13. When
compaction starts at one CSA, we manually fail the compaction worker at 100 seconds. The
compaction job is rescheduled automatically and it does not cause an explicit OPS drop. Then, we
stop one CSA that is executing multiple compaction jobs at 160 seconds (CSA cluster scale in), and
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Compaction Service Failure Storage FailureCSA FailureWorker Failure

Fig. 13. Evaluate the failure handling and scalability of CaaS-LSM in Kvrocks.

the control plane loses the connection to the CSA. Since the control plane only takes very little
time (less than 2 seconds) to identify losing the heartbeat of a certain CSA and re-runs all failed
compaction jobs in other CSAs, OPS keeps at the same level and Kvrocks runs without interruptions.
This scenario underscores the system’s scalability, demonstrating how workload redistribution
among available CSAs ensures consistent performance even in a scaled-in operational setting.

We make all the CSAs offline to simulate the execution plane failure at 320 seconds. As shown in
Figure 13, upon detecting that all CSAs are offline and all compaction jobs have failed, the control
plane directly informs the LSM-KVS instances at Kvrocks to fall back to local compaction. At this
point, the local compute resources are relatively idle, which allows for the seamless transition of
compaction tasks from remote to local execution without any performance degradation. Conse-
quently, the write OPS is maintained at the same level, corroborating the effectiveness of error and
failure handling in the control plane. We finally shut down the HDFS at 520 seconds which is an
unrecoverable failure for Kvrocks, the LSM-KVS instance in Kvrocks reports the error and stops
running since it cannot apply any I/O operations. In general, the fault tolerance and scalability in
CaaS-LSM ensure service reliability and availability with minimal performance penalties.

6 RELATEDWORK
Optimizing LSM-KVS and Databases on Disaggregated Infrastructure In recent years, several
existing studies focus on optimizing LSM-KVS on disaggregated infrastructure, including Kemme et
al [23], Hailstorm [27], Nova-LSM [49], IS-HBase [28], RocksDB-Cloud [63], TerarkDB [3], Disaggre-
RocksDB [42], and dLSM [75, 76]. Most of the existing studies focus on optimizing compaction (e.g.,
compaction offloading [3, 27, 28, 42, 49]) for disaggregated storage, while dLSM [75, 76] leverages
the RDMA-based remote memory to achieve high performance. Compared with existing studies of
optimizing LSM-KVS for disaggregated storage, CaaS-LSM achieves better scalability, scheduling,
and failure handling. Several other databases are also optimized for disaggregated infrastructure
including Aurora [72], Azure SQL Hyperscale [2], Google AlloyDB [8], Facebook HyperDex [44],
and Alibaba OceanBase [13].
LSM-KVS Read/Write Optimizations with Better Tradeoffs. To serve different workload

demands, several existing studies are focusing on achieving better tradeoffs in LSM-KVS, including
Dostoevsky [37], LSM-Bush [38], SlimDB [66], PebblesDB [65], and LSM-trie [79]. Those works
optimize the architecture of LSM-KVS to improve read or write performance with slight over-
head in other perspectives. bLSM [68] combines B-tree with LSM for near-optimal read and scan
performance with the tradeoff of higher write latency. VT-Tree [69] avoids unnecessary copy
and improves sequential write with the overheads of fragments and expensive space reclamation.
MatrixKV [82], HiLSM [55], and SpanDB [32] achieve better tradeoffs with new hardware like Non-
Volatile Memory (NVM). Since almost all of the aforementioned tradeoff designs do not influence
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the general compaction logic, they can be easily integrated with CaaS-LSM. Moreover, CaaS-LSM
can save CPU and memory resources for foreground read/write operations.
Compaction Design and Policy Optimization Different compaction policies have been

proposed to improve overall write performance and prevent write stalls. bLSM [68] proposes
snowshoveling algorithm to increase the effective size and reduce compaction frequency. PCP
[87] utilizes parallelism of CPUs and I/O devices for multiple sub-tasks and improves compaction
throughput. SILK [26] proposes an I/O scheduler to prioritize low-level compaction, and utilizes
spare bandwidth to do high-level compactions. TRIAD [25] and PinK [50] keep hotkeys in memory
and only flush cold keys to reduce background compaction workload. Inspired by these works,
CaaS-LSM achieves compaction scheduling based on SST file levels, the compaction score, and
other factors. And those proposed optimizations are fully compatible with CaaS-LSM.

Key-Value Separation in LSM-KVSKey-value separation can effectively reduce the compaction
overhead in large-value cases. WiscKey [57] first proposes key-value separation to avoid value
copy and mitigate I/O amplification of compaction. RocksDB implements BlobDB [16] and stores
large values in dedicated blob files. HashKV [30] uses hash-based data grouping to map values to
specific storage zones, improving update and garbage collection efficiency. Parallax [80] classifies
values into small, medium, and large groups and places them in different logs to reduce garbage
collection overheads. In disaggregated infrastructure, key-value separation can improve the overall
performance due to the reduced I/Os between compute and storage. Moreover, in-storage garbage
collection can further reduce I/Os, and the control plane of CaaS-LSM with minor modifications can
be potentially used to manage garbage collection jobs and achieve better scheduling and execution.
Filters and Compression Optimizations When building the SST files during compaction,

constructing filter blocks and using compression can improve read performance and space efficiency
respectively. Several related studies focus on optimizing filter memory and CPU utilization and
improve false positive rate [34], including SlimDB [66], Chucky [39], Blocked bloom filters [64],
Ribbon filters [17], SuRF [83], Rosetta [58], and REncoder [77]. Monkey [36] optimizes bloom
filter allocation policy for a given RAM budget, shifting memory from larger level filters to lower
level. Mapped SplinterDB [34] replaces filters with maplets that decouple compaction from data,
realizing lazy compaction but aggressive filter merging. Meanwhile, effective compression algo-
rithms can significantly save I/O bandwidth. RocksDB integrates multiple compression algorithms,
such as Snappy, Zlib, Bzip2, LZ4, and Zstd [15], and TerarkDB also designs highly compressed
TerarkZipTable [20]. The aforementioned filter and compression optimizations can be implemented
as a customized compaction operator and executed at CSAs in CaaS-LSM with high flexibilities.

7 CONCLUSION AND FUTURE WORK
In this paper, we discussed the trend of disaggregated infrastructure and the challenges for LSM-
based key-value stores. To address the performance, network, scheduling, and fault tolerance issues
of compaction, we first proposed to disaggregate compaction from the KVS instance as a stateless
independent service. Importantly, we proposed CaaS-LSM, which includes a compaction service
execution plane and an LSM-KVS performance- and resource-optimized control plane. Our design
achieves significant OPS improvement, latency reduction, and network cost savings. In the future,
we plan to make the compaction service customizable and pluggable to support more applications.
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