
 

EXPLICIT BOUNDS FOR LARGE GAPS BETWEEN SQUAREFREE 

INTEGERS 

ANGEL KUMCHEV, WADE MCCORMICK, NATHAN MCNEW, ARIANA PARK, RUSSELL 

SCHERR, AND WILLOW ZIEHR 

Abstract. We obtain explicit forms of the current best known asymptotic upper 

that every interval of the formbounds for gaps between squarefree integers. In particular we show, for 

any(x,x+11x1/5 logx] contains a squarefree integer.x ≥ 2, 

The constant 11 can be improved further, if x is assumed to be larger than a (very) large 

constant. 

1. Introduction 

An integer n is called squarefree if it is not divisible by the square of any prime p. 

More generally, if k ≥ 2, n is called k-free if it is not divisible by pk for any prime p; 3-

free integers, in particular, are also known as cubefree. 

The asymptotic distribution of the k-free integers has been studied systematically, at 

least since the early 1900s, with a special focus on the squarefree case. Let Qk(x) denote 

the counting function of the k-free numbers up to x, and consider the error term Ek(x) in 

the asymptotic formula 

, 

where ζ(k) is the Riemann zeta-function. The bound  is classical, and 

further improvements are closely related to the distribution of zeros of the zeta-function. 

In particular, the best known bound for Ek(x), 

 , 

follows from the work of Walfisz on the error term in the Prime Number Theorem (see 

[32]). Still, a number of authors [1, 2, 11, 18–20, 22] have obtained sharper bounds under 

the assumption that the Riemann Hypothesis is true. 

A related problem that has attracted considerable attention concerns the gaps between 

consecutive k-free integers. The first result in that direction was obtained by Fogels [10], 

who proved that if θ > 2/5 the interval (x,x+xθ] contains a squarefree integer for all 

sufficiently large x. In 1951, Roth [28] reduced the exponent 2/5 in Fogels’s result to 

3/13, while Halberstam and Roth [14] proved that the interval (x,x+xθ] contains a k-free 
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integer for any θ > 1/(2k) and for all sufficiently large x. Around the same time, Erdős 

[3] proved that there exist infinitely many intervals 
1 

(x,x + h], with 

, 

which contain no squarefree integers. Together, these results inspired the conjecture that 

for any fixed ε > 0, the interval (x,x + xε] contains a squarefree integer for sufficiently 

large x. This conjecture seems beyond the reach of current methods, though Granville 

[13] has shown that, like many other famous theorems and conjectures in number theory, 

it follows from the abc-conjecture of Masser and 

Oesterlé. 

Initially, further improvements on Roth’s result [28] on gaps between squarefree 

numbers were obtained through the method of exponential sums [12, 25, 26, 29], while 

the (mostly elementary) work of Halberstam and Roth [14] inspired research on the 

distribution of k-free numbers in polynomial sequences: see [15,16,24] for some early 

work and [6, §2] for a more detailed history. Starting in the late 1980s, Filaseta and 

Trifonov published a series of papers [4, 5, 7–9, 30, 31], where they developed an 

elementary proof [8] that there exists a constant c > 0 such that the interval (x,x + cx1/5 

logx] contains a squarefree integer for all sufficiently large x. Later, Trifonov [31] 

generalized this result and proved that, for each k ≥ 3, there exists a constant c = c(k) > 
0 such that the interval (x,x+cx1/(2k+1) logx] contains a k-free integer for all sufficiently 

large x. Filaseta and Trifonov [9] generalized their method to achieve progress in other 

problems—see the survey article [6] for the history of such developments, but sharper 

bounds on the gaps between k-free integers have remained elusive. 

During the past couple of decades, number theorists’ interest in numerically explicit 

results has increased significantly, and this has led to the development of numerically 

explicit versions of known theorems. As the Filaseta–Trifonov approach to gaps between 

k-free integers is both self-contained and “numerically friendly,” it therefore makes sense 

to investigate fully explicit versions of the results of [8] and [31]. In this note, we prove 

such explicit versions of the gap results for squarefree integers. Our main theorem is as 

follows. 

Theorem 1. For any x ≥ 2, the interval (x,x+11x1/5 logx] contains a squarefree integer. 

The reader familiar with the work of Filaseta and Trifonov may wonder whether the 

techniques from this work can be extended to obtain similar results on gaps between k-

free integers when k ≥ 3. This is very much possible. Indeed, we have proved the 

following result on gaps between cubefree integers. Its proof and the proofs of 

companion results on k-free integers with k ≥ 4 will appear in a forthcoming paper. 
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Theorem 2. For any x ≥ 2, the interval (x,x + 5x1/7 logx] contains a cubefree integer. 

The focus of the above theorems is on providing explicit intervals that work for all x. 

The price we pay for this universality are the somewhat elevated values of the constants 

11 and 5 in the theorems. If one is interested in reducing those constants further and 

willing to accept a result that holds only for sufficiently large x, then one may prefer 

versions like those given in the next theorem. 

Theorem 3. Every interval 

• (x,x + 5x1/5 logx] contains a squarefree number for x ≥ e400; 

• (x,x + 2x1/5 logx] contains a squarefree number for x ≥ e1800; • (x,x + x1/5 

logx] contains a squarefree number for x ≥ e500000. 

Mossinghoff, Oliveira e Silva and Trudgian [23] (see also Marmet [21]) investigated 

long gaps between squarefree numbers numerically. Their computational work 

establishes the size of the longest gaps up to 1018, which are all dramatically smaller 

than the bounds that we get in this paper. The largest gap that they find is a string of 18 

consecutive non-squarefree numbers, the first of which is 

125781000834058568. As a result of their work, we can assume x ≥ 1018 > e41 

throughout the rest of this paper. 

Theorem 3 already hints that the constants in Theorems 1 and 2 are influenced by the 

“small” values of x. Indeed, we establish Theorem 1 for x ≥ e116. To bridge the gap 

between this lower bound and e41, we prove several propositions giving results with 

larger exponents, which are however superior to the results of the main theorem for small 

x. In particular, we find that the interval (x,x+5x1/4] always contains a squarefree integer 

(Proposition 2) and the interval (x,x+3.8x1/4] contains a squarefree integer for x ≥ e109 

(Proposition 3). 

It should be clear by now from the above discussion, that the values of the constants 

and the various cutoffs in the theorems (and in Propositions 2 and 3) are not exact, but 

rather “nice” approximations. We say more about this in Section 7.1 

 
1
  The interested reader can explore these phenomena further using the SageMath code for the 

computational part of our work, which is available at https://github.com/agreatnate/ 

explicit-k-free-integer-bounds 

https://github.com/agreatnate/explicit-k-free-integer-bounds
https://github.com/agreatnate/explicit-k-free-integer-bounds
https://github.com/agreatnate/explicit-k-free-integer-bounds
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Notation. Throughout the paper, for a real number θ, we use ⌊θ⌋ to denote the greatest 

integer less than or equal to θ; also, {θ} = θ − ⌊θ⌋. We write |A| for the size of the set A, 

and π(x) for the prime counting function. 

2. Preliminaries 

2.1. Outline of the method. Let N(x,h) be the number of integers in (x,x+h] that are not 

squarefree. Clearly, to prove any of our theorems, it suffices to show that N(x,h) < h − 1 
for the respective choices of x and h. We first sieve this interval of the squares of very 

small primes, up to a parameter J to be chosen later. 

The number of integers in (x,x + h] divisible by the square of a prime up to J is at most 

. 

We then count separately the integers divisible by p2 for each prime p > J. We find that 

  , (2.1) 

where the sum on the right is over all primes greater than J. To bound the latter sum, we 

study separately the contributions of “small” and “large” primes p. We introduce a 

parameter H, which we will later choose as H = mh, with m ≥ 1 of moderate size, and we 

use this parameter to split the sum in (2.1) as follows: 

 . (2.2) 

The contribution of the small primes can be bounded easily. We have 

  (2.3) 

where σ1, the sum of the reciprocals of all squares of primes, satisfies 

 σ1 < 0.4523. (2.4) 

We group the sum over primes up to J appearing in (2.3  to write 

 , (2.5) 
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so that we get 

 . (2.6) 

The term π(H) above can be bounded with the help of the following well-known result 

of Rosser and Schoenfeld [27, (3.2)]. 

Lemma 1. For any x > 1, one has 

  . (2.7) 

Applying this lemma, we see that 

 . (2.8) 

The estimation of the sum Σ2 occupies the remainder of the paper. We remark 

 
that primes p > √2x do not contribute to that sum, since for such primes we have 

. 

Moreover, if p > h1/2, we get 

. 

 
Thus, the finite sum Σ2 counts the primes p ∈ (H,√2x] for which there exists an integer 

m with 

. 

The latter inequality can be expressed in terms of the fractional part of xp−2: it says that 

{xp−2} > 1 − hp−2. Therefore, 

where

 

We remark that while we no longer require the elements of S(M,N) to be prime, we do 

restrict them to odd values so that the differences between any two elements of the set 

are even, a fact which will be useful later. 
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Thus, in view of (2.6), (2.8) and (2.9), to prove any of our results, it will suffice to find 

a choice of H such that 

 ≤ hσ3(h,m),
 (2.11) 

for some bounded function such that 

 . (2.12) 

In Section 6, we establish inequalities of the form (2.11) and optimize the choices of 

several parameters to ensure that the respective versions of (2.12) hold. We conclude the 

present section with the statements of a couple of general-purpose lemmas, which we 

will use repeatedly in the remainder of the paper to obtain bounds on the spacing and 

cardinality of sets S(M,N). 

2.2. Some general lemmas. Our bounds on |S(M,N)| are based on the simple idea that if 

the minimum distance between distinct elements of a set of integers A is at least d, then 

 |A ∩ (M,N]| ≤ d−1(N − M) + 1. (2.13) 

In Sections 3–5, we prove several results on the spacing between elements of sets 

S(M) := S(M,λM), 

where λ > 1 is a constant. Those spacing estimates and inequality (2.13) yield bounds on 

|S(M)|, which we leverage with the help of the next lemma. 

Lemma 2. Suppose that A1,A2,A3,b1,b2 are positive reals and u, v, λ are real numbers 

with 0 < u < v < 1 < λ. Assume that for all M ∈ [xu,xv] the estimate 

|S(M)| ≤ A1Mb1 + A2M−b2 + A3 

holds. Then 

where 

. 

 − − 

Proof. This is standard: we cover the interval (xu,xv] with intervals of the form (M,λM], 
apply the hypothesis to each of them, and sum the ensuing geometric progressions. The 

only (minimal) novelty in the present version is the explicit description of the 

coefficients  in terms of the Aj’s and the various parameters. 

The reader will find a detailed proof of a variant for λ = 2 in [5, Lemma 1]. □ 
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Some of our results also rely on the properties of divided differences. For a function f 

: [a,b] → R and s + 1 points t0,t1,...,ts ∈ [a,b], the divided difference (of order s), 

f[t0,t1,...,ts], of f at the given points is defined recursively: we set f[t0] = f(t0) when s = 0, 

and 

 
when s ≥ 1. Divided differences are a tool in numerical analysis that has a long and rich 

history, but here we are interested only in two of their elementary properties, which we 

summarize in the next lemma. The reader can find proofs of these properties in many 

texts on numerical analysis that discuss interpolation theory: e.g., [17, Ch. 6]. 

Lemma 3. Let f : [a,b] → R be a function, let t0 < t1 < ··· < ts be distinct numbers in [a,b], 

and let f[t0,t1,...,ts] denote the respective divided difference of f. Then 

, 

where the product is over i ∈ {0,1,...,s} \ {j}. Moreover, if f has s continuous derivatives 

on [a,b], then there is a number ξ ∈ (t0,ts) such that 

. 

3. Basic Spacing Lemmas 

 
Let M be a large parameter, with H ≤ M ≤ √2x, and let λ ∈ (1,2] be a constant. In this 

section, we prove several lower bounds on the minimum distance between distinct 

elements of S(M). As we pointed out in the introduction, the computational work in [23] 

allows us to assume that x is large. Also, while in our proofs we will utilize several 

different choices for h and H, we will always have h ≤ H and h ≤ 2x1/3. Thus, we assume 

in the remainder of the paper that 

 . (3.1) 

3.1. Spacing for pairs. First, we show that two distinct elements of S(M) cannot be “too 

close” to one another. 

Lemma 4. Suppose that H ≤ M. If u and u + a are distinct elements of S(M), then 

 a > 0.4995x−1M3. (3.2) 

Proof. Consider the function f(u) = xu−2. If u,u + a ∈ S(M), we have 
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 f(u) = n1 − θ1, f(u + a) = n2 − θ2, (3.3) 

with n1,n2 ∈ Z, 0 < θ1,θ2 < hM−2. So, 

 f(u + a) − f(u) = n − θ, |θ| < hM−2. 

By the mean-value theorem, there exists a number ξ ∈ (u,u + a) such that 

. 

If n = 0, we have |f(u + a) − f(u)| = |θ| < hM−2, and we deduce that 

2λ−3x < hM < 3x5/6, 

which contradicts (3.1). Thus, we have n = 0̸ , so |n| ≥ 1. We also get that |θ| < 

hM−2 ≤ hH−2 ≤ H−1 ≤ 0.001. 

Hence, |f(u + a) − f(u)| ≥ 1 − |θ| ≥ 0.999, and we obtain 

0.999 ≤ |f(u + a) − f(u)| = 2axξ−3 < 2axM−3, 

from which (3.2) follows. □ 

Applying (2.13) to the result of the last lemma, we obtain the following bound on the 

size of S(M). 

Corollary 1. Under the hypotheses of Lemma 4, we have 

|S(M)| ≤ 0.4995−1(λ − 1)xM−2 + 1. 

3.2. Spacing for triples. Next, we consider any three distinct elements u,u + a,u + b of 

S(M), with 0 < a < b, and obtain lower bounds on b. 

Lemma 5. Let λ ≤ 1.2, m ≥ 1.5, and suppose that mh = H ≤ M. If 0 < a < b and u,u + a,u 

+ b are elements of S(M), then 

 b ≥ 1.3860x−1/3M4/3. (3.4) 

Proof. Suppose first that b ≤ 0.004M. Write u1 = u, u2 = u + a, and u3 = u + b, and let 

n1,n2,n3 ∈ Z be such that 
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 f(ui) = ni − θi, 0 < θi < hM−2 (i = 1,2,3). 

We consider the second divided difference f[u1,u2,u3]. By Lemma 3, 

, 

where 

 n = (b − a)n1 − bn2 + an3 and θ = (b − a)θ1 − bθ2 + aθ3. 

In particular, since θi > 0, we have 

 bhM−2 < bθ2 < θ < (b a)θ1 

+ aθ3 < bhM−2. 

Moreover, since are all odd (see (2.10)) we know that a and b are both even, so n must 

be as well. 

 We will show that n = 0̸ . Suppose that n = 0. Then 

, 

 − − 

after an appeal to (3.2) and the bound b − a ≥ 2. However, using Lemma 3, we also get 

that 

. 

Thus, 

which contradicts the hypotheses of the lemma. 

 Having proved that n = 0̸ and using that it is even, we find that |n| ≥ 2. Hence, 

 , (3.5) 

since 

. 

On the other hand, by Lemma 3, 
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 . (3.6) 

From (3.5), (3.6), and the elementary inequality , we deduce that 

 , (3.7) 

and the conclusion of the lemma follows in the case b ≤ 0.004M. 

Finally, when b > 0.004M, we have 

, 

 
by the assumptions that M ≤ √2x and x ≥ e41. □ 

Note that the expression on the right side of (3.4) is a lower bound for the minimum 

distances between successive elements of the set S1(M) containing every other element 

of S(M). Since |S(M)| ≤ 2|S1(M)|, this observation and (2.13) yields the following 

corollary. 

Corollary 2. Under the hypotheses of Lemma 5, we have 

|S(M)| ≤ 1.4430(λ − 1)x1/3M−1/3 + 2. 

4. Spacing for Pairs of Pairs 

In this section, we study a special family of quadruples u, u + a, u + b, u + a + b of 

elements of S(M). The special form of the spacing between the four numbers allows us 

to obtain bounds on b that are stronger than those for general quadruples in S(M); in the 

next section, we will average these bounds over b. In the next lemma, we use the third-

order divided difference of f(u) = xu−2 for the points u, u + a, u + b, and u + a + b to 

bound b from below. 

Lemma 6. Let λ ≤ 1.05, m ≥ 5, and suppose that mh ≤ H ≤ M. If 0 < a < 

2a ≤ b and u,u + a,u + b,u + a + b are elements of S(M), then 

 ab3 ≥ 0.6600x−1M5. (4.1) 

Proof. Consider points u1 = u, u2 = u+a, u3 = u+b, and u4 = u+a+b in S(M). Recall that 

by the definition of the set S(M), there exist integers n1,...,n4 and reals θ1,...,θ4 such that 

 f(ui) = ni − θi, 0 < θi < hM−2 (1 ≤ i ≤ 4). (4.2) 
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We consider the divided difference f[u1,...,u4]. 
Due to the special configuration of the distances between the four points, the formula 

in Lemma 3 simplifies to 

, 

− 

where V = ab(a + b)(b − a) and 

, 

We remark that n is an even integer and |θ| < 2bhM−2. We will 

show that n = 0̸ . Suppose that n = 0. Then 

. 

Recalling (3.7), we deduce that 

. 

However, Lemma 3 gives 

, 

for some ξ ∈ (M,λM]. We combine these upper and lower bounds to get 

, 

which contradicts the assumptions of the lemma. 

Since n is even and nonzero, we can now use that2 2 2 |n| ≥ 2 combined with the 

observation b − a ≥ 0.75b to 

obtain 

 ,

 (4.3) 

since 

On the other hand, by Lemma 3, 
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 . (4.4) 

The lemma follows from (4.3) and (4.4). □ 

Our next result is of a somewhat different nature from the spacing lemmas established 

hitherto. In this lemma, instead of proving that the distance b between the two pairs 

exceeds some lower bound in terms of x,M, and possibly, a, we establish a kind of a 

dichotomy for b: either b ≥ B1 for some lower bound B1, or b ≤ B2, with B2 significantly 

smaller than B1. 

Lemma 7. Let λ ≤ 1.05, m ≥ 5, and suppose that mh ≤ H ≤ M. If 0 < a < 2a ≤ b and u,u 

+ a,u + b,u + a + b are elements of S(M), then exactly one of the conditions 

 a3b < λ6hx−1M4, (4.5) 

or 

 a3b > (0.5 − λm−1)x−1M5, (4.6) 

must hold. 

Proof. We start from the algebraic identity 

. 

Since u,u + a ∈ S(M), we can use this identity and (4.2) to get that 

  (4.7) 

where n′ = (2u + 3a)n2 − (2u − a)n1 is an even integer and 

|θ′| = |θ1(2u − a) − θ2(2u + 3a)| ≤ 2u|θ1 − θ2| + a(θ1 + 3θ2) < (2u + 4a)hM−2. 

Combining (4.7) with the analogous identity for the pair u + b,u + a + b, we find 

that 

  (4.8) 

where n ∈ Z is even and 

|θ| < (4u + 2b + 8a)hM−2 ≤ 4(u + a + b)hM−2 ≤ 4λhM−1 ≤ 4λm−1. 

Next we observe, by the mean-value theorem, there is a ξ ∈ (u,u + b) such that 
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. 

This expression is bounded above by 

 , (4.9) 

and bounded below by 

 . (4.10) 

When a3b ≤ (0.5 − λm−1)x−1M5, (4.8), (4.9), and the bound on |θ| yield 

n − 4λm−1 < n + θ < 4a3bxM−5 ≤ 2 − 4λm−1, 

and hence, n < 2. On the other hand, if a3b ≥ λ6hx−1M4, we deduce from (4.8) and (4.10) 

that 

4λhM−1 < 4a3bx(λM)−5 < n + θ < n + 4λhM−1, 

so in this case n > 0. Since n is an even integer, it can satisfy only one of the conditions 

n > 0 and n < 2; therefore, at least one of (4.5) or (4.6) must hold. This completes the 

proof, since under the hyptheses of the lemma, the lower bound in (4.6) exceeds the 

upper bound in (4.5) at least by a constant factor. □ 

5. The Main Bounds on |S(M)| 

Let 

 A = 1.3860x−1/3M4/3. (5.1) 

In Section 3, we proved that b ≥ A whenever u,u + a,u + b are distinct elements of S(M). 

Therefore, if u0,u1,...,us are the elements of S(M), listed in increasing order, the set S1(M) 

= {u0,u2,u4,...} has no gaps < A and satisfies 

 |S(M)| ≤ 2|S1(M)|. (5.2) 

In this section, we use (5.2) and the lemmas in the last section to prove the following 

result. 

Proposition 1. Suppose h = 11x1/5 logx, let λ = 1.045 and x ≥ e116, and suppose that 5.5h 

≤ M ≤ x2/5. Then 
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 |S(M)| ≤ h(σ3(M) + σ4(M)), (5.3) 

where 

 , (5.4) 

and 

, 

(5.5) 

Remark 1. Notice that when x is relatively small, the condition M ≤ 5x1/4 in Proposition 

1 is impossible, and so only the second condition will be used in the range of “small” 

values of x. 

The proof of this proposition uses the set 

T(M;a) = {u : u,u + a are consecutive elements of S1(M)} 

to bound |S1(M)|. The starting point is the elementary identity 

 , (5.6) 

which is a direct consequence of the definition of T(M;a). Further, for any B ≥ A, we 

have 

, 

so 

. 

Applying this inequality to the right side of (5.6), we find, for any parameter B ≥ 2, 

that 

 |S1(M)| ≤ 1.5 + (λ − 1)MB−1 + X |T(M;a)|. (5.7) 

A≤a<B 

5.1. Proof of Proposition 1. We recall the quantity A defined in (5.1), and we select 

 B = δx−1/5M, δ = 0.17, (5.8) 



 EXPLICIT GAPS BETWEEN SQUAREFREE INTEGERS 15 

in the imminent application of (5.7). We fix an integer a, with A ≤ a ≤ B. If u0,u1,...,ut are 

the elements of T(M;a), listed in increasing order, the set T1(M) = {u0,u2,u4,...} contains 

only elements of T(M;a) such that if u,u + b ∈ T1(M), then b ≥ 2a. Clearly, |T(M;a)| ≤ 

2|T1(M)|. 

Let I be a subinterval of (M,λM] of length 

|I| = (0.5 − λm−1)a−3x−1M5, 

and let u,u+b be two elements of T1(M)∩I. Since b ≥ 2a, we can apply Lemma 7 to show 

that b must satisfy (4.5). Taking u and u+b to be the smallest and largest elements of 

T1(M) ∩ I respectively, we can use this bound on b to deduce that the set T1(M) ∩ I is 

contained in an interval of length ≤ λ6a−3hx−1M4. Furthermore, by (4.1), we have that 

b ≥ 0.8706a−1/3x−1/3M5/3. Combining 

these two observations we find that 

 

Since we need at most 

(5.10) 

− 

intervals of length |I| to cover (M,λM], we conclude that 

. 

Thus, 

 . (5.11) 

Next, we use (5.11) to bound the right side of (5.7). With our choice of parameters, 

(5.7) gives 

 |S1(M)| ≤ 1.5 + 0.045δ−1x1/5 + X |T(M;a)|. (5.12) 

A≤a<B 
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Thus, we need to sum each of the four terms on the right side of (5.11) over a ∈ [A,B). 

Recalling the inequality 

(s > 0), 

and noting that, we find that 

  (5.13) 
2≤evena≤

B a Hence, 

0. 

(5.14) 

and 

 0. . (5.15) 

Combining (5.8), (5.11), (5.12), (5.14), and (5.15), we conclude that 

 , (5.16) 

where 

 . (5.17) 

We estimate the sum on the right side of (5.16) in different ways, depending on the 

size of M. When M ≤ 5x1/4, we use that 

 . (5.18) 

On the other hand, when M > 5x1/4, we have A > 1.386 · 54/3 > 11.8501, so 

 

 The proposition follows from (5.2) and (5.16)–(5.19). □ 
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6. Proof of Theorem 1 

The proof of the theorem uses different approaches for different values of x. As we 

stated in the introduction, the work in [23] establishes our result (and much more) for x 
≤ e41. In Section 6.1, we focus on large x and show that for x ≥ e116, Theorem 1 follows 

from Proposition 1. To complete the proof, in Section 6.2, we prove two asymptotically 

weaker variants, which are, however, stronger than the theorem for small x. Those 

alternative results establish Theorem 1 in the intermediate range e41 ≤ x ≤ e116. 

6.1. Large x. Let x ≥ e116 and set H = 5.5h in (2.2) and 

(2.11). First, we use Proposition 1 and Lemma 2 to bound. 

Suppose first that H ≤ 5x1/4, (in this case we can assume x ≥ e150) we split S(H,x2/5) in 

two pieces to account for the different cases in (5.5). When we apply 

Lemma 2 to the bound (5.3) for M ∈ [H,5x1/4], we find that 

 

Similarly, when we apply Lemma 2 to (5.3) for M ∈ [5x1/4,x2/5], we get 

 
Hence, 

  (6.1) 

Next, we consider the case H > 5x1/4 (which implies that x ≤ e151). In this case we need 

only consider the latter case of Proposition 1 for M in the full range 

(H,x2/5]. Applying Lemma 2 in this situation gives 
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on noting that 98.170x1/5 > 0.059h when x ≤ e151. 

To complete the estimation of, we apply Lemma 2 to the 

bound in 

Corollary 1 for M ∈ [x2/5,√2x] 

− 

Together, (6.1)–(6.3) establish (2.11) with 

0.4381 if H ≤ 

5x1/4, σ3 =0.3985

 if H > 5x1/4, 

for all x ≥ e116. Taking J = 120 in (2.5), we have σ0(h,120) ≤ −0.0595 in the same range. 

Furthermore, for all x ≥ e116, we have σ2(h,5.5) < 0.1797, and for x ≥ e150, we have 

σ2(h,5.5) < 0.1461. Thus, 

, 

which establishes (2.12), and therefore the theorem, for x ≥ e116. 

6.2. Intermediate x. Suppose that x ≥ e41. We consider h = 5x1/4 and choose λ = 1.025, 

J = 19 and H = 1.75h. With these choices, we apply Lemma 2 to the 

result of Corollary 2 to obtain 

( 
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That is, (2.12) holds with σ3(h,1.75) = 0.4331. Moreover, when h = 5x1/4 and x ≥ e41, 

we have 

 σ0(h,19) ≤ −0.0543, σ2(h,1.75) ≤ 0.158. 

Thus, when h = 5x1/4 and x ≥ e41, we have 

σ0(h,19) + σ1 + σ2(h,1.75) + σ3(h,1.75) < 0.9891. 

Together with the computations of [23], this proves the following result. 

Proposition 2. For any x ≥ 2, the interval (x,x + 5x1/4] contains a squarefree integer. 

Moreover, an identical calculation for x ≥ e109 with h = 3.8x1/4, H = 4.5h, λ = 1.0001, 

and J = 100 yields 

σ0(h,100) + σ1 + σ2(h,4.5) + σ3(h,4.5) 

< −0.0594 + 0.4523 + 0.1571 + 0.4423 = 0.9924, 

which yields the following alternative. 

Proposition 3. For any x ≥ e109, the interval (x,x+3.8x1/4] contains a squarefree integer. 

Since 5x1/4 ≤ 11x1/5 logx for x ≤ e109.7, Proposition 2 implies Theorem 1 for x ≤ e109. 

Finally, since 3.8x1/4 ≤ 11x1/5 logx for x ≤ e116.3, Proposition 3 establishes Theorem 1 

when e109 ≤ x ≤ e116. This completes the proof of the theorem. 

7. Asymptotic Results and Final Comments 

We conclude by noting a few of the explicit bounds that can be obtained by these 

methods if one no longer requires the bounds to be admissible for all values of x ≥ 2, 

allowing instead results valid for sufficiently large values of x. 

Some of the possible results that can be obtained by tweaking the parameters used in 

the proof of Theorem 1 are given in the statement of Theorem 3. To prove any of those 

results, we reset the parameters m,J,λ,δ that appear in the proofs of Proposition 1 and 
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Theorem 1 and then update the various constants. (When x is as large as in Theorem 3, 

the inequality H ≤ 5x1/4 always holds, so only the first case in the proof of Theorem 1 

can occur.) To establish the claims of Theorem 3, we always select J = 100, λ = 1.02, and 

m = √log x0, where x0 is the lower bound on x in each result; we only vary the 

choice of δ. For example, when h = 5x1/5 logx, x ≥ e400 (hence, m = 20), and δ = 0.3, we 

have 

σ0(h,100) + σ1 + σ2(h,m) + σ3(h,m) < 0.9811. 

For h = 2x1/5 logx and x ≥ e1800, the choice δ = 0.6 yields an upper bound of 0.9857; and 

for h = x1/5 logx and x ≥ e500000, δ = 0.87 gives a bound of 0.9981. 

Remark 2. Looking back at the proofs of our theorems, one can see that the value of h in 

our theorems is of the form h(x) = cx1/5 logx, with c an upper bound for a rather 

complicated bounded function C(x;m,J,λ,δ), which is decreasing in the variable x. Once 

x is sufficiently large, the decay in x appears to overwhelm the effect of the other 

parameters. On the other hand, to claim a specific value of c for all x ≥ x0, one generally 

needs to find acceptable choice of the other parameters to ensure that (2.12) holds. It 

seems that if one were to make the function C(x;m,J,λ,δ) fully explicit, one may even be 

able to identify a fourdimensional neighborhood of the chosen values of m,J,λ,δ such that 

all the choices of the parameters in that neighborhood are acceptable. 
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