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Abstract. We obtain explicit forms of the current best known asymptotic upper

that every interval of the formbounds for gaps between squarefree integers. In particular we show, for
any(x,x+11x1/5logx] contains a squarefree integer.x = 2,

The constant 11 can be improved further, if x is assumed to be larger than a (very) large
constant.

1. Introduction

An integer n is called squarefree if it is not divisible by the square of any prime p.
More generally, if k = 2, n is called k-free if it is not divisible by p* for any prime p; 3-
free integers, in particular, are also known as cubefree.

The asymptotic distribution of the k-free integers has been studied systematically, at
least since the early 1900s, with a special focus on the squarefree case. Let Qk(x) denote
the counting function of the k-free numbers up to x, and consider the error term Ek(x) in

the asymptotic formula
T

(k)
where {(k) is the Riemann zeta-function. The bound £k () = O (@*) is classical, and

further improvements are closely related to the distribution of zeros of the zeta-function.
In particular, the best known bound for Ex(x),

E.L(T) =0 (xlfk exp (—C(k)(lOg CIJ):g/S(lOg log I)_l/ﬁ))l

follows from the work of Walfisz on the error term in the Prime Number Theorem (see
[32]). Still, a number of authors [1, 2, 11, 18-20, 22] have obtained sharper bounds under
the assumption that the Riemann Hypothesis is true.

A related problem that has attracted considerable attention concerns the gaps between
consecutive k-free integers. The first result in that direction was obtained by Fogels [10],
who proved that if 8 > 2/5 the interval (x,x+x?] contains a squarefree integer for all
sufficiently large x. In 1951, Roth [28] reduced the exponent 2/5 in Fogels’s result to
3/13, while Halberstam and Roth [14] proved that the interval (x,x+x?] contains a k-free

Q) = + Ei ()
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integer for any 8 > 1/(2k) and for all sufficiently large x. Around the same time, Erdds

[3] proved that there exist infinitely many intervals
1

(x,x + h], with

s log x
loglogx,

which contain no squarefree integers. Together, these results inspired the conjecture that

for any fixed € > 0, the interval (x,x + x¢] contains a squarefree integer for sufficiently

large x. This conjecture seems beyond the reach of current methods, though Granville

[13] has shown that, like many other famous theorems and conjectures in number theory,

it follows from the abc-conjecture of Masser and

Oesterlé.

Initially, further improvements on Roth’s result [28] on gaps between squarefree
numbers were obtained through the method of exponential sums [12, 25, 26, 29], while
the (mostly elementary) work of Halberstam and Roth [14] inspired research on the
distribution of k-free numbers in polynomial sequences: see [15,16,24] for some early
work and [6, §2] for a more detailed history. Starting in the late 1980s, Filaseta and
Trifonov published a series of papers [4, 5, 7-9, 30, 31], where they developed an
elementary proof [8] that there exists a constant ¢ > 0 such that the interval (x,x + cx1/>
logx] contains a squarefree integer for all sufficiently large x. Later, Trifonov [31]
generalized this result and proved that, for each k > 3, there exists a constant ¢ = c(k) >
0 such that the interval (x,x+cx1/(2k+1)]ogx] contains a k-free integer for all sufficiently
large x. Filaseta and Trifonov [9] generalized their method to achieve progress in other
problems—see the survey article [6] for the history of such developments, but sharper
bounds on the gaps between k-free integers have remained elusive.

During the past couple of decades, number theorists’ interest in numerically explicit
results has increased significantly, and this has led to the development of numerically
explicit versions of known theorems. As the Filaseta—Trifonov approach to gaps between
k-free integers is both self-contained and “numerically friendly,” it therefore makes sense
to investigate fully explicit versions of the results of [8] and [31]. In this note, we prove
such explicit versions of the gap results for squarefree integers. Our main theorem is as
follows.

Theorem 1. For any x = 2, the interval (x,x+11x'/5logx]| contains a squarefree integer.

The reader familiar with the work of Filaseta and Trifonov may wonder whether the
techniques from this work can be extended to obtain similar results on gaps between k-
free integers when k = 3. This is very much possible. Indeed, we have proved the
following result on gaps between cubefree integers. Its proof and the proofs of
companion results on k-free integers with k = 4 will appear in a forthcoming paper.
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Theorem 2. For any x = 2, the interval (x,x + 5x1/7logx] contains a cubefree integer.

The focus of the above theorems is on providing explicit intervals that work for all x.
The price we pay for this universality are the somewhat elevated values of the constants
11 and 5 in the theorems. If one is interested in reducing those constants further and
willing to accept a result that holds only for sufficiently large x, then one may prefer
versions like those given in the next theorem.

Theorem 3. Every interval

e (xx + 5x/5logx]| contains a squarefree number for x = e*00;
o (xx + 2x1/5logx] contains a squarefree number for x = 1800 o (x,x + x1/5

logx] contains a squarefree number for x = 500000,

Mossinghoff, Oliveira e Silva and Trudgian [23] (see also Marmet [21]) investigated
long gaps between squarefree numbers numerically. Their computational work
establishes the size of the longest gaps up to 1018, which are all dramatically smaller
than the bounds that we get in this paper. The largest gap that they find is a string of 18
consecutive non-squarefree numbers, the first of which is
125781000834058568. As a result of their work, we can assume x = 1018 > ¢4l

throughout the rest of this paper.

Theorem 3 already hints that the constants in Theorems 1 and 2 are influenced by the
“small” values of x. Indeed, we establish Theorem 1 for x > el16. To bridge the gap
between this lower bound and e*l, we prove several propositions giving results with
larger exponents, which are however superior to the results of the main theorem for small
x. In particular, we find that the interval (x,x+5x1/4] always contains a squarefree integer
(Proposition 2) and the interval (x,x+3.8x2/4] contains a squarefree integer for x > 109
(Proposition 3).

It should be clear by now from the above discussion, that the values of the constants
and the various cutoffs in the theorems (and in Propositions 2 and 3) are not exact, but
rather “nice” approximations. We say more about this in Section 7.!

! The interested reader can explore these phenomena further using the SageMath code for the
computational part of our work, which is available at https://github.com/agreatnate/
explicit-k-free-integer-bounds


https://github.com/agreatnate/explicit-k-free-integer-bounds
https://github.com/agreatnate/explicit-k-free-integer-bounds
https://github.com/agreatnate/explicit-k-free-integer-bounds
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Notation. Throughout the paper, for a real number 6, we use | 6] to denote the greatest
integer less than or equal to 6; also, {6} = 6 — |0]. We write |A| for the size of the set A,

and m(x) for the prime counting function.

2. Preliminaries

2.1. Outline of the method. Let N(x,h) be the number of integers in (x,x+h] that are not
squarefree. Clearly, to prove any of our theorems, it suffices to show that N(x,h) <h -1
for the respective choices of x and h. We first sieve this interval of the squares of very
small primes, up to a parameter J to be chosen later.

The number of integers in (x,x + h] divisible by the square of a prime up to J is at most

hlr=1] (1 V) o — i (1 II(t S +2WJ =: hol\(h,J)
L p<J P - p<d P’ h s

We then count separately the integers divisible by p? for each prime p > J. We find that

N(xz,h) < hay(h,. Z (Fﬁ i hJ L?ZJ)
p>J , (2.1)

where the sum on the right is over all primes greater than J. To bound the latter sum, we

study separately the contributions of “small” and “large” primes p. We introduce a
parameter H, which we will later choose as H = mh, with m = 1 of moderate size, and we
use this parameter to split the sum in (2.1) as follows:

+h
( 2 +Z) (hz J L%J) R
J<p<H  p>H . (2.2)

The contribution of the small primes can be bounded easily. We have

S ( )<hZ—+n

J<p<H p>J
1
< h (01 Zp—z) +m(H),
p<d (2.3)
where o1, the sum of the reciprocals of all squares of primes, satisfies
01< 0.4523. (2.4)
We group the sum over primes up to J appearing in (2.3) with o (h, J) to write
1 1 27
(To(h,])l—H(l—?>—ZE+ h
p<.J p<.J ) (25)
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so that we get
N(h,x) < h(ag(h, J) + O’l) +m(H) + ¥y (2.6)

The term m(H) above can be bounded with the help of the following well-known result
of Rosser and Schoenfeld [27, (3.2)].

Lemma 1. For any x > 1, one has

x 1.5
m(x) < 1+
Mgm( bgr). 2.7)

Applying this lemma, we see that

m 1.5

m(H) < ay(h,m)h, os(h,m) = W (1 + W) 2.8)
2 I 244 . .

The estimation of the sum X2 occupies the remainder of the paper. We remark

that primes p > v2x do not contribute to that sum, since for such primes we have

8 "+ h 22
0< L 2th 2
pz pz pz

<1
Moreover, if p > h1/2, we get

0< F’;hJ—FJ <M1

Thus, the finite sum X2 counts the primes p € (H,\/ 2x] for which there exists an integer
m with

x 7 +h

P? -
The latter inequality can be expressed in terms of the fractional part of xp-2: it says that
{xp-2} > 1 - hp-2. Therefore,

where

% < [S(H.V2r)], (29)

h :
S(M,N) = {u €Z:M<u<N, gd(w2) =1, 1- < {%} < 1} . (2.10)

u I
We remark that while we no longer require the elements of S(M,N) to be prime, we do
restrict them to odd values so that the differences between any two elements of the set
are even, a fact which will be useful later.
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Thus, in view of (2.6), (2.8) and (2.9), to prove any of our results, it will suffice to find
a choice of H such that
|S(H,v22)! < hos(h,m),
2.1 — as(h,m)
for some bounded function such that
1
oo(h,J)+ oy 4+ oa(h,m) +o3(h,m) <1 ——

h. (2.12)

In Section 6, we establish inequalities of the form (2.11) and optimize the choices of
several parameters to ensure that the respective versions of (2.12) hold. We conclude the
present section with the statements of a couple of general-purpose lemmas, which we
will use repeatedly in the remainder of the paper to obtain bounds on the spacing and
cardinality of sets S(M,N).

2.2. Some general lemmas. Our bounds on |S(M,N)| are based on the simple idea that if

the minimum distance between distinct elements of a set of integers A is at least d, then
|AN (MN]| <d1(N-M)+1 (2.13)

In Sections 3—5, we prove several results on the spacing between elements of sets

S(M) = S(M,AM),
where A > 1 is a constant. Those spacing estimates and inequality (2.13) yield bounds on
|S(M)|, which we leverage with the help of the next lemma.

Lemma 2. Suppose that A1,A2,A3,b1,b2 are positive reals and u, v, A are real numbers
with 0 <u <v <1 <A Assume that for all M € [x%,x'] the estimate

|S(M)| <A1Mpi+ A2M-p2+ A3

holds. Then
|S(x, 2v)| < Ala™v  Ala~"" 4 Allogx + As,
where
Ay Ay U—u
A= ——" Al=—""_ A/ =A;- .
TS D T T U _

Proof. This is standard: we cover the interval (x%xV] with intervals of the form (M,AM],
apply the hypothesis to each of them, and sum the ensuing geometric progressions. The
only (minimal) novelty in the present version is the explicit description of the
coefficients 4 in terms of the Aj’s and the various parameters.

The reader will find a detailed proof of a variant for A = 2 in [5, Lemma 1]. o
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Some of our results also rely on the properties of divided differences. For a function f
: [ab] = R and s + 1 points to,t1,...ts € [a,b], the divided difference (of order s),
flto t1,...,ts], of fat the given points is defined recursively: we set f[to] = f{to) when s = 0,
and

Flto b 1] = it ooots) — flto, ..o ts—i]

ts — 1o
when s 2 1. Divided differences are a tool in numerical analysis that has a long and rich
history, but here we are interested only in two of their elementary properties, which we
summarize in the next lemma. The reader can find proofs of these properties in many
texts on numerical analysis that discuss interpolation theory: e.g., [17, Ch. 6].

Lemma 3. Let f: [a,b] = R be a function, let to < t1< -+ < ts be distinct numbers in [a,b],

and let fto,t1,.., ts] denote the respective divided difference of f. Then

~  f(t)
f[t(]..t].. .. f,,} — _ v ALF
,Z_% H(tj - ti)
=i ,
where the product is over i € {0,1,...,s} \ {j}. Moreover, if f has s continuous derivatives

on [a,b], then there is a number & € (to,ts) such that

3. Basic Spacing Lemmas

Let M be a large parameter, with H < M < V2x, and let A € (1,2] be a constant. In this
section, we prove several lower bounds on the minimum distance between distinct
elements of S(M). As we pointed out in the introduction, the computational work in [23]
allows us to assume that x is large. Also, while in our proofs we will utilize several
different choices for h and H, we will always have h < H and h < 2x1/3. Thus, we assume
in the remainder of the paper that

x>, 1000 < h < 2z'? (3.1

3.1. Spacing for pairs. First, we show that two distinct elements of S(M) cannot be “too
close” to one another.

Lemma 4. Suppose that H < M. If u and u + a are distinct elements of S(M), then
a > 0.4995x1M3, (3.2)

Proof. Consider the function f(u) = xu-2. If y,u + a € S(M), we have
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flu) =n1- 064, flu+a)=n2- 6, 3.3)
with n,n2 € Z, 0 < 61,62 < hM-2. So,
flu+a)-flu)=n-6, |8] < hM-2,

By the mean-value theorem, there exists a number & € (u,u + a) such that

B 2ax . 2
- 53 ()\ﬂ-*f):“_

If n =0, we have |f{u + a) - f(u)| = |8| < hM-2, and we deduce that

|[f(u+a) = f(u)] = alf(E)

2A-3x < hM < 3x5/¢,

which contradicts (3.1). Thus, we have n = (f, so |n| = 1. We also get that |6| <
hM-2<hH2<H1<0.001.
Hence, |f(u +a) - flu)| 21 -]6] 2 0.999, and we obtain
0.999 < |f(u + a) - flu)| = 2ax&3 < 2axM3,

from which (3.2) follows. o

Applying (2.13) to the result of the last lemma, we obtain the following bound on the
size of S(M).
Corollary 1. Under the hypotheses of Lemma 4, we have

[S(M)| <0.4995-1(A - 1)xM~2+ 1.

3.2. Spacing for triples. Next, we consider any three distinct elements u,u + a,u + b of
S(M), with 0 < a < b, and obtain lower bounds on b.

Lemma 5. Let A< 1.2, m 2 1.5, and suppose that mh=H <M. If 0 <a <b and u,u + a,u
+ b are elements of S(M), then

b > 1.3860x1/3M4/3, (3.4)

Proof. Suppose first that b < 0.004M. Write u1=u, u2=u + a, and us=u + b, and let

ni,hz,n3 € Z be such that
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flui) =ni- 6, 0 <0i<hM=2 (i=123).

We consider the second divided difference f[u1,uzu3]. By Lemma 3,

fluy)(us —ug) + flug)(uy —us) + fus)(us — uy)
(U,Q — ’Ml)('llg — ?Ll)(ug — ’UQ)

(m —0)(b—a)—(ne—02)b+(ng —0s)a  n—10

ab(b — a) Vv

f[U-I: U2, ’U:i} =

7

where

n=(b-a)ni-bnz+ans and 0=(b-a)01-bO2+abs.

In particular, since 6i> 0, we have

bhM-2 < bO2<6<(b a)o:
+af@3<bhM-2 WU +a and u+b

Moreover, since are all odd (see (2.10)) we know that a and b are both even, so n must
be as well.
We will show that n =/ . Suppose that n = 0. Then
9] bhM 2 h ha

| flur, uz, us|| = v < ab(b  a) N a(b  a)M? = 0.999M15

7

after an appeal to (3.2) and the bound b - a = 2. However, using Lemma 3, we also get

that
N
|f[“"l.‘ U*?au3” - 2l - 6_4 2 (,\ﬁ[)-l
Thus, 3 ha 1.002h2

M)~ 0.99905 = HM'

which contradicts the hypotheses of the lemma.

Having proved that n = ¢/ and using that it is even, we find that |n| = 2. Hence,
|n — 6| 2—16| 1.997
Uy, Uz, us|| = > >
‘f[“l_ Uz, 713” V ab(b . a.) ab(b . a.), (35)
since
. 1 1
O] < bhM~> < 0.004hH ™' < <
6] < bR < 0.004hH ™ < 550 < 575,

On the other hand, by Lemma 3,
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?T<?T

&= M (3.6)
(b—a) < 107

| flu, ug, us]| =

From (3.5), (3.6), and the elementary inequality® , we deduce that
L3

3b°: ,
TT > 3ab(b — a)x > 1.997M*

3.7
and the conclusion of the lemma follows in the case b < 0.004M.
Finally, when b > 0.004M, we have
. . 8
b* > (0.004M)* > gm—lw
by the assumptions that M < v/2x and x > e, i

Note that the expression on the right side of (3.4) is a lower bound for the minimum

distances between successive elements of the set S1(M) containing every other element
of S(M). Since |S(M)| < 2|S1(M)|, this observation and (2.13) yields the following

corollary.
Corollary 2. Under the hypotheses of Lemma 5, we have
|S(M)| < 1.4430(A - 1)x1/3M-1/3 + 2.

4. Spacing for Pairs of Pairs

In this section, we study a special family of quadruples u, u + a, u + b, u + a + b of
elements of S(M). The special form of the spacing between the four numbers allows us
to obtain bounds on b that are stronger than those for general quadruples in S(M); in the
next section, we will average these bounds over b. In the next lemma, we use the third-
order divided difference of f{u) = xu-2 for the points u, u + a, u + b, and u + a + b to
bound b from below.

Lemma 6. Let A < 1.05, m = 5, and suppose that mh<H<M. If0<a <

2a < band u,u + a,u + b,u + a+ b are elements of S(M), then

ab3 = 0.6600x-1M5. (4.1)

Proof. Consider points u1 = u, uz = u+a, us = u+b, and us = u+a+b in S(M). Recall that
by the definition of the set S(M), there exist integers nu,....,n4 and reals 641,..,,04 such that

flui) =ni- 6, 0 <68i<hM-2 (1<i<4). (4.2)
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We consider the divided difference fluz,...,u4].
Due to the special configuration of the distances between the four points, the formula
in Lemma 3 simplifies to
flug) = flur)  flus) — flus)  n—0

, o flug, ug, ug, ) = —

ab(a + b) ablb a) =V

where V =ab(a + b)(b - a) and
n=(b—a)(ny—mn)— (a+0b)(ns —ny)
A = (b — (1)(94 — 91) — (a + b)(ﬁ'; — 92).’
We remark that n is an even integer and |6| < 2bhM-2. We will

show that n = (f . Suppose that n = 0. Then

0] < 2bh M 2

. =
Floss - ull = == < e —a),

Recalling (3.7), we deduce that

Pl < oM o O
1y ey Uy ab(b—a) — 1.997TM*®

However, Lemma 3 gives

(3) )
|f[’u-11-..,u4]|:w 43»> 4

3 &~ (M),
for some ¢ € (M,AM]. We combine these upper and lower bounds to get
dx 6ha 3.005hx

< - <
(AM)>  1.997M6 HM?>
which contradicts the assumptions of the lemma.

Since n is even and nonzero, we can now use that222 |n| =2 2 combined with the

observation b - a =2 0.75b to
' flu | = In — 0 - 2—|6] - 1.98
obtain S Vo T oab(h? —a?) T 0.75ab?
. 1 1
0] < 2bhM 2 <2(A—1)hH ' < — < —. ’
4.3) 10m — 50
since

On the other hand, by Lemma 3,
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| flu, .. wa]| = 5‘5 M5 (4.4)

The lemma follows from (4.3) and (4.4). i

Our next result is of a somewhat different nature from the spacing lemmas established
hitherto. In this lemma, instead of proving that the distance b between the two pairs
exceeds some lower bound in terms of x,M, and possibly, a, we establish a kind of a
dichotomy for b: either b = B1 for some lower bound B1, or b < B2, with Bz significantly
smaller than Bi.

Lemma 7. Let A < 1.05, m 2 5, and suppose that mh < H< M. If 0 <a < 2a < b and u,u

+a,u + b,u+ a+ b are elements of S(M), then exactly one of the conditions
a3b < AShx-1M*, (4.5)
or
a3b > (0.5 - Am)x1M5, (4.6)
must hold.

Proof. We start from the algebraic identity
2u+3a  2u-—a a’

(u+a)? @  uw(u+ta)

Since u,u + a € S(M), we can use this identity and (4.2) to get that

a’x (2u+3a)r  (2u—a)x L
: > = S . =n +40
u?(u + a)? (u+a)? u? (4.7)

where n'= (2u + 3a)nz - (2u - a)n1is an even integer and
|0'] = 161(2u - a) - 02(2u + 3a)| < 2u|O1- 02| + a(01+ 302) < (2u + 4a)hM2.

Combining (4.7) with the analogous identity for the pair u + b,u + a + b, we find
that

a’r a’r
. S — =n-4+0,
w?(u+a)®  (u+0)*(u+a+0b)? (4.8)

where n € Z is even and
|0] < (4u + 2b + Ba)hM-2< 4(u + a + b)hM-2< 4AhM-1 < 4Am-1,

Next we observe, by the mean-value theorem, there is a £ € (u,u + b) such that
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a’x a’x  20°bx(26 + a)
u*(u+a)?  (u+b)?(u+a+b)? (€ +a)?
This expression is bounded above by
2a*ba (26 + a) _ 4a’bx
E€+a) & +a)
and bounded below by
QG:%,bI(QE +‘a) > — da’be — > 4a®ba(AM) P
&€ +a) §2(§+a)? . (4.10)
When a3b < (0.5 - Am-1)x-1M>, (4.8), (4.9), and the bound on || yield

S < 4a’be M~
, (4.9)

n-4Am-l<n+ 0 <4a3bxM-5< 2 - 4Am™1,
and hence, n < 2. On the other hand, if a3b 2 A°hx-1M*, we deduce from (4.8) and (4.10)

that
4AWM-1 < 4a3bx(AM)5<n + 6 <n + 4\hM-1,

so in this case n > 0. Since n is an even integer, it can satisfy only one of the conditions
n > 0 and n < 2; therefore, at least one of (4.5) or (4.6) must hold. This completes the
proof, since under the hyptheses of the lemma, the lower bound in (4.6) exceeds the
upper bound in (4.5) at least by a constant factor. o

5. The Main Bounds on |S(M)|
Let
A =1.3860x"1/3M4/3, (5.1)
In Section 3, we proved that b = A whenever u,u + a,u + b are distinct elements of S(M).

Therefore, if uo,us,...,usare the elements of S(M), listed in increasing order, the set S1(M)

= {uo,u2,u4,...} has no gaps < A and satisfies

IS(M)| = 2|S1(M)]. (5:2)

In this section, we use (5.2) and the lemmas in the last section to prove the following
result.

Proposition 1. Suppose h = 11x1/51logx, let A = 1.045 and x = €11, and suppose that 5.5h

<M < x2/5 Then
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|S(M)| < h(o3(M) + o4(M)), (5.3)
where
o3(M) = (0.5298¢"/° + 0.34000"/* M) h™" + 0.03082 /PN g 4
and o '
_ 1.21052= 23 M7/3 if M < 52!/
0-4(11[) = 19 71/9 e oAy 1/ ’
141822~ VO MY if M > 5a'/*. (5.5)

Remark 1. Notice that when x is relatively small, the condition M < 5x1/4in Proposition
1 is impossible, and so only the second condition will be used in the range of “small”

values of x.
The proof of this proposition uses the set

T(M;a) = {u : u,u + a are consecutive elements of S1(M)}

to bound |S1(M)|. The starting point is the elementary identity

Sy (M) =14 |T(M;a)| =1+ |T(M;a)
a=1 azA , (5.6)
which is a direct consequence of the definition of T(M;a). Further, for any B = A, we

have

> alT(M;a) < alT(M;a)| < (A= 1)M +1

a>B a>A

’

SO
> IT(M;a) < (A=1)MB™ + B!

a>B

Applying this inequality to the right side of (5.6), we find, for any parameter B = 2,
that

IS1(M)| < 1.5 + (A - 1)MB-1+ X | T(M;a)|. (5.7)
A<a<B

5.1. Proof of Proposition 1. We recall the quantity A defined in (5.1), and we select
B=6x5M, 6§=0.17, (5.8)
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in the imminent application of (5.7). We fix an integer a, with A < a < B. If uo,u,..., utare
the elements of T(M;a), listed in increasing order, the set T1(M) = {uo,uz,u4,...} contains
only elements of T(M;a) such that if u,u + b € T1(M), then b 2 2a. Clearly, |T(M;a)| <
2| T1(M)].
Let I be a subinterval of (M,AM] of length
[I] = (0.5 - Am~1)a—3x-1M5,

and let u,u+b be two elements of T1(M)NI. Since b = 2a, we can apply Lemma 7 to show
that b must satisfy (4.5). Taking u and u+b to be the smallest and largest elements of
T1(M) N I respectively, we can use this bound on b to deduce that the set T1(M) N I is
contained in an interval of length < Aa-3hx-1M*. Furthermore, by (4.1), we have that

b = 0.8706a-1/3x-1/3Ms/3. Combining

these two observations we find that

NIl < ANaha=M*
— 0.8706a~1/3p—1/3 M[5/3
Since we need at most

Ty (M) +1 < 1.4959a ¥3ha2PM7P + 1. (5.9)

(A—1)M

3’ * —4 .
05 AmDaean 1 <0.1452a°2M " + 1 (5.10)

intervals of length |I| to cover (M,AM], we conclude that

Ty (M)| < (0.1452a°2 M~ + 1) (1.4959a %P ha 2P M + 1)

< 0.2173a'Pha' P M + 0.1452a e M + 1.4959a ¥ ha 2P M 4 1,
Thus,
|T(M:;a)| < 0.4346a'2ha'/* M5/ + 0.2904a>2 M~

+2.9918a 3 ha 23 MT 4 2, (5.11)

Next, we use (5.11) to bound the right side of (5.7). With our choice of parameters,
(5.7) gives

1S1(M)] < 1.5 + 0.0455-1x1/5 + X | T(M;a))]. (5.12)

A<a<B
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Thus, we need to sum each of the four terms on the right side of (5.11) over a € [A,B).
Recalling the inequality

S k< (K41

0),
b<it s+1 (s>0)
SN f—1/5 —1/5 .
and noting that, B=0Mzx > 5.5hdx > 10.285log xz > 1193 we find that
(B + 2)*+! (1.002B)*!
Z a < < .
2(s+1) 2(s+1) (5.13)
2<evenas
BaHence,

0.4346 - (1.002B)*/?

ha' /M3
873 11

4346ha' PME N " 6l <

A<a<B
a even

< 0.0154ha! /M2,

(5.14)

and
0.2904 - (1.002B)*

29042 M 4 z a’ < e M~ < 0.000042'/°
0. ven . (5.15)
Combining (5.8), (5.11), (5.12), (5.14), and (5.15), we conclude that

Sy (M)| < holy(M) +2.9918ha 2P M3 N~ 0757

e (5.16)
where
o4(M) = (0.26492"° + 0.1727 M) h~" + 0.01542/ M~/ (5.17)

We estimate the sum on the right side of (5.16) in different ways, depending on the
size of M. When M < 5x1/4, we use that

Z a %3 < C(S/Ag) < 0.2023

28/3
A<a<B

a even (5.18)
On the other hand, when M > 5x1/4 we have A > 1.386 - 54/3 >11.8501, so

A —.)/-:’) ) - . .
D o< 28/{ (— - 1) < 0.4083A7°/% < 023727 M. (5.19)

2
A<a<B
a even

The proposition follows from (5.2) and (5.16)—(5.19). i
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6. Proof of Theorem 1

The proof of the theorem uses different approaches for different values of x. As we
stated in the introduction, the work in [23] establishes our result (and much more) for x
< e*l. In Section 6.1, we focus on large x and show that for x = €116, Theorem 1 follows
from Proposition 1. To complete the proof, in Section 6.2, we prove two asymptotically
weaker variants, which are, however, stronger than the theorem for small x. Those
alternative results establish Theorem 1 in the intermediate range e*! < x < e116,

6.1. Large x. Let x 2 el'6and set H = | g (H IQ/S)\ 5.5h in (2.2) and

| |
(2.11). First, we use Proposition 1 and Lemma 2 to bound.

Suppose first that H < 5x1/4, (in this case we can assume x = e150) we split S(H,x2/°) in
two pieces to account for the different cases in (5.5). When we apply

Lemma 2 to the bound (5.3) for M € [H,5x1/#], we find that

1.2105 - 57/3=1/12 0.03082/1> H—1/3 1.721/%0
S(H, 52" < h
SH5 ) <M S g o Lo 1— 1045

_{ log (ba'/*/H
4 0.520821/5 (M + 1)

log(1.045)

< 0.1034% + 0.00012 + 0.52982'/ ( logz __ log(12.llogz) 1)

20log(1.045) log(1.045)
< 0.1034h + 0.60192"/° log 22 — 89.78862:'/° < 0.1582h.

Similarly, when we apply Lemma 2 to (5.3) for M € [5x1/4,x2/°], we get
0/ 1.41822~1/15 0.0308 - 5~ 1/3=1/60 0.342'/°
S (5", 2*?)| < h L -+ A B
1 —1.045-1/9 1 —1.045-1/3 1—1.045"1
. 3log x log 5
0.52982:/° - 1
* ¢ (20 log(1.045)  log(1.045) | )
< 0.1148h + 1.80552° log 2 — 10.94632° < 0.2790h.

Hence, )
S (H,2*%)| < 0.1582h 4 0.2790h = 0.4372h. 6.1)

Next, we consider the case H > 5x1/4 (which implies that x < e151). In this case we need

only consider the latter case of Proposition 1 for M in the full range

(H,x%/5]. Applying Lemma 2 in this situation gives
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5 (1.2

1.41822= Y15 0.0308z2' /15 [f—1/3 0.34x1/5
<h —= + — + —
1 —1.045-1/9 1 —1.045-1/3 1—1.045-1

5 log x log(60.5 log x)
5208x1/° —
052080 (5 log(1.045)  log(1.045)

< 0.2378h + 2.40732/° log & — 98.17002'/° < 0.3976h, (6.2)
on noting that 98.170x1/> > |S(H, \/Z)| | 0.059h when x < e151,
. This yields

apply Lemma 2 to the
bound in

To complete the estimation — of, we

Corollary 1 for M € [x2/5V/2x]

0.09012'/5 N log 0.5log 2
1 1.04572  10log(1.045) = log(1.045)

+1 < 0.0009h. (6.3)

S(2** V2r)| <

Together, (6.1)+6.3) establish (2.11) with
(

0.4381 ifH<
5x1/4, 03=0.3985
if H > 5x1/4,

for all x = e116, Taking / = 120 in (2.5), we have go(h,120) < -0.0595 in the same range.
Furthermore, for all x = e116, we have 02(h,5.5) < 0.1797, and for x = 159, we have
02(h,5.5) < 0.1461. Thus,

0.9770 if H < 5z/4
0.9710 if H > 5al/4,

’

O'()(h_, 120) + o + O'z(h, 55) + 0'3(}1, 55) < {

which establishes (2.12), and therefore the theorem, for x > e116.

6.2. Intermediate x. Suppose that x > e*1. We consider h = 5x1/4and choose A = 1.025,
J =19 and H = 1.75h. With these choices, we apply Lemma 2 to the

result of Corollary 2 to obtain
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1.4430 - (0.025)z' /2 H /3 log (V22) — log H
S(H,V2x 2
|S(H, V)] < 1 —1.025-1/3 M log(1.025)
log x log 2 — 21og(8.75/1.025)
< 0.4272h < 0.4331h.
' Ylog(1.025) log(1.025) ’

That is, (2.12) holds with 03(h,1.75) = 0.4331. Moreover, when h = 5x1/4and x = e*1,
we have

oo(h,19) < -0.0543,  02(h1.75) < 0.158.

Thus, when h = 5x1/4and x = e*!, we have

00(h,19) + o1+ 02(h,1.75) + 03(h,1.75) < 0.9891.
Together with the computations of [23], this proves the following result.

Proposition 2. For any x = 2, the interval (x,x + 5x1/4] contains a squarefree integer.
Moreover, an identical calculation for x > e199 with h = 3.8x1/4, H=4.5h, A = 1.0001,
and /= 100 yields
00(h,100) + o1+ 02(h,4.5) + 03(h,4.5)
<-0.0594 + 0.4523 + 0.1571 + 0.4423 = 0.9924,

which yields the following alternative.

Proposition 3. For any x = €109, the interval (x,x+3.8xY/*] contains a squarefree integer:
Since 5x1/4 < 11xY/>logx for x < 1097, Proposition 2 implies Theorem 1 for x < 109
Finally, since 3.8x%/4 < 11x%/5logx for x < e1163, Proposition 3 establishes Theorem 1

when €109 < x < e116, This completes the proof of the theorem.

7. Asymptotic Results and Final Comments

We conclude by noting a few of the explicit bounds that can be obtained by these
methods if one no longer requires the bounds to be admissible for all values of x = 2,
allowing instead results valid for sufficiently large values of x.

Some of the possible results that can be obtained by tweaking the parameters used in
the proof of Theorem 1 are given in the statement of Theorem 3. To prove any of those
results, we reset the parameters m,J,A,6 that appear in the proofs of Proposition 1 and
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Theorem 1 and then update the various constants. (When x is as large as in Theorem 3,
the inequality H < 5x1/4 always holds, so only the first case in the proof of Theorem 1
can occur.) To establish the claims of Theorem 3, we always select /= 100, A = 1.02, and
m = Vlog—___xo, where xois the lower bound on x in each result; we only vary the
choice of 6. For example, when h = 5x1/>logx, x 2 490 (hence, m = 20), and 6 = 0.3, we
have

00(h,100) + o1+ 02(h,m) + o3(h,m) < 0.9811.
For h = 2x1/5logx and x = 1800, the choice § = 0.6 yields an upper bound of 0.9857; and

for h = x1/5logx and x 2 500000 § = (.87 gives a bound of 0.9981.

Remark 2. Looking back at the proofs of our theorems, one can see that the value of h in
our theorems is of the form h(x) = cx¥/5 logx, with ¢ an upper bound for a rather
complicated bounded function C(x;m,/,A,6), which is decreasing in the variable x. Once
x is sufficiently large, the decay in x appears to overwhelm the effect of the other
parameters. On the other hand, to claim a specific value of ¢ for all x = xo, one generally
needs to find acceptable choice of the other parameters to ensure that (2.12) holds. It
seems that if one were to make the function C(x;m,/,A,6) fully explicit, one may even be
able to identify a fourdimensional neighborhood of the chosen values of m,J,A,4 such that
all the choices of the parameters in that neighborhood are acceptable.
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