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Abstract. Let k ≥ 2 be an integer and Fq be a finite field with q elements. We prove several results on 

the distribution in short intervals of polynomials in Fq[x] that are not divisible by the kth power of 

any non-constant polynomial. Our main result generalizes a recent theorem by Carmon and Entin 

[1] on the distribution of squarefree polynomials to all k ≥ 2. We also develop polynomial versions 

of the classical techniques used to study gapsk-free integers in Z. We apply these techniques to 

obtain analogues in Fq[x] of some 

between classical theorems on the distribution of k-free integers. The latter results complement the 

main theorem in the case when the degrees of the polynomials are of moderate size. 

1. Introduction 

Recall that if k ≥ 2 is a fixed integer, an integer n is called k-free if n is not divisible by the kth 

power of any prime. This is a generalization of the classical concept of a squarefree integer, which 

occurs in the special case when k = 2. Much work has been done studying the distribution of k-

free integers in short intervals, especially in the squarefree case: see [2–10,12–15,18,21,22,24,26–

28]. In particular, Filaseta and Trifonov [8] proved that there exists a constant c > 0 such that the 

interval (x,x + cx1/5 lnx] contains a squarefree integer for all sufficiently large x. Trifonov [28] 

further generalized this result to k-free integers for all k ≥ 2. He showed that for some constant c = 
c(k) > 0, the interval (x,x+cx1/(2k+1) lnx] contains a k-free integer when x is sufficiently large. To 

the best of our knowledge, these are the sharpest unconditional upper bounds on the maximum gap 

between consecutive k-free numbers. Conditionally on the abc-conjecture, Granville [13] has 

shown that for any fixed ε > 0, the interval (x,x + xε] contains squarefree integers for sufficiently 

large x. 

There are many parallels between the arithmetic of Z and that of Fq[x], the ring of polynomials 

in x over a finite field Fq with q elements (see [19,23] for background on such research). In 

particular, a polynomial in Fq[x] is called k-free if it has no irreducible factors of multiplicity k or 

higher; when k = 2, we call such a polynomial squarefree. One may expect to find ample existing 

research on analogues for polynomials from Fq[x] of the aforementioned research on the gap 

problem for k-free integers, but that does not appear to be the case. Indeed, a search of the literature 

on the distribution in short intervals of k-free polynomials over a finite field yields very limited 

results, almost entirely focused on the squarefree case. 

Let q = pf, with p prime and f ∈ N, be the cardinality of a finite field Fq. Henceforth, we restrict 

q to integers of this form. We let Mq denote the set of monic polynomials in Fq[x] and write Mq(d) 
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for the subset of monic polynomials of degree d. When F ∈ Mq and h < degF, an interval in Fq[x] 

of length h centered at F is the set 

. 

In this paper, we study k-free polynomials in short intervals of this kind. To draw an analogy with 

short intervals (x,x + h] in Z, we observe that when F ∈ Mq(n), the “size” of the polynomials in 

Iq(F,h) is qn, whereas the number of polynomials in the interval is qh+1. In particular, the interval is 

“short” whenever 0 < h ≤ n − 2. Thus, a proper analogue of a short interval (x,x + h], where x → ∞ 

and h = O(xθ), 0 < θ < 1, is an interval Iq(F,h), where qn → ∞ and h ≤ θn. 

Note that the condition qn → ∞ above can occur in different ways. For example, one may fix n 

= deg(F) and let q → ∞. In this regime, the question was studied by Keating and Rudnick [17]. 

Drawing on earlier work by Rudnick [25] on the density of squarefree polynomials over Fq, they 

showed that for any integers h,n with 0 < h ≤ n−2, one can take q sufficiently large so that there 

exists a squarefree polynomial in every interval Iq(F,h), with F ∈ Mq(n). The theorem of Keating 

and Rudnick does not quantify how fast q must grow in terms of n, but an examination of their 

proof suggests that it can be made effective to show that such a conclusion holds as long as q > c(n 

+ h) for some constant c. 

In this paper, we focus on the case when q is fixed and n → ∞. The behavior of powerfree 

polynomials in this regime turns out to be quite different, and the analogy with Z is more direct. 

For example, in the case of gaps between squarefree integers, Erdős [2] proved long ago that the 

maximum gap is unbounded: there are arbitrarily large x such that the interval 

(x,x + h] contains no squarefree integers when 

 

for any constant c such that 2c < ζ(2). In §3, we establish a version of Erdős’ result for polynomials 

over Fq. If ζq(s) = (1 − q1−s)−1 denotes the zeta-function of the ring Fq[x] (see [23, Ch. 2]), our result 

can be stated as follows. 

Theorem 1. Let k ≥ 2 and q ≥ 2 be fixed integers, and suppose that c is any constant with kc < 

ζq(k). If n is sufficiently large, there exist monic polynomials F of degree at most n such that the 

interval Iq(F,h) contains no k-free polynomials for any length h such that 

 . (1) 
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In the squarefree case k = 2, this is a direct analogue of Erdős’ result, as stated by Erdős in [3]. 

To the best of our knowledge, for k > 2, the corresponding result for integers has never been 

formally stated, though it has been known to researchers in the field and can be extracted from the 

remarks in [3]. 

We include Theorem 1 and its proof here, since it transpires that in the study of k-free 

polynomials over Fq, the upper bounds on the least h (as n → ∞) for which Iq(F,h) must contain a 

k-free polynomial come much closer to the lower barrier imposed by Theorem 1. Recently, Carmon 

and Entin [1] have shown that when 

 , (2) 

where g(n) → ∞ as n → ∞, one can obtain an asymptotic formula for the number of squarefree 

polynomials in the interval Iq(F,h). They derive this result as a special case of a theorem on the 

density of squarefree values of bivariate polynomials over Fq. In particular, their proof is 

considerably more elaborate than is necessary for the application to the gap problem considered 

here. In the special case of interest, we developed a much simplified variant of their method, which 

we present in §2.2; it yields a rather quick proof that when n → ∞ and (2) holds with g(n) = 1, the 

interval Iq(F,h) contains (many) squarefree polynomials. Then, in §4, we extend the method to k-

free polynomials, for any k ≥ 2, and establish the following result. 

Theorem 2. Let k ≥ 2 and q ≥ 2 be fixed integers, and suppose that char(Fq) = p. Let k = dpa 

+···+d1p+d0, 0 ≤ d = da,...,d1,d0 < p, d = 0̸ , be the base-p representation of k. If n is sufficiently large 

F ∈ Mq(n), the interval Iq(F,h) and 

contains a k-free polynomial 

whenever 

 , (3) 

where 

Note that when k = 2, we have θ = p−1, and inequality (3) becomes (2) with g(n) = 1. In general, 

θ is a non-decreasing function of k such that θ = (k − 1)p−1 when 2 ≤ k ≤ p, and 

 

when k > p. In particular, as k increases, the gap between the barrier imposed by (1) and the 

hypothesis (3) of Theorem 2 shrinks, and our result gets closer to being best possible. 

The method of proof of Theorem 2 can be adjusted to yield variants that are superior in different 

ways. As stated, the theorem is close to the best result one can obtain from the basic version of our 

method. This lets us avoid some technical details. However, as we note at the end of §4, if one is 
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interested in an asymptotic for the number of k-free polynomials in Iq(F,h), similar to that in the 

original work of Carmon and Entin [1], one may obtain such an asymptotic for n → ∞ at the cost 

of strengthening condition (3) to 

  (4) 

with g(n) → ∞. One can also relax hypothesis (3) to (4) with g(n) = c, where c is any constant 

satisfying c > θζq(k)p−a. As θζq(k)p−a < 1, this is a slight improvement on Theorem 2. 

A notable feature of the modern results on gaps between k-free integers is that they can be made 

fully explicit. For example, in recent joint work with McCormick, Scherr, and Ziehr [18], the 

authors proved an explicit version of the theorem of Filaseta and Trifonov [8]: the main result of 

[18] establishes that the interval (x,x + 11x1/5 lnx] contains a squarefree integer for any x ≥ 2. The 

next theorem provides a model for such results for polynomials over Fq. Note that—in contrast to 

Theorems 1, 2, and 5 and similar to the main result of [18]—this theorem makes the restriction on 

the size of the degree n explicit. 

Theorem 3. Let k ≥ 2 and q ≥ 3 be fixed integers. If n ≥ k + 1 and F ∈ Mq(n), the interval Iq(F,h) 

contains a k-free polynomial for all h ≥ n/(k + 1). 

When k = 2, this theorem corresponds to the classical result that the interval (x,x+x1/3] contains 

a squarefree integer for all sufficiently large x. A slightly stronger version of this was first proved 

by Davenport in 1951, but not published at the time; its elementary and rather elegant proof can 

be found in Halberstam’s survey [14]. While all the estimates in the proof of Theorem 2 can be 

made fully explicit, thus allowing us to quantify the hypothesis that “n is sufficiently large,” the 

method is not suited to yield non-trivial results when n and h are as small as they can be in Theorem 

3. See Table 1 for a comparison of the values of h, n and q for which the results developed in this 

paper are applicable. We prove this result using a variant for polynomials over finite fields of a 

differencing technique introduced by Halberstam and Roth [15,24] and later developed by Filaseta 

and Trifonov [6–8,28]. The proof of Theorem 3 requires only the most basic form of the 

differencing method. A slightly more sophisticated version of those ideas yields the following 

result. 

Theorem 4. Let k ≥ 2 and q ≥ 7 be fixed integers such that char(Fq) ∤ (k +1). If n ≥ k +1 and F ∈ 

Mq(n), the interval Iq(F,h) contains a k-free polynomial for all h ≥ n/(k + 2). Moreover, the same 

conclusion holds when k ≥ 3 and q ≥ 5. 
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In the case k = 2, this result matches a theorem due to Roth [24] (after some modification by 

Nair [20]) that the interval (x,x + cx1/4] contains a squarefree integer for some absolute constant c 
> 0. When k ≥ 3, however, Theorem 4 falls short of matching the theorem of Halberstam and Roth 

[15] that, for any fixed ε > 0, the interval (x,x + x1/(2k)+ε] contains k-free integers when x is 

sufficiently large. The next theorem accomplishes this. 

Theorem 5. Let k ≥ 3 and q ≥ 3 be fixed integers such that char( . If n is sufficiently 

large and F ∈ Mq(n), then the interval Iq(F,h) contains a k-free polynomial for− all h ≥ n/(2k). 

While this theorem matches the Halberstam–Roth result in terms of the sizes of the intervals, it 

is much weaker than Theorem 2 (and, unlike Theorem 4, it says nothing about polynomials of 

small degrees). On the other hand, its proof adapts the method used by Halberstam and Roth in 

their seminal paper [15] (as presented in [6]). It also demonstrates how one may develop further 

the ideas behind Theorems 3 and 4. In the integer setting, it is more advanced versions of those 

ideas that yield the best results by Filaseta and Trifonov on gaps between k-free integers. Indeed, 

Filaseta and Trifonov (see [6,9]) have used those ideas to make progress in other problems, and it 

is conceivable that further applications may exist in the function field setting too. For these reasons, 

it seems that the proof of Theorem 5 is of independent interest (even though the result itself is 

superseded by Theorem 2), and so it appears as an appendix to this paper.1 

The remainder of the paper is organized as follows. In §2, we present the basic setup for the 

proofs and gather some preliminary facts about polynomials over finite fields. We also present 

present the proofs of Theorem 2 for k = 2 and of Theorem 3 in the case when k is not divisible by 

the characteristic. In §3, we establish Theorem 1. The proof of Theorem 2 in the general case 

appears in §4. In §5, we develop polynomial analogues of the basic form of the methods used by 

Filaseta and Trifonov in their work on the gap problem for k-free integers: see Propositions 1 and 

2 below. We then apply those results to prove Theorems 3 

and 4. Finally, as noted earlier, the appendix contains the proof of Theorem 5, including our 

version of the Halberstam–Roth method (see Proposition 3). 

Notation. Throughout the paper, the finite field Fq is considered fixed, and we use p to denote its 

characteristic (so that, q = pf for some f ∈ N). Beside the sets of monic polynomials Mq and Mq(d), 

we use Pq to denote the set of monic irreducible polynomials and Pq(d) the set of monic irreducible 

 

1
 It is possible to generalize the improvements of Filaseta and Trifonov to the polynomial setting as well. These 

methods can be used to show that the intervalq Iq(F,h) contains a squarefree polynomial for all2 and h ≥ n/5 + log n 

when n is sufficiently large and p > 3. This result is strictly weaker than Theorem the proof substantially more involved, 

so we will not pursue it further here. 
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polynomials of degree d. We write πq(d) = |Pq(d)| for the number of monic irreducible polynomials 

of degree d in Fq[x]; in general, |A| denotes the cardinality of a finite set A. 

2. Preliminaries 

Fix an integer k ≥ 2. Our strategy to prove the existence of k-free polynomials in an interval 

Iq(F,h) will be to bound from above the number Nq(F,h) of polynomials in Iq(F,h) that are not k-

free and to show that 

 Nq(F,h) < |Iq(F,h)| = qh+1. (5) 

Since every polynomial that is not k-free is divisible by the kth power of some monic irreducible 

polynomial (and the kth power of a polynomial of degree greater than n/k cannot divide any 

polynomial in Iq(F,h)), we find that 

Nq(F,h) ≤ Xq |{Q ∈ Iq(F,h) : Pk | Q}| 

 P∈P (6) 

= Xn/k P X |{Q ∈ Iq(F,h) : Pk | Q}|. d≤ ∈Pq(d) 

It will be useful to recall how many polynomials in Iq(F,h) are divisible by a fixed polynomial 

G. 

Lemma 1. Suppose G ∈ Mq(d). Then either Iq(F,h) contains no multiple of G, or 

  (7) 

Proof. Suppose that GA ∈ Iq(F,h) for some polynomial A ∈ Mq. When d > h, the interval can contain 

no other multiples of G; and when d ≤ h, we need to count the polynomials 

GB, with B ∈ Iq(A,h − d). □ 

The above lemma suffices to estimate the contribution to the right side of (6) from irreducible 

polynomials P of degrees d ≤ ℓ, when ℓ is not much larger than h. We have 
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To bound Σ1, Σ2, and other similar sums below, we will use some well-known bounds for πq(d), 

which we state in the next lemma. The first claim of this lemma can be found in [19, Corollary 

3.21], and the second claim is an immediate consequence of the first. 

Lemma 2. For any natural number n, one has 

 Xdπq(d) = qn and . 

d|n 



 

Suppose that k ≤ h. Using this lemma, we find that 

 , (9) 

and (assuming that ℓ ≥ h) 

 , (10) 

where kh := min(k,h). When k > h, the sum Σ1 is empty, while Σ2 satisfies the same bound, after a 

small adjustment to its proof: 

. 

2.1. The classical approach. Returning to the contribution to the right side of (6) from degrees d 
> h, we may apply Lemma 1 to show that when h < d ≤ n/k, we have 

 X |{Q ∈ Iq(F,h) : Pk | Q}| ≤ |Sq(d)|, (11) 

P∈Pq(d) 

where 

  for some . (12) 

The shift of focus from the polynomials in Iq(F,h) to their kth-power divisors that occurs in 

inequality (11) is an Fq[x]-variant of the basic idea at the core of the proofs of most bounds on gaps 

between k-free integers mentioned in the introduction. In later sections, we prove several results 

about the “spacing” between polynomials divisible by kth powers as measured by the degrees of 

the differences between their kth-power factors. Such spacing results lead to upper bounds on 

|Sq(d)| through the following lemma. 

Lemma 3. Let S ⊆ Mq(d), and suppose that κ,δ ∈ R+, δ ≤ d, have the following property: for any 

fixed polynomial G ∈ S, there exist at most κ polynomials H ∈ S such that deg(G− 

H) < δ. Then 

|S| ≤ κqd−δ. 

Proof. Choose k ∈ N so that k − 1 < δ ≤ k. The intervals Iq(xkY (x), k − 1), with Y ∈ Mq(d−k), 

form a partition of Mq(d). Let I be one such interval, and fix a polynomial G ∈ S∩I. Since any two 

elements G,H of S∩I must satisfy deg(G−H) < δ, by hypothesis, there are at most κ possible 

polynomials H ∈ S ∩ I, including G itself. Thus, |S ∩ I| ≤ κ. Summing this estimate over all qd−k ≤ 

qd−δ intervals I of the above form, we get the desired bound. □ 



 

For example, in Section 5, we will show that when p ∤ k—and so Proposition 1 holds with r = 

1, any two distinct polynomials G,H ∈ Sq(d) satisfy deg(G − H) ≥ (k + 1)d − n. Thus, when d > 

n/(k + 1), we may apply the above lemma with κ = 1 and δ = (k + 1)d − n to obtain 

 . (13) 

This bound suffices to give a quick proof of Theorem 3 in the case when k is not divisible by the 

characteristic. The proof in the case p | k will appear in Section 5. 

Proof of Theorem 3: The case p ∤ k. When h ≥ n/(k + 1), the condition d > h implies d ≥ 

(n + 1)/(k + 1). So, we may apply (13) to all d in the range h < d ≤ n/k to get 

. 

Combining this bound with (6) and (8)–(11) with ℓ = h, we find that 

 .
 (14) 

 − − 

When k = 2, this establishes (5) when q ≥ 5 and h ≥ 1 or when q = 3 and h ≥ 2. Similarly, when 

k ≥ 3, this inequality proves the theorem when q ≥ 3. When k = 2, q = 3, and h = 1, we are in the 

case k > h, so by our earlier observation, Σ1 is empty and the logarithmic term on the right side of 

(14) is superfluous. The stronger version of (14) that results from its omission establishes the 

theorem in this last remaining case. □ 

2.2. The Carmon–Entin approach. We now present a simplified version of the method of Carmon 

and Entin [1], which gives a quick proof of Theorem 2 in the squarefree case k = 2 for q > 2. (With 

small adjustments, the method can be applied to the case q = 2 as well, but we defer that discussion 

to the general proof in §4.) 

The method relies on two main observations. First, we note that when G = P2A for some 

polynomials P and A, we have also P | G′, since G′ = 2PP ′A + P2A′. This simple observation is central 

also to the proofs in [1] of the more general theorems there. 

Our second observation, which replaces a more elaborate construction in [1], is that in 

characteristic p, the coefficients of the monomials xp−1,x2p−1,... in G′ vanish, and so G′ ∈ 

Dqp−1, where 

. 

Let 

Σ3 = |{G ∈ Iq(F,h) : P2 | G for some P ∈ Pq, deg(P) > h}|. 



 

By the above observations, any polynomial G counted by Σ3 has derivative G′ lying in 

Iq(F ′,h − 1) ∩ Dqp−1, and G′ shares an irreducible factor P with G, where degP > h. Note 

that 

|Iq(F ′,h − 1) ∩ Dqp−1| = qh−⌊h/p⌋, 

which is significantly smaller than the total number of polynomials in Iq(F,h). Next, we show that 

the number of polynomials counted by Σ3 is not much larger than the number of their derivatives. 

Fix H ∈ Iq(F ′,h − 1) ∩ Dqp−1, and let P be an irreducible divisor of H of degree at least h + 1. 

Note that P can divide at most one such polynomial H, so P2 divides a polynomial in Iq(F,h) if and 

only if H has an antiderivative in this interval which is divisible by P. Since, H ∈ Dqp−1, each 

monomial aixi of H has an “obvious” antiderivative ai(i + 1)−1xi+1; let H0 be the resulting 

antiderivative of H. The general antiderivative of H is H0 +C for any polynomial C ∈ Fq[xp]. So, H 

has an antiderivative divisible by P in the interval Iq(F,h) if and only if there is a polynomial

 that lies in the congruence class C ≡ −H0 (mod P) (in Fq[x]) and is such that H0 +C ∈ 

Iq(F,h). Since degP > h, if such polynomials exist, at most one can lie in the interval Iq(F,h). 

Thus, whenever H = 0̸ , each irreducible factor of H of degree at least h + 1 corresponds to at 

most one polynomial G counted by Σ3. Since H has degree at most n − 1, it has ≤ (n−1)/(h+1) < 

n/(h+1) such irreducible factors. On the other hand, if H is identically zero (which can happen 

only when Iq(F,h) contains a pth power), then H has exactly q⌊h/p⌋+1 antiderivatives in Iq(F,h). We 

conclude that 

. 

Combining the last bound with the estimates for Σ1 and Σ2 in (9) and (10) with k = 2 and ℓ = h, 

we find that 

 . (15) 

When h + 1 ≥ p(logq n − logq logq n) (this is equivalent to (3) with θ = p−1), we have 

 , 

and our bound on Nq(F,h) simplifies to 



 

. 

When n is large and q > 2, this proves (5) and establishes Theorem 2. 

3. Intervals without k-free polynomials 

In this section, we establish the polynomial analog of Erdős’ result on large gaps between 

squarefree integers stated in Theorem 1. In its proof, we make use of the following lemma, which 

can be found in [11, Theorem 4.1]. 

Lemma 4. Let P1,P2,...,Pj,... be any ordering of the irreducible monic polynomials in 

Fq[x] such that degPj ≤ degPj+1. Then, as j → ∞, 

degPj ≤ logq j + logq logq j + logq (q − 1) + o(1). 

We also count precisely the number of polynomials in an interval covered by congruences 

modulo powers of irreducible polynomials of small degrees. 

Lemma 5. Let k ≥ 2, ℓ ≤ logq(h/k)−1, and fix a congruence class Qj (mod Pjk) for every irreducible 

polynomial Pj with degPj ≤ ℓ. Then the number of polynomials in any interval 

Iq(F,h) satisfying at least one of these congruences is exactly 

 . 
ℓ 

Proof. Define. We find that 
 =1 q( ) 

deg  

Thus, we can apply the inclusion-exclusion principle and Lemma 1 to get an exact count of the 

polynomials in Iq(F,h) covered by the congruence classes Qj mod Pjk. In particular, since degM < h 
such an interval will always contain exactly 

! 

polynomials satisfying at least one of the congruences. 

Using that , and the estimate 



 

. 

we find that 

and the result follows. □ 

Proof of Theorem 1. Let h be large. We will use the Chinese Remainder Theorem to construct a 

polynomial F of degree at most n such that no polynomial in Iq(F,h) is squarefree when h satisfies 

(1). 

The construction is based on a simple idea. Let P1,P2,... be an ordering of Pq such that degPj ≤ 

degPj+1. If Q1,Q2,...,Qm are any polynomials such that the congruence classes Qj mod Pjk, j ≤ m, cover 

the interval Iq(0,h), then the interval Iq(F,h) contains no k-free polynomial whenever F satisfies the 

congruences 

 F ≡ −Qj (mod Pjk) (1 ≤ j ≤ m). 

Since the Chinese Remainder Theorem determines such a polynomial F 

modulo  , we can find a nontrivial solution of these congruences of degree ≤ 

deg(. We can use Lemma 4 to bound the degree of such a polynomial F. We have 

deg  



 

where the last step uses Stirling’s formula. Thus, the proposition will follow, if we show that 

condition (1) allows us to find an integer m with δ(m) ≤ n and m congruence classes  

that cover Iq(0,h). 

The simplest way to find such a congruence cover is to use a separate congruence class for every 

polynomial in Iq(0,h). Then m = qh+1. This already suffices to establish the theorem when the 

constant c in (1) satisfies c < (kq)−1. It is clear, however, that this simple argument is somewhat 

wasteful. Next, we use Lemma 5 to cover multiple polynomials by congruences modulo small 

irreducible polynomials. 

Define ℓ := ⌊logq(h/k)⌋ − 1 and let  be the number of irreducible polynomials 

in Mq of degree at most ℓ. By Lemma 5, we find that the number of polynomials in Iq(0,h) covered 

by any choice of congruence classes Qi mod Pi, for each i ≤ m0 is exactly 

. 

This leaves us, as h → ∞, with 

 

uncovered polynomials, which we cover trivially, using one congruence class for each. Thus, the 

total number of congruences we require is 

  (16) 

after noting that . Using this value of m in our expression for δ(m) we 

find that 

 , 

logq ζq(k). Hypothesis (1) ensures that, for sufficiently large 

and n 

  (17) 

by the assumption that kc < ζq(k). Thus, the polynomial that we have constructed has degree at 

most n and the result follows. □ 

Remark 1. One sees readily that if hypothesis (1) is replaced by 

, 

inequality (17) can be refined to 

. 
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In particular, when  with c′ > logq ((q − 1)/ke), we find that δ(m) < n. 

4. Proof of the main theorem 

In this section, we extend the ideas from §2.2 to prove Theorem 2. We finish the section with 

brief remarks on the proof that justify our comments in the introduction about possible 

enhancements to the theorem. We also remark on the conclusions one can draw when h and n are 

of moderate size and how such conclusions compare to Theorems 3 and 4. 

Proof of Theorem 2. Consider an integer k ≥ 2. Similarly to §2.2, we start from (6) and use (8)–

(10) to bound the contribution to the right side of (6) from irreducible polynomials P with degP ≤ 

ℓ = h. Thus, we focus on the quantity 

Σ3 = |{G ∈ Iq(F,h) : Pk | G for some P ∈ Pq, deg(P) > ℓ}|. 

As in the case k = 2 before, we find that if Pk divides G, then P divides the first k − 1 derivatives 

of G, and that the j-th derivative, G(j), lies in the set 

. 

When k < p, we may use these observations in a similar fashion to §2.2 to complete the proof. 

To begin, let h = ps + r, with 0 ≤ r < p. We observe that  is contained in a shift of a 

finite-dimensional linear space over Fq of dimension 

. 

Hence, 

By a similar counting argument, we find 

that there are polynomials G ∈ Iq(F,h) with G(k−1) = 0. Next, we will show that for each of the < n/(ℓ 

+ 1) irreducible factors P, with degP > ℓ, of a nonzero polynomial , there is at 

most one 

G ∈ Iq(F,h) divisible by Pk. From this, we can conclude that 

 . (18) 

Consider a nonzero H ∈ Iq(k−1)(F,h) and an irreducible factor P of H of degree at least h + 1. A 

polynomial G ∈ Iq(F,h) divisible by Pk exists if and only if we can find a finite sequence of 

polynomials Hk−1 = H,Hk−2,...,H1,H0 = G, each divisible by P, such that 



 

  (0 ≤ j < k − 1). 

Since degP > h, Iq(j)(F,h) can contain at most one multiple of P, so for each j, there is at most one 

possibility for the polynomial Hj. In particular, at most one possible polynomial G ∈ Iq(F,h) is 

divisible by Pk. This establishes our earlier claim and completes the proof of (18). 

Suppose now that k ≥ p and G ∈ Iq(F,h) is divisible by Pk for some P ∈ Pq. We intend to take p − 

1 derivatives of G, but we need to proceed with care. Recall the base-p representation of k: 

. 

After taking d0 derivatives of G, we have G(d0) = Pk1pQ for some polynomial Q, and afterwards we 

find that 

 G(j) = Pk1pQ(j−d0) (j ≥ d0). 

In particular, Pk1p | G(p−1). On the other hand, G(p−1) ∈ Fq[xp], so G(p−1) = Hp for some polynomial H 

∈ Fq[x]. 

When i > (h + 1)/p − 1, the coefficient of xi in H depends only on a single coefficient of F. So H 

∈ Iq(F1,h1), where h1 = ⌊(h+1)p−1⌋ − 1 and F1 = (F(p−1))1/p is a polynomial of degree < np−1 

determined uniquely by F. Moreover, by the uniqueness of polynomial factorization in Fq[x], we 

have Pk1 | H. On the other hand, if H ∈ Iq(F1,h1) is nonzero and divisible by Pk1 for some irreducible 

polynomial P, with degP > ℓ, the argument we gave to justify (18) shows that there is at most one 

polynomial G ∈ Iq(F,h) such that G(p−1) = Hp 

(and G,G′,...,G(p−1) are all divisible by P). 

Let S1 ⊂ Iq(F1,h1) be a set (with1 0 ∈ S1 if 0 ∈ Iq(F1,h1)) to be specified shortly. For any H ∈ S1, 

there are qh−h polynomials G ∈ Iq(F,h) with G(p−1) = Hp, so we find that 

 Σ3 ≤ Σ3,1 + qh−h1|S1|, (19) 

where Σ3,1 counts pairs (H,P), with P ∈ Pq, H ∈ Iq(F1,h1) \ S1, P k1 | H, and degP > ℓ. 

When k1 ≥ p (equivalently a ≥ 2), we can iterate the above argument, with a slight twist. If (H1,P) 

is one of the pairs counted by Σ3,1, the above construction with H1 in place of G yields a polynomial 

H2 ∈ Iq(F2,h2), where h2 = ⌊(h1 + 1)p−1⌋ − 1 and F2 a polynomial of degree < np−2 determined 

uniquely by F1 (and therefore, by F). Moreover, we have 
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Pk2 | H2, where k2 = (k1S2 ⊂ Iq(F2,h2) is a set of polynomials, to be 

specified shortly (with 2 q 2 2 . 

We now specify S1 as the set of polynomials H ∈ Iq(F1,h1) such that H(p−1) = Ap for some A ∈ S2 

(note that this condition ensures that1 2 0 ∈ S1 if 0 ∈ Iq(F1,h1)). For each A ∈ S2, there are ≤ qh −h 

polynomials H ∈ S1, so 

 |S1| ≤ qh1−h2|S2|. (20) 

For any such choice of S2, we find that Σ3,1 ≤ Σ3,2, where Σ3,2 counts pairs (H,P), with P irreducible, 

H ∈ Iq(F2,h2) \ S2, Pk2 | H, and degP > ℓ. Therefore, we deduce that 

 Σ3 ≤ Σ3,2 + qh−h2|S2|. (21) 

In general, we can iterate this argument a total of a times to find a polynomial Fa of degree < 
np−a, determined uniquely by F, such that 

Σ3 ≤ Σ3,a + qh−ha|Sa|, 

where ha 
= ⌊(ha−1 + 1)p−1⌋ − 1, the set Sa ⊂ Iq(Fa,ha) is at our disposal to choose (so long as 0 ∈ Sa 

if 0 ∈ Iq(Fa,ha)), and Σ3,a is the number of pairs (H,P), with P irreducible, subject to 

 H ∈ Iq(Fa,ha) \ Sa, P d | H, degP > ℓ. 

A short computation shows that 

 (h + 1)p−a − 3 ≤ ha ≤ (h + 1)p−a − 1. (22) 

At this point, we choose Sa to be the set of polynomials H ∈ Iq(Fa,ha) with H(d−1) = 0, so |Sa| ≤ 

q(d−1)(hap−1+1). Hence, 

 Σ3 ≤ Σ3,a + qh−ha+(d−1)(ha/p+1). (23) 
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When d = 1, we apply the trivial bound for Σ3,a: 

 . (24) 

When d > 1, we may bound Σ3,a using a variant of (18) with h = ha, k = d, and n = degFa. Recall 

that the second term on the right side of (18) accounts for polynomials in G ∈ Iq(F,h) with G(d−1) = 

0. Thus, by our choice of Sa, the respective bound for Σ3,a becomes 

. 

Note that setting d = 1 in the bound above yields the exact same expression as (24). So, in either 

case, using this in (23) along with (22) yields 

 . (25) 

Note that when a = 0 and d = d0 = k < p, (18) is a slightly stronger version of (25) (whose second 

term contains an extra factor of q2+(k−1)/p < q3). Therefore, we combine (25) with (6) and (8)–(10) 

to conclude, for sufficiently large h and any k ≥ 2, that 

 ,
 (26) 

where 

If h is chosen so that 

  (27) 

for some absolute constant c > 0, it follows that 

 . (28) 

Since θ ≤ 1 − k−1, this establishes the theorem for c ≥ 1. □ 

Remark 2. Suppose that n and h are large, and let , be the subsum of Σ1 (in (8)) with h0 < d ≤ h, 

where h0 = o(h). Also, let 

 Σ0 

for some P ∈ Pq, deg

 . 

Choosing h0 sufficiently small in terms of , one may apply a sieve argument (similar to the proof 

of Lemma 5) to Σ0 to obtain an asymptotic formula for Σ1. One can then replace the term lnζq(k) 
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in (28) by 1 − ζq(k)−1 + o(1). From this we see that c can be taken to be any constant c > θζq(k)p−a 

so long as n is taken sufficiently large. 

On the other hand, if the constant c in (27) is replaced by a function g(n) → ∞ as n → ∞, one 

may turn the above bounds into an asymptotic formula for the number Qq(F,h) of k-free 

polynomials in Iq(F,h), since 

 − − − . 

Remark 3. Theorems 3 and 4 give fully explicit ranges of q and n for which the short interval Iq(F,h) 
contains k-free polynomials under the respective constraints on h, because bounds like (14) above 

(see also (34), (45), and (49) in §5) are explicit. Theorem 2, on the other hand, is stated for 

sufficiently large n to simplify the analysis of (26), which focuses on the 

h \ q 2 3 4 5 7 8 9 11 19 25 27 

h = 1 
— 3∗ 3∗ 3∗ 4† 11 4 4† 4† 6 14 

h = 2 — 6∗ 12 6∗ 8† 89 20 8† 8† 19 75 

h = 3 — 9∗ 57 9 12† 393 61 12† 12† 49 307 

h = 4 — 12∗ 174 17 16† 1467 164 16† 16† 118 1156 

h = 5 — 23 459 29 25 5092 414 20† 20† 271 4173 

h = 6 — 42 1124 48 39 16984 1013 28 24† 603 14629 

h = 7 — 73 2641 77 60 55234 2417 40 28† 1314 50207 

h = 8 23 123 6048 120 90 176448 5674 57 34 2818 169578 

Table 1. Values of n0(q,h) for which Iq(F,h) contains a squarefree polynomial 

whenever degF ≤ n0. Numbers marked with an * or a † were obtained using 

Theorems 3 or 4, respectively. 

case when h and n are large. However, if the contributions to the right side of (26) from Σ2 and Σ3 

are kept explicit, one can determine, for every fixed triple (k,q,h), with h ≥ h0(k,q), a range of 

degrees n for which Iq(F,h) contains k-free polynomials. It appears difficult to channel such 
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observations into a general statement similar to Theorems 3 and 4, but it is possible to draw on 

them to gain some broad insights. 

For example, Table 1 lists several pairs (q,h) and the values of respective integers n0(q,h) such 

that the interval Iq(F,h) contains a squarefree polynomial whenever degF ≤ n0. For values of q with 

p > 2, these bounds are computed using (15), taking the largest value of n such that the coefficient 

of qh+1 is less than 1. For those values with p = 2, an explicit version of (26) is used, after noting 

that in this specific case, k = p = 2, the lower bound in (22) can be improved to (h+1)/2−3/2. This 

results in an expression identical to (15), but in which the second to last term is half as large. Note 

that even these values are likely much smaller than the “truth.” For example, in the case q = 2 these 

methods do not prove that all short intervals with h = 1 or 2 and any value of n are guaranteed to 

contain squarefree polynomials, however direct computation shows that every such short interval 

contains a squarefree polynomial in these cases when n ≤ 9 and 16 respectively. 

In some cases, the bounds obtained using Theorems 3 and 4 are stronger than those obtained 

here. Such improved bounds are included in the table above marked with the symbols * or †. 

5. The differencing method for polynomials 

Recall the set Sq(d) defined in (12). In this section, we prove several results about the spacing 

between elements of Sq(d). Through applications of Lemma 3, these results will then yield upper 

bounds on |Sq(d)|, which apply to prove Theorems 3 and 4. 

Our first result is a bound on the minimum degree of the difference of distinct elements of Sq(d). 

Recall that we use p to denote the characteristic of the finite field Fq. We note that when p ∤ k, we 

have r = 1 in the proposition below, while when p | k, we have 1 < r ≤ k. 

Proposition 1. Suppose that h < d ≤ n/k and G,H ∈ Sq(d), with G ≠ H. Let r = r(k,p) be the least 

positive integer such that , we have 

 deg( . (29) 

When r = k, we have either (29) with r = k, or 

 deg( . (30) 

Proof. Let A,B ∈ Mq(n−kd) be such that GkA,HkB ∈ Iq(F,h). Then deg(GkA−HkB) ≤ h, and we deduce 

that 

 deg  (31) 

Note that 
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. 

Since deg(G − H) < d = degH, it follows that 

 deg(Gk − Hk) = r deg(G − H) + (k − r)d. (32) 

 Suppose first that A ≠ B. Then the degree of the second term on the left side of (31) is 

deg(Hk(A − B)) = kd + deg(A − B) ≥ kd > h. 

This is only possible if the two terms on the left side of (31) have the same degree, meaning that 

deg((Gk − Hk)A) = deg(Hk(A − B)) ≥ kd. 

Combining this with (32) gives 

kd ≤ r deg(G − H) + (k − r)d + degA = r deg(G − H) + (n − rd), 

which establishes (29) in this case. 

Next, we consider the case A = B. Then (31) and (32) give 

r deg(G − H) + (n − rd) = deg((Gk − Hk)A) ≤ h, 

and hence, 

deg( . 

When r = k, this establishes (30), and when r < k, we get 

deg( , 

which contradicts our assumption that G ≠ H. Therefore, this case occurs only when r = k. □ We 

remark that when r = k andh)/k, inequality (30) contradicts the assumption G ≠ H of 

the proposition, so for in this range, we always have (29). On the other hand, when r = k and (n − 

h)/k ≤ d ≤ n/k, we can combine (29) and (30) to obtain a rather sharp bound on |Sq(d)|, which we 

state in the following lemma. 

Lemma 6. Assume the notation of Propositon 1. If r = k and (n − h)/k ≤ d ≤ n/k, we have 

|Sq(d)| ≤ qh/k+1. 
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Proof. Let δ = (2kd − n)/k. According to the proposition, any two elements G,H of Sq(d) with deg(G 

− H) < δ must satisfy (30). In particular, for a fixed G, there are at most 

|Iq(G,(kd + h − n)/k)| ≤ q(kd+h−n)/k+1 =: κ 

polynomials H ∈ Sq(d) with deg(G − H) < δ. Thus, Lemma 3 gives 

 |Sq(d)| ≤ κqd−δ = qh/k+1. □ 

Recall that in §2 we derived Theorem 3 in the case when p ∤ k from (29) with r = 1. We can use 

Lemma 6 to complete the proof of Theorem 3 in the case when p | k. 

Proof of Theorem 3: p | k. To begin, we observe that when d ≤ n/k and r > 1 in Proposition 1, the 

bound (29) is stronger than its version with r = 1. Therefore, when 1 < r < k, we still have inequality 

(13) (and more), and so we may follow the proof from the case p ∤ k (given in §2.1) without any 

changes. Thus, we may focus on the case r = k. 

Note that when h ≥ n/(k + 1), Lemma 6 is applicable in the full range h < d ≤ n/k. 

Hence, 

 . (33) 

Combining this with (6) and (8)–(11) with ℓ = h, we find that 

  . (34) 

When k ≥ 3, the last expression is < qh+1, provided for all q ≥ 3 and h ≥ 1. When k = 2 

(note that in this case, we have p = 2 and q = 2f), the same holds for q ≥ 4 and h ≥ 1. □ 

Next, we consider s-tuples of distinct polynomials G = {G1,...,Gs} in Sq(d), with s ≥ 3. 

If G is such an s-tuple, we write 

 δ(G) = min deg(Gi − Gj), 
1≤i<j≤s 

 ∆(G) = max deg(Gi − Gj). 
1≤i<j≤s 

By Proposition 1, we have 

 δ(G) ≥ (k + 1)d − n, (35) 
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whenever h < d ≤ n/k and r = r(k,p) < k (or r = k and d < (n − h)/k). Our next result is a lower 

bound on ∆(G) for triples. 



 

Proposition 2. Suppose that p ∤ k(k + 1) and h < d ≤ n/k. If G = {G1,G2,G3} is a set 

of distinct polynomials in Sq(d), then 

 . (36) 

Proof. For each 1 ≤ i ≤ 3, let Ai ∈ Mq(n − kd) and Ri be polynomials such that 

 , degRi ≤ h. (37) 

We now consider the rational function 

, 

essentially a second divided difference of the function Φ(t) = Ft−k on Fq(x) (see [16] for background 

on divided differences). By (37), we have 

(38) 

where 

. 

Our immediate goal is to show that N is a nonzero polynomial by showing that degN ≥ 0. In the 

rest of the proof, we suppress the dependence on G and write simply ∆,δ, and Φ instead of 

∆(G),δ(G), and Φ[G1,G2,G3]. 

We can rewrite the definition of Φ as the polynomial identity 

  , (39) 

where the product on the right is over all pairs of indices i,j with 1 ≤ i < j ≤ 3, and the sum is over 

all triples a,b,c with 0 ≤ a,b,c ≤ k − 1 and a + b + c = 2k − 2. Observe that if both deg(Gj − Gi) < ∆ 

and deg(Gk − Gi) < ∆, then also 

deg(Gj − Gk) ≤ max{deg(Gj − Gi),deg(Gk − Gi)} < ∆, 

which contradicts the choice of ∆. Thus, at least two of the differences in the above product must 

have degree ∆, and we get 

 . (40) 

Also, the sum on the right side of (39) has  terms, each of them in Mq((2k − 2)d). 

Since , it follows that the sum is a polynomial of degree (2k − 2)d, and we deduce 



 

 n + (2k − 2)d + 2∆ + δ ≤ deg(Φ . (41) 

On the other hand, we have 

 
Since each of the three terms on the right side of (42) has degree ≤ h + ∆ + 2kd, we obtain deg 

 (43) 

Moreover, since p ∤ k, we have (35) by Proposition 1. Combining (35), (41), and (43), we conclude 

that 

deg(Φ  

deg  . 

Thus, by (38), 

deg( , 

which establishes our prior claim that N = 0̸ . Using the upper bound in (41), we get 

, 

and the desired conclusion follows. □ 

We now use Proposition 2 and Lemma 6 to prove Theorem 4. 

Proof of Theorem 4. Suppose first that p ∤ k(k+1). When d > h, we have d ≥ (n+1)/(k+2), and 

Proposition 2 allows us to apply Lemma 3 with κ = 2 and δ = ((k+2)d−n)/3 to deduce the bound 

 |Sq(d)| ≤ 2q(n−(k−1)d)/3. (44) 

Therefore, 

, 

where d0 = (n + 1)/(k + 2). This inequality, (6), and (8)–(11) with ℓ = h now give 

 ,
 (45) 

 − − 

which implies (5) when k = 2 and q ≥ 7 or when k ≥ 3 and q ≥ 5. 

Next, let p | k and suppose that r < k in Proposition 1. Then Proposition 1 yields (29) with r ≥ 2, 

and hence, with r = 2. Thus, Lemma 3 with κ = 1 and δ = ((k + 2)d − n)/2 yields the bound 

 |Sq(d)| ≤ q(n−kd)/2, (46) 

which supersedes (44). Hence, (45) holds also in this case. 
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Finally, let p | k and r = k, and assume that n/(k + 2) ≤ h < n/(k + 1). When h < d < (n − h)/k, 

we can again use Proposition 1 to obtain (46). Hence, 

 . (47) 

Moreover, when (n − h)/k ≤ d ≤ n/k, we may use Lemma 6 in a similar fashion to (33) to show 

that 

 . (48) 

Combining (47) and (48) with (6) and (8)–(11) with ℓ = h, we conclude that 

 −

 − 

which again implies (5). □ 

Appendix A. An analogue of the methods of Halberstam and Roth As in the proofs of 

Theorems 3 and 4, we need to estimate 

, 

where ℓ ≥ h. When k ≥ 3, the estimation of Σ3 relies on the following proposition. 

Proposition 3. Let k ≥ 3 and , we have 

|Sq(d)| ≤ 2kq(n−d)/(2k−1). 

We postpone the proof of this result until the end of the section and focus first on the proof of 

Theorem 5. By the proposition, 

on recalling that

 δq = q−1/(2k−1), we have 

so 



 

 3

 .
 (50) 

− 

Together, (6), (8)–(11), and (50) give 

 . 

We now select 

ℓ = h + logq(qh)(2k−1)/2k. 

This choice essentially balances the second and third terms on the right side of the last inequality 

and gives 

 .
 (51) 

− 

When h is sufficiently large in terms of k, this completes the proof of the theorem. 

All that remains is to prove Proposition 3. 

Proof of Proposition 3. Consider the polynomials P0,Q0 ∈ Z[x] given by 

, 

 − − 

We use these to define the degree-(k − 1) forms 

 P(x,y) = xk−1P0 (y/x), Q(x,y) = xk−1Q0 (y/x), 

which satisfy the algebraic identity 

(x − y)2k−1 = xkP(x,y) − ykQ(x,y). 

In particular, for any polynomials G1,G2 ∈ Fq[x], we obtain 

 − −

 . (52) 

Next, we consider (52) when G1,G2 ∈ Sq,k(d). We find polynomials Ai ∈ Mq(n−kd) and Ri with 

 , degRi ≤ h. (53) 

We may then rearrange (52) as 

 , (54) 

where 
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, 

 deg(,
 (55) 

we find also that 

deg deg 

 
Thus, under condition (55), we can deduce from (54) that 

Since deg( , this is possible only if 

 P(G1,G2)A2 − Q(G1,G2)A1 = 0. (56) 

That is, if G1,G2 ∈ Sq(d) satisfy (55), then G1,G2, and the respective polynomials A1,A2 must satisfy 

the polynomial identity (56). 

Consider a third polynomial G3 ∈ Sq(d) such that 

 deg(G3 − Gi) < ∆k (57) 

holds for i = 1. Then, as an immediate consequence of (55), (57) holds also for i = 2. Further, by 

the argument in the last paragraph, we have also 

 , (58) 

and 

 P(G3,G2)A2 − Q(G3,G2)A3 = 0. (59) 

Finally, from (58) and (59), we readily obtain that 

 P(G1,G3)P(G3,G2)A2 − Q(G1,G3)Q(G3,G2)A1 = 0. (60) 

We now consider an interval I of length ≤ ∆k and fix distinct polynomials G1,G2 ∈ Sq(d) ∩ I. Then 

G1,G2 satisfy (55), and any other polynomial G3 ∈ Sq(d) ∩ I must satisfy (60). We view 

 P(G1,t)P(t,G2)A2 − Q(G1,t)Q(t,G2)A1 = 0 (61) 

Note that  

When 

degΘ ≤ (2k − 1)d + h < 2kd. 



 

as a polynomial equation in t over Fq[x]. By the construction of P and Q, the left side of 

(61) is a polynomial of degree 2k − 2 with leading coefficient 

. 

We will show that this coefficient is nonzero. The hypothesis on the characteristic p reduces this 

task to showing that A1 ≠ A2. 

When A1 = A2 = A, say, conditions (53) yield 

deg(  deg(R1 − R2) ≤ h. 

We have 

. 

The sum over j is a polynomial of degree (k −1)d with leading coefficient k, which does not vanish 

since p ∤ k. As G1 ≠ G2, this implies that 

 

a contradiction. Therefore, A1 ≠ A2. 

Thus, (61) is a (univariate) polynomial equation of degree 2k −2 over Fq[x]. The number of 

solutions of such an equation is bounded above by its degree, so once G1, G2 (and hence, A1 and 

A2) are fixed, there are at most 2k −2 possibilities for G3 ∈ Sq(d)∩I. We conclude that 

|Sq(d) ∩ I| ≤ 2k. 

Therefore, the conclusion of the proposition follows from Lemma 3 with κ = 2k and δ = 

∆k. □ 
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