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Abstract. Let k = 2 be an integer and Fabe a finite field with q elements. We prove several results on
the distribution in short intervals of polynomials in Fq¢[x] that are not divisible by the kth power of
any non-constant polynomial. Our main result generalizes a recent theorem by Carmon and Entin
[1] on the distribution of squarefree polynomials to all k = 2. We also develop polynomial versions
of the classical techniques used to study gapsk-free integers in Z. We apply these techniques to
obtain analogues in Fq[x] of some

between classical theorems on the distribution of k-free integers. The latter results complement the
main theorem in the case when the degrees of the polynomials are of moderate size.

1. Introduction

Recall that if k = 2 is a fixed integer, an integer n is called k-free if n is not divisible by the kth
power of any prime. This is a generalization of the classical concept of a squarefree integer, which
occurs in the special case when k = 2. Much work has been done studying the distribution of k-
free integers in short intervals, especially in the squarefree case: see [2—10,12-15,18,21,22,24,26—
28]. In particular, Filaseta and Trifonov [8] proved that there exists a constant ¢ > 0 such that the
interval (x,x + cx'/>Inx] contains a squarefree integer for all sufficiently large x. Trifonov [28]
further generalized this result to k-free integers for all k > 2. He showed that for some constant ¢ =
c(k) > 0, the interval (x,x+cx1/(2k+1) Inx] contains a k-free integer when x is sufficiently large. To
the best of our knowledge, these are the sharpest unconditional upper bounds on the maximum gap
between consecutive k-free numbers. Conditionally on the abc-conjecture, Granville [13] has
shown that for any fixed € > 0, the interval (x,x + x¢] contains squarefree integers for sufficiently
large x.

There are many parallels between the arithmetic of Z and that of Fq[x], the ring of polynomials
in x over a finite field Fq with g elements (see [19,23] for background on such research). In
particular, a polynomial in Fq[x] is called k-free if it has no irreducible factors of multiplicity k or
higher; when k = 2, we call such a polynomial squarefree. One may expect to find ample existing
research on analogues for polynomials from Fq[x] of the aforementioned research on the gap
problem for k-free integers, but that does not appear to be the case. Indeed, a search of the literature
on the distribution in short intervals of k-free polynomials over a finite field yields very limited
results, almost entirely focused on the squarefree case.

Let g = p/, with p prime and f € N, be the cardinality of a finite field Fq. Henceforth, we restrict

q to integers of this form. We let Mq denote the set of monic polynomials in Fq[x] and write Mq(d)



for the subset of monic polynomials of degree d. When F € Mgand h < degF, an interval in Fq[X]

of length h centered at F is the set

T (F. h) ={Q € Fylz] : deg(F — Q) < h}
1 .

In this paper, we study k-free polynomials in short intervals of this kind. To draw an analogy with
short intervals (x,x + h] in Z, we observe that when F € Mg(n), the “size” of the polynomials in
Iq(Eh) is g", whereas the number of polynomials in the interval is g*1. In particular, the interval is
“short” whenever 0 < h < n - 2. Thus, a proper analogue of a short interval (x,x + h], where x — oo
and h = 0(x9), 0 < 8 < 1, is an interval Iq(Eh), where g" = oo and h < On.

Note that the condition g” — oo above can occur in different ways. For example, one may fix n
= deg(F) and let ¢ — oo. In this regime, the question was studied by Keating and Rudnick [17].
Drawing on earlier work by Rudnick [25] on the density of squarefree polynomials over Fq, they
showed that for any integers h,n with 0 < h < n-2, one can take g sufficiently large so that there
exists a squarefree polynomial in every interval Iq(Fh), with F € Mq(n). The theorem of Keating
and Rudnick does not quantify how fast g must grow in terms of n, but an examination of their
proof suggests that it can be made effective to show that such a conclusion holds as long as g > ¢(n
+ h) for some constant c.

In this paper, we focus on the case when q is fixed and n — oo. The behavior of powerfree
polynomials in this regime turns out to be quite different, and the analogy with Z is more direct.
For example, in the case of gaps between squarefree integers, Erdds [2] proved long ago that the
maximum gap is unbounded: there are arbitrarily large x such that the interval

(x,x + h] contains no squarefree integers when
clnzx

"~ Inlnz
for any constant ¢ such that 2¢ < {(2). In §3, we establish a version of Erdds’ result for polynomials

over Fq. If {4(s) = (1 - q'-5)-1denotes the zeta-function of the ring Fq[x] (see [23, Ch. 2]), our result

can be stated as follows.

Theorem 1. Let k 2 2 and q = 2 be fixed integers, and suppose that c is any constant with kc <
(q(k). If n is sufficiently large, there exist monic polynomials F of degree at most n such that the
interval 14(Eh) contains no k-free polynomials for any length h such that
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In the squarefree case k = 2, this is a direct analogue of Erdds’ result, as stated by Erdés in [3].
To the best of our knowledge, for k > 2, the corresponding result for integers has never been
formally stated, though it has been known to researchers in the field and can be extracted from the
remarks in [3].

We include Theorem 1 and its proof here, since it transpires that in the study of k-free

polynomials over Fq, the upper bounds on the least h (as n — o) for which Iq(Fh) must contain a
k-free polynomial come much closer to the lower barrier imposed by Theorem 1. Recently, Carmon

/> (y(f‘f/);ﬂ)p
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where g(n) — oo as n — oo, one can obtain an asymptotic formula for the number of squarefree

and Entin [1] have shown that when

polynomials in the interval Iq(FEh). They derive this result as a special case of a theorem on the
density of squarefree values of bivariate polynomials over Fq. In particular, their proof is
considerably more elaborate than is necessary for the application to the gap problem considered
here. In the special case of interest, we developed a much simplified variant of their method, which
we present in §2.2; it yields a rather quick proof that when n — oo and (2) holds with g(n) = 1, the
interval Iq(Fh) contains (many) squarefree polynomials. Then, in §4, we extend the method to k-

free polynomials, for any k 2 2, and establish the following result.

Theorem 2. Let k 2 2 and q = 2 be fixed integers, and suppose that char(Fq) = p. Let k = dp®
+e+d1p+do, 0 <d =dq,...,d1,do< p, d =, be the base-p representation of k. If n is sufficiently large
and i F € Mq(n), the interval lq(Eh)

1/0
7 (10;,‘: n) contains a  k-free  polynomial
f=1-(p—d+1p—" whenever
’ 3)
where

Note that when k = 2, we have 8 = p-1, and inequality (3) becomes (2) with g(n) = 1. In general,
0 is a non-decreasing function of k such that 8 = (k- 1)p-Iwhen 2 < k< p, and
1)(p— 1 1
17(d+ )(p d+)<9§177
pk ke

when k > p. In particular, as k increases, the gap between the barrier imposed by (1) and the
hypothesis (3) of Theorem 2 shrinks, and our result gets closer to being best possible.

The method of proof of Theorem 2 can be adjusted to yield variants that are superior in different
ways. As stated, the theorem is close to the best result one can obtain from the basic version of our
method. This lets us avoid some technical details. However, as we note at the end of §4, if one is



interested in an asymptotic for the number of k-free polynomials in Iq(Fh), similar to that in the
original work of Carmon and Entin [1], one may obtain such an asymptotic for n — oo at the cost

of strengthening condition (3) to
1/6
¢t > (9(“)”) /
log, n (4)

with g(n) = 0. One can also relax hypothesis (3) to (4) with g(n) = ¢, where c is any constant
satisfying ¢ > 0q(k)p-?. As 0{q(k)p-“< 1, this is a slight improvement on Theorem 2.

A notable feature of the modern results on gaps between k-free integers is that they can be made
fully explicit. For example, in recent joint work with McCormick, Scherr, and Ziehr [18], the
authors proved an explicit version of the theorem of Filaseta and Trifonov [8]: the main result of
[18] establishes that the interval (x,x + 11x1/>Inx] contains a squarefree integer for any x = 2. The
next theorem provides a model for such results for polynomials over Fq. Note that—in contrast to
Theorems 1, 2, and 5 and similar to the main result of [ 18]—this theorem makes the restriction on
the size of the degree n explicit.

Theorem 3. Let k = 2 and q = 3 be fixed integers. If n 2 k + 1 and F € Mq(n), the interval lq(Fh)

contains a k-free polynomial for all h 2 n/(k + 1).

When k = 2, this theorem corresponds to the classical result that the interval (x,x+x1/3] contains
a squarefree integer for all sufficiently large x. A slightly stronger version of this was first proved
by Davenport in 1951, but not published at the time; its elementary and rather elegant proof can
be found in Halberstam’s survey [14]. While all the estimates in the proof of Theorem 2 can be
made fully explicit, thus allowing us to quantify the hypothesis that “n is sufficiently large,” the
method is not suited to yield non-trivial results when n and h are as small as they can be in Theorem
3. See Table 1 for a comparison of the values of h, n and g for which the results developed in this
paper are applicable. We prove this result using a variant for polynomials over finite fields of a
differencing technique introduced by Halberstam and Roth [15,24] and later developed by Filaseta
and Trifonov [6-8,28]. The proof of Theorem 3 requires only the most basic form of the
differencing method. A slightly more sophisticated version of those ideas yields the following
result.

Theorem 4. Let k =2 2 and q 2 7 be fixed integers such that char(Fq) t (k+1). [fn=2k+1and F €
Mgq(n), the interval lq(Eh) contains a k-free polynomial for all h 2 n/(k + 2). Moreover, the same

conclusion holds when k23 and q 2 5.



In the case k = 2, this result matches a theorem due to Roth [24] (after some modification by
Nair [20]) that the interval (x,x + cx/4] contains a squarefree integer for some absolute constant ¢
> 0. When k = 3, however, Theorem 4 falls short of matching the theorem of Halberstam and Roth
[15] that, for any fixed € > 0, the interval (x,x + x2/(2K)+¢] contains k-free integers when x is

sufficiently large. The next theorem accomplishes this.
(2k—1
Theorem 5. Let k 2 3 and q = 3 be fixed integers such that char(F o) TR ( ko1 ) If n is sufficiently

large and F € Mq(n), then the interval 14(Eh) contains a k-free polynomial for-all h = n/(2k).

While this theorem matches the Halberstam—Roth result in terms of the sizes of the intervals, it
is much weaker than Theorem 2 (and, unlike Theorem 4, it says nothing about polynomials of
small degrees). On the other hand, its proof adapts the method used by Halberstam and Roth in
their seminal paper [15] (as presented in [6]). It also demonstrates how one may develop further
the ideas behind Theorems 3 and 4. In the integer setting, it is more advanced versions of those
ideas that yield the best results by Filaseta and Trifonov on gaps between k-free integers. Indeed,
Filaseta and Trifonov (see [6,9]) have used those ideas to make progress in other problems, and it
is conceivable that further applications may exist in the function field setting too. For these reasons,
it seems that the proof of Theorem 5 is of independent interest (even though the result itself is
superseded by Theorem 2), and so it appears as an appendix to this paper.'

The remainder of the paper is organized as follows. In §2, we present the basic setup for the
proofs and gather some preliminary facts about polynomials over finite fields. We also present
present the proofs of Theorem 2 for k = 2 and of Theorem 3 in the case when k is not divisible by
the characteristic. In §3, we establish Theorem 1. The proof of Theorem 2 in the general case
appears in §4. In §5, we develop polynomial analogues of the basic form of the methods used by
Filaseta and Trifonov in their work on the gap problem for k-free integers: see Propositions 1 and
2 below. We then apply those results to prove Theorems 3

and 4. Finally, as noted earlier, the appendix contains the proof of Theorem 5, including our
version of the Halberstam—Roth method (see Proposition 3).

Notation. Throughout the paper, the finite field Fqis considered fixed, and we use p to denote its

characteristic (so that, ¢ = p/for some f € N). Beside the sets of monic polynomials Mqand Mq(d),

we use Pqto denote the set of monic irreducible polynomials and Pq(d) the set of monic irreducible

Mt is possible to generalize the improvements of Filaseta and Trifonov to the polynomial setting as well. These

methods can be used to show that the intervalq Iq(Eh) contains a squarefree polynomial for all2 and h = n/5 + log n

when n is sufficiently large and p > 3. This result is strictly weaker than Theorem the proof substantially more involved,

so we will not pursue it further here.



polynomials of degree d. We write mq(d) = |Pq(d)| for the number of monic irreducible polynomials

of degree d in Fq[x]; in general, |A| denotes the cardinality of a finite set A.

2. Preliminaries
Fix an integer k = 2. Our strategy to prove the existence of k-free polynomials in an interval
Iq(Eh) will be to bound from above the number Nq(Fh) of polynomials in Iq(Fh) that are not k-
free and to show that
Nq(Eh) < [lq(Eh)| = q"1. )
Since every polynomial that is not k-free is divisible by the kth power of some monic irreducible

polynomial (and the kth power of a polynomial of degree greater than n/k cannot divide any
polynomial in Iq(Fh)), we find that

Nq(Eh) <Xq[{Q € I¢(Eh) : P¥| @}
PeP (6)

= Xn/kPX |{Q € Iq(Eh) : Pk| Q}|. d<erq(a)

It will be useful to recall how many polynomials in Iq(Eh) are divisible by a fixed polynomial
G.

Lemma 1. Suppose G € Mq(d). Then either 14(Eh) contains no multiple of G, or

h—d+1 if

q if d < h,
Qel,(Fh):G|Q}H =
{Q o(F: 1) | @} {1 if d > h.

(7
Proof. Suppose that GA € Iq(Fh) for some polynomial A € Mq. When d > h, the interval can contain

no other multiples of G; and when d < h, we need to count the polynomials

GB, with B € Iq(4,h - d). O

The above lemma suffices to estimate the contribution to the right side of (6) from irreducible
polynomials P of degrees d < £, when ¢ is not much larger than h. We have

SN HQeZ(Fh): P QY < Y m(d)" ™ + 3 my(d) =+ s (8)

d<t PePy(d) d<h/k h/k<d<t



To bound X1, X2, and other similar sums below, we will use some well-known bounds for mq(d),
which we state in the next lemma. The first claim of this lemma can be found in [19, Corollary
3.21], and the second claim is an immediate consequence of the first.

Lemma 2. For any natural number n, one has
q?l
T,(n) < —
Xdmg(d) =q®  and /(n) < n.

din



Suppose that k < h. Using this lemma, we find that

h+1
q ht1 1  htl
E] S Z dq(kf'l)d < q i h'l (1 _ qlk:> - (1 " ln C‘?(k)
d<h/k , (9)
and (assuming that € > h)
d 00 w, , ¢
¢ ¢k q kq (q+kn—1)q
s 3 Celaky ety Mo
h/k<d<t d € h =0 h (Q‘ —1)h (g—1)h , (10)

where kn:= min(k,h). When k > h, the sum Z11s empty, while X2 satisfies the same bound, after a

small adjustment to its proof:
3, < Z g’ ¢ _(g+k—1¢
’ = d h (q—1)  (¢—1h

2.1. The classical approach. Returning to the contribution to the right side of (6) from degrees d
> h, we may apply Lemma 1 to show that when h < d < n/k, we have

X {Q € 1a(ER) : P¥| @} < |Sq(d)], (11)

P€ePq(d)

where

S,(d) ={G e My(d): G*A € T,(F,h) for somed € Mo} (12)

The shift of focus from the polynomials in Iq(Eh) to their kth-power divisors that occurs in
inequality (11) is an Fq[x]-variant of the basic idea at the core of the proofs of most bounds on gaps
between k-free integers mentioned in the introduction. In later sections, we prove several results
about the “spacing” between polynomials divisible by kth powers as measured by the degrees of
the differences between their kth-power factors. Such spacing results lead to upper bounds on
|Sq(d)| through the following lemma.

Lemma 3. Let S © Mq(d), and suppose that k,6 € R*, 6 < d, have the following property: for any

fixed polynomial G € S, there exist at most k polynomials H € S such that deg(G-

H) < 6. Then
|S| < kqa-s.

Proof. Choose k € Nsothatk—1<&<k. The intervals Iq(x*Y (x), k - 1), with Y € Mq(d-k),
form a partition of Mq(d). Let I be one such interval, and fix a polynomial G € SNI. Since any two

elements G,H of SNI must satisfy deg(G-H) < &, by hypothesis, there are at most k possible
polynomials H € S N I, including G itself. Thus, |S N I| < Summing this estimate over all q¢-k <

q?-%intervals I of the above form, we get the desired bound. o



For example, in Section 5, we will show that when p + k—and so Proposition 1 holds with r =
1, any two distinct polynomials G,H € Sq(d) satisfy deg(G - H) = (k + 1)d - n. Thus, when d >
n/(k + 1), we may apply the above lemma with k =1 and 6 = (k + 1)d - n to obtain

[Sy(d)| < ¢" "

6 , (13)
This bound suffices to give a quick proof of Theorem 3 in the case when k is not divisible by the
characteristic. The proof in the case p | k will appear in Section 5.

Proof of Theorem 3: The case p + k. When h 2 n/(k + 1), the condition d > h implies d 2
(n+1)/(k+1). So, we may apply (13) to all d in the range h < d < n/k to get

(n+k2)/(k+1) h+14+1/(k+1)

n—kK n—r(n ¢ —kj q Q‘
> Isdls 3 g Y N = T < T

h<d<n/k h<d<n/k j>0

Combining this bound with (6) and (8)—(11) with £ = h, we find that

g+hn—1 g/"
qlg Dh ¢ qz“)

Ny(F.h) < ¢! (m G(k) +
(14)

When k = 2, this establishes (5) when g 2 5 and h =2 1 or when g = 3 and h = 2. Similarly, when
k = 3, this inequality proves the theorem when q = 3. When k=2, g = 3, and h = 1, we are in the
case k > h, so by our earlier observation, X11is empty and the logarithmic term on the right side of
(14) is superfluous. The stronger version of (14) that results from its omission establishes the
theorem in this last remaining case. O
2.2. The Carmon-Entin approach. We now present a simplified version of the method of Carmon
and Entin [1], which gives a quick proof of Theorem 2 in the squarefree case k = 2 for g > 2. (With
small adjustments, the method can be applied to the case q = 2 as well, but we defer that discussion

to the general proof in §4.)
The method relies on two main observations. First, we note that when G = P24 for some

polynomials Pand A, we have also P | G, since G'= 2PP'A + P2A'. This simple observation is central
also to the proofs in [1] of the more general theorems there.

Our second observation, which replaces a more elaborate construction in [1], is that in
characteristic p, the coefficients of the monomials xP-1x2r-1,... in G' vanish, and so G' €

DgP-1, where

Dg ={ap2x™ + - +ag€F,[x] |a;=0if i =7 (mod p) }
Let
3= |{G € lq(Eh) : P?| G for some P € Pq, deg(P) > h}|.



By the above observations, any polynomial G counted by X3 has derivative G’ lying in
Iq(F,h = 1) N DgP-1, and G’ shares an irreducible factor P with G, where degP > h. Note

that
|1Iq(F,h = 1) 0 Dgp-1| = qn-1n/p),

which is significantly smaller than the total number of polynomials in Iq(Fh). Next, we show that
the number of polynomials counted by X3 is not much larger than the number of their derivatives.

Fix H € I4(F ,h = 1) N DgP-1, and let P be an irreducible divisor of H of degree at least h + 1.
Note that P can divide at most one such polynomial H, so P2 divides a polynomial in Iq(Fh) if and
only if H has an antiderivative in this interval which is divisible by P. Since, H € D¢?-1, each
monomial aix’ of H has an “obvious” antiderivative ai(i + 1)-1x*1; let Ho be the resulting
antiderivative of H. The general antiderivative of H is Ho +C for any polynomial C € Fq[xP]. So, H

has an antiderivative divisible by P in the interval Iq(Fh) if and only if there is a polynomial

C € F,[a?
e that lies in the congruence class € = —Ho (mod P) (in Fq[x]) and is such that Ho+C €

Iq(Eh). Since degP > h, if such polynomials exist, at most one can lie in the interval I¢(Eh).

Thus, whenever H = (', each irreducible factor of H of degree at least h + 1 corresponds to at
most one polynomial G counted by Z3. Since H has degree at most n - 1, it has < (n-1)/(h+1) <
n/(h+1) such irreducible factors. On the other hand, if H is identically zero (which can happen
only when Iq(Eh) contains a pth power), then H has exactly q|"/7|*1 antiderivatives in Iq(Fh). We

conclude that

n
. < h=lh/p) 4 glh/p)+1
J_h-i—lq +q .
Combining the last bound with the estimates for £1and Z21n (9) and (10) with k=2 and € = h,
we find that

- +1 ng~H0/p
(F.h) <g¢"t' [ In q q h(1/p—1)
N (F h) <q N +M—1Mh+ Tt

When h + 1 2 p(loggn - logglogq n) (this is equivalent to (3) with 8 = p-1), we have

(15)

(h- + 1)q(h+1)/p > m (1 . 1qu Iqu Tl)

log,n

and our bound on N¢(FEh) simplifies to



] 1 log, log, n
NG (F,h) < ¢ [ In S PO (e
qg—1 P log, n '

When n is large and q > 2, this proves (5) and establishes Theorem 2.

3. Intervals without k-free polynomials

In this section, we establish the polynomial analog of Erdds’ result on large gaps between
squarefree integers stated in Theorem 1. In its proof, we make use of the following lemma, which
can be found in [11, Theorem 4.1].

Lemma 4. Let P1,P,...,Pj,... be any ordering of the irreducible monic polynomials in

Fq[x] such that degP;j< degPj+1. Then, as j = o,

degP; < logqj + logqlogqj +logq (q - 1) + o(1).

We also count precisely the number of polynomials in an interval covered by congruences
modulo powers of irreducible polynomials of small degrees.

Lemma 5. Let k =2 2, € <logq(h/k)-1, and fix a congruence class Qj(mod Pj) for every irreducible
polynomial Pjwith degP;< £. Then the number of polynomials in any interval

lq(Eh) satisfying at least one of these congruences is exactly

(AL 0-2) 0 (o)

8

€

AT — k:
Proof. M = dH Pel;l p r Dzelﬁne. V\S find that

M = Z Jedm,(d f

deg d=1 d=1 4= q -
Thus, we can apply the inclusion-exclusion principle and Lemma 1 to get an exact count of the
polynomials in Iq(Fh) covered by the congruence classes Qjmod Pjk. In particular, since degM < h
such an interval will always contain exactly

.f 1 | I | I h+1 I‘yl 1 Tl
1+ 1+ 1 — 1 — —
( ( )) ! ( q* )
d=1dePy(d) d=1 |

polynomials satisfying at least one of the congruences.
_ —kdeg Py _ N—1 1 _ ,—k+1
Using thatHf’E?’q (1 q ) =G(k)" =1—g¢ , and the estimate



1 —q(d) qd 1 -1 1 .
Su(i-) =X Tu(i-4) <

¢ 1 mq(d) - 1 —7q(d)
() -0t )

d>¢

= (k) e
o ()

and the result follows. O

we find that

Proof of Theorem 1. Let h be large. We will use the Chinese Remainder Theorem to construct a

polynomial F of degree at most n such that no polynomial in I¢(Eh) is squarefree when h satisfies
(D.

The construction is based on a simple idea. Let P1,P,... be an ordering of Pqsuch that degPj <
degPj+1. If Q1,Q2,...,Qmare any polynomials such that the congruence classes Qjmod P, j < m, cover
the interval I¢(0,h), then the interval I¢(Eh) contains no k-free polynomial whenever F satisfies the
congruences

F=-Q; (mod P/) (1<j<sm).
Since the Chinese Remainder Theorem determines such a polynomial F pPF...

k k)

k . . Pf---P
modulo £, we can find a nontrivial solution of these congruences of ! "™ degree <

deg(. We can use Lemma 4 to bound the degree of such a polynomial F. We have

F < kZ deg P; < kZ(logqj + log, log, 7 + log,(q — 1) 4 o(1))

i=1 i=1

,If
- m In(m!) + kmlog,log, m + kmlog,(q — 1) + o(m)

—1
=km (logq m + log, log, m + log, (QT) + 0(1)) =:9(m),

deg 9



where the last step uses Stirling’s formula. Thus, the proposition will follow, if we show that

k
condition (1) allows us to find an integer m with 8(m) < n and m congruence classes @i Md P

that cover Iq(0,h).

The simplest way to find such a congruence cover is to use a separate congruence class for every
polynomial in Iq(0,h). Then m = gh*1. This already suffices to establish the theorem when the
constant c¢ in (1) satisfies ¢ < (kq)-1. It is clear, however, that this simple argument is somewhat
wasteful. Next, we use Lemma 5 to cover multiple polynomials by congruences modulo small
irreducible polynomials.

¢
Define £ := [logq(h/k)| - 1 and let0 = 2_d=174(d) be the number of irreducible polynomials
in Mg of degree at most £. By Lemma 5, we find that the number of polynomials in I4(0,h) covered

by any choice of congruence classes Qi mod P;, for each i < mois exactly

1
h+1
( H 11 ( qA"))
d= lri"GP d) i
This leaves us, as h — oo, with

R (- 5) =t (-0 ()
| ;!_[1 de]‘.l;[d) Gal) tg'

=" (Gk) T +o(hT))
uncovered polynomials, which we cover trivially, using one congruence class for each. Thus, the
total number of congruences we require is
m=mg+1m, = mg+ q’r"+l (Cq(k;)_] +o0 (h,_'))

= ¢ (GR) T +o (k7)) (16)

o ¢
after noting that''0 < ZGSF TEC< h Using this value of m in our expression for §(m) we
find that
8(m) = kCy(k)~'¢"*" (h+1log, h + co + o(1))

where co = log,((¢—1)/€) +1— logq {q(k). Hypothesis (1) ensures that, for sufficiently large

h and n
ken

d(m) < (log,n+0O(1)) <n,

= G (k) log,n an
by the assumption that kc < {4(k). Thus, the polynomial that we have constructed has degree at
most n and the result follows. O

Remark 1. One sees readily that if hypothesis (1) is replaced by

4 < (k) ng™
k l(ng n

inequality (17) can be refined to

 eE(1) -1
a(m) < {;(; . (logq n + log, (qke) + 0(1)).

q




n) < loo _
e(n) < log, (1 logqn) with ¢ >logq ((q - 1)/ke), we find that §(m) < n.

4. Proof of the main theorem

In particular, when

In this section, we extend the ideas from §2.2 to prove Theorem 2. We finish the section with
brief remarks on the proof that justify our comments in the introduction about possible
enhancements to the theorem. We also remark on the conclusions one can draw when h and n are
of moderate size and how such conclusions compare to Theorems 3 and 4.

Proof of Theorem 2. Consider an integer k = 2. Similarly to §2.2, we start from (6) and use (8)—
(10) to bound the contribution to the right side of (6) from irreducible polynomials P with degP <
£ = h. Thus, we focus on the quantity

Y3=|{G € I4(Eh) : P¥| G for some P € Pq, deg(P) > ¢£}|.

As in the case k = 2 before, we find that if Pkdivides G, then P divides the first k — 1 derivatives

of G, and that the j-th derivative, GU), lies in the set
Irgj)(F: h) = T,(FY, h — j) m
i+j>p

When k < p, we may use these observations in a similar fashion to §2.2 to complete the proof.

To begin, let h = ps + r, with 0 < r < p. We observe thatIq (F h)is contained in a shift of a

finite-dimensional linear space over Fq of dimension

k—1 .
h+1—i k—1
h+1-— [7—‘h+1—ﬂ—1e—mmr+1k—1 h—l—l)(l——)
2| (k —1)s — min( )< )
Hence, ‘Iék—l)(ﬂ h)| < ¢h+D=(k=1)/p)
< k- D0/p+D)
By a similar counting B argument, we find

that there are polynomials G € Iq(Eh) with G&-1) = 0. Next, we will show that for each of the < n/(¥

(k—1) /1
+ 1) irreducible factors P, with degP > ¢, of a nonzero polynomialH €1y (] "), there is at
most one

G € l4(Eh) divisible by Pk. From this, we can conclude that

V. < n (h+1)(1=(k=1)/p) 4 o(k=1)(h/p+1)
S 0x R 1 . (18)

Consider a nonzero H € Iq(k-1)(Eh) and an irreducible factor P of H of degree at least h + 1. A
polynomial G € Iq(Eh) divisible by Pk exists if and only if we can find a finite sequence of

polynomials Hk-1= H,Hk-2,...,H1,Ho = G, each divisible by P, such that

14



Hy e T)(F.h), Hj= Hjy (0<j<k-1).

Since degP > h, I40)(Eh) can contain at most one multiple of P, so for each j, there is at most one
possibility for the polynomial Hj. In particular, at most one possible polynomial G € Iq(Fh) is
divisible by Pk, This establishes our earlier claim and completes the proof of (18).

Suppose now that k = p and G € Iq(Fh) is divisible by Pk for some P € Pq. We intend to take p -
1 derivatives of G, but we need to proceed with care. Recall the base-p representation of k:

k=dp*+---+dip+dy=:kip+do
11

After taking do derivatives of G, we have G(@) = PkipQ for some polynomial Q, and afterwards we
find that

G() = PraipQ(j-do) (j = do).
In particular, Pk | GP-1). On the other hand, G(-1) € F¢[xP], so GP-1) = HP for some polynomial H
€ Fq [X]

When i > (h +1)/p - 1, the coefficient of x'in H depends only on a single coefficient of F. So H
€ Iq(F1,h1), where h1 = [(h+1)p-1] - 1 and F1 = (F(r-D)V/P is a polynomial of degree < np-1
determined uniquely by F. Moreover, by the uniqueness of polynomial factorization in Fq[x], we
have Pki| H. On the other hand, if H € Iq(F1,h1) is nonzero and divisible by Pk for some irreducible
polynomial P, with degP > ¥, the argument we gave to justify (18) shows that there is at most one
polynomial G € Iq(Eh) such that G(-1) = Hp

(and G,@',...,GP-1 are all divisible by P).
Let S1C Iq(F1,h1) be a set (with: 0 € S11f 0 € Iq(F1,h1)) to be specified shortly. For any H € S1,

there are gh-" polynomials G € Iq(Eh) with G(»-1) = Hr, so we find that

Y3< X31+ qn-m|S1], (19)

where 3,1 counts pairs (H,P), with P € Pq, H € Iq(F1,h1) \ S1, P*1| H, and degP > *.

When k12 p (equivalently a = 2), we can iterate the above argument, with a slight twist. If (H1,P)
is one of the pairs counted by 23,1, the above construction with Hi1in place of G yields a polynomial
H2 € 1q(F2,hz2), where h2 = |(h1 + 1)p-1] - 1 and F2 a polynomial of degree < np-? determined
uniquely by F1(and therefore, by F). Moreover, we have



Pk2| Ha, where k2= (kiS2 — d1)/p. Suppose now that < [4(F2,h2) is a set of polynomials, to be
0eS if0eZ (F.h)
specified shortly (with 2 q22.

We now specify Sias the set of polynomials H € Iq(F1,h1) such that H?-1) = AP for some A € S2
(note that this condition ensures thati20 € S1if 0 € Iq(F1,h1)). For each A € Sz, there are < g -"

polynomials He S1, so
|S1| < ghi-n2|S2|. (20)
For any such choice of Sz, we find that ¥3,1 < ¥32, where 32 counts pairs (H,P), with P irreducible,
H € Iq(F2,h2) \ Sz, P%:| H, and degP > ¢. Therefore, we deduce that
X3< X324+ qn-nz|S2|. (21)

In general, we can iterate this argument a total of a times to find a polynomial Fq of degree <
np-2, determined uniquely by F, such that

Y3< X3,a+ Qh-ha|Sal,
where ha~ [(ha-1+ 1)p-1] - 1, the set Sa € Iq(Fa ha) is at our disposal to choose (so long as 0 € Sa

if 0 € I¢(Fa ha)), and X3,41s the number of pairs (H,P), with P irreducible, subject to
He Iq(Fa,ha) \ Sq, Pdl H, degP> £

A short computation shows that

(h+1)p?-3<has(h+1)pa-1 (22)

At this point, we choose Sato be the set of polynomials H € 1q(Fgha) with H@-1) = 0, so |Sa| <

q(d-1)(hap-1+1). Hence,

Y3 < X3,a+ Qh-hat(d-1)(ha/p+1). (23)

16



When d = 1, we apply the trivial bound for X3,q:

Saa < (deg ) (£ + 1) T, (Fu hy)| < —— g0

i L 14

pr(f+1) . (24)
When d > 1, we may bound X34 using a variant of (18) with h = hqa, k = d, and n = degFa. Recall
that the second term on the right side of (18) accounts for polynomials in G € Iq(Eh) with G@-1) =

0. Thus, by our choice of Sa, the respective bound for X3« becomes

: n —a .
E; . < deo E] /+1 —1_(ha+1)(1—(d—1)/p) < (h+1)p~*(1—(d—1)/p)
30 < (deg Fo)(£+1)" g T

Note that setting d = 1 in the bound above yields the exact same expression as (24). So, in either
case, using this in (23) along with (22) yields
< g HVp A= (d=1)/p) 4 (A1) (p—dt 1)p=* ) Hd+1
pi(h+1) (25)

Note that when a = 0 and d = do =k < p, (18) is a slightly stronger version of (25) (whose second
term contains an extra factor of g2*(k-1)/p < g3). Therefore, we combine (25) with (6) and (8)—(10)
to conclude, for sufficiently large h and any k = 2, that

3

N, (F, h) < " (ln Co(k) + pﬁ(f;ll)q_e(hﬁ) +0 (h.“))
26
(26) f=1—(p—d+1)p L

where
If h is chosen so that

1/6
> ( cn )
log, n 27)

for some absolute constant ¢ > 0, it follows that

o log. h
Ny (F, h) < gt (ln Go(k)+—+0O (“‘?))
phe h _ (28)
Since 0 < 1 - k-1, this establishes the theorem for ¢ = 1. O

Remark 2. Suppose that n and h are large, and let %}, be the subsum of 1 (in (8)) with ho< d < h,
where ho = o(h). Also, let

PShg}'
. pk
h = {QeIL(Fh):P |QforsomePEPq,deg

Yo |

Choosing ho sufficiently small in terms of , one may apply a sieve argument (similar to the proof

of Lemma 5) to ¥oto obtain an asymptotic formula for £1. One can then replace the term In{g(k)

17



in (28) by 1 - {4(k)-1+ o(1). From this we see that ¢ can be taken to be any constant ¢ > 6q(k)p-“
so long as n is taken sufficiently large.

On the other hand, if the constant c in (27) is replaced by a function g(n) — o as n — o, one

may turn the above bounds into an asymptotic formula for the number Qq(Eh) of k-free

polynomials in Iq(Eh), since

EU E; 22 23 S Qq(F. h) S ZU_ — —

Remark 3. Theorems 3 and 4 give fully explicit ranges of g and n for which the short interval Iq(Eh)
contains k-free polynomials under the respective constraints on h, because bounds like (14) above
(see also (34), (45), and (49) in §5) are explicit. Theorem 2, on the other hand, is stated for
sufficiently large n to simplify the analysis of (26), which focuses on the

h\gq 2 3 4 5 7 8 9 11 19 25 27
hei 3« 3+ 3« 44 11 4 4+ 4+ 6 14
h=2 — 6« 12 6+ 8t 89 20 8+ 8t 19 75
h=3 — 9« 57 9 12t 393 61 12t 12t 49 307
h=4 — 12 174 17 16t 1467 164 16f 16t 118 1156
h=5 — 23 459 29 25 5092 414 20t 20t 271 4173
h=6 — 42 1124 48 39 16984 1013 28 24t 603 14629
h=7 — 73 2641 77 60 55234 2417 40 28t 1314 50207
h=g 23 123 6048 120 90 176448 5674 57 34 2818 169578

Table 1. Values of no(q,h) for which Iq(Fh) contains a squarefree polynomial

whenever degF < no. Numbers marked with an * or a T were obtained using

Theorems 3 or 4, respectively.

case when h and n are large. However, if the contributions to the right side of (26) from X2 and X3
are kept explicit, one can determine, for every fixed triple (k,q,h), with h = ho(k,q), a range of

degrees n for which Iq(Eh) contains k-free polynomials. It appears difficult to channel such

18



observations into a general statement similar to Theorems 3 and 4, but it is possible to draw on
them to gain some broad insights.

For example, Table 1 lists several pairs (g,h) and the values of respective integers no(q,h) such
that the interval Iq(Fh) contains a squarefree polynomial whenever degF < no. For values of g with
p > 2, these bounds are computed using (15), taking the largest value of n such that the coefficient
of gh*1is less than 1. For those values with p = 2, an explicit version of (26) is used, after noting
that in this specific case, k = p = 2, the lower bound in (22) can be improved to (h+1)/2-3/2. This
results in an expression identical to (15), but in which the second to last term is half as large. Note
that even these values are likely much smaller than the “truth.” For example, in the case g = 2 these
methods do not prove that all short intervals with h = 1 or 2 and any value of n are guaranteed to
contain squarefree polynomials, however direct computation shows that every such short interval
contains a squarefree polynomial in these cases when n < 9 and 16 respectively.

In some cases, the bounds obtained using Theorems 3 and 4 are stronger than those obtained
here. Such improved bounds are included in the table above marked with the symbols * or 7.

5. The differencing method for polynomials
Recall the set Sq(d) defined in (12). In this section, we prove several results about the spacing
between elements of Sq(d). Through applications of Lemma 3, these results will then yield upper
bounds on |Sq(d)|, which apply to prove Theorems 3 and 4.

Our first result is a bound on the minimum degree of the difference of distinct elements of Sq(d).
Recall that we use p to denote the characteristic of the finite field Fq. We note that when p t k, we

have r = 1 in the proposition below, while when p | k, we have 1 <r<k.

Proposition 1. Suppose that h <d < n/k and G,H € Sq(d), with G# H. Let r = r(k,p) be the least

i‘: . Whenr < k

positive integer such that? t(7) , we have
G- H)> (k+r)d—n

deg( r . (29)

When r = k, we have either (29) with r = k, or
G-I < h+kd—n

deg( k ) (30)
Proof. Let A,B € Mq(n-kd) be such that GKA,H¥B € 14(Fh). Then deg(G*A-H*B) < h, and we deduce
that

deg(Gk —H’”‘)A—&-HWA—B)) < h. G1)

Note that
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G —H* = (G—H)+ H)" — H* = i (i) (G — HY H*
j=1
Since deg(G - H) < d = degH, it follows that
deg(Gk- HK) =r deg(G - H) + (k- r)d. (32)
Suppose first that A # B. Then the degree of the second term on the left side of (31) is
deg(H¥(A - B)) = kd + deg(A - B) 2 kd > h.
This is only possible if the two terms on the left side of (31) have the same degree, meaning that
deg((Gk- HK)A) = deg(H*(A - B)) 2 kd.
Combining this with (32) gives
kd<rdeg(G-H) + (k-r)d+degA =rdeg(G-H) + (n-rd),

which establishes (29) in this case.
Next, we consider the case A = B. Then (31) and (32) give

rdeg(G - H) + (n - rd) = deg((G*- HX)A) < h,

and hence,

G- H)< h+rd—n
deg( r
When r = k, this establishes (30), and when r < k, we get

G- H) < (r+l)d—n<0

deg( r ,
which contradicts our assumption that G # H. Therefore, this case occurs only when r=k. o We
remark that when r = k andh)/k, d < (n— inequality (30) contradicts the assumption G 7 H of
d
the proposition, so for in this range, we always have (29). On the other hand, when r = k and (n -

h)/k < d < n/k, we can combine (29) and (30) to obtain a rather sharp bound on |S¢(d)|, which we

state in the following lemma.

Lemma 6. Assume the notation of Propositon 1. If r =k and (n - h)/k < d < n/k, we have

|Sq(d)| < qhyx+t.
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Proof. Let § = (2kd - n)/k. According to the proposition, any two elements G,H of Sq¢(d) with deg(G

- H) < 6 must satisfy (30). In particular, for a fixed G, there are at most
|1q(G,(kd + h — n)/k)| < q(kd+h-n)/k+1 =2 K
polynomials H € Sq¢(d) with deg(G — H) < 6. Thus, Lemma 3 gives
|Sa(d)| < Kqd-s = qh/K+1. m

Recall that in §2 we derived Theorem 3 in the case when p t k from (29) with r = 1. We can use
Lemma 6 to complete the proof of Theorem 3 in the case when p | k.

Proof of Theorem 3: p | k. To begin, we observe that when d < n/k and r > 1 in Proposition 1, the
bound (29) is stronger than its version with r = 1. Therefore, when 1 < r < k, we still have inequality
(13) (and more), and so we may follow the proof from the case p t k (given in §2.1) without any
changes. Thus, we may focus on the case r = k.

Note that when h 2 n/(k + 1), Lemma 6 is applicable in the full range h < d < n/k.

Hence,
> IS < (3 —h) < (kg
h<d<n/k ' . (33)
Combining this with (6) and (8)—(11) with £ = h, we find that

q+kn—1 (1—k)h/k
qlg—1)h + (k) ]

When k 2 3, the last expression is < g"*1, provided forall g 23 and h 2 1. When k=2

Ny(F,h) < ¢+ (m G(k) +
(34)

(note that in this case, we have p = 2 and q = 2/), the same holds forg=24and h>1. 0

Next, we consider s-tuples of distinct polynomials G = {G1,...,Gs} in Sq(d), with s > 3.

If G is such an s-tuple, we write

6(G) = min deg(Gi - Gj),

1<i<jss

A(G) = max deg(Gi- Gj).

1<i<jss

By Proposition 1, we have
6(G) =z (k+1)d-n, (35)
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whenever h <d < n/kand r = r(kp) < k (or r = k and d < (n - h)/k). Our next result is a lower

bound on A(G) for triples.
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Proposition 2. Suppose that p + k(k + 1) and h <d < n/k. If G = {G1,G2,G3} is a set

of distinct polynomials in Sq(d), then

c+2)d —n
A(G) > M
3 : (36)
Proof. For each 1 <1 < 3, let Ai € Mq(n - kd) and Ribe polynomials such that
F=GiA — R degRi<h, (37)
We now consider the rational function
F F F
PG, Go. Gs) = (Gs — Ga) = + (G1 — G3) = + (G — G1) =
G G G

7

essentially a second divided difference of the function ®(t) = Ft-kon Fq(x) (see [16] for background
on divided differences). By (37), we have
(I)[Gl,Gg,G:g} — 1‘7\’( - (')._ (38)

where
N = (G5 — Ga)A; + (G — G3)As + (Gy — Gy) As,
R R

( 3 ZG"-F G:’E

+(G1 = G3) = + (G2 — G1) =1
Our immediate goal is to show that N is a nonzero polynomial by showing that degN = 0. In the
rest of the proof, we suppress the dependence on G and write simply A,6, and ® instead of
A(G),6(G), and P[G1,G2,G3].

We can rewrite the definition of @ as the polynomial identity

PGEGEGE = F (H(G_,- - G.,;)) ( > G‘ngGf;)

i<j a+b+c=2k—2

(39)
where the product on the right is over all pairs of indices i,j with 1 <i <j < 3, and the sum is over

all triples a,b,c with 0 < a,b,c<k-1and a + b + c = 2k - 2. Observe that if both deg(Gj—- Gi) <A
and deg(Gk - Gi) <A, then also

deg(Gj- Gk) < max{deg(Gj- Gi),deg(Gk- Gi)} <A,

which contradicts the choice of A. Thus, at least two of the differences in the above product must
have degree A, and we get

2A + 6 < deg (H(G_j - G,-)) < 3A
i<j ) (40)
. . k+l .
Also, the sum on the right side of (39) has ( 2 ) terms, each of them in Mq((2k - 2)d).
, k+1
SinceP 1 ( 2 ), it follows that the sum is a polynomial of degree (2k — 2)d, and we deduce



n+(2k - 2)d + 2A + 6 < deg(@G1G5GY) < n+ (2k — 2)d + 34, (41)

On the other hand, we have
OGTGEGY = Ri(Gs — Go)GEGE + Ry (G — G3)GYGE + Ry(Gy — G1)GYGE. (42)

17
Since each of the three terms on the right side of (42) has degree < h + A + 2kd, we obtain deg
(~)G§“’G.§G§) < 2kd+ A+ h. (43)

Moreover, since p t k, we have (35) by Proposition 1. Combining (35), (41), and (43), we conclude
that

deg(@G1G5GE) > n+ (2k —2)d +2A +6
> (3k — 1)d + 2A
> 2kd 4+ h + 2A zdeg (‘)GiGiGi)
Thus, by (38),
deg(NG?{’Gng;') = deg(PGTGEGE) > 0

which establishes our prior claim that N = (f . Using the upper bound in (41), we get
3kd < deg(NGYGEGE) = deg(PGYGEGE) < n + (2k — 2)d + 3A
and the desired conclusion follows. i

We now use Proposition 2 and Lemma 6 to prove Theorem 4.
Proof of Theorem 4. Suppose first that p + k(k+1). When d > h, we have d = (n+1)/(k+2), and
Proposition 2 allows us to apply Lemma 3 with k = 2 and § = ((k+2)d-n)/3 to deduce the bound
|Sa(d)] < 2q(r-(k-1ya)3 (44)

Therefore,
2(1(n+1)/(k‘+2)

(n—(k—1)d)/3 (n—(k—1)do)/3 —(k=1)j/3 _
Yos@i<2 Y g <2 2 T =

h<d<n/k h<d<n/k j=0

where do= (n + 1)/(k + 2). This inequality, (6), and (8)—(11) with £ = h now give

q + kh, — 1 2q7(k+1)/(k+2)
q(q l)h (J]/H (l—(kf—z)/3>

’

Ny(F h) < ¢! (111 (k) +
(45)
which implies (5) when k=2 and ¢ =7 or when k>3 and q 2 5.
Next, let p | k and suppose that r < k in Proposition 1. Then Proposition 1 yields (29) with r = 2,
and hence, with r = 2. Thus, Lemma 3 with k = 1 and 6 = ((k + 2)d — n)/2 yields the bound
|Sq(d)| < gln-ka/2, (46)

which supersedes (44). Hence, (45) holds also in this case.



Finally, let p | k and r = k, and assume that n/(k + 2) <h <n/(k+ 1). When h <d < (n - h)/k,
we can again use Proposition 1 to obtain (46). Hence,

q(-n+1)/(k+2)

Yo IS < grrRY g = 2 ,
= /2 _ —(k—1)/2
h<d<(n—h)/k 3=0 1 q ) (47)

Moreover, when (n - h)/k < d < n/k, we may use Lemma 6 in a similar fashion to (33) to show

that
! .
> Isals ()
(n—h)/k<d<n/k '
18 (48)

Combining (47) and (48) with (6) and (8)—(11) with £ = h, we conclude that

+ kh -1 gf(k+l)/(k+2) h v
F <[] J: q ) g-Rnk ) 49
NolFi ) < 4 (HCQ( )+ qlg 1)h - g’z g—(k=1)/2 + k i) o )_

which again implies (5). o

Appendix A. An analogue of the methods of Halberstam and Roth As in the proofs of

Theorems 3 and 4, we need to estimate

Y = Z |Sq(d)]

(<d<n/k

7’

where £ 2 h. When k 2 3, the estimation of X3 relies on the following proposition.

b 1. (2k—1 3 , "/l
Proposition 3. Let k > 3 and? fh ( k—1 ) Ifn/(2k) <h <d < ’L/A‘, we have

|Sq(d)| < 2kqn-a)/2k-1).

We postpone the proof of this result until the end of the section and focus first on the proof of
Theorem 5. By the proposition,

23 < Z Qqu(n—d)/(m.r—l) < qu('n,—{')/(ﬂe—l) Z q—_-j/(‘Zk—l)
t<d<n/k 7=0
2 (n—£)/(2k—1) P (h—E) [ (2k—1)
_ kq < 2kq
1 gfl/(EI.'fl) - 1 q71/(2k71)

on recalling that

h > n/(2k). Writing 8q= q-1/2k1), we have

SO
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1—46 >1753k71: a-1 3
T2k -1 (2k—1)q

(50)

R 2h(2k — 1)g" 1 ph—0/(2k=1)

Together, (6), (8)—(11), = < P and (50) give

(q + k)g"=" N k(4k — 2)qth=0/(2k=1)
qlg—1)h qg—1

N,(F,h) < ¢"*! (ln Co(k) +
We now select
€ = h +logq(qh)2k-1)/2k.

This choice essentially balances the second and third terms on the right side of the last inequality
and gives

112 _ —1/2k
Ny(F,h) < ¢"*! (m C (k) + 4 EH = R)h) )

(51) ¢ 1

When h is sufficiently large in terms of k, this completes the proof of the theorem.

All that remains is to prove Proposition 3.
Proof of Proposition 3. Consider the polynomials Po,Qo € Z[x] given by

Pola) = 1 (le 1)T+___+(_1)A;_1(2:_11)Ik_1 ’
(1 2) ' =Py(x)  2FQo(2).

We use these to define the degree-(k — 1) forms

P(xy) = x*1Po (y/x), Qxy) = x1Qo (v/x),
which satisfy the algebraic identity

(x - y)#-1=xkP(xy) - y*Q(xy).

In particular, for any polynomials G1,G2 € Fq[x], we obtain

(G] Gg)zkil - G?P(G] . Gg) Gg()(Gl. GQ)_ -
(52)

Next, we consider (52) when G1,G2 € Sqk(d). We find polynomials Ai € Mq(n-kd) and Ri with

F—GiA - R, degRi< h. (53)
We may then rearrange (52) as
(G — Go)*'F = F(G{P(G),Gs) — G5Q(G1,Ga)) = N + 6, (54)

where



Note that

deg® < (2k-1)d + h < 2kd.
When
N = GiGy(P(G1, G2)As — (G1, G2) Ay)

@ - GEQ(GM GQ)R[ - G?P(G].GQ)RZ’

2kd —n
G —Gy) < 1 Ay deg(,
(55)
we find also that
deg (Gl — Gg)zk_] 1”) = (QIL — 1) deg(G] — GQ) +n < Qkfd.deg
(GI]"GQ‘(P(Gl, Ga)Ay — Q(G],GQ)AI)) < 2kd.
Thus, under condition (55), we can deduce from (54) that
Since deg(GIfG-Fz{) = 2kd_ this is possible only if
P(G1,G2)A2 - Q(G1,G2)A1=0. (56)

That is, if G1,G2 € Sq(d) satisty (55), then G1,G2, and the respective polynomials A1,A2 must satisfy
the polynomial identity (56).
Consider a third polynomial G3 € Sq(d) such that

deg(Gs - Gi) < Ak (57)

holds for i = 1. Then, as an immediate consequence of (55), (57) holds also for i = 2. Further, by
the argument in the last paragraph, we have also
P(G[,G;-})A;-} o Q(Glf Gl&)Al - U
20 , (58)
and

P(Gs3,G2)A2 - Q(G3,G2)A3=0. (59)
Finally, from (58) and (59), we readily obtain that

P(G1,G3)P(G3,G2)A2 - Q(G1,G3)Q(G3,G2)A1= 0. (60)

We now consider an interval I of length < Axand fix distinct polynomials G1,G2 € Sq¢(d) N 1. Then
G1,G2 satisfy (55), and any other polynomial Gs € Sq(d) N [ must satisfy (60). We view
P(G1,t)P(t,G2)A2 - Q(G1,6)Q(t,G2)A1=0 (61)
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as a polynomial equation in t over Fq[x]. By the construction of P and Q, the left side of
(61) is a polynomial of degree 2k — 2 with leading coefficient

S G [

We will show that this coefficient is nonzero. The hypothesis on the characteristic p reduces this
task to showing that A1 # Az.

When A1 = Az = A, say, conditions (53) yield
deg(G1 — G3) + deg A < deg(R1 - R) < h
We have

k—1
GY — G5 =(G1—Go) Y GGyt

Jj=0
The sum over j is a polynomial of degree (k —1)d with leading coefficient k, which does not vanish
since p t k. As G1¥ Gz, this implies that
(k—1)d < deg(GY — GY) <h —deg A < (k+ 1)d — n,
a contradiction. Therefore, A1+ Aa.

Thus, (61) is a (univariate) polynomial equation of degree 2k -2 over Fq[x]. The number of
solutions of such an equation is bounded above by its degree, so once G1, G2 (and hence, A1and
A2) are fixed, there are at most 2k —2 possibilities for G3 € Sq(d)N]. We conclude that

|Sq(d) N 1] < 2k.

Therefore, the conclusion of the proposition follows from Lemma 3 with k = 2k and 6 =
Ark. o
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