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Abstract

Peptide self-assembly into amyloid fibrils provides numerous applications in
drug delivery and biomedical engineering applications. We augment our
previously-established computational screening technique along with experi-
mental biophysical characterization to discover 7-mer peptides that self-
assemble into “parallel f-sheets”, that is, f-sheets with N-terminus-to-C-
terminus f-strand vectors oriented in parallel. To accomplish the desired
p-strand organization, we applied the PepAD amino acid sequence design soft-
ware to the Class-1 cross-f spine defined by Sawaya et al. This molecular con-
figuration includes two layers of parallel p-sheets stacked such that
N-terminus-to-C-terminus vectors are oriented antiparallel for molecules on
adjacent f-sheets. The first cohort of PepAD identified peptides were examined
for their fibrillation behavior in DMD/PRIME20 simulations, and the top per-
forming sequence was selected as a prototype for a subsequent round of
sequence refinement. The two rounds of design resulted in a library of eight
7-mer peptides. In DMD/PRIME?20 simulations, five of these peptides sponta-
neously formed fibril-like structures with a predominantly parallel S-sheet
arrangement, two formed fibril-like structure with <50% in parallel S-sheet
arrangement and one remained a random coil. Among the eight candidate pep-
tides produced by PepAD and DMD/PRIME20, five were synthesized and puri-
fied. All five assembled into amyloid fibrils composed of parallel #-sheets based
on Fourier transform infrared spectroscopy, circular dichroism, electron
microscopy, and thioflavin-T fluorescence spectroscopy measurements.
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1 | INTRODUCTION

We seek to establish a workflow to design previously-
unknown amino acid sequences to produce peptides that
assemble into specific desired structures. It is known that
peptides can self-assemble into architectures like nanofi-
bers (Cormier et al., 2013; Nagy-Smith et al., 2015),
nanosheets (Childers et al., 2010), nanotubes (Li
et al,, 2016), nanoparticles (Tian et al., 2017; Villegas
et al, 2022), but understanding of the relationship
between amino acid sequence and structures of assem-
blies is limited. Our ability to engineer supramolecular
structures at the nanoscale impacts a wide variety of
potential applications (Sinha et al., 2021; Wilson
et al., 2018) including as polymeric biomaterials (Katyal
et al, 2019), tissue-engineering scaffolds (Cunha
et al., 2011; Deidda et al., 2017; Jonnalagadda et al., 2017;
Zhang, 2003), hydrogels (Boyle & Woolfson, 2011; Jonker
et al., 2012; Nagy-Smith et al., 2015; Sinha et al., 2021;
Sinthuvanich et al., 2012; Woolfson, 2010), drug release
agents (Altunbas et al., 2011; Branco et al., 2010), and
biomineralization components (Eby et al, 2011;
Mitchison et al., 2001). Short peptides are particularly
desirable for biomaterials discovery because they can be
easy to synthesize and, in comparison to longer peptides,
they may exhibit a higher tendency to aggregate (Wilson
et al.,, 2018). Although peptide assemblies can be com-
posed of molecules in various secondary structures, we
focus here on fS-sheet assemblies. “Bottom-up” strategies,
in which the amino acid sequence length, composition,
and pattern are tailored, could be used to obtain supra-
molecular architectures with great structural variety and
desired functional properties. The amino acid sequence
composition of the peptides and their secondary structure
drives the peptide self-assembly process to obtain
peptide-based supramolecular assemblies.

In contrast to the “bottom up” search for amino acid
sequences that we are aiming to establish here, previous
designs for f-sheet peptide assemblies have been inspired
by fragments from naturally occurring amyloidogenic
proteins, or have emphasized simple patterning of hydro-
phobic and polar amino acids. Examples of peptide frag-
ments that self-assemble into f-sheet fibrils include the
7-mer peptide fragment Ap (16-22) (sequence:
KLVFFAE), which is associated with Alzheimer's disease,
and the fibril-forming segment of the yeast prion protein
Sup35 (sequence: GNNQQNY). Furthermore, Lynn et al.

chemically modified Af (16-22) to assemble into nano-
sheets (Li et al., 2016; Wilson et al., 2018). Examples of
peptides designed with hydrophobic/polar patterning
include RADA16-1 (sequence: Ac-RADARADARADAR-
ADA-NH,) (Cormier et al., 2013; Zhang, 2002) and
MAX1 (sequence: VKVKVKVKVDPPTKVKVKVKV—NHZ)
(Kretsinger et al., 2005; Nagy-Smith et al., 2015), where
Ac- indicates an acetylated N-terminus, -NH, indicates
an amidated C-terminus, PP indicates proline with
D-chirality, -VPPPT- corresponds to type-II’ f-turn to
promote f-hairpin formation.

There are eight possible classes of 2-layer g-sheet
structures, called cross-f structures spines, that peptides
can form according to a 2007 paper by Sawaya et al.
(2007). Although there have been significant advances in
statistical biophysics and bioinformatics-based tools to
predict amyloidogenic regions in a peptide sequence,
“bottom-up” computational design of novel peptide
sequences not known to adopt f-sheet-rich supramolecu-
lar structures is still a challenge. An early noteworthy
example is a paper by Wang et al., who employed a
sequence-based QSAR approach followed by atomistic
molecular dynamics simulations to design self-
assembling peptides that form Ap like aggregates (Wang
et al., 2014). They succeeded in designing self-assembling
hexapeptides without a preferred f-strand arrangement
that can be used as potential Af inhibitors in treating
Alzheimer's disease.

In our previous work, we developed a workflow for
computational and experimental discovery of 7-amino-
acid peptides for self-assembly into amyloid structures.
The chosen target structure was the Class-8 cross-f spine
structure described by Sawaya et al. (2007), with peptides
arranged into a pair of stacked antiparallel -sheets. The
workflow started with PepAD; a Monte-Carlo-based pep-
tide assembly design (PepAD) algorithm developed in the
Hall lab. PepAD allows custom pre-settings for design
parameters, such as the peptide length, amino acid
sequence, backbone scaffold, and hydration properties, to
identify specific fibril-forming peptides. Additionally,
PepAD uses atomistic force-fields rather than knowledge-
based information and hence, enables the de novo design
of peptides not known in nature. The self-assembling ten-
dencies of the peptides identified by the PepAD algorithm
are further evaluated using discontinuous molecular
dynamics (DMD) simulations with the PRIME20 force
field to examine their fibrilization kinetics. Eight of the
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12 in silico peptides identified by PepAD in our previous
work successfully formed fibrils in the
DMD/PRIME20 simulations and self-assembled into
anti-parallel p-sheets when tested experimentally
(Collier & Messersmith, 2003). Thioflavin-T (ThT) fluo-
rescence measurements were used to monitor amyloid
fibril formation. Peptide secondary structure was probed
using circular dichroism (CD) spectroscopy and Fourier-
transform infrared spectroscopy (FTIR). FTIR also
reported on p-strand organization within pS-sheets.
Finally, fibrils were imaged using negative-stain trans-
mission electron microscopy (TEM). All peptides tested
in that study exhibited nanofiber formation with FTIR
signatures of antiparallel p-sheets. Since the relative
alignment of peptides in neighboring sheets was not
examined via DMD simulation or experiment, we could
not claim that these peptides should form Class
8 structures.

In this work, we sought to test the ability of our com-
putational tools to design peptides with a different target
p-strand organization, the Class-1 cross-f spine defined
by Sawaya et al. (2007). This structure contains a two-
layer p-sheet structure, with parallel-oriented f-strands
in each layer and antiparallel-oriented f-strands between
the two layers. Sawaya et al. (2007) reported five peptides
that form this structure, including GNNQQNY of the
prion protein Sup35. We know of no designer peptides
and few naturally occurring peptides in this size range
that assemble into parallel f-sheets. The energy associ-
ated with the hydrogen bond network of a parallel
p-sheet is higher than that of an antiparallel j-sheet
(Zhao & Wu, 2002), suggesting that antiparallel S-sheets
are energetically favored for peptides in this size range.
Furthermore, one can use the simple heuristic that oppo-
sitely charged sidechains near opposite termini can favor
antiparallel organization (Collier & Messersmith, 2003),
but we know of no analogous heuristic to favor parallel
p-sheets. In the work described here, two rounds of
designs were performed to obtain eight 7-mer peptides
that self-assemble to form parallel g-sheets. This is in
contrast to our workflow for antiparallel fg-sheet struc-
ture, in which only one round of PepAD design followed
by DMD/PRIME20 simulations was needed to produce
8 candidate parallel p-sheet forming peptides for experi-
mental testing. (As in our previous paper, the relative
alignment of peptides in neighboring sheets was not ana-
lyzed.) Five of the peptides spontaneously formed fibril-
like structures with a predominantly parallel p-sheet
arrangement, two peptides formed fibril-like structures
with <50% in parallel S-sheet arrangement, and one pep-
tide remained as a random coil in DMD/PRIME20 simu-
lations. FTIR, CD, electron microscopy, and ThT
fluorescence spectroscopy measurements were conducted
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on 5 out of 8 peptides (commercially produced and
received at >95% purity). These tests revealed that all
5 peptides self-assembled into parallel $-sheets.

2 | RESULTS

2.1 | First round of design of class 1 cross
f-spine forming peptides

PepAD is a Monte-Carlo-based algorithm that searches
for peptide sequences that can self-assemble to form
supramolecular structures (Xiao, Robang, et al., 2022). A
score function, I'score, Which considers (i) the binding free
energy, AGyinding, Of the peptide chain with its neighbor-
ing peptides and (ii) the intrinsic self-aggregation propen-
Sity, Paggregation, Of the individual peptides, is used to
evaluate new peptide sequences. Details are provided in
Section 4.1.

The PepAD algorithm requires an initial backbone
scaffold to design peptide sequences that can self-
assemble into the Class 1 cross-§ spine. As mentioned
earlier, Sawaya et. al reported in their study (Sawaya
et al., 2007) that the fibril-forming segment GNNQQNY
of the prion protein Sup35 forms a steric zipper charac-
teristic of Class 1 cross-f spine. Hence, GNNQQNY
fibril was used as the reference peptide in the first
round of design. This structure consists of a 2-layer
amyloid fibril whose f strands are parallel within the f-
sheet layer and antiparallel between the f-sheet layers
(Figure 1a). Based on their study, we constructed two
versions of the GNNQQNY structure that forms the
Class 1 cross-f spine; these were used as starting back-
bone scaffolds in two parallel design rounds. Hereafter,
we refer to these two initial backbone scaffolds as
Conf-1 and Conf-2.

To obtain Conf-1, we constructed a 2-layer amyloid
p-sheet structure using the Discovery Studio 3.5 and
Packmol packages. Eight 7-mer GNNQQNY (PP0) pep-
tide sequences were aligned in a parallel arrangement
within each g sheet layer and an antiparallel arrange-
ment between the S sheet layers with 4 peptides in each
layer. The peptide distance within each sheet was set to
be ~5.5 A and the inter-sheet distance was specified as
~12A. A 5ns explicit-solvent atomistic molecular
dynamics simulation was conducted using the AMBER14
package to relax the two-layer fS-sheet structure in the
aforementioned parallel arrangement and to eliminate
any atomic overlaps. The structure obtained following
the 5 ns simulation was used as the input backbone scaf-
fold (Conf-1) for the PepAD algorithm (Figure 1b).

To build Conf-2, we used the crystal structure of pep-
tide GNNQQNY (PDB ID: 2omm) reported in the Protein
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(d) Conf-1

4.

(c) Class 1 cr‘os§ p-spine

FIGURE 1
Class 1 cross S-spine forming peptides:

First round of design for

(a) Arrangement of peptides in the Class
1 cross f-spine, a two-layer amyloid
fibril consisting of parallel-oriented
p-strands in each layer and antiparallel-
oriented f-strands between the two
layers. (b) Input fibril structure of
peptide GNNQQNY for the PepAD
algorithm (Conf-1) constructed using
Discovery Studio 3.5 and Packmol

//." GNNQQNY

Conf-2
PP1: GDIKIVV

packages and optimized by atomistic
MD simulation in the AMBER14
package. (c) Fibril structure of peptide
GNNQQNY obtained from PDB ID:
2omm (d) Input fibril structure of
peptide GNNQQNY for the PepAD
algorithm (Conf-2) constructed by
performing a 5 ns MD simulation on

GNNQQNY

(C) | PPI; PP2: PP3 “‘5
N “

structure in (c). (¢) Plot of S-sheet
content versus simulation time describes
the self-aggregation kinetics of peptide

PP2: GNIVTFV

PP1 (sequence: GDIKIVV), PP2

; Wi

(sequence: GNIVTFV), and PP3
(sequence: GAIDWVK) (left). The
snapshot of the final simulation
structures of peptides PP1, PP2, and PP3

PP3: GAIDWVK

% [-sheet content
o
>

0 3.0 6.0 9.0 12.0
Simulation time (ps)

indicating their fibrilization behavior is

% shown (right).

Data Bank. The primary coordinate file corresponding to
PDB ID: 2omm contains the crystal asymmetric unit of a
single GNNQQNY sequence and provides the informa-
tion needed to generate the biological assembly of four
GNNQQNY peptides into a Class 1 cross-f spine. This is
a 2-layer f-sheet structure containing 2 parallel-oriented
p-strands in each layer with antiparallel-oriented p-
strands between the two layers. An in-house Python code
was written to generate a configuration of Class 1 cross-§
spine with 4 peptides (Supplementary Figure S1). Four
replicas of this structure were generated to produce a
two-layer f-sheet structure with 8 parallel-oriented -
strands in each layer and an antiparallel arrangement
between the two layers (Figure 1c). (Code is available at:
https://github.com/CarolHall-NCSU-CBE/Parallel-self-
assembling-peptides.) We performed a 5 ns explicit sol-
vent atomistic molecular dynamics simulation using the
AMBER14 package to relax the aforementioned two-layer
sheet structure to eliminate any atomic overlaps. The
structure obtained following a 5 ns simulation was used
as a second input backbone scaffold (Conf-2) for the
PepAD algorithm (Figure 1d).

Next, we specified the hydration properties for the
designed amyloid-forming peptides as input parameters
for the PepAD algorithm. Two cases were investigated
with two different sets of hydration properties for the
peptide chain. We classify the 20 natural amino acids into
four residue types: hydrophobic residues (Leu, Val, Ile,
Ala, Met, Phe, Tyr, Trp, Gly), polar residues (Ser, Thr,
His, Asn, Gln), charged residues (Arg, Lys, Asp, Glu) and
other residues (Cys, Pro). The two cases are as follows,
Case 1.  Npydrophobic = 55 Npolar = 0,
Nother =0 and Case 2 Nhydrophobic =35, Npolar =2,
Ncharge = 0, Nother = 0. (We were interested in determin-
ing which hydration properties favor the parallel
amyloid-f sheet formation.) For each case, we performed
the PepAD algorithm at two different values for the
weighting factor A, viz. 1=20 and 1=3.0 in
Equation (1). The weighting factors A = 2.0 and A = 3.0
were chosen to provide a good balance between optimiz-
ing the binding free energy (AGuinding), and the aggrega-
tion propensity terms (Puggregation) in the Igore of the
amyloid-forming structure. All the searches start with
random peptide sequences draped on the fixed backbone

N, charge = 2,
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TABLE 1
and A X Pjggregation Values computed from PepAD.

Peptides Case Sequences Cscore AGhpinding
Starting with Conf-1
PP1 1 GDIKIVV —12.19 —12.37
PP2 2 GNIVTFV —17.25 —12.39
Starting with Conf-2
PP3 1 GAIDWVK —8.28 —9.29
PP4 1 GGIDWKI —6.55 —6.45

The sequences of the four in silico discovered peptides in the first round of design with their corresponding I"score, AGhbinding

A X Paggregation DMD/PRIME20

—0.18 Two-layer fibril, ~77% parallel f-sheet content
4.85 Two-layer fibril, ~100% parallel S-sheet content

—1.01 Multi-layer fibril, ~100% parallel S-sheet content
0.1 Two-layer fibril, ~46% parallel S-sheet content

Note: The %Parallel f-sheet content for each peptide is computed from the DMD/PRIME20 simulations.

scaffold. By having random initial peptide sequences, we
encourage our designs to proceed along different search
pathways in sequence space and thereby sample peptides
from a larger pool of peptide sequences than would oth-
erwise be the case. The Iy, profile fluctuates consider-
ably as new amino acids are placed on the different sites
of the peptide chain. By examining the I's.,. profiles over
the sequence evolution, we identified four peptide
sequences (PP1-PP4) with low scores for evaluation
using DMD/PRIME20 simulations. PP1 and PP2 were
identified with Conf-1 as the starting structure, and PP3
and PP4 were identified with Conf-2 as the starting
structure.

We performed a preliminary screen to investigate the
fibrilization kinetics of the four PepAD identified in silico
peptides (PP1-PP4) by running DMD/PRIME20 simula-
tions for 5ps. DMD/PRIME20 is a fast alternative to tradi-
tional molecular dynamics simulations that uses
discontinuous potentials to model peptide aggregation.
The force field PRIME20, developed by the Hall group in
2010, is a coarse-grained model where each amino acid is
represented by a three-sphere backbone comprised of
united atoms (NH, C,H, and CO) and a single-sphere
side chain, R (Bunce et al.,, 2021; Cheon et al., 2010;
Nguyen & Hall, 2004; Wang et al, 2016; Wang
et al.,, 2017; Wang et al., 2018). Details are provided in
Section 4.2. The simulations were performed at tempera-
tures ranging between 296 to 310 K for 5 ps. The peptides
were then extensively studied at the temperature at
which they showed the highest fibrillation propensities
by performing 12 pys DMD/PRIME20 simulations. The
simulations predict that peptide PP1 (sequence: GDI-
KIVV), PP2 (sequence: GNIVTFV) and PP3 (sequence:
GAIDWVK) spontaneously form amyloid-like fibrils and
adopt a predominantly parallel S-sheet arrangement. Pep-
tide PP4 (sequence: GGIDWKI) formed amyloid-like
fibrils but exhibited less than 50% parallel S-sheet content
in the DMD/PRIME20 simulations. Table 1 contains the
sequences of peptides PP1-PP4 with their associated

scores, binding free energies, intrinsic self-aggregation
propensities; the number of layers in the fibrils and the
parallel p-sheet content percentage estimated from
DMD/PRIME20 simulations. The % f-sheet content ver-
sus simulation time for peptides PP1-PP3 and PP4 are
shown in Figure le (left) and Supplementary Figure S2,
respectively. (Snapshots of the final simulated structures
of peptides PP1-PP3 are shown in Figure 1e (right).)

2.2 | Second round of design for Class
1 cross f-spine forming peptides

Since peptide PP2 (sequence: GNIVTFV) was the most
promising candidate in our first round of design of Class
1 cross-f spine forming peptides when studied via DMD
simulations, it was selected as the reference sequence to
create the initial backbone scaffold to perform a second
round of in silico peptide design. (We liked that the -
sheets that assembled in the DMD simulations were
100% parallel.) To build the backbone scaffold we used
the Pymol software to mutate the residues on the Class
1 cross-f spine structure of 16 GNNQQNY peptides
(Figure 1c) to generate a Class 1 cross-f spine structure
containing 16 GNIVTFV (PP2) peptides (Supplementary
Figure S3). For best comparison with the DMD/PRIME20
simulations and experimental biophysical characteriza-
tion (see Section 4.3), the N-termini and C-termini were
acetylated and amidated (N-cap and C-cap), respectively,
in this round of design using the PepAD algorithm. (The
main effect of “patching” of termini is to eliminate
charges at neutral pH.) A 25 ns explicit-solvent atomistic
molecular dynamics simulation was conducted using the
AMBER14 package to relax the parallel two-layer PP2 j-
sheet structure and eliminate any atomic overlaps. The
structure obtained following the 25ns simulation
(Figure 2a) was used as the input backbone scaffold for
the second round of PepAD design. We refer to this struc-
ture as Conf-3.
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FIGURE 2

Second round of design of Class 1 cross f-spine forming peptides: (a) Input fibril structure of peptide PP2: GNIVTFV (with

patched N- and C-termini) for the PepAD algorithm in Round 2 of design (Conf-3). (b) Plots of f-sheet content versus simulation time
describe the self-assembly kinetics of peptides PP7 and PP8. Snapshots of the final structures of (c) PP7 and (d) PP8 were obtained from the

DMD simulations.

We next performed the PepAD algorithm to generate
a new cohort of parallel amyloid-forming peptides with
Case 1 and Case 2 hydration properties using peptide PP2
draped on Conf-3 as the reference peptide. Four peptides
(PP5-PP8) obtained from this round were further investi-
gated in DMD/PRIME20 simulations to study their fibril-
lation kinetics. We again performed a preliminary screen
using DMD/PRIME?20 simulations of the peptide systems
for 5 ps to examine their self-aggregation kinetics at tem-
peratures ranging from 296.1 to 310 K. These peptides
were then extensively studied at the temperatures at
which they showed the highest fibrillation propensity for
12 ps in DMD/PRIME20 simulations. Our simulations
revealed that peptides PP5 (sequence: ADKVMFV) and
PP7 (sequence: GNYTMFI) exhibited high parallel g-
sheet content while peptide PP8 (sequence: ANMTVFV)
exhibited <50% parallel f-sheet content. Peptide PP6
(sequence: GDFVKFV) predominantly remained as ran-
dom coil in our DMD/PRIME20 simulations. The

sequence of peptides PP5-PP8 with their associated
scores, binding free energies and intrinsic self-
aggregation propensities, and observations from
DMD/PRIME20 simulations are reported in Table 2. The
% p-sheet content versus simulation time of PP7 and PP8
obtained from DMD/PRIME20 simulations are shown in
Figure 2b. Snapshots of the final simulated structures of
peptides PP7 and PP8 are shown in Figure 2c, d respec-
tively. The % f-sheet content versus simulation time for
peptide PP5 is shown in Supplementary Figure S2.

2.3 | Experimental evaluation of self-
assembly

We designed experiments to evaluate the effects of chang-
ing the target structure from antiparallel f-sheets to par-
allel -sheets in the PepAD computational workflow. We
employed the same experimental measurements of
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TABLE 2
Iscores AGpinding, aNd 4 X Pyggregation Values computed from PepAD.

Peptides Case Sequences Tscore AGhbinding
Starting with Conf-3

PP5 1 ADKVMFV —23.50 —23.68
PP6 1 GDFVKFV —26.61 —25.96
PP7 2 GNYTMFI —30.93 —27.23
PP8 2 ANMTVFV —30.15 —26.99

PROTEIN 70f15
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The sequences of the four in silico discovered peptides obtained from the second round of design with their corresponding

2 5% Bpmeertom DMD/PRIME20

—0.17 Multilayer fibril, ~87% parallel f-sheet content
0.64 Low fibril content
3.70 Two-layer fibrils, ~91% parallel S-sheet content
3.16 Two-layer fibril, ~47% parallel S-sheet content

Note: The %Parallel S-sheet content for each peptide is computed from the DMD/PRIME20 simulations.

self-assembly that we used previously: negative-stain
TEM imaging, FTIR, ThT fluorescence, and CD. TEM
images of nanofibers provide direct observation of self-
assembly. FTIR can detect f-sheets through a peak at
~1620 cm ! (Cerf et al., 2009; Sarroukh et al., 2013), with
some variability in the precise location. ThT fluorescence
detects f-sheets via dye binding and can also provide
time-dependent (kinetic) data (Krebs et al., 2005;
Levine, 1993; Naiki et al., 1989). CD probes secondary
structure: f-strand secondary structure is an indicator of
p-sheet self-assembly (Kelly et al., 2005; Woody, 1995).
To facilitate comparison of different peptides, we main-
tained peptide concentrations for each type of measure-
ment. We varied peptide concentrations for different
techniques due to the limitations of these techniques. We
performed TEM on 1 mM peptide solutions to achieve a
detectable number of fibrils without too much crowding
on the imaging surface. We performed FTIR at 10 mM
concentrations in attenuated total reflectance mode
because this measurement typically requires high peptide
concentrations so that enough aggregated
peptide adheres to diamond surfaces. We performed ThT
fluorescence measurements at 1 mM peptide concentra-
tions because we have previously observed tractable
aggregation kinetics at this concentration. We performed
CD at 0.2 mM to avoid noise due to light scattering when
fibril abundances are too high. When employed at this
low concentration, CD can also reveal differences in pep-
tide tendencies to form f-sheets.

Of central importance in this study is the ability of
FTIR to also differentiate between parallel and antiparal-
lel p-sheets via the “f-Sheet organizational index” or
“p-index” defined by Celej et al. to be the ratio of the
intensity of the peak between 1693 and 1697 cm ' to
the intensity of the peak between 1624 and 1632 cm '
(Cerf et al., 2009; Celej et al., 2012; Hubin et al., 2015;
Sarroukh et al., 2013). Celej et al. assigned f-index values
under 0.1 to parallel g-sheets and values above 0.1 to
antiparallel f-sheets. Hubin et al. interpreted pf-index
values similarly for fibrils of the Alzheimer's amyloid-g
peptides and oligomeric intermediates, which can be

organized into parallel or antiparallel -sheets, depending
on the specific aggregate (Hubin et al., 2015).

We experimentally evaluated the assembly of 5 out of
the 8 candidates in Tables 1 and 2. We ordered commer-
cial production of PP1, PP2, PP3, PP4, PP7, and PPS8 (note
that PP8 exhibited low fibrillar content in the
DMD/PRIME20 simulations), but PP2 was not experi-
mentally tested as it did not meet purity standards of
95%. Peptides PP5 and PP6 were not synthesized. All five
final sequences formed parallel S-sheet nanofibers as evi-
denced by biophysical characterization techniques.

We observed the most definitive evidence of assembly
and parallel f-sheet formation using TEM and FTIR.
Figure 3a is a TEM image of fibrils of peptide PP3 nanofi-
bers. Supplementary Figure S4 shows TEM images of all
peptides in this series. TEM images reveal that all pep-
tides we tested form fibrils with thicknesses consistent
with multi-layer f-sheets. FTIR is sensitive to f-sheet sec-
ondary structure and can differentiate between parallel
and antiparallel fp-sheet structures. An FTIR peak near
1620 cm ™' indicates f-strand secondary structure; follow-
ing the nomenclature of Saroukh et al., we call this the
“main S-sheet peak” for #-strands (Sarroukh et al., 2013).
An additional peak near 1690 cm ' is attributed to anti-
parallel S-sheets (Cerf et al., 2009; Sarroukh et al., 2013).
Figure 3b compares the FTIR spectra from peptide PP3 to
peptide P12 (sequence: ALRLELA) (Collier &
Messersmith, 2003). P12 is a peptide from our previous
effort to design peptides to form antiparallel g-sheets. As
expected, the spectra of both peptides include main
p-sheet peaks near 1620 cm ' (1619 and 1625cm *,
respectively) indicating f-strand secondary structure. The
additional peak at 1690 cm ', observed for P12 but not
PP3, is associated with anti-parallel organization of f-
sheets. Figure 4 compares FTIR spectra from all peptides
tested in our present work (Figure 4a) to all
peptides tested in our previous work (Figure 4b)
(Collier & Messersmith, 2003). The former group of pep-
tides exhibited no peak (or weak signal) near 1690 cm ™',
whereas the latter group of peptides did exhibit distinct
peaks near 1690 cm '. To measure the f-index values
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TEM imaging and FTIR spectra (a) TEM image of PP1 (b) FTIR spectra comparing P12 from our previous work and PP3.

Note that PP3 shows an absence of a peak at 1690 cm ™!, which corresponds to antiparallel g-sheets.

(a)

(b)

Offset Normalized Absorbance

PP3

PP1

)\
=N
S\

FIGURE 4 FTIR spectra comparing
peptides in our present study (left) with
peptides from our previous study (right).
Vertical lines are drawn at the
approximate positions of expected peaks
for all f-sheets (1625 cm ') and
antiparallel S-sheets (1690 cm ™). Note
that the peak at 1690 cm ™}, associated
with antiparallel $-sheets, appears
absent in spectra on the left.
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from the FTIR spectra, we flattened the baseline of each
spectrum, performed data smoothing, and fit peaks to
Gaussian functions (see Supplementary Figures S5-S7).
Figure 5a visualizes the peptide-to-peptide variation in
p-index with a bar chart. As anticipated by Celej et al.,
p-index values are above 0.1 for the peptides designed to
assemble into antiparallel f-sheets, and f-index values
are under 0.1 for the peptides designed to assemble into
parallel f-sheets. We confirmed the difference in f-index
between the two groups of peptide using an independent
2 sample 1-tail ttest (Figure 5a; significance,
p =3 x 1077). We also compared the precise frequencies

1650 1600

of main f-sheet peak between the two groups of peptides
(designed to form antiparallel vs. parallel p-sheets). A
1-tail t-test revealed that the peptides designed to form
parallel g-sheets have main f-sheet peak signals at higher
frequencies, on average, than the peptides designed to
form antiparallel p-sheets (significance, p =5 x 10™%).
Figure 5b visualizes the correlation between main f-sheet
peak frequency and f-index, suggesting that both param-
eters could be used together to assign f-strand organiza-
tions to parallel or antiparallel. Overall, we interpret
these results to indicate that our design workflow was
successful in producing self-assembling peptides with the
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(A) Bar chart comparing p-indices for peptides designed to form antiparallel S-sheets (green) to those designed to assemble

into parallel g-sheets (red). The 1-tail Student's t-test indicates a clear difference between the population means. The horizontal dotted line

indicates the threshold value of 0.10: Celej et al. interpreted f-index values above and below this number to antiparallel and parallel

p-sheets, respectively.
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Thioflavin-T fluorescence and circular dichroism. (a) Fluorescence intensity plotted with time for peptides in our present

study. (b) Circular dichroism experiments indicate that there is a dip at ~215 nm characteristic of #-sheet secondary structure.

desired parallel f-strand organization. As discussed sub-
sequently, the peptide PP1 appears to be an outlier in
Figure 5b.

We used ThT fluorescence measurements to probe
kinetics of f-sheet formation at peptide concentrations of
1 mM. Figure 6a indicates that PP7 and PP8 assemble
immediately, while PP4 and PP1 show slow but increas-
ing levels of fluorescence over 72 h. PP3 has low fluores-
cence levels but shows evidence of assembly through
other tested experimental methods. Note that the abso-
lute fluorescence level cannot be readily compared
between different peptides: they are affected by factors
such as binding of ThT to f-sheet surfaces and conforma-
tion of bound ThT molecules, which both depend on
amino acid sequence. There are differences in the

kinetics of assembly among these peptides. PP4 shows a
gradual increase in fluorescence during ThT experiments
indicating slower assembly than PP7 and PP8 (see Sup-
plementary Figure S8). In fact, definitive FTIR spectra for
PP3 and PP4 were obtained only after 6 days
post-assembly. In contrast, PP7 and PP8 assemble imme-
diately during ThT fluorescence experiments. This varia-
tion in kinetics was not observed in our previous study of
peptides that form antiparallel S-sheets.

We performed CD experiments on the peptides to
characterize their secondary structure at the low concen-
tration of 0.2 mM. Assembled pS-sheets are expected to
show a single minimum near 220 nm in CD spectra,
which is consistent with most of the spectra in Figure 6b.
Some of the spectra exhibited evidence of conformational
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Summary of computational analysis (DMD/PRIME20) and experimental measurements (FTIR, ThT, TEM, and CD) of
peptides PP1-PP8.

FTIR (peptide ThT (peptide TEM (peptide CD (peptide
DMD/PRIME20 concentration concentration concentration concentration
Peptide simulation 10 mM) 1 mM) 1 mM) 0.2 mM)
PP1 Two-layer fibril, ~77% f-sheet, f-index: 0.072  B-sheet content (slow  Multilayer fibrils f-sheet
parallel g-sheet content aggregation)
(fast aggregation)
PP2 Two-layer fibril, ~100% Could not be Could not be Could not be Could not be
parallel g-sheet content synthesized at synthesized at synthesized at synthesized at
(delayed aggregation) required purity required purity required purity required purity
PP3 Multi-layer fibril, ~100% fS-sheet, f-index: 0 No fluorescence Multilayer fibrils f-sheet + random coil
parallel p-sheet content observed
(slow aggregation)
PP4 Two-layer fibril, ~46% f-sheet, f-index: 0.004  fB-sheet content (slow  Multilayer fibrils f-sheet + random coil
parallel S-sheet content aggregation)
(slow aggregation)
PP5 Multilayer fibril, ~87% Not synthesized Not synthesized Not synthesized Not synthesized
parallel B-sheet content
(delayed aggregation)
PP6 Low fibril content Not synthesized Not synthesized Not synthesized Not synthesized
PP7 Two-layer fibrils, ~91% [-sheet, p-index: 0 [-sheet content (fast Multilayer fibrils p-sheet + random coil
parallel S-sheet content aggregation)
(fast aggregation)
PP8 Two-layer fibril, ~47% p-sheet, f-index: p-sheet content (fast Multilayer fibrils f-sheet + random coil

parallel p-sheet content

0

aggregation)

(fast aggregation)

heterogeneity, including a shift in the local minimum
below 220 nm for PP7 and PP1, and a local maximum at
235 nm for PP7. The spectrum of PP4 does not exhibit a
local minimum, indicating a random coil structure.

To summarize, the five sequences designed by the
computational algorithm produced assemblies that
exhibit parallel p-strand organization. TEM and ThT
results confirmed the presence of f-sheets. CD results
encompass partially formed f-sheets owing to lower con-
centration and lower assembly time periods. FTIR results
show the relative decrease in the antiparallel signature
for the peptides designed to form parallel p-sheets.
Table 3 summarizes the results of DMD/PRIME20 simu-
lations and experimental measurements (FTIR, ThT,
TEM, and CD) of peptides PP1-PP8.

3 | DISCUSSION AND
CONCLUSION

The goal of this work was to identify peptides that self-
assemble to form fibrils composed of parallel j-sheets.
Inspiration for this work was the Class-1 cross-f spine
structure described by Sawaya et al. (2007). that contains

two p-sheet layers parallel-oriented f-strands in each
layer, and antiparallel-oriented f-sheets between the two
layers. Thus far, only one 7-mer peptide, the fibril-
forming segment GNNQQNY of the yeast prion protein
Sup35, has been identified in the literature as forming
amyloid fibrils of the 1st class in experiments. As a first
step toward discovering new Class-1 peptides, we set out
to design peptides that form fibrils with parallel j-sheets,
regardless of the relative orientation of peptides in neigh-
boring layers, by augmenting the workflow involving
PepAD, DMD/PRIME20 simulations, and experimental
characterization. By using the PepAD algorithm coupled
with DMD/PRIME20 simulations, we performed two
rounds of designs with three different starting backbone
scaffolds (Conf-1, Conf-2, and Conf-3) to obtain a library
of 7-mer amyloid-forming peptides that could potentially
assemble into parallel p-sheets. This work complements
our previous study where we identified peptides that
assemble into anti-parallel $-sheets as are found in the
cross-f spine of the 8th class. DMD simulations with
the PRIME20 force field helped us computationally ana-
lyze the self-aggregation kinetics of the peptides identi-
fied by PepAD. Five out of the eight peptides were
synthesized and experimentally tested, and all of them
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aggregated to form parallel p-sheets. Experimentally,
aggregation was detected by observation of nanofibers in
TEM images, measurement of CD curves consistent with
p-stand secondary structure, positive ThT binding as
detected by fluorescence, and FTIR spectra reporting par-
allel organization of f-sheets. The primary focus of exper-
imental evaluation is to assess the computational
workflow's efficacy in designing sequences for the target
structure, specifically, an antiparallel $-sheet or a parallel
p-sheet. Our study has successfully achieved this objec-
tive: the peptides designed for the present study exhibited
lower p-index value in FTIR spectra than the peptides
from our previous study.

Although we were successful in showing that compu-
tational designs can control organization of f-strands
within f-sheets, there are experimental observations that
are not readily interpretable based on outputs of PepAD
and DMD/PRIME20:

CD and FTIR data suggest that the designed peptide
assemblies may not be perfectly homogeneous structur-
ally. The CD data (Figure 5b) exhibit curves that do not
perfectly match expectations for f-sheets, though this
behavior may be a consequence of the low peptide con-
centration we employed for CD. Regarding the FTIR
data, we observed considerable peptide-to-peptide varia-
tion in p-index, suggesting that assemblies may have
included mixtures of parallel and antiparallel f-sheets.
We suggest that the peptide PP1 may contain a mixture
of antiparallel and parallel -sheets since it appears to be
an outlier in Figure 4c. In addition, as shown in Figure 4
and Supplementary Figures S5-S7, the amide I regions of
some FTIR spectra included peaks other than the fre-
quencies considered in the f-index. These FTIR peaks
have been attributed to random-coil structures (1660-
1670 cm™ %), a-helices (1650-1660 cm '), and low-
molecular-weight f-sheet aggregates (oligomers: 1635-
1650 cm_l) (Celej et al., 2012; Cerf et al., 2009; Guo &
Wang, 2012). Nevertheless, the observed systematic
change in g-index values in the current study when com-
pared to the previous study (Figure 4b) shows that modi-
fying the computational workflow with a new target can
affect the g-strand organization.

ThT measurements indicate a large peptide-to-peptide
variation in assembly kinetics, with PP7 and PP8 exhibit-
ing maximal ThT fluorescence in ~1-2h and PP3 and
PP4 showing continuous increase in ThT fluorescence
intensity over the course of 72 h. The assembly kinetics
from the DMD/PRIME20 simulations, the % f-sheet con-
tent versus simulation time (in ps), for the different pep-
tides did not correlate with experimental observations.
For future work, we hope to conduct a detailed study to
quantify aggregation rates based on the peptide
sequences and compare these to experimental results.

The fibril formation time scales can be related to the pop-
ulation of aggregation-prone conformations within the
monomer ensemble, as Li et al. 2010, Chakraborty
et al., 2020; have shown, based on coarse-grained mono-
mer simulations. In a series of papers, they argued that
structures that have high propensity to aggregate are
encoded as high-free energy states in the monomer-free
energy spectrum. Although the nanofiber thicknesses
varied (Supplementary Figure S4), all the observed thick-
nesses were far larger than the expected dimension based
on 2 S-sheet layers. (The interlayer distance between the
two sheets from atomistic molecular dynamics simula-
tions is ~4-5 A.) Therefore, all of the peptides observed
to assemble formed f-sheet interfaces that were not antic-
ipated in the PepAD algorithm.

To summarize, we now have a computational work-
flow, PepAD algorithm & DMD/PRIME20, which can
output novel sequences that form a desired organization
of ff-sheets. Thus far we have succeeded in designing pep-
tides that control assembly into parallel or antiparallel
p-sheet structures. The predicted structures have been
experimentally tested in our previous and current work.
For our future work, we could experimentally probe the
stacking of p-sheets to validate the predictions of
the computational workflow. Additionally, the computa-
tional workflow could be developed to discourage the
multi-layer fibril formation observed experimentally.

4 | METHODS

41 | Peptide assembly design algorithm
The PepAD algorithm is a Monte Carlo (MC)-based
search procedure to discover peptides that can self-
assemble to form supramolecular architectures. In this
work, we have focused on designing peptides that self-
assemble into parallel peptides. The procedure is
described briefly below.

(1) Generate input peptide backbone scaffold: A back-
bone scaffold of a reference peptide is required to start
the design process. In this work, a peptide scaffold corre-
sponding to the Class 1 cross f-spine (two-layer S-sheet
structure with 2 parallel-oriented f-strands in each layer
and antiparallel oriented pS-strands between the two
layers) is generated.

(2) Compute score of initial peptide backbone scaffold:
The tendency of the initial peptide backbone scaffold to
self-aggregate into a well-organized amyloid-like struc-
ture is evaluated using, I'score, @ Score function that con-
siders the binding affinities between the neighboring
chains on the peptide backbone scaffold (AGyinding), and
the intrinsic aggregation propensities of the individual
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peptides (Paggregation)- The I'score is defined to be as
follows:

Iscore = AGbinding — 4 X Paggregation, - (1)

where A is a weighting factor that adjusts the relative
importance of the intrinsic aggregation propensity of the
peptides during the sequence evolution.

(3) Iteration of peptide sequence change moves: The
PepAD algorithm performs 10,000 evolution steps and
generates variants of the reference peptide by performing
two kinds of trial moves, viz. (i) residue mutation in
which an old residue on all of the peptide chains is ran-
domly chosen and replaced by a new one of the same res-
idue type (hydrophobic, polar, charge, and other);
(ii) residue exchange in which two residues on all of the
peptide chains are randomly chosen and swapped,
regardless of their residue type.

(4) Evaluate score I'seore Of new peptide sequence: The
Tscore for the newly generated peptide sequence draped
on the backbone scaffold is evaluated.

(5) MC Metropolis algorithm: The MC Metropolis
algorithm is used to accept or reject new trial peptides.

More details regarding the PepAD algorithm and
Fscore can be found in our previous work (Xiao, Robang,
et al., 2022). The development of the PepAD algorithm
has been inspired by our previous work on designing
peptides that bind to biomolecular targets using a Peptide
Binding Design algorithm (Sarma et al., 2022; Sarma
et al.,, 2023; Xiao, Kilgore, et al., 2022; Xiao, Sarma,
et al., 2022).

4.2 | DMD simulation and
PRIME20 model

DMD simulations with the PRIME20 force field have
been used to study the fibrilization kinetics of designed
peptides by the Hall group. DMD is a fast alternative to
traditional molecular dynamics simulations in which the
interaction between two particles is modeled with a dis-
continuous potential, such as hard-sphere, square-well,
or square-shoulder potentials. The PRIME20 model is an
implicit-solvent coarse-grained protein force field devel-
oped in the Hall group that was specifically designed for
simulating peptide aggregation with DMD. In the
PRIME20 model, each amino acid is represented by three
backbone spheres (NH-, C,H-, and CO-) and one side
chain sphere (R-). Each side chain of the 20 natural
amino acids is assigned a unique size, atomic mass, and
Cs—R bond length. Details of the DMD simulations
and PRIME20 model are described in our earlier work
(Bunce et al., 2021; Cheon et al, 2010; Nguyen &

Hall, 2004; Wagoner et al., 2012; Wang et al., 2016, 2017,
2018, 2019).

In this work, DMD/PRIME20 simulations of the
PepAD-generated peptides (PP1-PP8) were conducted at
T =296, 303, and 310 K for 5ps for the preliminary
screen. The temperature at which a peptide showed high-
est fibril formation was studied extensively by simulating
that peptide for three runs, each at 12 ps. For each in
silico peptide system, 48 peptides are placed into a cubic
box with edge lengths of 200.0 A, to achieve a peptide
concentration ~ 10 mM. In each run, the peptide system
starts from a random coil state. The DMD simulations
were carried out in the canonical ensemble. The Ander-
sen thermostat is implemented to maintain the simula-
tion system at the desired temperature. Snapshots of the
final simulated structures are obtained using the VMD
1.9.3 software.

4.3 | Experimental assessment of self-
assembly

The sequences output by PepAD were experimentally
tested by negative-stain TEM, FTIR, ThT fluorescence,
and CD using the methods we detailed previously
(Collier & Messersmith, 2003). All peptides were imaged
using negative-stain TEM at a peptide concentration of
1 mg/mL in deionized water (DI water). FTIR measure-
ments were conducted after a minimum of 72 h post
assembly at a concentration of 10 mM in DI water. Addi-
tionally, we performed CD experiments at a concentra-
tion of 02mM in DI water. ThT Fluorescence
experiments were at a peptide concentration of 2 mM
over an assembly period of 72 h.
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