

This document is confidential and is proprietary to the American Chemical Society and its authors. Do not copy or disclose without written permission. If you have received this item in error, notify the sender and delete all copies.

Predicted Influence of Organic Structure Directing Agents on Al Distributions in CHA Zeolites

Journal:	<i>Chemistry of Materials</i>
Manuscript ID	cm-2024-02463m.R2
Manuscript Type:	Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Gao, Xuyao; University of Notre Dame, Chemical and Biomolecular Engineering Yeo, Steven; University of Notre Dame, Chemical and Biomolecular Engineering Gounder, Rajamani; Purdue University, Chemical Engineering Moini, Ahmad; BASF Environmental Catalyst and Metal Solutions Schneider, William; University of Notre Dame, Chemical and Biomolecular Engineering

SCHOLARONE™
Manuscripts

1
2
3
4
5
6
7 **Predicted Influence of Organic Structure**
8
9
10 **Directing Agents on Al Distributions in CHA**
11
12
13
14 **Zeolites**
15
16
17

18 Xuyao Gao,[†] Steven Yeo,[†] Rajamani Gounder,[‡] Ahmad Moini,[¶] and William F.
19
20 Schneider^{*,†,§}
21
22

23
24 *†Department of Chemical and Biochemical Engineering, University of Notre Dame, Notre*
25 *Dame, IN 46556, United States*
26

27 *‡Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette,*
28 *IN 47907, United States*
29

30 *¶BASF Environmental Catalyst and Metal Solutions, 25 Middlesex Essex Turnpike, Iselin,*
31 *New Jersey 08830, United States*
32

33 *§Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN*
34 *46556, United States*
35

36 E-mail: wschneider@nd.edu
37
38
39
40
41
42
43
44 **Abstract**
45

46 The distribution of Al on a zeolite framework can have a determining influence on
47 chemical and catalytic properties. Those distributions are typically determined during
48 synthesis as influenced by cationic organic structure directing agents (OSDAs). Here
49 we use density functional theory (DFT) to compare the Al directing influence of N,N,N-
50 trimethyl-1-adamantyl ammonium (TMAda⁺), an OSDA commonly used to crystallize
51 CHA zeolite, with four isomers that retain the adamantyl structure but relocate the
52
53
54
55
56
57
58

1
2
3 nitrogen center. Low energy configurations balance electrostatics-driven maximization
4 of Al–Al and minimization of Al–N separations, the latter more important in OSDAs
5 with more accessible charge centers. Statistical thermodynamics are used to predict
6 thermal equilibrium Al distributions and corresponding Al pair features as a function
7 of OSDA. All distributions differ from those predicted through naive application of
8 Löwenstein’s rule, disfavor the placement of two Al second-nearest-neighbor or within
9 a single six-ring, and introduce different biases towards eight-membered rings and more
10 remote Al. Results illustrate the potential to influence Al location through OSDA
11 selection.
12
13
14
15
16
17
18
19
20
21

22 Introduction

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Zeolites are a class of microporous crystalline materials composed of corner-sharing TO_4 ($\text{T} = \text{Si, Al}$) tetrahedra¹ that find wide use in catalysis, gas separations, and ion exchange.^{2–4} More than 200 zeotypes are known,⁵ and strategies to access a particular topology in the laboratory frequently rely on structure directing agents (SDAs)⁶ which operate by templating the desired structure during crystallization.^{7–10} The guest-host interaction energy between a target framework and a (typically) organic SDA (OSDA) can be used to rationalize observed crystallization patterns.¹¹ These computational methods have been used to extend the boundary of chemically synthesizable zeolites and to search for promising new OSDAs.^{12–19}

The extent of incorporation and organization of heteroatoms provide additional control on zeolite properties. Aliovalent substitution of Si^{4+} by Al^{3+} ions introduces formal negative charges onto the zeolite framework (FW). Associated protons or extraframework, typically inorganic, cations can impart acidic or redox properties relevant to heterogeneous catalysis.²⁰ The proximity of these Al centers has been shown to have consequences for a range of physical and chemical properties of zeolites,^{21,22} including for Brønsted-acid-catalyzed reactions²³ and the speciation and reactivity of charge-compensating cations.^{24–29} These observations motivate efforts to control Al content and organization during synthesis.

In zeolites containing multiple symmetry-distinct tetrahedral (T-) sites, the choice of organic structure-directing agent (OSDA) can lead to the preferential occupation of specific T-sites with Al^{3+} , as observed through differential accessibility of probe molecules and various spectroscopies, in MTW,³⁰ MEI,³¹ ISV,³² FER,³³ IFR,³⁴ MSE,³⁵ and MFI.^{36–39} In zeolites that present only a single symmetry-distinct T-site, the OSDA influence is manifested in the distribution and resultant proximity of Al^{3+} . Because of its practical catalytic relevance and high symmetry,⁵ CHA zeolite is an ideal platform for observing these effects. CHA can be viewed as constructed from ABC stacking of double six-membered-ring (d6r) secondary building units (Figure 1(a)), creating cages connected by eight-membered-ring (8MR) windows. Experimental and computational evidence indicates that Co^{2+} titrations^{40,41} and vibrational spectroscopy²³ are faithful reporters of six-membered-rings (6MR) containing two Al^{3+} centers. Such 6MR pair sites are absent in CHA crystallized with N,N,N-trimethyladamantan-1-aminium (TMAda⁺; common name N,N,N-trimethyl-1-adamantyl ammonium) but present in CHA crystallization with N,N-dimethylcyclohexylammonium (DMCHA⁺), albeit under different synthetic conditions.⁴² Co-crystallization of CHA with TMAda⁺ and Na^+ ^{26,40,43,44} or Li^+ ⁴⁵ results in an enrichment in 6MR Al pairs, consistent with the computed tendency for Na^+ to site within the 6MR. Conversely, the K^+ co-crystallization is found to promote 8MR over 6MR Al pairs,⁴¹ consistent with the preference for the larger K^+ cation to occupy these 8MR sites.

The energy of a framework of given Al content is observed to be both a function of Al arrangement and charge-compensating counterions. Early explorations of these ideas in ZSM-18³¹ and ITQ-7,³² based on density-functional-theory (DFT)-parameterized forcefields, found that charge compensation by protons or by charged OSDAs lead to different relative energies of Al arrangements. The Al–O–H vibrational spectra of zeolites crystallized with OSDAs and converted to the Brønsted form were more consistent with the Al arrangements expected based on the OSDA energies than the H^+ -compensated energies, suggesting both the role of OSDA in guiding Al^{3+} siting and the persistence of that siting following OSDA



Figure 1: (a) Illustration of CHA stacked by 3 different layers of d6r building units, which are shaded in colors. (b) Possible up/down orientations of TMAda⁺ when inside CHA cage. (c) Illustration of 36-T CHA with 3 Al substituted on the FW and 3 TMAda⁺ are inserted in each of the 3 cages.

removal. DFT calculations similarly report that the CHA framework energy as a function of Al–Al separation is a strong function of the charge-compensating cations.^{46,47} When charge compensated with protons, energies are minimized at first-nearest-neighbor (1NN, Al–O–Al) separation, demonstrating that Löwenstein’s rule does not emerge from the energies of the protonated lattice. In a CHA cage occupied by TMAda⁺, Al³⁺ has an energetic preference to site near the cationic tetramethylammonium end of the OSDA, consistent with an electrostatic influence on Al³⁺ distribution.⁴⁸ The configurational energy reported by DFT⁴⁴ or a DFT-trained classical forcefield⁴⁹ on CHA frameworks filled with one TMAda⁺ per cage indicate that Al configurations that place two Al within the same 6MR are energetically unfavorable, consistent with experimental observations that these features are rare on CHA zeolite prepared with TMAda⁺ as the sole SDA. A negative correlation between the reciprocal Al–N distance and configurational energy is consistent again with a significant if not dominant role of electrostatics in guiding Al³⁺ distributions, an effect that appears

1
2
3 to be screened but not altered with the consideration of the potential screening influence
4 of water.⁴⁸ The energy of first-nearest-neighbor Al–O–Al linkages increases significantly
5 when charge compensated by TMAda⁺, in both models with and without explicit water,⁵⁰
6 providing a rationale for the experimentally observed Löwenstein's rule.⁵¹ These results
7 suggest the potential to influence Al³⁺ siting by altering the charge distribution on OSDAs.
8 Recent calculations show that the low-energy location of a single, isolated Al³⁺ within a
9 large *cha* supercell can be altered by adjusting the location of the nitrogen charge center on
10 a co-occluded TMAda⁺ mimic.⁵²

11
12 Here we extend these ideas by exploring the influence on global Al³⁺ distributions of a
13 family of TMAda⁺ mimics modified to relocate or further expose the charge center. We
14 use DFT to compute the energies of the full set of symmetry-distinct Al configurations
15 possible within a three cage CHA unit cell at Si/Al = 11 across TMAda⁺ and four mimics.
16 We find that the energy distributions and even the absolute OSDA exchange energies are
17 a strong function of OSDA. Further, by fingerprinting configurations according to Al pair
18 types and averaging over configurations likely accessible at synthetic conditions, we find
19 that all OSDAs, including TMAda⁺ itself, bias against second-nearest-neighbor Al pairs,
20 thus against all 4MR pairs, against all 6MR pairs, and bias for or against 8MR pairs and
21 isolate Al (those not sharing a common ring with another Al³⁺) to varying extents. These
22 differences can be traced to the accessibility of OSDA charge centers to framework T-sites as
23 well as the preference for Al³⁺ to maximize separation. They more than counterbalance the
24 driving force for Al³⁺ to aggregate in the proton-compensated form.^{46,47} Results illustrate
25 the potential to bias Al distributions and thus chemical properties through OSDA charge
26 modifications.

Methods

Density functional theory (DFT) calculations were performed on a 36 T-site CHA hexagonal unit cell using the Vienna Ab initio Simulation Package (VASP),⁵³ version 5.4.1. Lattice constants were obtained from the Database of Zeolite Structures (IZA).⁵ Core–valence interactions were treated using the projector augmented wave (PAW) methods,⁵⁴ exchange and correlation treated within the Perdew–Burke–Ernzerhof (PBE) generalized gradient approximation (GGA),⁵⁵ and the DFT model augmented with the D3 method to describe van der Waals interactions.⁵⁶ Plane waves were included to a 400 eV cutoff and the first Brillouin zone sampled at the Γ point. Self-consistent field (SCF) electronic energies and forces were converging to 1×10^{-5} eV and 0.01 eV/Å, respectively. The zeolite framework was held rigid and OSDA relaxed in all simulations^{44,49}). The electrostatic potentials of free OSDAs were computed with B3LYP functional and 3-21+G basis set in Gaussian.⁵⁷

Symmetry-distinct Al configurations were constructed using the SOD (Site–Occupation Disorder).⁵⁸ Avogadro,⁵⁹ the Atomic Simulation Environment,⁶⁰ and the Zeolite Simulation Environment^{61,62} were used to construct OSDAs and generate initial structures of the Al-substituted, OSDA-occluded CHA.

Results and Discussions

Figure 2 illustrates the 2D and 3D structure of TMAda⁺ and the four variants probed here. TMAda⁺ is constructed of adamantyl and trimethylammonium groups. To generate structurally similar OSDAs with altered charge distributions, we moved the cationic N center to each of the three symmetry-distinct carbon centers of the adamantyl group, creating the quarternary amine 1-(tert-butyl)-1-azaadamantan-1-ium (m1), tertiary 3-(tert-butyl)-1-azaadamantan-1-ium (m3), and secondary 5-(tert-butyl)-2-azaadamantan-2-ium (m2). A fourth variant, N,N-dimethyladamantan-1-aminium (m4), was created by replacing a trimethylammonium methyl with a hydrogen. Figure 2 reports computed electrostatic potentials of

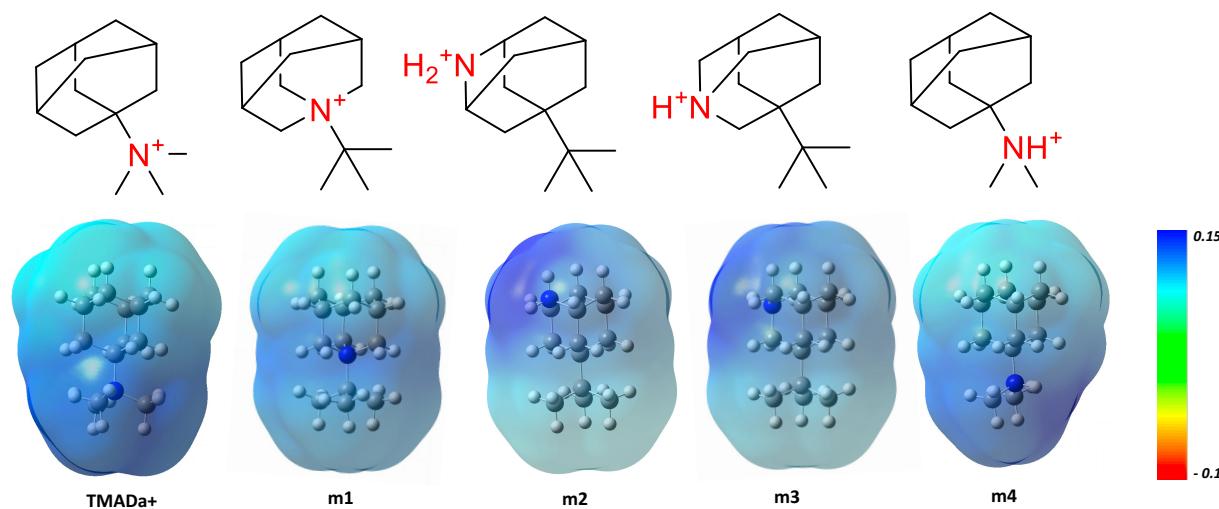


Figure 2: (top) 2D representations of TMAda⁺ and four structural modifications. (bottom) DFT-optimized structures overlayed with molecular electrostatic potential color-mapped onto electron density surface (isovalue = 0.00004). Electrostatic potential scale in au at right; positive regions are attractive to a negative test charge.

the free OSDAs, showing that both the location and intensity of the positive potential region (that is expected to be attractive to an anionic framework) vary substantially with ammonium location. While rare, non-quaternary ammoniums are not unprecedented as OSDAs,³³ although other considerations, including solubility and hydrothermal stability, are also relevant to the practical utility of an OSDA. These particular choices are motivated by the desire to mimic to the maximum extent possible the precise fit within the CHA cage that restrict TMAda⁺ itself to only two possible orientations within a CHA cage¹⁹ (Figure 1(b)), as well as imposing a systematic variation in charge location.

We consider a 36 T-site CHA hexagonal unit cell (Figure 1(c)) which, when decorated with three Al³⁺, has an effective Si/Al ratio of 11, or on average one Al³⁺ per d6r. Eleven is the lowest achievable Si/Al ratio assuming every cage is filled with a monocationic OSDA, charge balance is perfect, and no other anionic centers are present. As every T site is shared by three cages, every cage in this model “sees” three Al. We identified 139 symmetry-distinct configurations of three Al locations on the framework,⁵⁸ excluding configurations that violate Löwenstein’s rule, thus ensuring no Al pairs are first nearest neighbors. We fill the three

1
2
3 CHA cages with three of the same OSDA molecules from Figure 2. Assuming that each
4 OSDA is constrained to one of two distinct orientations (“up” and “down”) leads to $2^3 = 8$
5 possible OSDA orderings and a total of $8 \cdot 139 = 1112$ total Al/OSDA configurations per
6 OSDA type.
7
8

9 Extensive calculations on a charge-neutral analog of TMAda⁺ in a fully siliceous CHA
10 show that the OSDA has a strong preference to align its principal axis along the *c* axis of
11 CHA with the central atom of the trimethyl group $\pm 1.7 \text{ \AA}$ from the center of the CHA cage.¹⁹
12 We initialized all the OSDAs here using this same orientation, and find that all OSDAs fit
13 within the *cha* cage in only two orientations. Further, in previous work,⁴⁹ we compared the
14 energy predictions of models in which the zeolite framework was held rigid or relaxed. While
15 energy differences are compressed in the latter case, general energy orderings are unchanged.
16 More importantly, the rigid model is successful in recovering experimental Al distribution
17 observations for CHA synthesized with TMAda⁺ alone⁴⁹ and with Na⁺.⁴⁴
18
19

20 While TMAda⁺ and m1 have a three-fold axis of symmetry, m2, m3, and m4 do not. To
21 test the sensitivity of configurational energies to rotation about the principal axis, we selected
22 six m3 configurations from the 1112 and computed energies as a function of the rotation angle.
23 Each OSDA in a specific Al configuration and OSDA ordering has the potential to rotate 360°
24 around its long axis (Figure 3(a,b)). The rotation space was divided into eight distinct self-
25 rotation angles, in 45° intervals. Consequently, there are a total of 8³ possible combinations
26 of the 3 OSDA systems with varying OSDA self-rotation angles, each resulting in a different
27 average Al–N distance. From these combinations, 12 representative configurations were
28 selected, covering the majority of average Al–N distances in the system. Figure 3(c) reports
29 the energies of six distinct Al/m3 OSDA configurations, each at twelve different values of
30 rotational angles, against average reciprocal Al–N distance. Offsets between datasets reflect
31 the different intrinsic energies of particular Al³⁺/OSDA configurations, and the variation
32 within a dataset indicates the magnitude of the internal rotation influence. Energies are
33 minimized at rotational angles that maximize the reciprocal Al–N distance, and we use this
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

observation to initialize all the lower-symmetry configurations.

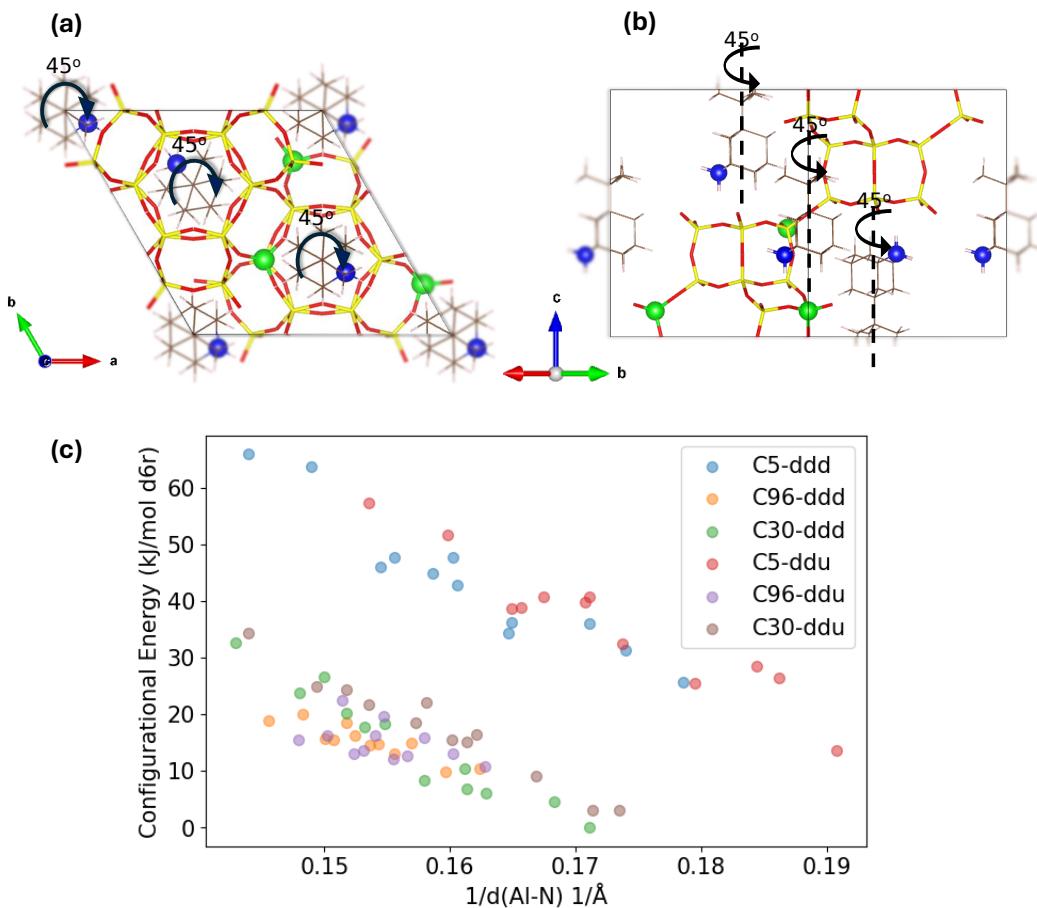


Figure 3: (a) Top and (b) side view of m3 OSDA and rotational degrees of freedom within the CHA cage. (c) Configurational energy vs average reciprocal Al–N distance of six unique Al configurations and OSDA orderings at twelve different rotations. Legend reports OSDA ordering and Al configuration ID in the Zenodo data repository.

We relaxed all structures; the final configurations and their energies are provided in a Zenodo data repository.⁶³ For analysis purposes, we set the energy of the lowest-energy 3Al/TMAda⁺ configuration to zero and report a histogram of all TMAda⁺ energies in the first column of Figure 4, binned by 2 kJ mol_{d6r}⁻¹. The lowest energy configuration is identical to that identified previously with classical models.⁴⁹ TMAda⁺ energies span approximately 70 kJ mol_{d6r}⁻¹, 10 kJ mol_{d6r}⁻¹ greater than those classical results.⁴⁹ Most configurations lie between 10 kJ mol_{d6r}⁻¹ to 30 kJ mol_{d6r}⁻¹ above the minimum energy configuration.

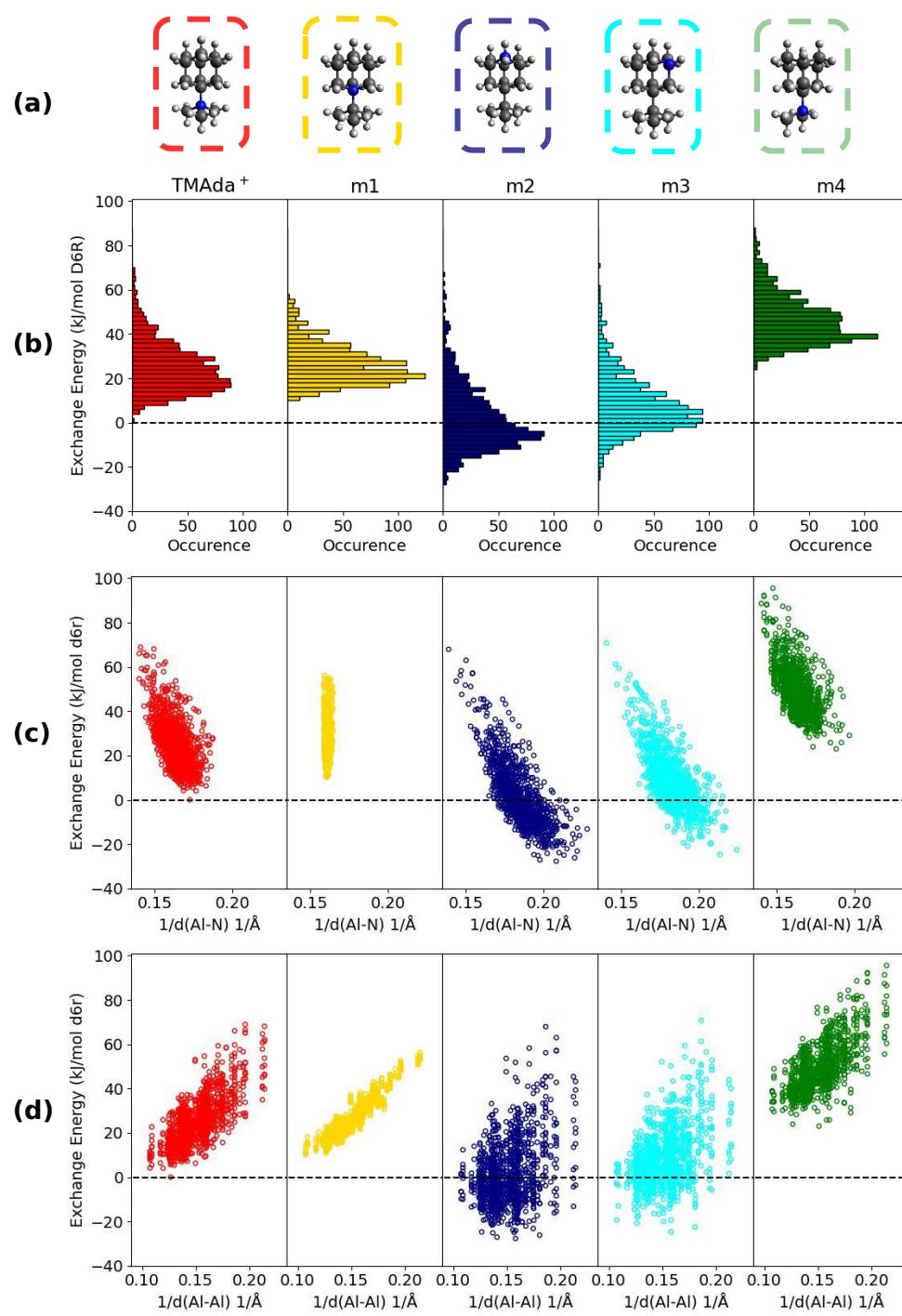


Figure 4: (a) Illustrations of TMAda⁺ and four modifications. Histograms of (b) OSDA exchange energies referenced to lowest-energy TMAda⁺ configuration, (c) OSDA exchange energies against mean reciprocal Al–Al distance, and (d) OSDA exchange energies against mean reciprocal Al–N distance. Red, yellow, dark blue, cyan and green represent TMAda⁺, m1, m2, m3 and m4.

To compare across OSDAs, we define an exchange reaction and corresponding OSDA exchange energy $\Delta E_{\text{ex}}^{i,j}$ for a given OSDA TMAda-mi⁺ and Al/OSDA configuration *j* according to:

$$\Delta E_{\text{ex}}^{i,j} = (E^{i,j} - E_{\text{min}}^{\text{CHA/TMAda}^+})/3 - (E^{\text{TMAda-mi}^+} - E^{\text{TMAda}^+}) \quad (2)$$

where $E^{i,j}$ is the total DFT energy of the specific Al distribution and OSDA ordering, $E_{\text{min}}^{\text{CHA/TMAda}^+}$ is the DFT energy of the lowest-energy 3Al/TMAda⁺ configuration, E^{TMAda^+} and $E^{\text{CHA/TMAda-mi}^+}$ are the total energies of isolated TMAda⁺ and TMAda-mi⁺ computed in an empty 36-T CHA unit cell with a charge-compensating background charge, and the factor of 1/3 provides a normalization to d6r. OSDA exchange energy histograms are reported in Figure 4(b), binned by 2 kJ mol_{d6r}⁻¹.

Two trends are immediately evident. First, in all cases OSDA exchange energies are sensitive both to Al configuration and OSDA orientation. Thus, different Al distributions minimize energy for each of the OSDAs. Further, the widths of the energy distributions vary considerably, likely reflecting differences in access of the OSDA charge centers to framework Al. Second, the energy distributions are shifted relatively to one another by upwards of 40 kJ mol_{d6r}⁻¹. The m1 distribution is narrower and begins 10 kJ mol_{d6r}⁻¹ above that of TMAda⁺, while m2 and m3 distributions are wider and begin nearly -20 kJ mol_{d6r}⁻¹ below TMAda⁺. The m4 distribution is comparable to but shifted 20 kJ mol_{d6r}⁻¹ upward from TMAda⁺.

The guest-host interaction energies (GHIE) between charge-neutral OSDA surrogates—constructed by replacing nitrogen centers with carbon—and a completely siliceous framework are commonly used to report on the structure-directing capacity of an OSDA.^{11–13,19,34,64} By construction, the uncharged GHIEs of TMAda⁺, m1, m2, and m3 with CHA are identical. Thus, the shifts in the computed OSDA exchange energy histograms between these four reflect differential structure directing capacity associated with differences in location

of nitrogen centers. To explore these differences, we plot in Figure 4(c) and (d) the OSDA exchange energy against the mean reciprocal Al–N and Al–Al distances, averaged over the three closest respective contacts. OSDA exchange energies of OSDA m1, which from Figure 2 has the least accessible charge center, correlate strongly with Al–Al separations, while Al–N separation is invariant across all structures. In contrast, the OSDA exchange energies of TMAda⁺ and its modifications m2 and m3, which expose the OSDA charge center at different locations, correlates most strongly with the reciprocal Al–N separations. The large shift downward in OSDA exchange energy of the latter two relative to TMAda⁺ is correlated with the closer approach of OSDA nitrogen charge centers to framework Al, and the greater dispersion in OSDA exchange energies is associated with a larger overall range in Al–N separations. That energies correlate with reciprocal distances suggests a largely electrostatic origin to the differences. Consistent with this observation, the dispersion contribution to the PBE+D3 energy is constant across configurations. The results reflect the dominant contribution of electrostatics to overall OSDA-framework interaction energies.

In contrast to the other mimics, OSDA m4 differs from TMAda⁺ by one ammonium methyl group and thus has a different uncharged GHIE. We compute the GHIE of uncharged m4 with CHA to be 18 kJ mol_{d6r}⁻¹ less negative than that of TMAda⁺ and the other three mimics, consistent with the offset shown in Figure 4. Further, both the reciprocal Al–Al and Al–N correlations of m4 and TMAda⁺ are similar. Thus, uncharged GHIE appear to be the largest discriminator between TMAda⁺ and m4. The set of TMAda⁺ and its four structure modifications thus nicely span a range of behaviors influencing the absolute value and dispersion of OSDA-framework interaction energies.

To further surface the various contributions to the DFT-computed OSDA exchange energies, we computed the energy of the Si/Al 11 CHA framework with various Al distributions *j* compensated by a uniform background charge $E^{\text{bg},j}$. Structures and their corresponding $E^{\text{bg},j}$ are available in a Zenodo data repository.⁶³ As shown in Figure 5(a), $E^{\text{bg},j}$ spans 50 kJ mol_{d6r}⁻¹ and is strongly correlated with the mean reciprocal Al–Al distance, reflecting an intrinsic

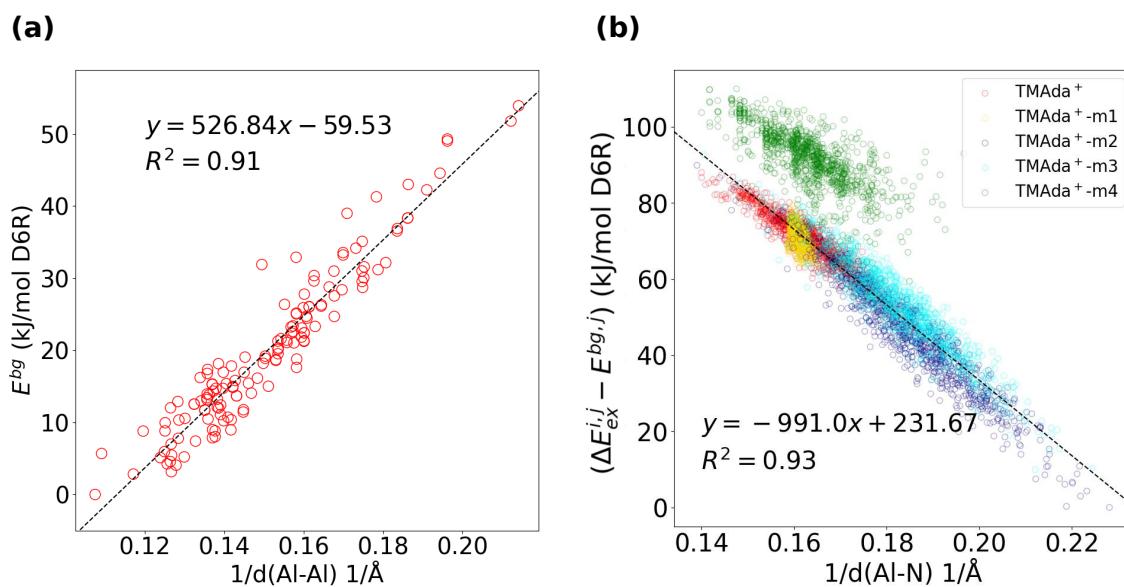


Figure 5: (a) Uncompensated FW energies E^{bg} vs mean reciprocal Al–Al distance. (b) $(\Delta E_{ex}^{i,j} - E^{bg,j})$ vs mean reciprocal Al–N distance. In both cases, lowest energy configurations are shifted to zero. Black dashed line is best fit to non-TMAda⁺-m4 energies.

electrostatic driving force for unscreened anionic Al centers to be remote from one another. Figure 5(b) reports the OSDA exchange energies minus the underlying Al–Al repulsion, $(\Delta E_{ex}^{i,j} - E^{bg,j})$ vs mean reciprocal Al–N distance. Overall energies span $110 \text{ kJ mol}_{\text{d6r}}^{-1}$, cluster into groups for each OSDA, and are strongly anti-correlated with mean reciprocal Al–N distance. OSDA m4 is further offset by about $18 \text{ kJ mol}_{\text{d6r}}^{-1}$ from TMAda⁺, m1, m2, and m3, consistent with the differences in uncharged GHIE. Figure 5 thus shows that framework electrostatics, neutral guest-host interaction energies, and specific charge-charge interactions between OSDA and framework all contribute to the DFT OSDA exchange energies.

To relate these energy histograms to underlying Al configurations, we fingerprinted each Al configuration by the Al pair features shown in Figure 6, chosen because these features are most relevant to ion exchange and catalytic function.^{26,40,43} Seventeen unique Al–Al separations are possible on the rigid CHA framework within 8.1 \AA , and those 17 map onto the nine pair types shown in Figure 6, including eight involving a single ring and one type that spans two different rings, which we label 3NNXR (third-nearest-neighbor cross-ring);

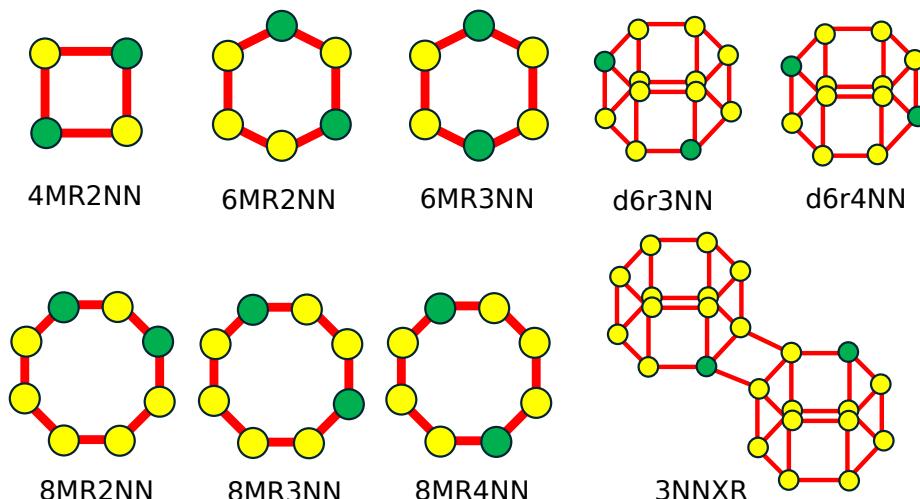


Figure 6: Al pair features used to characterize Al distributions. Yellow and green circles represent Si and Al atoms, respectively, and red lines represent bridging oxygen. Each feature is named by their ring structures (aMR: a membered-ring where $a = 4, 6, 8$, XR: cross ring, d6r: double six ring) and Al proximity (bNN: bth nearest-neighbor where $b = 2, 3$ or 4)

pairs at distances greater than 8.1 \AA are assigned as remote. We identified the three unique pairs in each 36 T-site CHA unit cell using the minimum image convention and assigned each of the three to one of these categories.

To illustrate the potential influence of OSDA on observable Al features, we assume that OSDA up/down ordering is random (Figure 1 (b)), hypothesized to be representative of synthetic conditions, and compute the algebraic average energies across OSDA ordering for each unique Al configuration. Figure 7 reports the pair fingerprints of the ten lowest- and ten highest-energy configurations for TMAda^+ . Columns indicate symmetry-distinct pair features and are arranged from shortest (second-nearest-neighbor in a four-membered ring, or 4MR2NN) to longest (fourth-nearest-neighbor in an eight-membered ring, or 8MR4NN) pair feature, including three symmetry-distinct features that span two different rings (3NNXR). Numbers indicate the frequency of appearance of that feature in that configuration. A value greater than one indicates multiple occurrences of the same feature, not necessarily in the same ring. As example, the bottom row in Figure 7 corresponds to a configuration in which

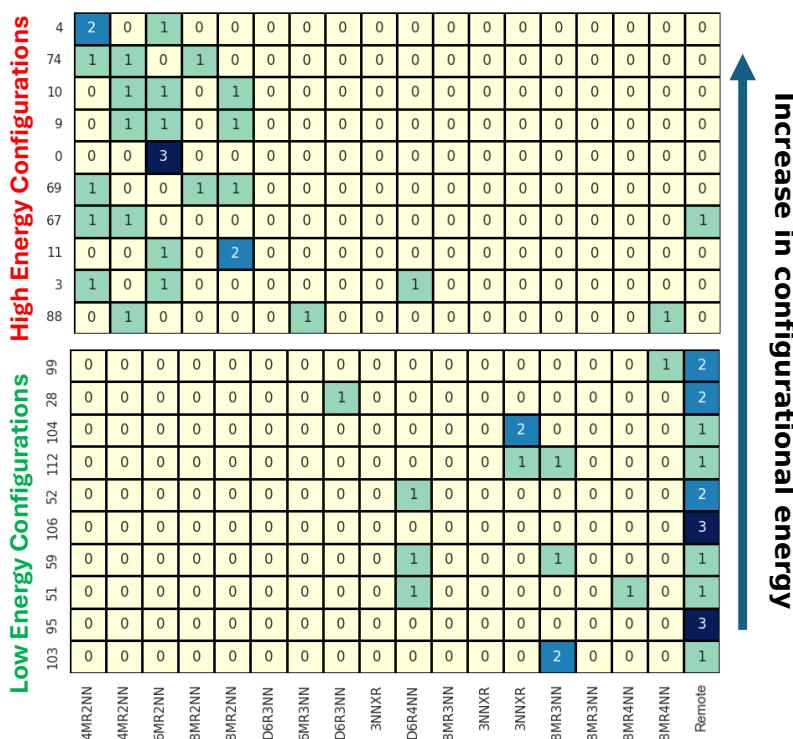


Figure 7: Al pair fingerprints of the ten lowest and ten highest average energy Al configurations in the field of randomly oriented TMAda⁺. Numbers in each row indicate the occurrence of each distinct Al pair fingerprint. Configuration numbers refer to entries in the Zenodo data repository.

the three Al form two distinct 8MR3NN pairs in different 8-rings and a third pair of remote Al. As is evident from Figure 7, the low energy configurations are dominated by those that present the most remote, non-ring-sharing Al. Second-nearest-neighbor (2NN) of all types as well as 6MR pairs are absent within the low energy manifold, and d6r and 8MR pairs make only scattered appearance. In contrast, the high energy manifold is dominated by 2NN pairs; at least two such pairs are present in all of the top ten energy configurations.

The absence of 6MR Al pairs from the low-energy manifold in Figure 7 is consistent with the experimental observation, based on Co²⁺ titrations, that CHA crystallized with TMAda⁺ contains no such pairs.⁴⁴ The absence of 2NN Al pairs is similarly consistent with the low intensity of the Q4(2Al) peak in ²⁹Si nuclear magnetic resonance spectra.^{40,44} To relate calculations to the driving force for a particular ordering at finite temperature

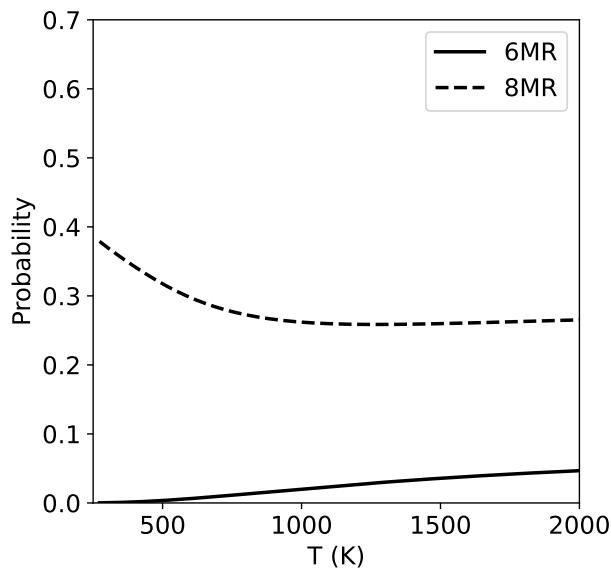


Figure 8: Boltzmann-weighted probability of occurrence of 8MR or 6MR Al pairs as a function of temperature in field of TMAda⁺.

synthetic conditions, we plot in Figure 8 the Boltzmann-weighted probabilities of 6MR and 8MR Al pairs based on the configurational energies of Figure 7 and giving 1/3 weight to each pair type in a given configuration.⁴⁹ The probability of 6MR Al pairs remains essentially zero up to common synthetic temperatures of 443 K; only at temperatures above 500 K do 6MR pair probabilities begin to rise. 8MR pairs exhibit the opposite dependence, declining in probability with increasing temperature up to very high temperature.

Figure 9(a) reports the distribution of feature types assuming that all configurations are equally probable, thus consistent with Löwenstein's rule⁵¹ forbidding 1NN pairs. As noted previously,⁴¹ Löwenstein's rule predicts non-zero populations of 2NN pairs as well as significant fractions of 6MR pairs, as well as d6r and cross-ring (XR) pairs. For comparison, we computed the energies of all unique three Al arrangements in the 36 T-site unit cell, replacing OSDAs with a charge-compensating background charge. Figure 9(b) reports the distribution of feature types based on a 443 K Boltzmann weighting of these OSDA-free framework configurations. Under this OSDA-free bias, Al seek to be remote from one another, 2NN pairs have vanishing and 3NN pairs small probabilities, and the remote feature dominates

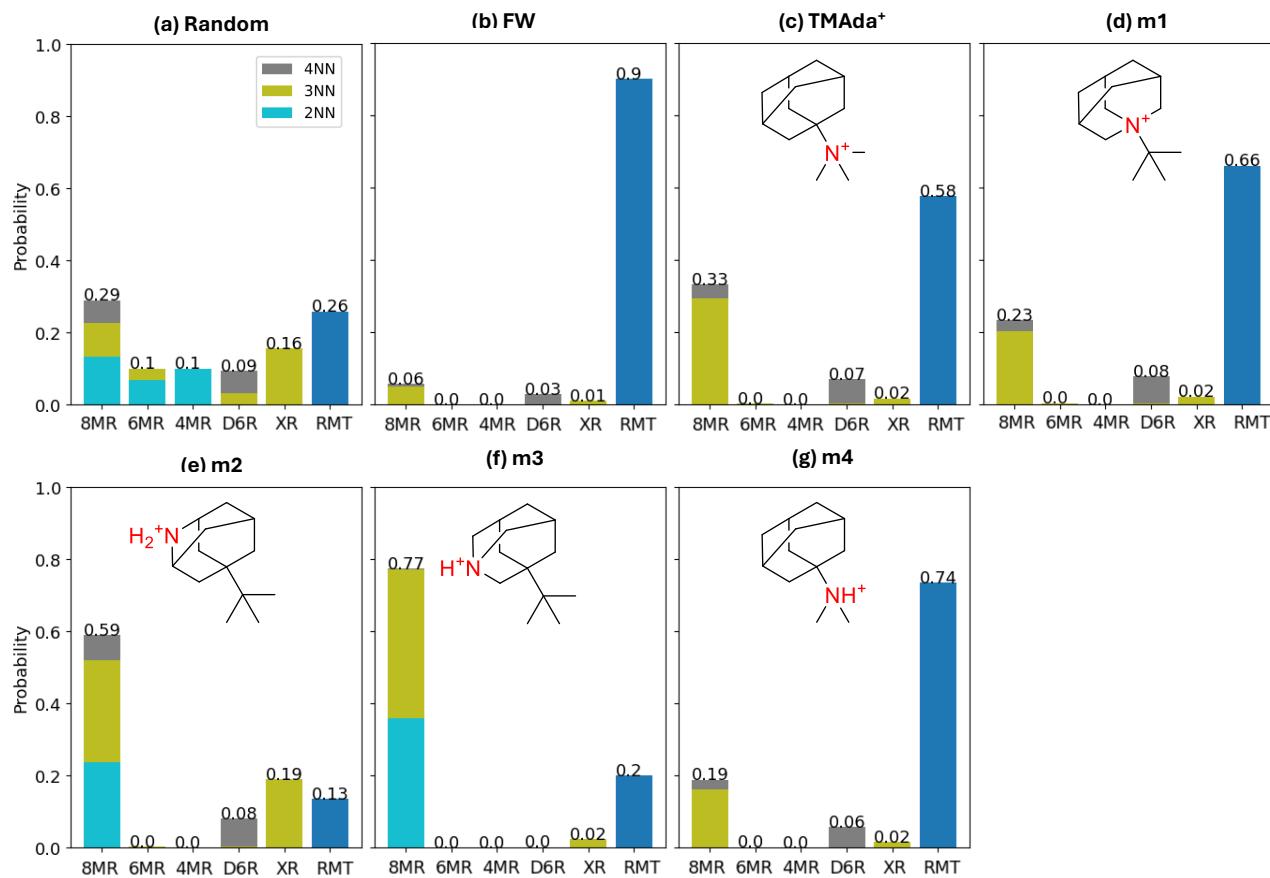


Figure 9: Al pairing feature distributions based on (a) random distribution excluding 1NN Al pairs; (b) OSDA-free framework energy; (c) CHA-TMAda⁺ energy; (d) CHA-m1 energy; (e) CHA-m2 energy; (f) CHA-m3 energy; and (g) CHA-m4 energy. Probabilities based on 443 K Boltzmann weightings. XR and RMT refer to cross-ring and remote pairs.

the distribution, consistent with previous prediction.⁴¹ Figure 9(c) reports predictions based on the TMAda⁺ energies of Figure 4, again Boltzmann weighted at 443 K. Consistent with Figure 7 and with previous reports,^{44,49} TMAda⁺ is predicted to bias against all 2NN^{40,44} and 6MR pairs, with a mix of 8MR and remote pairs consistent with Figure 8.

Figure 10 reports the fingerprints of the ten lowest- and ten highest-energy Al configurations in the fields of the four modifications on TMAda⁺ (averaged over OSDA orientations). It is evident that OSDA modification does have a significant impact not only on absolute energies (Figure 4(b)) but also on the relative energies of Al arrangements. There are some similarities, however: 4MR and 6MR pairs are absent in the low-energy manifold of all five OSDAs, while the high energy manifold has a large occurrence of 4MR 2NN features.

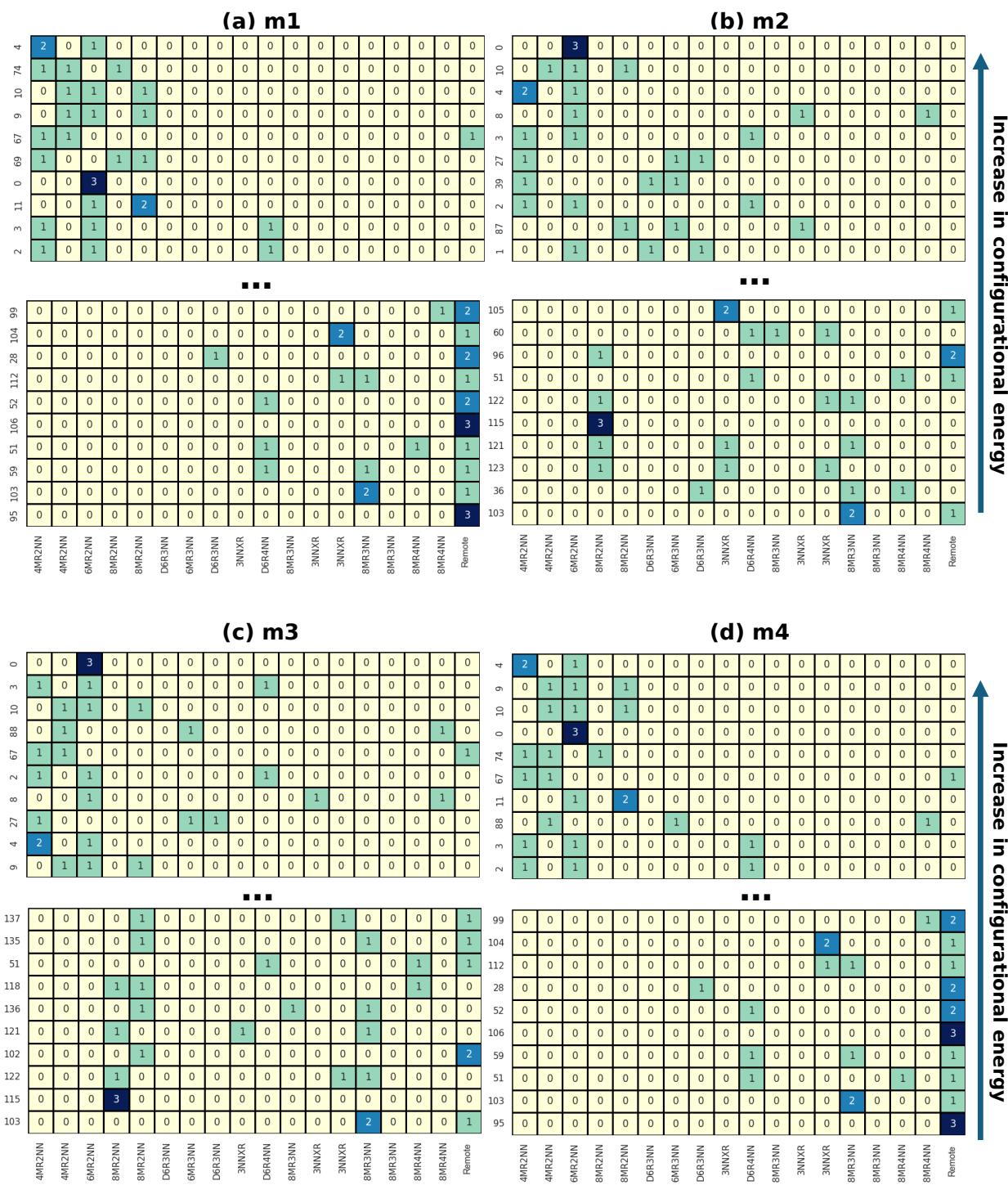


Figure 10: Al pair fingerprints of the ten lowest and ten highest average energy Al configurations in the field of randomly oriented (a) m1, (b) m2, (c) m3 and (d) m4. Numbers in each row indicate the occurrence of each distinct Al pair fingerprint. Configuration numbers refer to entries in the Zenodo data repository.

3NNXR features are rare in the low and high energy manifolds, evidently more common at intermediate energies.

In the field of the quaternary amine 1-(tert-butyl)-1-azaadamantan-1-ium (m1), low energy configurations share features with TMAda⁺ itself: the two lowest energy configurations are identical, remote features are strongly favored, and 2NN features are absent (Figure 10). Similar to TMAda⁺ within the high-energy configurations, 2NN features are common. The primary difference between TMAda⁺ and m1, then, is the width of the energy distribution, shown in Figure 4(b). As a result, and as shown in Figure 9(d), the Boltzmann-weighted feature distribution in the presence of m1 is similar to TMAda⁺, the only difference being a small shift in bias from 8MR towards remote Al pairs. OSDA m1 would be expected to produce CHA with an Al distribution essentially indistinguishable from TMAda⁺, and based on the energy offset in Figure 4(b), to be a somewhat less effective structure directing agent.

More substantial differences are evident for the secondary amine 5-(tert-butyl)-2-azaadamantan-2-ium (m2) OSDA (Figure 10). 2NN fingerprints begin to appear in the low energy window, at the expense of long-range Al pairs. Similarly, the high energy window contains more configurations with Al pairs at greater distances than 2NN. The aggregate effect is most clearly seen in Figure 9(e): in the presence of m2, CHA is expected to be enriched in 3NN8MR and even 2NN8MR pairs relative to TMAda⁺ or even the Löwenstein's rule distribution, while 6MR pairs are expected to be uncommon. Further, the energy offset in Figure 4(b) suggests that m2, at least if present in the protonated form, would be a strong director towards CHA with this distribution.

The configurational biases introduced by tertiary amine 3-(tert-butyl)-1-azaadamantan-1-ium (m3) OSDA are similar to those introduced by OSDA m2, but with an even greater appearance of 8MR pairs at the expense of the minority d6r and XR pairs (Figure 10(c)). These differences are reflected in Figure 9(e), where 2NN and 3NN8MR pairs are highly enriched at the expense of d6r, XR pairs, and 4NN8MR pairs, all of which are nearly absent.

The tertiary amine N,N-dimethyladamantan-1-aminium (m4), created by removing a

1
2
3 methyl group from TMAda⁺, might be expected to differ most dramatically in Al directing
4 tendencies from the other four OSDAs. Rather, its low and high energy configuration man-
5 ifolds (Figure 10) are similar to m1 and even TMAda⁺ itself. 2NN pairs are again absent
6 among low energy configurations and prominent among high energy ones. Its feature distri-
7 bution (Figure 9) reflects these similarities, with 8MR pairs and remote Al being the only
8 features of significant population, and the remote Al being most pronounced. Thus, OSDA
9 m4 is expected to crystallize CHA with an Al distribution similar to TMAda⁺ but, given its
10 poorer neutral guest-host interactions, to be less effective in promoting the CHA structure
11 overall.
12
13
14
15
16
17
18
19
20
21
22

23 Conclusions

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

In this work, we explore the consequences of explicit inclusion of cationic OSDAs and an-
ionic framework Al centers in the guest-host interaction evaluation. Starting from the CHA-
TMAda⁺ system, we consider TMAda⁺ and OSDA mimics constructed to have charge-
neutral interaction energies identical to TMAda⁺ itself but to present different charge distri-
butions. We evaluate energies within this space using first principles calculations. Predicted
relationships between Al configuration and TMAda⁺-compensated energy are consistent with
classical results.⁴⁹ We find that not only do relative Al configurational energies respond to
modifications of the OSDA, but absolute interaction energies themselves shift substantially,
suggesting that charge-neutral surrogates may miss an important contribution to the tem-
plating ability of an OSDA.

To characterize the influence of charge distribution on Al siting, we fingerprint Al config-
urations by Al–Al pair types. Certain features, such as the tendency to disfavor 4MR and
6MR Al pairs, while other features, especially the populations of 8MR Al pairs, are highly
responsive to OSDA charge distribution. OSDAs with less accessible OSDA charge centers,
thus exhibiting larger mean Al–N separations, tend to favor configurations that maximally

1
2
3 separate Al. In contrast, OSDAs with more accessible charge centers promote a closer Al ap-
4 proach, including even 2NN Al pairs in 8MRs. Such changes in distribution could manifest,
5 for instance, in differing abilities to host Cu dimers relevant to partial methane oxidation⁶⁵
6 or in the pairability of solvated Cu ions relevant to NO_x selective catalytic reduction.⁶⁶
7
8
9
10

11 The non-quaternary TMAda⁺ mimics studied here are likely incompatible with zeolite
12 synthesis in basic media. They may be more compatible with (and have strong structure
13 directing properties at) the lower pH typical of synthesis in fluoride media or from solid
14 silica at near neutral pH.⁶⁷ Evidence suggests that non-quaternary ammoniums may also be
15 useful as secondary OSDA partners to a primary OSDA,³³ and such a strategy may be a
16 viable approach to realizing some of the differential directing ability of the TMAda⁺ mimics.
17 The discovery of OSDAs that offer Al siting control and are compatible with basic synthesis
18 conditions remains an opportunity. Extensions of these ideas to lower symmetry zeolite
19 frameworks and less orientationally constrained OSDAs present practical but not conceptual
20 computational challenges. The work here highlights the potential opportunities to realize
21 strategies to control both zeotype and Al distribution through OSDA selection.
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Data Availability

36 The data that support the findings of this study including sample VASP input files for
37 energy evaluations, all final optimized structures and their corresponding potential energies
38 for CHA-OSDA pairs, the charged CHA frameworks, and charged isolated OSDAs, all shared
39 in the Zenodo data repository available at <https://doi.org/10.5281/zenodo.13236662>.
40
41
42
43
44
45
46
47
48

Acknowledgements

51 The authors gratefully acknowledge financial support from the CBET-DMREF program un-
52 der award number 1922154. They further thank Drs. Subramanian Prasad, Vivek Vattipalli,
53 and Anthony Debellis, BASF, and Drs. Edward Maginn and Craig Waitt, University of
54
55
56
57
58

1
2
3 Notre Dame, for helpful discussions and input. The computing resources for this work were
4 provided by the Notre Dame Center for Research Computing.
5
6
7
8
9

10 References

11

12
13 (1) Corma, A. State of the art and future challenges of zeolites as catalysts. *J. Catal.* **2003**,
14 *216*, 298–312.
15
16
17 (2) Breck, D. W. *Zeolite molecular sieves: structure, chemistry, and use*; John Wiley &
18 Sons, 1973.
19
20
21
22 (3) Flanigen, E.; Jansen, J.; van Bekkum, H. *Introduction to Zeolite Science and Practice*;
23 Elsevier Science, 1991.
24
25
26
27 (4) Speybroeck, V. V.; Hemelsoet, K.; Joos, L.; Waroquier, M.; Bell, R. G.; Catlow, C.
28 R. A. Advances in theory and their application within the field of zeolite chemistry.
29 *Chem. Soc. Rev.* **2015**, *44*, 7044–7111.
30
31
32
33
34 (5) Baerlocher, C.; McCusker, L. Database of Zeolite Structures. [http://www.](http://www.iza-structure.org/databases/)
35 [iza-structure.org/databases/](http://www.iza-structure.org/databases/), 2008; Accessed: 2024-10-01.
36
37
38
39 (6) Moliner, M.; Rey, F.; Corma, A. Towards the rational design of efficient organic
40 structure-directing agents for zeolite synthesis. *Angew. Chem., Int. Ed.* **2013**, *52*,
41 13880–13889.
42
43
44
45
46 (7) Gies, H.; Marker, B. The structure-controlling role of organic templates for the synthesis
47 of porosils in the systems SiO₂/template/H₂O. *Zeolites* **1992**, *12*, 42–49.
48
49
50
51 (8) Gies, H. In *Advanced Zeolite Science and Applications*; Jansen, J., Stöcker, M.,
52 Karge, H., Weitkamp, J., Eds.; Studies in Surface Science and Catalysis; Elsevier,
53 1994; Vol. 85; pp 295–327.
54
55
56
57
58
59
60

1
2
3 (9) Kubota, Y.; Helmkamp, M. M.; Zones, S. I.; Davis, M. E. Properties of organic cations
4 that lead to the structure-direction of high-silica molecular sieves. *Microporous Mater.*
5 **1996**, *6*, 213–229.
6
7
8
9 (10) Wagner, P.; Nakagawa, Y.; Lee, G. S.; Davis, M. E.; Elomari, S.; Medrud, R. C.;
10 Zones, S. I. Guest/Host Relationships in the Synthesis of the Novel Cage-Based Zeolites
11 SSZ-35, SSZ-36, and SSZ-39. *J. Am. Chem. Soc.* **2000**, *122*, 263–273.
12
13
14 (11) Lewis, D. W.; Freeman, C. M.; Catlow, C. R. A. Predicting the Templating Ability of
15 Organic Additives for the Synthesis of Microporous Materials. *J. Phys. Chem.* **1995**,
16 *99*, 11194–11202.
17
18
19 (12) Burton, A. W.; Lee, G. S.; Zones, S. I. Phase selectivity in the syntheses of cage-based
20 zeolite structures: An investigation of thermodynamic interactions between zeolite hosts
21 and structure directing agents by molecular modeling. *Microporous Mesoporous Mater.*
22 **2006**, *90*, 129–144.
23
24
25 (13) Pophale, R.; Daeyaert, F.; Deem, M. W. Computational prediction of chemically syn-
26 thezizable organic structure directing agents for zeolites. *J. Mater. Chem. A* **2013**, *1*,
27 6750–6760.
28
29
30 (14) Schmidt, J. E.; Deem, M. W.; Lew, C.; Davis, T. M. Computationally-Guided Synthesis
31 of the 8-Ring Zeolite AEI. *Top. Catal.* **2015**, *58*, 410–415.
32
33
34 (15) Davis, T. M.; Liu, A. T.; Lew, C. M.; Xie, D.; Benin, A. I.; Elomari, S.; Zones, S. I.;
35 Deem, M. W. Computationally Guided Synthesis of SSZ-52: A Zeolite for Engine Ex-
36 haust Clean-up. *Chem. Mater.* **2016**, *28*, 708–711.
37
38
39 (16) Schmidt, J. E.; Deem, M. W.; Davis, M. E. Synthesis of a Specified, Silica Molecular
40 Sieve by Using Computationally Predicted Organic Structure-Directing Agents. *Angew.*
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

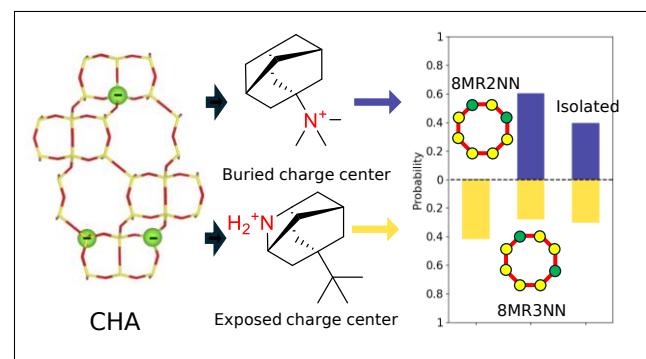
1
2
3 (17) Muraoka, K.; Chaikittisilp, W.; Okubo, T. Multi-objective de novo molecular design
4 of organic structure-directing agents for zeolites using nature-inspired ant colony opti-
5 mization. *Chem. Sci.* **2020**, *11*, 8214–8223.
6
7 (18) Schwalbe-Koda, D.; Gómez-Bombarelli, R. Benchmarking binding energy calculations
8 for organic structure-directing agents in pure-silica zeolites. *J. Chem. Phys.* **2021**, *154*,
9 174109.
10
11 (19) Waitt, C.; Gao, X.; Gounder, R.; Debellis, A.; Prasad, S.; Moini, A.; Schneider, W. F.
12 Analysis and Augmentation of Guest–Host Interaction Energy Models as CHA and AEI
13 Zeolite Crystallization Phase Predictors. *J. Phys. Chem. C* **2023**, *127*, 22740–22751.
14
15 (20) Dusselier, M.; Davis, M. E. Small-Pore Zeolites: Synthesis and Catalysis. *Chem. Rev.*
16 **2018**, *118*, 5265–5329.
17
18 (21) Knott, B. C.; Nimlos, C. T.; Robichaud, D. J.; Nimlos, M. R.; Kim, S.; Gounder, R.
19 Consideration of the Aluminum Distribution in Zeolites in Theoretical and Experi-
20 mental Catalysis Research. *ACS Catalysis* **2018**, *8*, 770–784.
21
22
23 (22) Le, T. T.; Chawla, A.; Rimer, J. D. Impact of acid site speciation and spatial gradients
24 on zeolite catalysis. *Journal of Catalysis* **2020**, *391*, 56–68.
25
26
27 (23) Kester, P. M.; Crum, J. T.; Li, S.; Schneider, W. F.; Gounder, R. Effects of Brønsted
28 acid site proximity in chabazite zeolites on OH infrared spectra and protolytic propane
29 cracking kinetics. *Journal of Catalysis* **2021**, *395*, 210–226.
30
31
32 (24) Shan, Y.; Du, J.; Zhang, Y.; Shan, W.; Shi, X.; Yu, Y.; Zhang, R.; Meng, X.; Xiao, F.-
33 S.; He, H. Selective catalytic reduction of NO_x with NH₃: opportunities and challenges
34 of Cu-based small-pore zeolites. *National Science Review* **2021**, *8*, nwab010.
35
36
37 (25) Li, S.-C.; Lin, Y.-C.; Li, Y.-P. Understanding the Catalytic Activity of Microporous
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 and Mesoporous Zeolites in Cracking by Experiments and Simulations. *Catalysts* **2021**,
4
5 *11*, 1114.
6
7

8 (26) Di Iorio, J. R.; Nimlos, C. T.; Gounder, R. Introducing Catalytic Diversity into Single-
9 Site Chabazite Zeolites of Fixed Composition via Synthetic Control of Active Site Prox-
10 imity. *ACS Catal.* **2017**, *7*, 6663–6674.
11
12 (27) Paolucci, C.; Verma, A. A.; Bates, S. A.; Kispersky, V. F.; Miller, J. T.; Gounder, R.;
13 Delgass, W. N.; Ribeiro, F. H.; Schneider, W. F. Isolation of the Copper Redox Steps
14 in the Standard Selective Catalytic Reduction on Cu-SSZ-13. *Angew. Chem. Int. Ed.*
15 **2014**, *53*, 11828–11833.
16
17 (28) Ipek, B.; Wulfers, M. J.; Kim, H.; Görtl, F.; Hermans, I.; Smith, J. P.; Booksh, K. S.;
18 Brown, C. M.; Lobo, R. F. Formation of $[\text{Cu}_2\text{O}_2]^{2+}$ and $[\text{Cu}_2\text{O}]^{2+}$ toward C–H Bond
19 Activation in Cu-SSZ-13 and Cu-SSZ-39. *ACS Catal.* **2017**, *7*, 4291–4303.
20
21 (29) Deimund, M. A.; Harrison, L.; Lunn, J. D.; Liu, Y.; Malek, A.; Shayib, R.; Davis, M. E.
22 Effect of Heteroatom Concentration in SSZ-13 on the Methanol-to-Olefins Reaction.
23
24 (30) Shantz, D.; Lobo, R.; Fild, C.; Koller, H. In *12th International Congress on Catalysis*;
25 Corma, A., Melo, F. V., Mendioroz, S., Fierro, J. L. G., Eds.; Studies in Surface Science
26 and Catalysis; Elsevier, 2000; Vol. 130; pp 845–850.
27
28 (31) Sabater, M. J.; Sastre, G. A Computational Study on the Templating Ability of the
29 Trispyrrolidinium Cation in the Synthesis of ZSM-18 Zeolite. *Chem. Mater.* **2001**, *13*,
30 4520–4526.
31
32 (32) Sastre, G.; Fornes, V.; Corma, A. On the Preferential Location of Al and Proton Siting
33 in Zeolites: A Computational and Infrared Study. *J. Phys. Chem. B* **2002**, *106*, 701–
34 708.
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 (33) Pinar, A. B.; Gómez-Hortigüela, L.; McCusker, L. B.; Pérez-Pariente, J. Controlling
4 the Aluminum Distribution in the Zeolite Ferrierite via the Organic Structure Directing
5 Agent. *Chem. Mater.* **2013**, *25*, 3654–3661.
6
7
8 (34) Muraoka, K.; Chaikittisilp, W.; Yanaba, Y.; Yoshikawa, T.; Okubo, T. Directing Alu-
9 minum Atoms into Energetically Favorable Tetrahedral Sites in a Zeolite Framework
10 by Using Organic Structure-Directing Agents. *Angew. Chem. Int. Ed.* **2018**, *57*, 3742–
11 3746.
12
13 (35) Toyoda, H.; Osuga, R.; Wang, Y.; Park, S.; Yazawa, K.; Gies, H.; Gilbert, C. J.; Yilmaz,
14 B.; Kelkar, C. P.; Yokoi, T. Clarification of acid site location in MSE-type zeolites
15 by spectroscopic approaches combined with catalytic activity: comparison between
16 UZM-35 and MCM-68. *2022*, *24*, 4358–4365.
17
18 (36) de Vos Burchart, E.; Jansen, J. C.; van de Graaf, B.; van Bekkum, H. Molecular
19 mechanics studies on MFI-typezeolites: Part 4. Energetics of crystal growth directing
20 agents. *Zeolites* **1993**, *13*, 216–221.
21
22
23 (37) Yokoi, T.; Mochizuki, H.; Namba, S.; Kondo, J. N.; Tatsumi, T. Control of the Al
24 Distribution in the Framework of ZSM-5 Zeolite and Its Evaluation by Solid-State
25 NMR Technique and Catalytic Properties. *J. Phys. Chem. C* **2015**, *119*, 15303–15315.
26
27
28 (38) Nimlos, C. T.; Hoffman, A. J.; Hur, Y. G.; Lee, B. J.; Di Iorio, J. R.; Hibbitts, D. D.;
29 Gounder, R. Experimental and Theoretical Assessments of Aluminum Proximity in
30 MFI Zeolites and Its Alteration by Organic and Inorganic Structure-Directing Agents.
31 *Chem. Mater.* **2020**, *32*, 9277–9298.
32
33
34 (39) Ezenwa, S.; Montalvo-Castro, H.; Hoffman, A. J.; Locht, H.; Attebery, J.; Jan, D.-Y.;
35 Schmithorst, M.; Chmelka, B.; Hibbitts, D.; Gounder, R. Synthetic Placement of Active
36 Sites in MFI Zeolites for Selective Toluene Methylation to para-Xylene. *J. Am. Chem.*
37 *Soc.* **2024**, *146*, 10666–10678.
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 (40) Di Iorio, J. R.; Gounder, R. Controlling the Isolation and Pairing of Aluminum
4 in Chabazite Zeolites Using Mixtures of Organic and Inorganic Structure-Directing
5 Agents. *Chem. Mater.* **2016**, *28*, 2236–2247.
6
7
8 (41) Di Iorio, J. R.; Li, S.; Jones, C. B.; Nimlos, C. T.; Wang, Y.; Kunkes, E.; Vattipalli, V.;
9 Prasad, S.; Moini, A.; Schneider, W. F.; Gounder, R. Cooperative and Competitive Oc-
10 clusion of Organic and Inorganic Structure-Directing Agents within Chabazite Zeolites
11 Influences Their Aluminum Arrangement. *J. Am. Chem. Soc.* **2020**, *142*, 4807–4819.
12
13
14 (42) Zhang, J.; Shan, Y.; Zhang, L.; Du, J.; He, H.; Han, S.; Lei, C.; Wang, S.; Fan, W.;
15 Feng, Z.; Liu, X.; Meng, X.; Xiao, F.-S. Importance of controllable Al sites in CHA
16 framework by crystallization pathways for NH₃-SCR reaction. *Appl. Catal., B* **2020**,
17 *277*, 119193.
18
19 (43) Gallego, E. M.; Li, C.; Paris, C.; Martín, N.; Martínez-Triguero, J.; Boronat, M.; Mo-
20 liner, M.; Corma, A. Making Nanosized CHA Zeolites with Controlled Al Distribution
21 for Optimizing Methanol-to-Olefin Performance. *Chem. Eur. J.* **2018**, *24*, 14631–14635.
22
23
24 (44) Lee, S.; Nimlos, C. T.; Kipp, E. R.; Wang, Y.; Gao, X.; Schneider, W. F.; Lusardi, M.;
25 Vattipalli, V.; Prasad, S.; Moini, A.; Gounder, R. Evolution of Framework Al Arrange-
26 ments in CHA Zeolites during Crystallization in the Presence of Organic and Inorganic
27 Structure-Directing Agents. *Cryst. Growth Des.* **2022**, *22*, 6275–6295.
28
29 (45) Lv, W.; Wang, S.; Wang, P.; Liu, Y.; Huang, Z.; Li, J.; Dong, M.; Wang, J.; Fan, W.
30 Regulation of Al distributions and Cu²⁺ locations in SSZ-13 zeolites for NH₃-SCR of
31 NO by different alkali metal cations. *J. Catal.* **2021**, *393*, 190–201.
32
33
34 (46) Fletcher, R. E.; Ling, S.; Slater, B. Violations of Löwenstein's rule in zeolites. *Chem.*
35 *Sci.* **2017**, *8*, 7483–7491.
36
37
38 (47) Li, S.; Li, H.; Gounder, R.; Debellis, A.; Müller, I. B.; Prasad, S.; Moini, A.; Schnei-
39 der, W. F. First-Principles Comparison of Proton and Divalent Copper Cation Ex-
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


1
2
3 change Energy Landscapes in SSZ-13 Zeolite. *J. Phys. Chem. C* **2018**, *122*, 23564–
4 23573.
5
6

7
8 (48) Li, S.; Gounder, R.; Debellis, A.; Müller, I. B.; Prasad, S.; Moini, A.; Schneider, W. F.
9 Influence of the N,N,N-Trimethyl-1-adamantyl Ammonium Structure-Directing Agent
10 on Al Substitution in SSZ-13 Zeolite. *J. Phys. Chem. C* **2019**, *123*, 17454–17458.
11
12
13
14 (49) Wang, X.; Wang, Y.; Moini, A.; Gounder, R.; Maginn, E. J.; Schneider, W. F. Influence
15 of an N,N,N-Trimethyl-1-adamantyl Ammonium (TMAda+) Structure Directing Agent
16 on Al Distributions and Pair Features in Chabazite Zeolite. *Chem. Mater.* **2022**, *34*,
17 10811–10822.
18
19
20 (50) Tang, X.; Liu, Z.; Huang, L.; Chen, W.; Li, C.; Wang, G.; Li, G.; Yi, X.; Zheng, A.
21 Violation or Abidance of Löwenstein's Rule in Zeolites Under Synthesis Conditions?
22
23 *ACS Catal.* **2019**, *9*, 10618–10625.
24
25
26 (51) Loewenstein, W. The distribution of aluminum in the tetrahedra of silicates and alu-
27 minates. *American Mineralogist* **1954**, *39*, 92–96.
28
29
30
31 (52) Oishi, K.; Muraoka, K.; Nakayama, A. Analysis of Al site-directing ability of organic
32 structure-directing agents in FER and CHA zeolites: a computational exploration of
33 energetic preferences. *Chem. Commun.* **2023**, *59*, 8953–8956.
34
35
36 (53) Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calcu-
37 lations using a plane-wave basis set. *Phys. Rev. B* **1996**, *54*, 11169.
38
39
40 (54) Blöchl, P. E. Projector Augmented-Wave Method. *Phys. Rev. B* **1994**, *50*, 17953.
41
42
43 (55) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made
44 Simple. *Phys. Rev. Lett.* **1996**, *77*, 3865.
45
46
47 (56) Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion cor-
48 rected density functional theory. *J. Comput. Chem.* **2011**, *32*, 1456–1465.
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 (57) Frisch, M. J. et al. Gaussian~16 Revision C.01. 2016; Gaussian Inc. Wallingford CT.
4
5
6 (58) Grau-Crespo, R.; Hamad, S.; Catlow, C. R. A.; Leeuw, N. H. d. Symmetry-adapted
7
8 configurational modelling of fractional site occupancy in solids. *J. Phys.: Condens.*
9
10 *Matter* **2017**, *19*, 256201.
11
12
13 (59) Hanwell, M. D.; Curtis, D. E.; Lonie, D. C.; Vandermeersch, T.; Zurek, E.; Hutchi-
14
15 son, G. R. Avogadro: an advanced semantic chemical editor, visualization, and analysis
16
17 platform. *J. Cheminf.* **2012**, *4*, 17.
18
19
20 (60) Larsen, A. H. et al. The atomic simulation environment—a Python library for working
21
22 with atoms. *J. Phys.: Condens. Matter* **2017**, *29*, 273002.
23
24
25 (61) Crum, J. T.; Crum, J. R.; Taylor, C.; Schneider, W. F. Characterization and analysis
26
27 of ring topology of zeolite frameworks. *Microporous Mesoporous Mater.* **351**, 112466.
28
29
30 (62) Crum, J. Zeolite Simulation Environment. <https://github.com/jtcrum/zse>, (Ac-
31
32 cessed: December 2023).
33
34
35 (63) Gao, X.; Schneider, W. F. Structure Databases: Predicted Influence of Organic Struc-
36
37 ture Directing Agents on Al Distributions in CHA Zeolites. [https://doi.org/10.](https://doi.org/10.5281/zenodo.13236661)
38
39 5281/zenodo.13236661, (Accessed: August 2024).
40
41
42 (64) Schwalbe-Koda, D.; Kwon, S.; Paris, C.; Bello-Jurado, E.; Jensen, Z.; Olivetti, E.;
43
44 Willhammar, T.; Corma, A.; Román-Leshkov, Y.; Moliner, M.; Gómez-Bombarelli, R.
45
46 A priori control of zeolite phase competition and intergrowth with high-throughput
47
48 simulations. *Science* **2021**, *374*, 308–315.
49
50
51 (65) Wilcox, L. N.; Rebolledo-Oyarce, J.; Mikes, A. D.; Wang, Y.; Schneider, W. F.;
52
53 Gounder, R. Structure and Reactivity of Binuclear Cu Active Sites in Cu-CHA Ze-
54
55 olites for Stoichiometric Partial Methane Oxidation to Methanol. *ACS Catalysis* **2024**,
56
57 *14*, 3647–3663.
58
59
60

1
2
3 (66) Krishna, S. H.; Goswami, A.; Wang, Y.; Jones, C. B.; Dean, D. P.; Miller, J. T.;
4 Schneider, W. F.; Gounder, R. Influence of framework Al density in chabazite zeolites
5 on copper ion mobility and reactivity during NO_x selective catalytic reduction with
6 NH₃. *Nature Catalysis* **2023**, *6*, 276–285.
7
8
9
10
11
12 (67) Deng, L. et al. Atom-Economic Synthesis of Zeolites. *J. Am. Chem. Soc.* [Advance
13 online publication], Available at: <https://doi.org/10.1021/jacs.4c11264>.
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

TOC Graphic

