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ABSTRACT: We demonstrate the use of gradient-boosted
ensemble models that accurately predict emission wavelengths in
benzobis[1,2-d:4,5-d′]oxazole (BBO) based fluorescent emitters.
We have curated a database of 50 molecules from previously
published data by the Jeffries-EL group using density functional
theory (DFT) computed ground and excited state features. We
consider two machine learning (ML) models based on (i) whole
cruciform molecules and (ii) their constituent fragment molecules.
Both ML models provide accurate predictions with root-mean-
square errors between 30 and 36 nm, competitive with state-of-the-
art deep learning models trained on orders of magnitude more
molecules, and this accuracy holds even when tested on four new
BBO emitters unseen by the models. We also provide an interpretable feature importance analysis and discuss the relevant
relationships between DFT and changes in predicted emission wavelength.

■ INTRODUCTION
Machine learning (ML) is rapidly evolving as a vital tool in
accelerating the discovery of new materials.1−3 Historically,
new materials design and synthesis results from trial-and-error
methods, which require several years of research, resources,
and equipment. Improvements in molecular electronics
structure methods, more powerful computational resources,
and availability of experimental data sets allow us to cross into
the next level of data-driven materials discovery.4−6 Currently,
ML and high throughput experimentation are being used
successfully in drug discovery and have recently started to gain
traction in materials science.7,8

Organic fluorescent materials have many applications
spanning lighting, imaging, sensing, and display technolo-
gies.8−10 Organic light emitting diodes (OLEDs) are gaining
popularity in display and lighting technologies due to their
inexpensive processing, flexibility, and energy efficiency.11,12

The emission colors in OLEDs are traditionally due to
fluorescence or phosphorescence mechanisms. In solid-state
devices, direct fluorescence is statistically limited to 25%
internal quantum efficiency (IQE), which restricts their
external quantum efficiencies (EQE) to 5%. While phosphor-
escence and thermally activated delayed fluorescence (TADF)
are due to mechanisms that allow the IQE to reach 100% (and
EQE >5%), these materials often have poor color quality, poor
resolution, and broad emissions thereby rendering them
ineffective for display screens.13,14 Additionally, some
applications such as organic pump lasers and visible light

communication rely on nanosecond (ns) responses which
fluorescent emitters provide, unlike phosphorescence and
TADF materials, which are on the microsecond (μs) to
millisecond (ms) time scale.15−18

OLEDs can be broadly classified as red, green, or blue
(RGB) emitters based on their emitted color. While several
known examples of thermally stable and long-lived red and
green fluorescent molecules exist, blue light materials with
similar benchmarks are much more challenging to de-
sign.11,19−23 This is mainly due to their broader energy gaps
(2.8−3.1 eV) and their high energy of emission (<450 nm),
which results in rapid overheating and deterioration of the
devices.24,25 Display technology is still seeking “deep-blue”
materials that have CIE (Commission International de
l’Éclairage) coordinates less than 0.16, 0.06 (Figure 1,
right).26,27 The Jeffries-EL group has developed multiple
novel small-molecule emitters based on a benzobis[1,2-d:4,5-
d′]oxazole (BBO) core, an electron-deficient ring system well-
known for its thermal and oxidative stability. BBO is a
conjugated molecule consisting of a central benzene ring and
fused oxazole units flanking either side (Figure 1, left). The key
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parameters that define OLEDs electronically are the highest
occupied molecular orbital (HOMO), the lowest unoccupied
molecular orbital (LUMO), and the energy gap (Eg) where Eg
= |HOMO − LUMO|. Blue emitting materials have a wider
band gap between 2.8 and 3.2 eV. Hence, tuning the HOMO
and LUMO levels in a molecule can lead to selectivity in the
desired emission output. Due to its structure, the BBO core
has four points of modification, marked as positions 2, 6, 4, and
8. It has two orthogonal conjugation pathways, one through
the 2,6 axis and another perpendicular 4,8 axis, passing through
the central benzene ring. Advantageously, this leads to the
separation of the frontier molecular orbitals (FMOs), allowing
us to selectively tune their optoelectronic properties by
substituting different groups at these positions.28−37 In contrast
to other conjugated materials in which structural modifications
alter the LUMO, HOMO and Eg. The Jeffries-EL group has
previously shown that the cross-conjugated BBO “cruciforms,”
where all four positions have aryl groups attached, follow
molecular heredity, such that the optoelectronic properties of
the cruciform or “child” molecules is the sum of the linear or
“parent” BBO properties (Figure 1, left).32 As a result, the
optical and electronic properties of the “child” can be predicted
by evaluating those of the parent.38 Analysis of the cruciform
compounds indicated that their HOMO levels were mostly
influenced by the groups along the 4,8 axis and the LUMO
levels were mostly affected by the groups along the 2,6 axis.
This recently discovered heredity phenomenon, of the parent
molecules combinatorial properties resulting in unique cruci-
form properties, also makes BBO a robust molecular template
for the rational design of new materials.
Understanding a molecule’s optoelectronic properties is

crucial in designing new materials. Density functional theory
(DFT) calculations are commonly used to gain insights into a
molecule’s ground state structural and electronic information
and its general excited state properties, such as absorption data.
However, using DFT to predict emission data is expensive and
frequently inaccurate.39,40 With potentially millions of possible
molecular combinations of BBO structures, individual syn-
thesis and computational analysis of BBO congeners is not
only a costly and time-consuming endeavor but also does not
effectively predict the nonproductive structural combinations.
ML can bridge the gap between expensive materials synthesis
and complex property prediction.
Recently ML has been used to predict TADF emitters and

their optimized devices by predicting the best EQEs.41,42

These works focus on the device performances of the RGB
gamut emitting materials and source data from literature to
form large data sets. Using large data sets, numbering in tens or
hundreds of thousands of molecules, has led to advanced ML
models propelling related fields such as drug discovery.43,44

However, large data sets are often obtained from the literature
using complex text mining algorithms, resulting in potentially
redundant or even incorrect values in the data sets.45−47

On the other hand, in organic and materials chemistry,
functional molecules have specific properties that we seek,
resulting in fewer but high-quality data observations.48−51

Furthermore, as we focus on fewer properties to be predicted
(such as blue emission) and further zoom in on specific
mechanisms/types of molecules (such as direct fluorescence in
nonmetalated organic molecules), our sample size reduces
further.52,53 Nevertheless, due to the small, high quality data
sets have been successfully used to understand underlying
electronic mechanisms and geometric properties that affect a
molecule’s properties. For instance, Troisi et al. constructed a
database of only 80 distinct nonfullerene acceptor based
organic photovoltaics. They found that all the best-performing
materials/molecules had small energy gaps between the
LUMO and LUMO+1 levels.54

In this work, we report two gradient-boosted decision tree
models, based on eXtreme gradient boosting (XGBoost), that
accurately predict emission wavelengths of BBO-based
emitters. The cruciform model (CM) is built from a cruciform
BBO molecules database, while the fragment model (FM) is
made from the “parents,” i.e., the constituent fragments
database. While the FM considers the features of the individual
constituents, the predicted outcome is of their corresponding
cruciform. Both models achieve accurate predictions with an
approximate root-mean-square errors (RMSE) of 31 nm that is
competitive with recent models trained on 1000X more
observations from the literature.55,56 We also compared the
XGBoost models, CM and FM, to gradient boosting machine
(GBM) and compared their performances and the details can
be found in the Supporting Information, Section S3.1, Table
S3. To improve our understanding of the influence of the
features on predicted emission, we also performed various
feature analyses and confirmatory analysis of variance tests.

■ METHOD
We describe the main steps in our model development−
database curation, model selection and training, model
validation and results’ interpretation.

Database Curation. We curated a database from 50
cruciform BBO molecules designed by the Jeffries-EL group
and their constituent fragments (29 molecules) (for structural
details see�https://github.com/KolaczykResearch/Blue-
BBO-ML/tree/main). The features of these molecules were
calculated at the mpw3LYP/SV/CPCM(CH2Cl2) using
ORCA,57−60 similar to the previously benchmarked DFT
methods by the Jeffries-EL group34 (see Section S1.1 in

Figure 1. (Left) Schematic of “cruciform” and “fragment” benzobisoxazole core with the numbering system (p = aryl group, R = alkyl group);
(Right) CIE 1931 chromaticity diagram.
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Supporting Information, for details). We combined 81
experimental measurements of λ_max

emis (maximum emission
wavelength), with some measurements in multiple solvents: 31
from CHCl3, 15 from THF, and 35 in film.
Descriptor Information. To represent each molecule, we

chose five descriptors: (i) HOMO, (ii) Eg, (iii) absorption
maxima (λmax

abs), and (iv) KK (or K × K, which is the square
of the displacement vector between the ground and excited
state coordinates based on the vertical gradient approxima-
tion)61 from the DFT calculations as well as (v) the solvent
system from the experimental measurements. The molecules’
features are described in Table 1 below. Since LUMO is a
linear combination of Eg and HOMO (Eg + HOMO =
LUMO), we excluded LUMO from the feature set.

As previously stated, the unique structure of BBO allows for
modulation of the HOMO and LUMO levels with varying
electronic groups along either axis. This consequently affects
ground to excited state transitions, such as narrowing of Eg
with extension of conjugation along the axes. A representative
example is the BBO 26BT48BT, shown in Figure 2, where BT
refers to bithiophene groups along the 2,6 and 4,8 axes.
We used the calculated data for the 50 BBO cruciform

molecules and the 29 fragment molecules and the solvent
measurements for the cruciform and fragment models,
respectively. The distributions of these descriptors are shown
in Figure 3.
ML Model Selection and Building. While deep learning

models are popular for ML researchers, they typically rely on
prohibitively large data sets for experimental data. Therefore,
with only 50 molecules in our data set, we relied on eXtreme
Gradient Boosting (XGBoost).62 XGBoost is a popular model
that has exhibited cutting-edge performance on various
prediction tasks. Furthermore, due to the heterogeneity of
the molecules in our data set, we employed an ensemble
framework to reduce the variation in our predictions.63 We
then validated our use of the ensemble learning approach by
conducting a prediction stability analysis which justified our
use of an ensemble framework.64 Details of the analysis can be
found in the Supporting Information (Section S3.2). We also

implemented a GBM (Section S1.3, Table S4) for model
comparison.65

We have two ensemble frameworks: cruciform framework
that uses the DFT features of the BBOs as the predictors; and
the fragment framework, that uses the DFT features of the
horizontal and vertical fragments of the BBOs as the
predictors. Each of the frameworks is an ensemble of 100
component models (weak learners), and we fit each
component model using a XGBoost and GBM with λmax

emis as
the response and RMSE as the metric. We used cross-
validation to select the hyperparameters for our XGBoost and
GBM models, and the 4 parameters include the maximum
number of iterations, maximum depth of the tree, learning rate,
minimum loss reduction required for a split. Specifically, for
each of the hyper-parameters, we selected some as candidate
values, and we performed a grid search with a 10-fold cross-
validation (we employed an 80/10/10 train/validate/test split
of our complete data set).55 This resulted in the best
combination of the parameter values in terms of the averaged
RMSE on validation set. Each component model was then
trained and tested with a random train/validation/test split,
and we reported the averaged RMSE of the 100 component
models as the performance metric for the ensemble framework
(Table S3). The details of the algorithm is in Section S2 in the
Supporting Information.55 We also evaluated our models using
other metrics, namely MAE, MSE and MAPE, and their details
can be found in Section S3.1 of the Supporting Information.
The results from each of these metrics are qualitatively
comparable to the RMSE results in terms of predicting the
emission wavelength for new molecules.

Model Validation. Additionally, to assess the accuracy of
our models on unseen data, we used our models to predict
emissions for 4 BBO-based molecules that are not included in
the training data set, referred to as the “holdout” BBOs. They
contain the same BBO core as the molecules in our database
and are functionalized by adamantyl or phenyl groups on the
2,6 axis and carbazole groups on the 4,8 axis (see github.com/
KolaczykResearch/Blue-BBO-ML). The DFT properties of
these 4 BBOs are in the range of the DFT values of the
molecules in our training data set (see Figure 3). Therefore, we
expected our models to make accurate predictions of the
emission of these four molecules. A manuscript detailing their
design, optoelectronic, and device features is under review
elsewhere.

■ RESULTS & DISCUSSION
Model Training (Performance) Analysis. As a conse-

quence of the small size of our data set, the random sampling
of our train/validate/test split can have undue influence. To
mitigate this concern, we employed an ensemble learning
framework. Specifically, we repeated the model fitting

Table 1. Descriptions of the DFT Features of the Molecules
Used in the Modeling

DFT features descriptions

HOMO highest occupied molecular orbital in eV
Eg energy gap (HOMO − LUMO) in eV
λmax
abs wavelength at maximum absorbance in nm
KK measure of vertical displacement
solvent solvent used in experimental observations
LUMO* lowest unoccupied molecular orbital in eV

Figure 2. (a) HOMO, (b) LUMO and (c) S1 difference density for a representative cruciform (26BT48BT) with isosurfaces of 3 × 10−2 for (a,b)
and 3 × 10−4 for (c).
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procedure 100 times, obtaining 100 separate XGBoost models
(eq (1)). Each XGBoost model has a prediction for the
emission wavelength for the i-th molecule as ŷi = ∑k = 1

K f k (xi),
where f k is the k-th regression tree model, xi is the predictors
for the i-th molecule, and K is the number of regression trees
within each XGBoost model. We computed the RMSE on it is
the corresponding test set for each component model, which
we recall is a random sample of 10% of the entire data set (eq
S2) and the fo rmu l a f o r RMSE i s g i v en a s

= = y y nRMSE ( ) /i
n

i i1
2 , where yi is the true emission

measurement for the i-th molecule. The RMSEs range from 19
to 51 nm, a level of variability that corroborates our use of an
ensemble framework.66 Our final model is the average of our
100 components. The detailed methodology can be found in
Section S2 of Supporting Information.
Table 2 summarizes the average RMSE of each model

component on its corresponding test set and the average

RMSE on the four holdout molecules. The fragment model
performs on par with the cruciform model (31.08 vs 31.60 nm)
on the cross-validated results and is comparable to the holdout
BBOs (31.50 vs 35.30 nm respectively). Notably, the fragment
model is significantly less expensive due to the total time
required to compute the DFT properties of the data sets,
which we report in Table 3. This suggests that the fragment
model offers competitive predictions at a much lower
computational cost when considering small databases with
few features.

Result Interpretation with Accumulated Local Effects
Plots. A major drawback of many modern ML methods is that
they lack interpretability. A recent method to disentangle the
effects of predictors in “black box” models is the accumulated
local ef fects (ALE) plot.67 Although similar approaches have
been used in the past, such as marginal plots and partial
dependence plots,65 they suffer from ignoring correlation in
the features.68 ALE plots, on the other hand, are explicitly
designed to estimate how marginal changes in feature space
affect predictions on observations in that small interval. This is
particularly important for DFT features with known physical
relationships, such as Eg, HOMO, and λmax

abs. Since we used an
ensemble learning framework, our ALE plots are computed by
averaging over the ALE plots of each model component. To
study the feature effects, we investigated a natural general-
ization of ALE plots to ensemble models by averaging over the
ALE plots of the model components. The detailed method-
ology can be found in Section S4.2 of the Supporting
Information. The ensemble ALE plots for the Eg, HOMO,
and λmax

abs in Figure 4 were generated for the cruciform (C)
features as well as the 2,6-Fragment (26F) and 4,8-Fragment
(48F). Essentially, a positive slope in the ALE plot indicates
that an increase in the feature on the x-axis would lead to an
increase in the prediction, and vice versa for negative slopes.
These are computed based on predictions for similar
molecules, hence they capture a notion of local dependency.
In addition, the absolute value of the slope measures the
strength of the effect at the value of the feature on the x-axis.
The flat region suggests that the changes in the feature on the
x-axis within that region have little impact on the prediction.
Hence, our analysis shows a clear order of influence where Eg >
HOMO > λmax

abs i.e. changes in Eg result in adjustments of the
predicted outcome more than changes in HOMO and
absorption wavelengths do. When we considered the Eg
feature for the 26F, the 48F, and the C, they all have an
inverse relationship with the predicted values (Figure 4a−c).
For example, in C, an increase of 1 eV in the Eg results in a
shift of 56 nm in the model’s predicted emission. Similarly, for
26F and 48F, the decrease in prediction would be 12 and 41
nm, respectively.
We hypothesized that there is an axial dominance in play

where substitution along the 4,8 axes of the fragment has a
more significant effect on the cruciform molecules’ properties,
as most of the 48 fragments are sterically distorted in
comparison to the primarily planar 26 fragments (Figure 1
left, github.com/KolaczykResearch/Blue-BBO-ML for struc-
tural details of each fragment). Our feature analysis indicates a
negligible effect of the 26F HOMO on the output (Figure 4d).

Figure 3. Distributions of the DFT features used in our models (histogram and density plot) and the DFT values of the four BBO-based molecules
not included in the training set (blue dots).

Table 2. RMSE of the Predicted Emission for the Cruciform
and Fragment Model for the BBO Molecules in the Training
Set and the New BBO Molecules Using XGBoosta

cruciform RMSE Avg &
SD (nm)

fragment RMSE Avg &
SD (nm)

training
BBOs

31.60 ± 7.69 31.08 ± 7.71

holdout
BBOs

35.30 31.50

aAvg = average; SD = standard deviation.

Table 3. Time to Run DFT Calculations on the BBO
Cruciform (BBO-c) and the Fragment (BBO-f) Moleculesa

cruciform Avg (SD) (hr/BBO-c) fragment Avg (SD) (hr/BBO-f)

24.70 (41.76) 10.95 (21.9)

aAvg = average; SD = standard deviation.
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In contrast, the 48F’s HOMO levels affect the emission output
(Figure 4e). We found a “threshold value,” which is the value
when either positive or negative adjustments must be made to
the predictions depending on the direction. The HOMO
threshold value for the 48F feature effect is at −5.64 eV, above
which (right arrow) the output is positively adjusted by 27 nm.
Conversely, when the HOMO is under −5.64 eV (left arrow),
the outcome is adjusted by subtracting 29 nm. Finally, when
we considered the C HOMO features, we found it followed a
similar adjustment pattern to the 48F. However, the threshold
point here was −5.44 eV with a positive adjustment of 35 nm
on the right and a negative adjustment of 17 nm on the left
(Figure 4f).
Interestingly, in our analysis of the λmax

abs feature, the fragment
features had little effect on the final prediction (Figure 4g,h).
However, the λmax

abs feature for the C suggests a positive
adjustment of 3.2 nm in the output for every 10 nm increase in
the input data (Figure 4i). The ALE studies of the KK and
solvent did not significantly affect the predicted emissions
(Figure S2). Bivariate ALE plots can provide insight into
relationships between two features and their sum/overall effect
on the predicted outcome. However, our bivariate feature
analysis indicates a negligible impact on predictions when we
consider the interaction between features such as the HOMO
and λmax

abs , Eg and HOMO, Eg, and λmax
abs, etc. Details of these

plots can be found in the Supporting Information (Figures
S3−S7, Table S7).

■ CONCLUSIONS
In this work, we have utilized five features (Eg, HOMO, λmax

abs,
KK, solvent) that play a role in the emission properties of a
molecule. To overcome the small data challenge of our
database, we employed gradient-boosted learning models in an
ensemble framework. We compared a model trained on
features of a whole cruciform and one trained on features of
the cruciforms’ constituent fragments. Both models showed
remarkable accuracy, as evidenced by RMSEs of 30−36 nm for
the predicted emissions, which are highly comparable to other
models with 1000s of molecules/inputs in their training sets.
We built our database from cruciform molecules and their axis
fragment molecules. As expected, it was much faster to
calculate DFT features for the structurally simpler fragments as
there are fewer components than there are combinations that
define the cruciforms (n1 + n2 versus n1 × n2 with n1 being the
2,6 fragments and n2 the 4,8 fragments). However, it remains
to be seen if this simpler model is competitive on larger data
sets.
As we hoped, our model could predict emissions for

molecules not part of its training and we predicted the
emission wavelengths for four new/held-out molecules,
showing remarkably accurate RMSEs between 31 and 36 nm.
Feature effects are highly consequential in understanding how
ML models generate their predictions. We have utilized ALE
analyses to determine the most essential features and how they
affect predicted emissions. We found that the Eg and λmax

abs

features play significant roles in predicting emissions, and their
variation results in a linear adjustment in the outcome. In
contrast, we have identified threshold values for HOMO that

Figure 4. Accumulated local effects of the EG (a−c), HOMO (d−f), λmax
abs (g−i) individually on the prediction. The ribbon (gray) represents the

90% confidence bands for the ALE effects at different observations, and the mean effect is in red.
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determine whether a positive or negative adjustment is needed.
We believe these relationships could be of independent interest
beyond our abilities to predict emissions accurately.
Encouraged by the promising results of our small database,

we are currently working to extend them by adding more
molecules. To this end, we are expanding our database with the
latest designed molecules via a novel high throughput
experimentation platform, allowing for faster screening of
potential BBO-based emitters. This synthetic technique has
been explored in the discovery of novel molecules with
catalysis and pharmaceutical applications69,70 and has the
potential to aid organic electronics design, too. A more
extensive database will inform us on how to improve our ML
algorithm, and coupled with interpretable models, they will
pave the way for more sophisticated learning methods and,
eventually, AI-guided OLED design.
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