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In the cognitive hierarchy (CH) framework, players in a game have heterogeneous levels of 
strategic sophistication. Each player believes that other players in the game are less sophisticated, 
and these beliefs correspond to the truncated distribution of a “true” distribution of levels. We 
develop the dynamic cognitive hierarchy (DCH) solution by extending the CH framework to 
games in extensive form. Initial beliefs are updated as the history of play provides information 
about players’ levels of sophistication. We establish some general properties of DCH and fully 
characterize the DCH solution for a wide class of centipede games. DCH predicts a strategy-
reduction effect: there will be earlier taking if the centipede game is played as an alternating-
move sequential game rather than as a simultaneous move game in its reduced normal form. 
Experimental evidence reported in García-Pola et al. (2020a) supports this prediction. In all three 
centipede games for which the DCH strategy-reduction effect is predicted, termination occurs 
earlier when played sequentially rather than simultaneously with reduced strategies. In a fourth 
centipede game, where this effect is not predicted, it is not observed.

“What surprised me was how bad they played.”

—Beth Harmon, The Queen’s Gambit

1. Introduction

In many situations, people interact with one another over time, in a multi-stage environment, such as playing chess or bargaining 
with alternating offers. The standard approach to studying these situations is to model them as games in extensive form where 
equilibrium theory is applied, often with refinements such as subgame perfection or other notions of sequential rationality. However, 
the standard equilibrium concepts, such as sequential equilibrium and its refinements, impose strong assumptions about the strategic 
sophistication of the players—perhaps implausibly strong from an empirical standpoint, as behavior in many laboratory experiments 
has suggested (see, for example, Camerer 2003).
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In response to these anomalous findings, researchers have proposed a variety of models that relax the requirement of mutual 
consistency of beliefs embodied in standard equilibrium concepts. The focus of this paper is the “level-𝑘” family of models, which 
assume a hierarchical structure of strategic sophistication among the players. In this family of models, each player is endowed with 
a specific level of sophistication. Level-0 players are non-strategic and choose their actions randomly. Level-𝑘 players, on the other 
hand, can think 𝑘 strategic steps and believe everyone else is less sophisticated in the sense that they think fewer than 𝑘 strategic 
steps. The standard level-𝑘 model assumes level-𝑘 players believe all other players are level-(k-1) (see Nagel 1995).

However, applications of the level-𝑘 approach have been limited almost exclusively to the analysis of games in strategic form, 
where all players make their moves simultaneously, and the theory has not been formally developed for the analysis of general games 
in extensive form. To apply the standard level-𝑘 model to games in extensive form, one would assume that at each decision node, 
a level-𝑘 player will choose an action that maximizes the continuation value of the game, assuming all other players are level-(𝑘-1) 
players in the continuation game. As a result, each player’s belief about other players’ level is fixed at the beginning. However, as the 
game proceeds, this fixed belief can lead to a logical conundrum, as a level-𝑘 player can be “surprised” by an opponent’s previous 
move that is not consistent with the strategy of a level-(k-1) player.1

If one closely examines this problem, the incompatibility derives from two sources that imply players cannot learn: (1) each 
level of player’s prior belief about the other players’ levels is degenerate, i.e., a singleton; and (2) players ignore the information 
contained in the history of the game. To solve both of these problems at the same time, as an alternative to the standard level-𝑘
approach, we use the cognitive hierarchy (CH) version of level-𝑘, as proposed by Camerer et al. (2004), and extend it to games in 
extensive form. Like the standard level-𝑘 model, the CH framework posits that players are heterogeneous with respect to levels of 
strategic sophistication and believe that other players are less sophisticated. However, their beliefs are not degenerate. A level-𝑘
player believes all other players have lower levels distributed anywhere from level 0 to k-1.

Furthermore, the CH framework imposes a partial consistency requirement that ties the players’ prior beliefs on the level-type 
space to the true underlying distribution of levels. Specifically, a level-𝑘 player’s beliefs are specified as the truncated true distribution 
of levels, conditional on levels ranging from 0 to k-1, i.e., players have “truncated rational expectations.” This specification has the 
important added feature, relative to the standard level-𝑘 model, that more sophisticated players also have beliefs that are closer 
to the true distribution of levels, and very high level types have approximate rational expectations about the behavior of the other 
players. Thus, the CH approach blends aspects of purely behavioral models and equilibrium theory.

In our extension of CH to games in extensive form, a player’s prior beliefs over lower levels are updated as the history of play 
in the game unfolds, revealing information about the distribution of other players’ levels of sophistication. These learning effects 
can be quite substantial as we illustrate later in the paper. Hence, the main contribution of this paper is to propose a new CH 
framework—dynamic cognitive hierarchy (DCH)—for the analysis of general games in extensive form and, in doing so, provide new 
insights beyond those offered by the original CH model.

Our first result establishes that in games with perfect information, every player will update their belief about each of the oppo-
nent’s levels independently (Proposition 1). Second, we show that when the history of play in the game unfolds, players become more 
certain about the opponents’ levels of sophistication, in a specific way. Formally, the support of their beliefs shrinks as the history 
gets longer (Proposition 2). Third, in the DCH solution, it is possible for all strategic levels of players to behave inconsistently with 
subgame perfect equilibrium at some information sets. We illustrate this with a simple example and show how this inconsistency 
can occur on paths that involve strictly dominated actions. We then show that the probability that paths with strictly dominated 
strategies are realized converges to zero as the proportion of level-0 players in the population converges to zero (Proposition 3).

Another important property of the DCH solution is that it is not reduced normal form invariant. In many games, players have 
multiple strategies that are realization-equivalent. The (structurally) reduced normal form of the game consolidates such strategies 
into a single strategy, thus reducing the cardinality of the set of pure strategies. In DCH, level-0 players uniformly randomize over 
the set of actions at each information set, which is realization-equivalent to uniformly randomizing over the set of pure strategies 
in the normal form representation of the game. Since DCH applied to simultaneous move games is equivalent to CH, it follows that 
the distribution of outcomes in the DCH solution of a game in extensive form is the same as the distribution of outcomes in the 
simultaneous move game corresponding to the non-reduced normal form. However, it is not equivalent to uniform randomization 
over the set of pure strategies in the reduced normal form, because of the reduced cardinality of the set of strategies. For this reason, 
we refer to this property of DCH as the strategy-reduction effect.2

The strategy-reduction effect has important implications in experimental economics, as sequential game experiments are often 
implemented by having subjects simultaneously choose reduced strategies, a procedure known as the strategy method. There is con-
siderable evidence that qualitatively different data is observed in experimental studies of games depending on whether the strategy 
method or the direct-response (sequential choice) method is used to elicit choices. How and why such differences arise is not well 
understood.3 Because of the strategy-reduction effect, the DCH solution has the potential to provide new insights into this issue.

1 An exception is a recent paper by Schipper and Zhou (2024) that was developed independently and contemporaneously with ours. They take an alternative 
approach to resolving this conundrum for extending the standard level-𝑘 analysis to games in extensive form, which we discuss in section 2.
2 In a special class of games that satisfy balancedness, the consolidation of realization equivalent strategies is innocuous and does not lead to a strategy reduction 

effect in DCH. Battigalli (2023) presents a formal statement and proof of this result.
3 The survey by Brandts and Charness (2011) provides an extensive account of the evidence and discussion of possible explanations for these differences.
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With this goal in mind, we explore the implications of the strategy-reduction effect of DCH in an application to a prominent class 
of games where observed behavior is grossly inconsistent with the standard equilibrium theory, the increasing-pie “centipede game.” 
In this class of games, the DCH solution makes clear predictions about the direction of the strategy-reduction effect.4

Specifically, we consider two common implementations of centipede games studied in experiments. The first (and the usual) 
implementation is to play the game in its extensive form, as an alternating-move sequential game that terminates as soon as one 
player takes (the direct-response method). That is, first player 1 decides to take or pass. If they take, the game ends; if they pass, it is 
player 2’s turn to pass or take, and so on. The second implementation asks both players to decide at which node to take if the game 
gets that far, or always pass (the strategy method). That is, players simultaneously choose from their respective set of reduced pure 
strategies. The benefit of doing so, from a methodological standpoint, is that one can gather more experimental data, particularly at 
histories that are only occasionally reached when the game is played out sequentially.

However, from the perspective of DCH, implementing the strategy method reduces the number of pure strategies, causing level-0 
players to behave differently in the two protocols. Consequently, the behavior of higher-level players (who always believe in the 
existence of level-0 players) is also affected. In Theorem 1, we show that this strategy-reduction effect implies that increasing-sum 
centipede games will end earlier, with lower payoffs to the players, when implemented by the direct-response method than when 
implemented by the strategy method.

While the direct-response method is the most commonly used method to implement centipede game experiments, there are a 
few exceptions. Nagel and Tang (1998) is the first paper to report the results from a centipede game experiment conducted as a 
simultaneous move game, the reduced normal form. In their 12-node centipede games, each player has seven available strategies 
that correspond to an intended “take-node” or always passing, and they make their decisions simultaneously. Pooling the data 
over many repetitions, they find that only 0.5% of the outcomes coincide with the equilibrium prediction, suggesting that the non-
equilibrium behavior in the centipede games cannot solely be attributed to the violation of backward induction. However, as the 
authors remarked, the results may be confounded with the effect of reduced normal form: “...There might be substantial differences 
in behavior in the extensive form game and in the normal form game...” (Nagel and Tang (1998), p. 357). One of our contributions 
is to show that DCH provides a theoretical rationale for the existence of such effects.

A recent experiment by García-Pola et al. (2020a) specifically studies how the direct-response method and the strategy method 
would affect the behavior in four different centipede games. The DCH solution makes a sharp prediction about the strategy-reduction 
effect—in three of the four games, the distribution of terminal nodes under the strategy method will first order stochastically dominate 
the distribution under the direct-response method, but not in the fourth game. We revisit the data from that experiment, and show 
that the results from all four of their games are consistent with the strategy-reduction effect predicted by DCH.

The paper is organized as follows. The related literature is discussed in the next section. Section 3 sets up the model. Section 4
establishes properties of the DCH belief-updating process and explores the relationship between our model and subgame perfect 
equilibrium with several examples. In Section 5, the strategy-reduction effect is explored in a detailed analysis of centipede games 
with a linearly increasing pie. Experimental data that provide a test the strategy-reduction effect hypothesis is presented and discussed 
in Section 6. We discuss several additional features of our model in Section 7 and conclude in Section 8.

2. Related literature

The idea of limited depth of reasoning in games of strategy has been proposed and studied by economists and game theorists 
for at least thirty years (see, for example, Binmore (1987, 1988), Selten (1991, 1998), Aumann (1992), Stahl (1993) and Alaoui 
and Penta 2016, 2022). On the empirical side, Nagel (1995) conducts the first laboratory experiment explicitly designed to study 
hierarchical reasoning in simultaneous move games, using the “beauty contest” game. Each player chooses a number between 0 and 
100. The winner is the player whose choice is closest to the average of all the chosen numbers discounted by a parameter 𝑝 ∈ (0, 1). 
To analyze the data, Nagel (1995) assumes level-0 players choose randomly. Level-1 players believe all other players are level-0 and 
best respond to them by choosing 50𝑝. Following the same logic, level-𝑘 players believe all other players are level-(k-1) and best 
respond to them with 50𝑝𝑘.

This iterative definition of hierarchies has been applied to a range of different environments. For instance, Ho et al. (1998) also 
analyze the beauty contest game while Costa-Gomes et al. (2001) and Crawford and Iriberri (2007a) consider the strategic levels 
in a variety of simultaneous move games. Costa-Gomes and Crawford (2006) study the “two-person guessing game,” a variant of 
the beauty contest game. Finally, the level-𝑘 approach has also been applied to games of incomplete information. Crawford and 
Iriberri (2007b) apply this approach to reanalyze auction data, and Cai and Wang (2006) and Wang et al. (2010) use the level-𝑘
model to organize empirical patterns in experimental sender-receiver games. All these studies assume level-𝑘 players best respond to 
degenerate beliefs of level-(k-1) players.

This standard level-𝑘 model has been extended in a number of ways. One such approach is that each level of player best responds 
to a mixture of all lower levels. Stahl and Wilson (1995) are the first to construct and estimate a specific mixture model of bounded 

4 These are alternating-move finite-horizon two-person games, where, in turn, each player can either “take” the larger of two pieces of a growing pie, which 
terminates the game and leaves the other player with the smaller piece of the current pie, or “pass,” which increases the size of the pie and it is the other player’s 
turn to take or pass. Payoffs are such that the subgame perfect equilibrium of this game is solved by backward induction with the game ending immediately.
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rationality in games where each level of player best responds to a mixture between lower levels and equilibrium players.5 Camerer 
et al. (2004) develop the CH framework, where level-𝑘 players best respond to a mixture of the behavior of all lower level behavioral 
types from 0 to k-1. In addition, players have correct beliefs about the relative proportions of these lower levels, so it includes a 
consistency restriction on beliefs in the form of truncated rational expectations.

A second direction is to endogenize the strategic levels of players, using a cost benefit approach. Alaoui and Penta (2016) develop 
a model of endogenous depth of reasoning, where each player trades off the benefit of additional levels of sophistication against the 
cost of doing so. Players can have different benefit and cost functions, depending on their beliefs and strategic abilities, respectively. 
A model is developed for two-person games with complete information and calibrated against experimental data. Alaoui et al. (2020)
provide some additional analysis and a laboratory experiment that further explores the implications of this model.

Third, level-k theory has been used to study behavioral mechanism design. De Clippel et al. (2019) study the implications of the 
standard level-𝑘 approach to mechanism design. They establish a form of the revelation principle for level-𝑘 implementation and 
obtain conditions on the implementability of social choice functions under a range of assumptions about level-0 behavior. Crawford 
(2021) characterizes surplus-maximizing direct trading mechanisms in the Myerson and Satterthwaite (1983) framework, if the 
traders are modeled as level-𝑘 players instead of Bayesian Nash equilibrium players.

Fourth, there have been several papers that model how an individual’s strategic level evolves when the same game is repeated 
multiple times.6 The standard level-𝑘 model is ideally suited to understanding how naive individuals behave when they encounter a 
game for the first time. This is a limitation since, in most laboratory experiments in economics and game theory, subjects play the 
same game with multiple repetitions, in order to gain experience and to facilitate convergence to equilibrium behavior. It is also 
a limitation since many games studied by economists and other social scientists are aimed at understanding strategic interactions 
between highly experienced players (oligopoly, procurement auctions, legislative bargaining, for example), where some convergence 
to equilibrium would be natural to expect.

In this vein, Ho and Su (2013) and Ho et al. (2021) propose a modification of CH that allows for learning across repeated plays 
of the same sequential game, in a different way than in Stahl (1996), but in the same spirit. In their setting, an individual player 
repeatedly plays the same game (such as the guessing game) and updates his or her beliefs about the distribution of levels after
observing past outcomes of earlier games, but holding fixed beliefs during each play of the game. In addition to updating beliefs 
about other players’ levels, a player also endogenously chooses a new level of strategic sophistication for themselves, in the spirit of 
Stahl (1996), for the next iteration of the game. This is different from our DCH framework where each player updates their beliefs 
about the levels of other players after each move within a single game. Moreover, because players are forward-looking in DCH, they 
are strategic learners—i.e., they correctly anticipate the evolution of their posterior beliefs in later stages of the game—which leads 
to a much different learning dynamic compared with naive adaptive learning models.

All of these extensions add significantly to the literature on level-𝑘 behavior for games in strategic form, by allowing for a richer 
set of heterogeneous beliefs, by incorporating cognitive costs into the model, and by showing how the model can be used to address 
classic mechanism design problems, but all of them are limited by a restriction to simultaneous move games. In extensive games, the 
timing structure is crucial, and beliefs evolve as the game unfolds and players have an opportunity to adjust their beliefs in response 
to past actions, which is the focus of this paper. Our DCH provides an extension in this direction, under the assumption that players 
are forward looking about the actions of their opponents in the entire game tree.7 Rampal (2022) develops an alternative approach 
for multi-stage games of perfect information. He models levels of sophistication by assuming that players have limited foresight 
in the sense of a rolling horizon; that is, players only look forward a fixed number of stages. This creates a hierarchy of strategic 
sophistication that depends on the length of a player’s rolling horizon. Players are uncertain about their opponents’ foresight. The 
baseline game of perfect information is then transformed into a game of incomplete information, with specific assumptions about 
players’ beliefs about payoffs at non-terminal nodes that correspond to the current limit of their horizon in the game.

At a more conceptual level, our dynamic generalization of CH is related to other behavioral models in game theory. There is a 
connection between DCH and misspecified learning models (see, for example, Hauser and Bohren 2021) in the sense that level-𝑘
players wrongly believe all other players are less sophisticated. However, in contrast to categorical types of players in misspecified 
learning models, DCH provides added structure to the set of types in a systematic way, such that higher-level types have a more 
accurate belief about opponents’ rationality at the aggregate level. In the context of social learning, application of our model to the 
investment game is related to Eyster and Rabin (2010) and Bohren (2016) who model the updating process when there exist some 
behavioral types of players in the population.

Our DCH solution is also related to two other behavioral solution concepts of the dynamic games—the Agent Quantal Response 
Equilibrium (AQRE) by McKelvey and Palfrey (1998) and the Cursed Sequential Equilibrium (CSE) by Fong et al. (2023)—in the 
sense that each of these solution concepts relaxes different requirements of the standard equilibrium theory. DCH is a non-equilibrium 
model which allows different levels of players to best respond to different conjectures about other players’ strategies while AQRE is 

5 In the same spirit of Stahl and Wilson (1995), Levin and Zhang (2022) propose the NLK solution which is an equilibrium model where each player best responds 
to a mixture of an exogenously determined naive strategy (with probability 𝜆) and the equilibrium strategy (with probability 1 −𝜆). The main difference between NLK 
and our DCH solution is that NLK requires the belief system to be mutually consistent (as NLK is a solution of a fixed problem) while DCH relaxes this requirement.
6 Nagel (1995) proposes a model for the evolution of levels based on changing reference points to explain unraveling in guessing games.
7 The recent paper by Schipper and Zhou (2024) also identifies the logical conundrum when applying the standard level-𝑘 model to games in extensive form, and 

resolve the conundrum in a different way. In contrast to the DCH solution, Schipper and Zhou (2024) adopts a non-Bayesian approach to updating, called strong 
level-𝑘 thinking, which posits that for every information set, level-𝑘 players attach the maximum level-𝑙 thinking for 𝑙 < 𝑘 to their opponents consistent with the 
information set.
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an equilibrium model where players make stochastic choices. Both DCH and AQRE depict that players are able to perform Bayesian 
inferences. In contrast, CSE is an equilibrium model where players are able to make best response but fail to perform Bayesian 
inferences. Both AQRE and CSE predict a strategy-reduction effect, but in different manners from DCH.

The key application in this paper is about the centipede game, which has been the subject of many theoretical and experimental 
studies. Rosenthal (1981) first introduced the centipede game to demonstrate how backward induction can be challenging and 
implausible to hold in some environments due to logical issues about updating off-path beliefs. His example is a ten-node game with 
a linearly increasing pie. Later on a shorter variant with an exponentially increasing pie, called “share or quit,” is studied by Megiddo 
(1986) and Aumann (1988). The name centipede was coined by Binmore (1987), and named for a 100-node variant.

Starting with McKelvey and Palfrey (1992), many laboratory and field experiments have reported experimental data from cen-
tipede games in a range of environments, such as different lengths of the game (see McKelvey and Palfrey 1992 and Fey et al. 1996), 
different subject pools (see Palacios-Huerta and Volij, 2009; Levitt et al., 2011, and Li et al. 2021), different payoff configurations 
(see Fey et al., 1996; Zauner, 1999; Kawagoe and Takizawa, 2012; Healy, 2017, and García-Pola et al., 2020b) and different ex-
perimental methods (Nagel and Tang, 1998; Rapoport et al., 2003; Bornstein et al., 2004, and García-Pola et al. 2020a). Although 
standard game theory predicts the game should end in the first stage, such behavior is rarely observed.

3. The model

This section formally develops the dynamic cognitive hierarchy (DCH) solution for games in extensive form. In Section 3.1, we 
introduce the notation for (finite) games in extensive form by following Osborne and Rubinstein (1994). Next, we define the DCH 
updating process in Section 3.2, specifying how players’ beliefs about other players’ levels evolve from the history of play. This leads 
to a definition of the DCH solution of a game.

3.1. Games in extensive form

Let 𝑁𝐶 = {𝐶, 1, … , 𝑛} ≡ {𝐶} ∪𝑁 be a finite set of players, where player 𝐶 is called “Chance.” Let 𝐻 be a finite set of sequences 
of actions that satisfies the following two properties.

1. The empty sequence 𝜙 (the initial history) is a member of 𝐻 .
2. If 

(
𝑎𝑗
)
𝑗=1,…,𝐽

∈𝐻 and 𝐿 < 𝐽 , then 
(
𝑎𝑗
)
𝑗=1,…,𝐿

∈𝐻 .

Each ℎ ∈𝐻 is a history and each component of a history is an action taken by a player. In addition, for any non-initial history 
ℎ =

(
𝑎𝑗
)
𝑗=1,…,𝐿

, we use 𝛼(ℎ) =
(
𝑎𝑗
)
𝑗=1,…,𝐿−1

to denote the immediate predecessor of ℎ.8 A history 
(
𝑎𝑗
)
𝑗=1,…,𝐽

∈𝐻 is a terminal 

history if there is no 𝑎𝐽+1 such that 
(
𝑎𝑗
)
𝑗=1,…,𝐽+1

∈𝐻 . The set of terminal histories is denoted as 𝑍 and 𝐻∖𝑍 is the set of non-
terminal histories. Moreover, for every non-terminal history ℎ ∈𝐻∖𝑍 , 𝐴(ℎ) = {𝑎 ∶ (ℎ, 𝑎) ∈𝐻} is the set of available actions after 
the history ℎ, and 𝑍ℎ is the set of terminal histories after ℎ.

The player function 𝑃 ∶𝐻∖𝑍 →𝑁𝐶 assigns to each non-terminal history a player of 𝑁𝐶 . In other words, 𝑃 (ℎ) is the player who 
takes an action after history ℎ. With this, for any player 𝑖 ∈𝑁𝐶 , 𝐻𝑖 = {ℎ ∈𝐻∖𝑍 ∶ 𝑃 (ℎ) = 𝑖} is the set of histories where player 
𝑖 ∈𝑁𝐶 is the active player. Therefore, 𝐻𝐶 is the set of non-terminal histories where Chance determines the action taken after history 
ℎ. A function 𝜎𝐶 specifies a probability measure 𝜎𝐶 (⋅|ℎ) on 𝐴(ℎ) for every ℎ ∈𝐻𝐶 . That is, 𝜎𝐶 (𝑎|ℎ) is the probability that 𝑎 occurs 
after the history ℎ.

For each 𝑖 ∈𝑁 , a partition 𝑖 of 𝐻𝑖 defines 𝑖’s information sets. Information set 𝐼𝑖 ∈ 𝑖 specifies a subset of histories contained 
in 𝐻𝑖 that 𝑖 cannot distinguish from one other, where for any ℎ ∈ 𝐻𝑖, 𝐼𝑖(ℎ) is the element of 𝑖 that contains ℎ. Furthermore, 
𝑖’s available actions are the same for all histories in the same information set. Formally, for any history ℎ′ ∈ 𝐼𝑖(ℎ) ∈ 𝑖, 𝐴(ℎ

′) =
𝐴(ℎ).9 Therefore, we use 𝐴(𝐼𝑖) to denote the set of available actions at information set 𝐼𝑖. In addition, each player 𝑖 ∈ 𝑁 has a 
payoff function (in von Neumann-Morgenstern utilities) 𝑢𝑖 ∶ 𝑍 → ℝ. Finally, a game in extensive form, Γ, is defined by the tuple 
Γ = ⟨𝑁𝐶 , 𝐻, 𝑃 , 𝜎𝐶 , 

(
𝑖

)
𝑖∈𝑁

, 
(
𝑢𝑖
)
𝑖∈𝑁

⟩.
In a game in extensive form Γ, for each player 𝑖 ∈𝑁 , the set of behavioral strategies for player 𝑖 is Σ𝑖 ≡ ×𝐼𝑖∈𝑖Δ(𝐴(𝐼𝑖)) and 𝜎𝑖 ∈ Σ𝑖

is a behavioral strategy of player 𝑖. For notational convenience, we use Σ ≡ ×𝑖∈𝑁Σ𝑖 to denote the set of all profiles of behavioral 
strategies, and we use the notation Σ−𝑖 = ×𝑗≠𝑖Σ𝑗 and write elements of Σ as 𝜎 = (𝜎𝑖, 𝜎−𝑖) when focusing on a particular player 𝑖 ∈𝑁 .

3.2. Cognitive hierarchies and belief updating

Prior beliefs about levels of sophistication Each player 𝑖 is endowed with a level of sophistication, 𝜏𝑖 ∈ℕ0, where Pr(𝜏𝑖 = 𝑘) = 𝑝𝑖𝑘 for all 
𝑖 ∈𝑁 and 𝑘 ∈ℕ0, and the distribution is independent across players.

10 We assume 𝑝𝑖𝑘 > 0 for all 𝑖 ∈𝑁 and 𝑘 ∈ℕ0. Let 𝜏 = (𝜏1, … , 𝜏𝑛)
be the profile of levels and 𝜏−𝑖 be the profile of levels without player 𝑖. Each level 𝑘 > 0 of each player 𝑖 has a prior belief about 
all other players’ levels and these prior beliefs satisfy truncated rational expectations. That is, for each 𝑖 and 𝑘 > 0, a level-𝑘 player 𝑖

8 If 𝐿 = 1, then 𝛼(ℎ) = 𝜙.
9 We assume that all players in the game have perfect recall. See Osborne and Rubinstein (1994) chapter 11 for a definition.
10 For the sake of simplicity, we assume that the distribution of levels is independent of the probability distribution of Chance’s moves 𝜎𝐶 .
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believes all other players in the game are at most level-(k-1). For each 𝑖, 𝑗 ≠ 𝑖 and 𝑘, let 𝜇𝑘
𝑖𝑗
(𝜏𝑗 ) be level-𝑘 player 𝑖’s prior belief about 

player 𝑗 ’s level, and 𝜇𝑘
𝑖
(𝜏−𝑖) =

(
𝜇𝑘
𝑖𝑗
(𝜏𝑗 )

)
𝑗≠𝑖

be level-𝑘 player 𝑖’s profile of prior beliefs. Furthermore, for each 𝑖 and 𝑘, level-𝑘 player 

𝑖 believes any other player 𝑗 ’s level is independently distributed according to the lower truncated probability distribution function:

𝜇𝑘𝑖𝑗 (𝜅) =

⎧⎪⎨⎪⎩

𝑝𝑗𝜅∑𝑘−1
𝑚=0 𝑝𝑗𝑚

if 𝜅 < 𝑘

0 if 𝜅 ≥ 𝑘.
(1)

The assumption underlying 𝜇𝑘
𝑖𝑗
is that level-𝑘 types of each player have a correct belief about the relative proportions of players 

who are less sophisticated than they are, but maintain the incorrect belief that other players of level 𝜅 ≥ 𝑘 do not exist. The 𝑗
subscript indicates that different players can have different level distributions.

Level-dependent profile of behavioral strategies A profile of behavioral strategies is now a level-dependent profile of behavioral strategies 
specifying the behavioral strategy for each level of each player. We denote this profile as 𝜎 =

(
𝜎𝑘
𝑖

)
𝑖∈𝑁, 𝑘∈ℕ0

where 𝜎𝑘
𝑖
is the behavioral 

strategy adopted by level-𝑘 player 𝑖. Level-0 players are assumed to uniformly randomize at each information set.11 That is, for all 
𝑖 ∈𝑁 , 𝐼 ∈ 𝑖 and 𝑎 ∈𝐴(𝐼),

𝜎0𝑖 (𝑎 ∣ 𝐼) =
1

|𝐴(𝐼)| .
In the following we may interchangeably call level-0 players non-strategic players and level 𝑘 ≥ 1 players strategic players.

In the DCH solution, strategic level-𝑘 players believe all other players are strictly less sophisticated than level-𝑘. Therefore, in 

the following, we use 𝜎<𝑘
𝑗

=
(
𝜎0
𝑗
, ..., 𝜎𝑘−1

𝑗

)
to denote the profile of behavioral strategies adopted by the levels below 𝑘 of player 𝑗. 

In addition, let 𝜎<𝑘−𝑖 =
(
𝜎<𝑘
1
, ..., 𝜎<𝑘

𝑖−1
, 𝜎<𝑘

𝑖+1
, ..., 𝜎<𝑘𝑛

)
denote the profile of behavioral strategies of the levels below 𝑘 of all players other 

than player 𝑖.

Level-dependent profile of posterior beliefs For each player 𝑖 with level 𝑘 ≥ 1, level 𝑘 player 𝑖 forms a posterior belief about the 
joint distribution of other players’ levels of sophistication and the distribution of histories in any information set 𝐼 ∈ 𝑖. These 
posterior beliefs depend on the level-dependent profile of behavioral strategies of the other players, and their prior beliefs about the 
distribution of levels, 𝜇𝑘

𝑖
(𝜏−𝑖).

12

Specifically, for any 𝑖 ∈𝑁 and 𝑘 ≥ 1, level-𝑘 player 𝑖 forms posterior beliefs about the joint distribution of other players’ levels 
of sophistication, 𝜏−𝑖 (lower than 𝑘) and histories ℎ ∈ 𝐼 for any 𝐼 ∈ 𝑖. That is, level-𝑘 player 𝑖’s personal system of beliefs is defined 
as a function 𝜈𝑘

𝑖
∶ 𝑖 →Δ ({0, ..., 𝑘− 1} ×𝐻∖𝑍) such that

∑
ℎ∈𝐼

∑
{𝜏−𝑖∶𝜏𝑗<𝑘 ∀𝑗≠𝑖}

𝜈𝑘𝑖
(
𝜏−𝑖, ℎ ∣ 𝐼

)
= 1 for any 𝐼 ∈ 𝑖.

DCH imposes a consistency restriction that the posterior beliefs of any level-𝑘 player 𝑖 are derived from Bayes’ rule, conditioned 
on the level-dependent profile of behavioral strategies of lower levels being 𝜎<𝑘−𝑖 and the game being at information set 𝐼 . Because 
𝜇𝑘
𝑖𝑗
(0) > 0 for all 𝑖, 𝑗 ∈𝑁, 𝑘 ≥ 1 and 𝜎0

𝑗
(𝑎|𝐼) > 0 for all 𝑗, 𝐼 ∈ 𝑗 and 𝑎 ∈ 𝐴(𝐼), all strategic players believe every history (and hence 

information set) is reached with positive probability. Therefore, these posterior beliefs derived using Bayes’ rule are well-defined 
everywhere. In the following, we use 𝜈𝑘

𝑖

(
𝜏−𝑖, ℎ ∣ 𝐼 ;𝜎<𝑘−𝑖

)
to denote the posterior belief of level-𝑘 player 𝑖, induced by 𝜎<𝑘−𝑖 , conditional 

on being at information set 𝐼 ∈ 𝑖. We call 𝜈 =
(
𝜈𝑘
𝑖

)
𝑖∈𝑁, 𝑘≥1

the level-dependent profile of personal systems of beliefs.

The DCH solution In the DCH solution, the posterior distribution of levels of other players will generally be different for different 
levels of the same player at the same information set, since the supports of those distributions will generally differ.13 This, in turn, 
induces different levels of the same player to have different beliefs about the probability distribution over the terminal payoffs that 
can be reached from that information set. For each 𝑖 ∈𝑁 , 𝑘 ≥ 1, 𝜎, and 𝜏−𝑖 such that 𝜏𝑗 < 𝑘 for all 𝑗 ≠ 𝑖, let 𝜌̃𝑘

𝑖
(𝑧 ∣ ℎ, 𝜏−𝑖, 𝜎

<𝑘
−𝑖 , 𝜎

𝑘
𝑖
)

11 Uniform randomization is not the only way to model non-strategic level-0 players, but there are several justifications for doing so. One compelling reason is that it 
is universally applicable to all games, in exactly the same way, unlike almost any other specification since the cardinality of the set of available actions will typically 
vary across players and information sets. Probably for this reason, it is the most commonly used approach in applications of CH, including the original specification 
in Camerer et al. (2004). By taking the same approach in our generalization of CH to games in extensive form, it allows for clear comparisons to the original CH 
framework. Secondly, the choice of uniform randomization also appeals to the principle of insufficient reason, not only from the agnostic standpoint of the researcher, 
but also in the sense of being a neutral assumption about strategic players’ beliefs about the behavior of nonstrategic players. Because uniform randomization is 
nondegenerate, a notable implication is that there is no off-path event in the DCH solution. Lastly, it is simple and parsimonious, as uniform randomization is not 
based on ad hoc assumptions tailored to specific games. In principle, the number of specifications of level-0 behavior is enormous, especially for games with many 
actions and information sets. Some alternatives to uniform randomization are noted in Section 7.4.
12 Level-1 players do not update, since they have a degenerate prior belief that all other players are level-0.
13 However, the support of the beliefs of all levels of all players will always include the type profile 𝜏0−𝑖, in which all other players are level-0. That is, 
𝜈𝑘
𝑖

(
𝜏0−𝑖, ℎ ∣ 𝐼 ;𝜎<𝑘−𝑖

)
> 0 for all 𝑖 ∈𝑁 , 𝑘 ≥ 1, information set 𝐼 and ℎ ∈ 𝐼 .
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be level-𝑘 player 𝑖’s belief about the conditional realization probability of 𝑧 ∈𝑍ℎ at history ℎ ∈𝐻∖𝑍 , if the profile of levels of the 
other players is 𝜏−𝑖 and 𝑖 is using strategy 𝜎

𝑘
𝑖
. Finally, level-𝑘 player 𝑖’s conditional expected payoff at information set 𝐼 is given by:

𝔼𝑢𝑘𝑖 (𝜎|𝐼) =
∑
ℎ′∈𝐼

∑
{𝜏−𝑖∶𝜏𝑗<𝑘 ∀𝑗≠𝑖}

∑
𝑧∈𝑍ℎ′

𝜈𝑘𝑖
(
𝜏−𝑖, ℎ

′ ∣ 𝐼 ;𝜎<𝑘−𝑖
)
𝜌̃𝑘𝑖 (𝑧 ∣ 𝜏−𝑖, ℎ

′, 𝜎<𝑘−𝑖 , 𝜎
𝑘
𝑖 )𝑢𝑖(𝑧). (2)

The DCH solution of the game is defined as the level-dependent profile of behavioral strategies, 𝜎∗, such that 𝜎𝑘∗
𝑖
(⋅|𝐼) maximizes 

𝔼𝑢𝑘
𝑖
(𝜎∗|𝐼) for all 𝑖, 𝑘 and 𝐼 ∈ 𝑖. Players randomize uniformly over optimal actions when indifferent.

14 Moreover, the DCH belief 
system is the level-dependent profile of personal belief systems induced by 𝜎∗. The DCH solution can be solved recursively, starting 
with the lowest level and iteratively working up to higher levels.

Remark 1. In the DCH solution, each level-𝑘 player 𝑖’s personal beliefs are defined as a joint distribution over histories and other 
players’ levels of sophistication. An alternative formulation of personal beliefs would be to define level-𝑘 player 𝑖’s updating process 
on 𝜏−𝑖 history-by-history, i.e., 𝜈

𝑘
𝑖
(𝜏−𝑖|ℎ; 𝜎<𝑘−𝑖 ), and then derive the conditional posterior beliefs, 𝜋𝑘𝑖 (ℎ) over the histories in every 

information set of player 𝑖 in the game, for all 𝑖, 𝑘, and 𝐼 ∈ 𝑖, 
∑

ℎ′∈𝐼 𝜋
𝑘
𝑖
(ℎ′) = 1. See Lin and Palfrey (2022). For games with 

perfect information, these two formulations are identical since every information set is a singleton. Therefore, in games of perfect 
information, for every level-𝑘 player 𝑖 and any ℎ ∈𝐻𝑖, the DCH belief system simply reduces to a profile of personal belief systems 
𝜈 = (𝜈𝑘

𝑖
)𝑖∈𝑁, 𝑘≥1 where 𝜈

𝑘
𝑖
∶𝐻𝑖 →Δ({0, ..., 𝑘 − 1}) and 𝜈𝑘

𝑖
(𝜏−𝑖|ℎ; 𝜎<𝑘−𝑖 ) is the posterior belief about the level profile of other players at 

history ℎ.

Remark 2. For simultaneous move games, the DCH solution coincides with the standard CH solution.

To simplify notation and exposition, most of the remainder of the paper studies DCH in games of perfect information. Some 
the properties established in the next section for games of perfect information apply more generally, and these cases are noted. We 
discuss additional extensions to games of imperfect information in Section 7.2 and 7.3.

4. Properties of the DCH solution

Section 4.1 first establishes the general properties of the belief-updating process. Section 4.2 explores the relationship between 
the DCH solution and subgame perfect equilibrium. Finally, we illustrate the strategy-reduction effect predicted by DCH in section 4.3. 
Specifically, we show that the DCH solution might be dramatically different for two different games in extensive form that share the 
same reduced normal form.

4.1. Properties of the belief-updating process

The first result shows that for games of perfect information, the updating process satisfies an independence property. Specifically, 
the following proposition establishes that all levels of all players will update their posterior beliefs about other players’ levels 
independently.

Proposition 1. For any finite game of perfect information Γ, any 𝑖 ∈𝑁 , any ℎ ∈𝐻𝑖, and for any 𝑘 ∈ ℕ, level-𝑘 player 𝑖’s posterior belief 
about other players’ levels at history ℎ is independent across players. That is, 𝜈𝑘

𝑖

(
𝜏−𝑖 ∣ ℎ;𝜎

<𝑘
−𝑖

)
=
∏

𝑗≠𝑖 𝜈
𝑘
𝑖𝑗

(
𝜏𝑗 ∣ ℎ;𝜎

<𝑘
−𝑖

)
where 𝜈𝑘

𝑖𝑗

(
𝜏𝑗 ∣ ℎ;𝜎

<𝑘
−𝑖

)
is level-𝑘 player 𝑖’s marginal posterior belief about player 𝑗 being level 𝜏𝑗 at history ℎ.

Proof. We prove this proposition by induction on the length of the sequence of ℎ, which we denote by |ℎ|. Let 𝜎 be any level-
dependent strategy profile and 𝑝 be any prior distribution over types. First we can notice that at the initial history, i.e., |ℎ| = 0, 
𝑖 = 𝑃 (𝜙), and any level 𝑘 > 0, 𝜈𝑘

𝑖

(
𝜏−𝑖 ∣ 𝜙;𝜎

<𝑘
−𝑖

)
=
∏

𝑗≠𝑖 𝜇
𝑘
𝑖𝑗
(𝜏𝑗 ) as players’ levels are independently determined. For any pair of histories, 

ℎ′ and ℎ′′, we define a partial order ≺ on 𝐻 such that ℎ′ ≺ ℎ′′ if and only if ℎ′ is a prefix of ℎ′′. In the following, for any ℎ′, ℎ′′ ∈𝐻

where ℎ′ ≺ ℎ′′, we use 𝛼(ℎ′, ℎ′′) to denote the unique action at ℎ′ that leads to ℎ′′.
To establish the base case, consider any player 𝑖 with any level 𝑘 > 0 and any ℎ ∈𝐻𝑖 such that |ℎ| = 1 and 𝑗 = 𝑃 (𝜙) where 𝑗 ≠ 𝑖. 

Because player 𝑗 has made the only move in the game so far, and the prior distribution of types is assumed to be independent across 
players, we have, for any 𝜏−𝑖 such that 𝜏𝑖′ < 𝑘 ∀𝑖′ ≠ 𝑖, 𝑗:

𝜈𝑘𝑖
(
𝜏−𝑖 ∣ ℎ;𝜎

<𝑘
−𝑖

)
=

𝜎
𝜏𝑗
𝑗
(𝛼(𝜙,ℎ) ∣ 𝜙)𝜇𝑘

𝑖𝑗
(𝜏𝑗 )

∑𝑘−1
𝑙=0 𝜎

𝑙
𝑗
(𝛼(𝜙,ℎ) ∣ 𝜙)𝜇𝑘

𝑖𝑗
(𝑙)

∏
𝑖′≠𝑖,𝑗

𝜇𝑘
𝑖𝑖′
(𝜏𝑖′ )

⟹ 𝜈𝑘𝑖
(
𝜏−𝑖 ∣ ℎ;𝜎

<𝑘
−𝑖

)
=
∏
𝑗≠𝑖

𝜈𝑘𝑖𝑗
(
𝜏𝑗 ∣ ℎ;𝜎

<𝑘
−𝑖

)

14 This is the usual assumption in level-k models and ensures a unique solution to every game.
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where, we know 
∑𝑘−1

𝑙=0 𝜎
𝑙
𝑗
(𝛼(𝜙, ℎ) ∣ 𝜙) > 0 because 𝜎0

𝑗
(𝛼(𝜙, ℎ) ∣ 𝜙) = 1

|𝐴(𝜙)| > 0. Therefore, the result is true for |ℎ| = 1.

Next, consider any player 𝑖 with any level 𝑘 > 0 and suppose that 𝜈𝑘
𝑖

(
𝜏−𝑖 ∣ ℎ;𝜎

<𝑘
−𝑖

)
=
∏

𝑗≠𝑖 𝜈
𝑘
𝑖𝑗

(
𝜏𝑗 ∣ ℎ;𝜎

<𝑘
−𝑖

)
for all ℎ ∈𝐻𝑖 such 

that |ℎ| = 1, 2, ..., 𝑡 − 1. It suffices to complete the proof by considering any ℎ ∈𝐻𝑖 such that |ℎ| = 𝑡. Because in games of perfect 
information, actions are perfectly observed, level 𝑘 player 𝑖’s belief about the level profile of others being 𝜏−𝑖 such that 𝜏𝑗 < 𝑘 for 
any 𝑗 ≠ 𝑖 is:

𝜈𝑘𝑖
(
𝜏−𝑖 ∣ ℎ;𝜎

<𝑘
−𝑖

)
=

∏
{ℎ̃∶ ℎ̃≺ℎ, 𝑃 (ℎ̃)≠𝑖} 𝜎

𝜏𝑃 (ℎ̃)

𝑃 (ℎ̃)
(𝛼(ℎ̃, ℎ) ∣ ℎ̃)

∑
{𝜏′−𝑖∶𝜏

′
𝑗
<𝑘 ∀𝑗≠𝑖}

∏
{ℎ̃∶ ℎ̃≺ℎ, 𝑃 (ℎ̃)≠𝑖} 𝜎

𝜏′
𝑃 (ℎ̃)

𝑃 (ℎ̃)
(𝛼(ℎ̃, ℎ) ∣ ℎ̃)

=

∏
𝑗≠𝑖 𝑓𝑗 (ℎ ∣ 𝜎

𝜏𝑗
𝑗
)

∑
{𝜏′

−𝑖
∶𝜏′

𝑗
<𝑘 ∀𝑗≠𝑖}

∏
𝑗≠𝑖 𝑓𝑗 (ℎ ∣ 𝜎

𝜏′
𝑗

𝑗
)

=
∏
𝑗≠𝑖

⎡⎢⎢⎣
𝑓𝑗 (ℎ ∣ 𝜎

𝜏𝑗
𝑗
)

∑𝑘−1
𝑙=0 𝑓𝑗 (ℎ ∣ 𝜎𝑙

𝑗
)

⎤⎥⎥⎦
⟹ 𝜈𝑘𝑖

(
𝜏−𝑖 ∣ ℎ;𝜎

<𝑘
−𝑖

)
=
∏
𝑗≠𝑖

𝜈𝑘𝑖𝑗
(
𝜏𝑗 ∣ ℎ;𝜎

<𝑘
−𝑖

)

where 𝑓𝑗 (ℎ ∣ 𝜎𝑙
𝑗
) is the probability that player 𝑗 moves along the path to reach ℎ given player 𝑗 is using 𝜎𝑙

𝑗
. That is,

𝑓𝑗 (ℎ ∣ 𝜎𝑙𝑗 ) =

{∏
{ℎ̃∶ ℎ̃≺ℎ, 𝑃 (ℎ̃)=𝑗} 𝜎

𝑙
𝑗
(𝛼(ℎ̃, ℎ) ∣ ℎ̃) if {ℎ̃ ∶ ℎ̃ ≺ ℎ, 𝑃 (ℎ̃) = 𝑗} ≠ ∅

1 otherwise.

This completes the proof. ■

What drives this result is that in games of perfect information, when player 𝑗 moves, all players perfectly observe this history. As 
a result, all players other than 𝑗 only update their beliefs about the level of player 𝑗, and do not update their beliefs about any of the 
other players. In addition, the assumption of independence of the distribution of player levels is used. If levels are correlated across 
players then it’s possible that player 𝑖 can update their beliefs about the level of player 𝑗 based on actions taken by player 𝑙. From 
Proposition 1, we can see that the marginal posterior belief of level-𝑘 player 𝑖 to player 𝑗 ’s belief only depends on player 𝑗 ’s moves 

along the history. Therefore, we can obtain that 𝜈𝑘
𝑖𝑗

(
𝜅 ∣ ℎ;𝜎<𝑘−𝑖

)
= 𝜈𝑘

𝑖𝑗

(
𝜅 ∣ ℎ;𝜎<𝑘

𝑗

)
.

The second property of the DCH solution is that in the later histories, the support of the posterior beliefs is (weakly) shrinking. 
In this sense, the players would have a more precise posterior belief when the history gets longer. For any player 𝑖, 𝑗 ∈𝑁 such that 
𝑖 ≠ 𝑗, for any ℎ ∈𝐻𝑖, and for any 𝑘 ∈ ℕ, we denote the support of level-𝑘 player 𝑖’s belief about player 𝑗 ’s level as

𝑠𝑢𝑝𝑝𝑘𝑖𝑗 (ℎ) ≡ {𝜏𝑗 ∈ {0,1, ..., 𝑘− 1} ∣ 𝜈𝑘𝑖𝑗

(
𝜏𝑗 ∣ ℎ;𝜎

<𝑘
𝑗

)
> 0}.

This property is formally stated in the following proposition.

Proposition 2. In any finite game of perfect information Γ, for all 𝑖, 𝑗 ∈ 𝑁 , 𝑘 ∈ ℕ, and any ℎ, ℎ′ ∈ 𝐻𝑖, if ℎ
′ ≺ ℎ, then 𝑠𝑢𝑝𝑝𝑘

𝑖𝑗
(ℎ) ⊆

𝑠𝑢𝑝𝑝𝑘
𝑖𝑗
(ℎ′).

Proof. To prove the statement, it suffices to show that 𝜅 ∉ 𝑠𝑢𝑝𝑝𝑘
𝑖𝑗
(ℎ′) ⟹ 𝜅 ∉ 𝑠𝑢𝑝𝑝𝑘

𝑖𝑗
(ℎ) for all 𝜅 = 0, 1, ..., 𝑘 − 1. From the proof of 

Proposition 1, we can obtain that

𝜈𝑘𝑖𝑗 (𝜅 ∣ ℎ;𝜎<𝑘𝑗 ) =
𝑓𝑗 (ℎ ∣ 𝜎𝜅

𝑗
)

∑𝑘−1
𝑙=0 𝑓𝑗 (ℎ|𝜎𝑙𝑗 )

=

⎧⎪⎨⎪⎩

∏
{ℎ̃∶ ℎ′≺ℎ̃≺ℎ, 𝑃 (ℎ̃)=𝑗} 𝜎

𝜅
𝑗
(𝛼(ℎ̃,ℎ)∣ℎ̃)𝜈𝑘

𝑖𝑗
(𝜅∣ℎ′;𝜎<𝑘

𝑗
)

∑𝑘−1
𝑙=0

∏
{ℎ̃∶ ℎ′≺ℎ̃≺ℎ, 𝑃 (ℎ̃)=𝑗} 𝜎

𝑙
𝑗
(𝛼(ℎ̃,ℎ)∣ℎ̃)𝜈𝑘

𝑖𝑗
(𝑙∣ℎ′;𝜎<𝑘

𝑗
)

if {ℎ̃ ∶ ℎ′ ≺ ℎ̃ ≺ ℎ, 𝑃 (ℎ̃) = 𝑗} ≠ ∅

𝜈𝑘
𝑖𝑗
(𝜅 ∣ ℎ′;𝜎<𝑘

𝑗
) otherwise.

Hence, 𝜈𝑘
𝑖𝑗

(
𝜅 ∣ ℎ′;𝜎<𝑘

𝑗

)
= 0 ⟹ 𝜈𝑘

𝑖𝑗

(
𝜅 ∣ ℎ;𝜎<𝑘

𝑗

)
= 0, so 𝑠𝑢𝑝𝑝𝑘

𝑖𝑗
(ℎ) ⊆ 𝑠𝑢𝑝𝑝𝑘

𝑖𝑗
(ℎ′). ■

Notice that although players are unable to perfectly observe all previous actions in games of imperfect information, Proposition 2
still holds—the support of marginal beliefs about others’ levels in later information sets is (weakly) shrinking. See Lin and Palfrey 
(2022). Besides, the assumption of independence of the distribution of levels is not used in the proof. In other words, the shrinkage 
of the support is irreversible, regardless of how the levels are distributed.

In addition, there are a few additional remarks about the properties of the updating process in the DCH solution that are worth 
highlighting. First, there is a second source of learning, besides the shrinking support property, which is that after each move by an 
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1a

𝑙1𝑎 ∶𝐿2+ 𝑟1𝑎 ∶𝐿1

2a

𝑙2𝑎 ∶𝐿1,𝐿2

(3,4)

𝑟2𝑎 ∶𝐿3+

2b

(2,5)

𝑙2𝑏 ∶𝐿1+ 𝑟2𝑏

1b

(1,6)

𝑙1𝑏

(4,3)

𝑟1𝑏 ∶𝐿1+

1c

𝑙1𝑐 ∶𝐿1+

(6,1)

𝑟1𝑐

2c

(10,2)

𝑙2𝑐

(3,3)

𝑟2𝑐 ∶𝐿1+

Fig. 1. Game Tree of Example 4.2.1. A “+” sign indicates a move is chosen by the specified level and all higher levels. The subgame perfect equilibrium moves are 
marked with arrows.

opponent, each strategic player with level 𝑘 ≥ 2 updates the probability that the opponent is level-0.15 This in turn leads to updating 
of the relative likelihood of the higher strategic types of the opponent, since the probabilities have to sum to 1. Second, as the game 
unfolds, the beliefs of higher level players about their opponents can be updated in either direction, in the sense of believing an 
opponent is either more or less sophisticated. Examples in the next section will illustrate this. Third, while players’ belief-updating 
process is adaptive, nonetheless all players are strategically forward-looking (rather than myopic) in the sense that players take into 
account and correctly anticipate how all players in the game will update beliefs at each future history.

Since the players are forward-looking and have truncated rational expectations, it is natural to ask if there is any connection 
between our model and perfect or sequential equilibrium. We explore this relationship in the next section.

4.2. DCH and subgame perfect equilibrium

In this section, we study the relationship between the DCH solution and subgame perfect equilibrium through two simple exam-
ples. One question we address is whether sufficiently high-level players always behave consistently with backward induction. As it 
turns out, this is not generally true. In the following series of simple two-person games in extensive form, we demonstrate how high-
level players could violate backward induction either on or off the equilibrium path, suggesting the DCH solution is fundamentally 
different from subgame perfection. For the sake of simplicity, in this section and for the rest of the paper (except for Section 4.2.2) 
we assume every player’s level distribution is identical.

4.2.1. Illustrative example: violating backward induction at some subgame
Example 4.2.1 demonstrates how backward induction could be violated by every level of player at some subgame. The game 

tree for this two-person game of perfect information is shown in Fig. 1. Suppose every player’s level is independently drawn from 
Poisson(1.5), which has been suggested by Camerer et al. (2004) as an empirically plausible distribution. Every level of players’ move 
choices are labeled in the figure, with a “+” sign indicating a move is chosen by the specified level type and all higher levels. For 
instance, level-1 player 1 chooses 𝑟1𝑎 at the beginning while level-2 and above choose 𝑙1𝑎. Calculations can be found in Appendix A.

To illustrate the mechanics of the DCH solution in this example, it is useful to begin by focusing on subgame 2𝑎. In this subgame, 
level-2 and higher-level of player 2 would update from the information that player 1 is not a level-1 player, leading a level-2 player 
2 to choose 𝑙2𝑎 because the updated belief puts all weight on player 1 being level-0. However, a level-3 player 2 places positive 
posterior probability on player 1 being level-2, and as long as this posterior probability is high enough, it is optimal for level-3 
player 2 to choose 𝑟2𝑎—as if player 2 were engaged in the same backward induction reasoning used to justify the subgame perfect 
equilibrium. Following a similar logic, all high-level players would behave this way in the left branch of the game, where player 1 
chooses 𝑙1𝑎 at the beginning.

15 The updating by strategic players’ beliefs about level-0 opponents can be either increasing or decreasing.
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However, this is not the case for the right branch of the game after player 1 chooses 𝑟1𝑎 at the beginning. At subgame 1𝑐, the 
move predicted by the subgame perfect equilibrium is never chosen by any strategic player 1. Hence, in the DCH solution for this 
example, high-level player 1’s behavior is consistent with subgame perfect equilibrium on the left branch but not on the right branch.

4.2.2. Dominated actions
As we examine this example carefully, we can find the key of this phenomenon is that player 1 knows the subgame ℎ = 1𝑐 can be 

reached only if player 2 chooses a strictly dominated action16 in the previous stage. One can think of player 2’s decision at subgame 
ℎ = 2𝑏 as a rationality check in the following sense. Whenever player 2 chooses 𝑟2𝑏, the support of strategic player 1’s posterior belief 
will shrink to a singleton—he will believe player 2 is level-0. This extreme posterior belief would lead a strategic player 1 to deviate 
from subgame perfect strategy.

Generally speaking, if a history contains some player’s strictly dominated action, then all other players will immediately believe 
this player is non-strategic and best respond accordingly. As a result, it is possible that the strategy profile will not be the subgame 
perfect equilibrium for every strategic level. This argument holds no matter how small the proportion of level-0 players is. However, 
since paths with strictly dominated actions can be realized only if some player is level-0, paths containing strictly dominated actions 
occur with vanishing probability as the proportion of level-0 players converges to 0. Proposition 3 formalizes this result.

Proposition 3. Consider any finite game of perfect information where each player 𝑖’s level is drawn from the distribution 𝑝𝑖 =
(
𝑝𝑖𝑘
)∞
𝑘=0

. If 
some history ℎ can occur only if some player chooses a strictly dominated action, then the probability for such history being realized converges 
to 0 as 𝑝0 = (𝑝𝑖0)𝑖∈𝑁 → (0, … , 0).

Proof. Consider any ℎ that can occur only if some player chooses a strictly dominated action. That is, there is ℎ′ that is a prefix of ℎ
with 𝑖 = 𝑃 (ℎ′) such that there is a strictly dominated action 𝑎′ ∈ 𝐴(ℎ′) and (ℎ′, 𝑎′) is a prefix of ℎ. Since this is a strictly dominated 
action, it can only be chosen by a level-0 player. Therefore, the ex ante probability for player 𝑖 to choose 𝑎′ at ℎ′ is

Pr(𝑎′ ∣ ℎ′) =

∞∑
𝑗=0

𝜎
𝑗
𝑖
(𝑎′ ∣ ℎ′)𝑝𝑖𝑗 = 𝜎0𝑖 (𝑎

′ ∣ ℎ′)𝑝𝑖0 =
1

|𝐴(ℎ′)|𝑝𝑖0.

Lastly, the ex ante probability for ℎ to be realized, Pr(ℎ), is smaller than Pr(𝑎′|ℎ′) and hence

lim
𝑝0→(0,…,0)

Pr(ℎ) ≤ lim
𝑝0→(0,…,0)

Pr(𝑎′ ∣ ℎ′) = lim
𝑝0→(0,…,0)

1

|𝐴(ℎ′)|𝑝𝑖0 = 0.

This completes the proof. ■

It is worth noticing that the independence of the distribution of the levels is not required in this proposition as strictly dominated 
actions will only be chosen by level-0 players. Moreover, one can see this principle in play in Example 4.2.1 where player 1’s 
anomalous behavior only occurs when player 2 chooses a strictly dominated action, which is only chosen by level-0. For other parts 
of the game, if both players are at least level 3, DCH predicts the game will follow the subgame perfect equilibrium path.

Since the subgame perfect equilibrium path never contains strictly dominated actions, one might be tempted to conjecture that 
the equilibrium path is always followed by sufficiently sophisticated players. The next example demonstrates that this is not true. In 
fact, it is possible that the subgame perfect equilibrium path is never chosen by strategic players, so high-level players in our model 
do not necessarily converge to the subgame perfect equilibrium.

4.2.3. Illustrative Example: Violating backward induction on the equilibrium path
Example 4.2.3 is modified from the previous example by changing player 1’s payoff from 4 to 3

2
if he chooses 𝑟1𝑏 at history 

1𝑏. Decreasing the payoff does not affect the subgame perfect equilibrium. However, this change makes low-level players think the 
subgame perfect equilibrium actions are not profitable, causing a domino effect that high-level players think the equilibrium actions 
are not optimal as well. Here we consider an arbitrary prior distribution 𝑝 =

(
𝑝𝑘
)∞
𝑘=0

. The game tree is shown in Fig. 2 with every 
level of players’ decisions. The calculations can be found in Appendix A.

Level-1 players will behave the same as in the previous example. However, the change of payoffs makes 𝑙1𝑎 not profitable for 
level-2 player 1 at the initial history. Hence, player 2 would believe player 1 is certainly level-0 whenever the game proceeds to the 
left branch. Moreover, every level of players would behave the same by the same logic. As a result, the subgame perfect equilibrium 
path is never chosen by strategic players. If 𝑝0 is close to 0, the subgame perfect equilibrium outcome will almost never be reached.

16 At any history ℎ ∈𝐻∖𝑍 with 𝑖 = 𝑃 (ℎ), an action 𝑎′ ∈𝐴(ℎ) is strictly dominated if there is another action 𝑎′′ ∈𝐴(ℎ) such that

min
𝑧∈𝑍ℎ′′

𝑢𝑖(𝑧) > max
𝑧∈𝑍ℎ′

𝑢𝑖(𝑧),

where ℎ′ = (ℎ, 𝑎′) and ℎ′′ = (ℎ, 𝑎′′).
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1a

𝑙1𝑎 𝑟1𝑎 ∶𝐿1+

2a

𝑙2𝑎 ∶𝐿1+

(3,4)

𝑟2𝑎

2b

(2,5)

𝑙2𝑏 ∶𝐿1+ 𝑟2𝑏

1b

(1,6)

𝑙1𝑏

(
𝟑

𝟐
,3
)

𝑟1𝑏 ∶𝐿1+

1c

𝑙1𝑐 ∶𝐿1+

(6,1)

𝑟1𝑐

2c

(10,2)

𝑙2𝑐

(3,3)

𝑟2𝑐 ∶𝐿1+

Fig. 2. Game Tree of Example 4.2.3. A “+” sign indicates a move is chosen by the specified level and all higher levels. The subgame perfect equilibrium moves are 
marked with arrows.

Instead, there is an imperfect Nash equilibrium that can be supported by the strategy profile of every strategic level of both 
players. Loosely speaking, the belief updating process gets “stuck” at this equilibrium, causing all higher-level players behave in the 
same way.17

4.3. The strategy-reduction effect of DCH

An interesting feature of the DCH solution is the strategy-reduction effect. That is, the DCH solution can differ for two games that 
share the same reduced normal form. To illustrate this effect, we first consider a toy example in this section and provide a detailed 
analysis of the strategy-reduction effect for a class of increasing-sum centipede games in the subsequent section.

Consider the game in extensive form Γ, whose game tree is shown in Fig. 3. This example is almost exactly the same as Exam-
ple 4.2.3, with the single exception being that player 1’s payoff changes from 3 to 8 after choosing 𝑟2𝑎 at subgame 2𝑎. This change 
does not affect the subgame perfect equilibrium, but makes choosing 𝑙1𝑎 profitable again for high-level player 1. (Here we again 
assume the prior distribution follows Poisson(1.5).) Consequently, higher levels (𝑘 ≥ 3) of DCH players in this game will choose 
actions that lead to the subgame perfect equilibrium outcome, (8, 4).

This switch to the subgame perfect outcome is a direct consequence of the belief-updating process of the DCH solution. Although 
the payoff 10 is really attractive to player 1, strategic player 1 will realize he can get it only if player 2 is level-0. Therefore, if there is 
a high enough probability of higher levels of player 2, player 1 will realize he is likely to get the lower payoff of 3 at node 2𝑐. Hence, 
a high-level player 1 will choose 𝑙1𝑎 at the beginning (as if conducting backward induction). As long as there are enough strategic 
types of player 1 choosing 𝑙1𝑎, higher levels of player 2 will update accordingly and choose the subgame perfect equilibrium action 
𝑟2𝑎. The calculations can be found in Appendix A.

To illustrate the strategy-reduction effect, consider another game in extensive form Γ′, whose game tree is shown in Fig. 4. 
In this game, player 1 moves first and chooses one of the reduced strategies in Γ. That is, player 1’s action set is 𝐴1 =
{𝑙1𝑎𝑙1𝑏, 𝑙1𝑎𝑟1𝑏, 𝑟1𝑎𝑙1𝑐 , 𝑟1𝑎𝑟1𝑐}. After that, player 2 chooses one of the reduced strategies in Γ

′ without observing player 1’s action. Γ
and Γ′ share the same reduced normal form as shown in Table 1.

Since Γ′ is essentially a simultaneous move game, the distribution of outcomes in the DCH solution of Γ′ coincides with the 
distribution of outcomes of the standard CH model applied to the 4 ×6 matrix game displayed in Table 1. It is easy to see that level-1 
and higher-levels of player 1 will choose the strategy 𝑟1𝑎𝑙1𝑐 and level-1 and higher-level of player 2 will choose the strategy 𝑙2𝑎𝑙2𝑏, as 
indicated in the table. This result illustrates how DCH could dramatically differ between different games that share the same reduced 
normal form. Specifically, DCH predicts that all strategic levels of player 1 and 2 in Γ′ will choose 𝑟1𝑎𝑙1𝑐 and 𝑙2𝑎𝑙2𝑏, respectively, 
leading to a different outcome compared to the DCH solution of Γ.

When examining this result carefully, one can realize that the driving force behind this non-equivalence between Γ and Γ′ is 
the difference in the numbers of available strategies, which alters the behavior of level-0. In particular, level-0 player 2 uniformly 

17 The following strategy profile defines this imperfect equilibrium: player 1 chooses 𝑟1𝑎 at the beginning, 𝑟1𝑏 at subgame ℎ = 1𝑏, and chooses 𝑙1𝑐 at subgame ℎ = 1𝑐; 
player 2 chooses 𝑙2𝑎 at subgame ℎ = 2𝑎, 𝑙2𝑏 at subgame ℎ = 2𝑏, and chooses 𝑟2𝑐 at subgame ℎ = 2𝑐. Therefore, (2, 5) is an equilibrium outcome.
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1a

𝑙1𝑎 ∶𝐿1,𝐿3+ 𝑟1𝑎 ∶𝐿2

2a

𝑙2𝑎 ∶𝐿1

(𝟖,4)

𝑟2𝑎 ∶𝐿2+

2b

(2,5)

𝑙2𝑏 ∶𝐿1+ 𝑟2𝑏

1b

(1,6)

𝑙1𝑏

( 3
2
,3)

𝑟1𝑏 ∶𝐿1+

1c

𝑙1𝑐 ∶𝐿1+

(6,1)

𝑟1𝑐

2c

(10,2)

𝑙2𝑐

(3,3)

𝑟2𝑐 ∶𝐿1+

Fig. 3. Game Tree of Γ. A “+” sign indicates a move is chosen by the specified level and all higher levels. The subgame perfect equilibrium moves are marked with 
arrows.

Fig. 4. Game Tree of Γ′ where player 1 first chooses a reduced strategy of Γ and then player 2 chooses a reduced strategy of Γ without observing player 1’s action.

Table 1
Reduced Normal Form of Γ and Γ′ .

Player 2

Player 1 𝑙2𝑎𝑙2𝑏 𝑟2𝑎𝑙2𝑏 𝑙2𝑎𝑟2𝑏𝑙2𝑐 𝑙2𝑎𝑟2𝑏𝑟2𝑐 𝑟2𝑎𝑟2𝑏𝑙2𝑐 𝑟2𝑎𝑟2𝑏𝑟2𝑐

𝐿1+

𝑙1𝑎𝑙1𝑏 1,6 8,4 1,6 1,6 8,4 8,4
𝑙1𝑎𝑟1𝑏 3/2,3 8,4 3/2,3 3/2,3 8,4 8,4
𝑟1𝑎𝑙1𝑐 𝐿1+ 2,5 2,5 10,2 3,3 10,2 3,3
𝑟1𝑎𝑟1𝑐 2,5 2,5 6,1 6,1 6,1 6,1

randomizes between six reduced strategies in Γ′, whereas level-0 player 2 uniformly randomizes among eight non-reduced strategies 
in Γ. This difference changes the behavior of level-1 player 1 (who best responds to level-0 player 2), which in turn alters the 
behavior of level-2 player 2, and so on for all higher levels.
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Remark 3. Battigalli et al. (2020) prove that two extensive game structures with imperfect information share the same mapping from 
profiles of reduced strategies to induced terminal paths if and only if one can be transformed into the other using two elementary 
transformations: Interchanging of simultaneous moves (INT) and Coalescing move/sequential agent splitting (COA). The DCH solution 
is invariant under INT. However, DCH is not invariant under COA unless a property called balancedness is satisfied. See Battigalli 
(2023) for a formal statement of this property. Roughly speaking, a game satisfies balancedness if for every history and every pair of 
actions at that history, the cardinality of the action sets in the resulting subgames are the same. For example, the game in Fig. 3 is 
not balanced, since the condition is violated at information set 2b.

In addition, one property of the standard CH model identified by Camerer et al. (2004) is that if a level-𝑘 player plays a (pure) 
equilibrium strategy, then all higher levels of that player will play that strategy too. One may wonder if an analogous property holds 
in the DCH solution. That is, if some level of a player chooses on the equilibrium path, do all higher-levels of that player choose that 
action too? The game Γ provides a counterexample for this conjecture. At the initial history, level-1 player 1 chooses the equilibrium 
path 𝑙1𝑎. However, level-2 player 1 switches to 𝑟1𝑎, and level-3 (and above) player 1 switches back to 𝑙1𝑎.

The underlying reason is that even if a level-𝑘 player chooses the equilibrium path, a higher-level player could still deviate from 
the equilibrium path if other players do not move along the equilibrium path in later subgames. In this example, level-1 player 1 
chooses 𝑙1𝑎 at the beginning to best respond to level-0 player 2. Yet, level-1 player 2 does not choose the equilibrium path at the 
subgame ℎ = 2𝑎, causing level-2 player 1 to choose 𝑟1𝑎 at the beginning. Level-2 (and above) player 2 switches to the equilibrium 
path at the subgame ℎ = 2𝑎, and this information can only be updated by level-3 (and above) player 1. Finally, as long as there are 
enough level-2 (and above) players, high-level player 1 would switch back to the equilibrium path, creating a non-monotonicity.

5. An application: centipede games

1

(1,0)

T

P 2

(𝑐,1 + 𝑐)

T

P 1

(1 + 2𝑐,2𝑐)

T

P 2

((2𝑆 − 1)𝑐,1 + (2𝑆 − 1)𝑐)

T

(1 + 2𝑆𝑐,2𝑆𝑐)
P

Fig. 5. 2𝑆-move Centipede Game.

In this section, we explore the strategy-reduction effect in much more detail, focusing on the class of “linear centipede games,” 
which is illustrated in Fig. 5. The games in this class are described in the following way. Player 1, the first-mover, and player 2, 
the second-mover, alternate over a sequence of moves. At each move, the player whose turn it is can either end the game (“take”) 
and receive the larger of two payoffs or allow the game to continue (“pass”), in which case both the large and the small payoffs are 
incremented by an amount 𝑐 > 0. The difference between the large and the small payoffs equals 1 and does not change. The game 
continues for at most 2𝑆 decision nodes (stages) where 𝑆 ≥ 2, and we label the decision nodes by {1, 2, … , 2𝑆}. Player 1 moves at 
odd nodes and player 2 moves at even nodes. If the game is ended by a player at stage 𝑗 ≤ 2𝑆 , the payoffs are (1 + (𝑗 − 1)𝑐, (𝑗 − 1)𝑐)
if 𝑗 is odd and ((𝑗 − 1)𝑐, 1 + (𝑗 − 1)𝑐) if 𝑗 is even. If no player ever takes, the payoffs are (1 + 2𝑆𝑐, 2𝑆𝑐). Thus, a linear centipede 
game has two parameters: (𝑆, 𝑐). To avoid trivial cases, we assume 1

3
< 𝑐 < 1.18

Specifically, we will compare each level of players’ behavior when the centipede game is played in two different representations 
given the same prior distribution. In Section 5.1, we first characterize the DCH solution of the centipede game when it is played in 
its original extensive form (as shown in Fig. 5), by which we mean that the game is played as an alternating-move sequential game. 
In Section 5.2, we then characterize the DCH solution of the centipede game when it is played in reduced normal form, by which 
we mean that both players simultaneously choose a reduced strategy.19 From the perspective of the standard equilibrium theory, 
these two implementations of the game would not induce different outcomes because they share the same reduced normal form. 
However, whether playing the game in extensive form (using the direct-response method) or in reduced normal form (using the 
strategy method) will induce the same behavior is still an open question that is under debate in experimental methodology.

From the perspective of DCH, the key difference between the direct-response method and the strategy method is that the cardi-
nalities of action sets are different, which implies different behavior for level-0 players. Since the DCH solution is solved recursively 
from the bottom of the hierarchy, this non-equivalence of level-0 behavior triggers a chain reaction that affects the behavior of all 
higher levels.

18 If 𝑐 > 1, then the unique equilibrium is for every player to pass at every node. If 𝑐 < 1

3
, then all players with level 𝑘 > 0 will always take, so CH behavior is the 

same as subgame perfect Nash equilibrium behavior for all 𝑘 > 0.
19 When we say a centipede game is played in its reduced normal form, we mean that a player’s strategy corresponds to the node at which they will stop the game 
by taking (or always pass). Therefore, each player has 𝑆 + 1 available strategies in the reduced normal form.
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5.1. DCH for the centipede game in extensive form

When the centipede game is played in extensive form, players take turns moving in an alternating-move sequential game, where 
each player can move at (most) 𝑆 stages. Therefore, a (behavioral) strategy for player 𝑖 is an 𝑆-tuple where each element is the 
probability to take at the corresponding decision node. That is, 𝜎1 = (𝜎1,1, … , 𝜎1,𝑆 ) and 𝜎2 = (𝜎2,1, … , 𝜎2,𝑆 ) are player 1 and 2’s 
strategies, respectively. For every 1 ≤ 𝑗 ≤ 𝑆 , 𝜎1,𝑗 is the probability that player 1 would take at stage 2𝑗 −1 and 𝜎2,𝑗 is the probability 
that player 2 would take at stage 2𝑗.

Following the notation introduced earlier, we use 𝜎𝑘
1
and 𝜎𝑘

2
to denote level-𝑘 players’ strategies. Level-0 players uniformly 

randomize at each stage. That is, 𝜎0
1
= 𝜎0

2
=
(
1

2
,… ,

1

2

)
. Finally, to simplify the notation, for every stage 1 ≤ 𝑗 ≤ 2𝑆 , we let 𝜈𝑘

𝑗
(⋅) be 

level-𝑘 stage 𝑗-mover’s belief about the opponent’s level at stage 𝑗 where

𝜈𝑘𝑗 (𝜏−𝑃 (𝑗)) ≡ 𝜈𝑘
𝑃 (𝑗),−𝑃 (𝑗)

(𝜏−𝑃 (𝑗) ∣ 𝑗;𝜎
<𝑘
−𝑃 (𝑗)

).

To fully characterize every level of players’ strategies, we need to compute every level of players’ best responses at every subgame. 
In principle, we have to solve the behavior of each level recursively. However, since each level of players’ strategy is monotonic—when 
the player decides to take at some stage, he will take in all of his later subgames—we can alternatively characterize the solution by 
identifying the lowest level of player to take at every subgame.

In Lemma 1, we characterize level-1 players’ behavior and establish the monotonicity result. These results are straightforward 
and follow from the assumption that 1

3
< 𝑐 < 1.

Lemma 1. In linear centipede games with an extensive form shown in Fig. 5, if 1
3
< 𝑐 < 1, then

1. 𝜎𝑘
2,𝑆

= 1 for all 𝑘 ≥ 1.

2. 𝜎1
1
= (0, … , 0) and 𝜎1

2
= (0, … , 0, 1).

3. For every 𝑘 ≥ 2 and every 1 ≤ 𝑗 ≤ 𝑆 − 1,
(i) 𝜎𝑘

1,𝑗
= 0 if 𝜎𝑚

2,𝑗
= 0 for every 1 ≤𝑚 ≤ 𝑘 − 1;

(ii) 𝜎𝑘
2,𝑗

= 0 if 𝜎𝑚
1,𝑗+1

= 0 for every 1 ≤𝑚 ≤ 𝑘 − 1.

Proof. See Appendix B. ■

Lemma 1 has three parts: (1) every strategic player 2 takes at the last stage; (2) completely characterizes level-1 strategies—player 
1 passes at every stage and player 2 passes at every stage except for the last stage; (3) provides necessary conditions for higher levels 
to take at some stage. For any level 𝑘 ≥ 2 and any stage 1 ≤ 𝑗 ≤ 2𝑆 − 1, a level-𝑘 player would take at stage 𝑗 only if there is some 
lower level player that would take at the next stage. Otherwise, it is optimal for a level-𝑘 player to pass at stage 𝑗.

The general characterization of level-k optimal strategies is in terms of the following cutoffs, specifying, for each stage, the lowest 
level type to take at that stage.

Definition 1. For every stage 𝑗 where 1 ≤ 𝑗 ≤ 2𝑆 , define the cutoff, 𝐾∗
𝑗
be the lowest level of player that would take at this stage. 

In other words,

𝐾∗
𝑗 =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

argmin𝑘

{
𝜎𝑘
1,

𝑗+1
2

= 1

}
, if 𝑗 is odd

argmin𝑘

{
𝜎𝑘
2,

𝑗
2

= 1

}
, if 𝑗 is even

∞, if ∄𝑘 s.t. 𝜎𝑘
1,

𝑗+1
2

= 1 or 𝜎𝑘
2,

𝑗
2

= 1.

Based on Definition 1, the monotonicity obtained in part (3) of Lemma 1 implies the following two results about cutoffs and 
strategies. Together they show that for any stage, a player’s strategy will be to take at that stage if and only if his level is greater or 
equal to the cutoff.

Proposition 4. For every 1 ≤ 𝑗 ≤ 2𝑆 − 1,

1. 𝐾∗
𝑗
≥𝐾∗

𝑗+1
+ 1 if 𝐾∗

𝑗+1
<∞;

2. 𝐾∗
𝑗
=∞ if 𝐾∗

𝑗+1
=∞.

Proof. See Appendix B. ■

Proposition 5. For every 1 ≤ 𝑗 ≤ 2𝑆 − 1,
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1. 𝜎𝑘
1,

𝑗+1
2

= 1 for all 𝑘 ≥𝐾∗
𝑗
if 𝑗 is odd and 𝐾∗

𝑗
<∞;

2. 𝜎𝑘
2,

𝑗
2

= 1 for all 𝑘 ≥𝐾∗
𝑗
if 𝑗 is even and 𝐾∗

𝑗
<∞.

Proof. See Appendix B. ■

Hence, cutoffs characterize optimal strategies of each level of each player, with a cutoff defining the lowest level that would take 
at each stage and all higher levels of that player would also take at that stage. The next two propositions establish recursive necessary 
and sufficient conditions for the existence of some level of some player to take at each stage. The proofs of these propositions provide 
a recipe for computing cutoffs.

Proposition 6. 𝐾∗
2𝑆−1

<∞ ⟺ 𝑝0 <
2𝑆

2𝑆+
(
3𝑐−1
1−𝑐

)

First, we note that the proofs are simplified somewhat by observing the following identity:

𝑝0 <
2𝑆

2𝑆 +
(
3𝑐−1

1−𝑐

) ⟺

𝑝0

(
1

2

)𝑆

𝑝0

(
1

2

)𝑆−1
+ (1 − 𝑝0)

<
1 − 𝑐

1 + 𝑐
.

Proof. Only if: Suppose 𝐾∗
2𝑆−1

<∞. By Proposition 4, 𝐾∗
𝑗
≥𝐾∗

2𝑆−1
for all 𝑗 < 2𝑆 − 1. Hence, the belief of level 𝐾∗

2𝑆−1
of player 1 

that player 2 is level-0 at stage 2𝑆 − 1 equals to

𝜈
𝐾∗
2𝑆−1

2𝑆−1
(0) =

𝑝0

(
1

2

)𝑆−1

𝑝0

(
1

2

)𝑆−1
+
∑𝐾∗

2𝑆−1
−1

𝑙=1
𝑝𝑙

,

since it is optimal for 𝐾∗
2𝑆−1

<∞ to take at 2𝑆 − 1. This implies 
𝑝0

(
1
2

)𝑆

𝑝0

(
1
2

)𝑆−1
+
∑𝐾∗

2𝑆−1
−1

𝑙=1
𝑝𝑙

<
1−𝑐

1+𝑐
and hence:

𝑝0

(
1

2

)𝑆

𝑝0

(
1

2

)𝑆−1
+ (1 − 𝑝0)

<
1 − 𝑐

1 + 𝑐
⟺ 𝑝0 <

2𝑆

2𝑆 +
(
3𝑐−1

1−𝑐

) .

If: Suppose 𝐾∗
2𝑆−1

=∞. Then from Proposition 4, 𝐾∗
𝑗
=∞ for all 𝑗 < 2𝑆 − 1. That is, all levels of both players pass at every stage up 

to and including 2𝑆 − 1. Hence, the belief of level 𝑘 ≥ 1 of player 1 that player 2 is level-0 at stage 2𝑆 − 1 equals to

𝜈𝑘
2𝑆−1

(0) =
𝑝0

(
1

2

)𝑆−1

𝑝0

(
1

2

)𝑆−1
+
∑𝑘−1

𝑙=1 𝑝𝑙

>
𝑝0

(
1

2

)𝑆−1

𝑝0

(
1

2

)𝑆−1
+ (1 − 𝑝0)

.

Since 𝐾∗
2𝑆−1

=∞, it is optimal to pass at 2𝑆 − 1 for all levels 𝑘 ≥ 1 of player 1, implying

𝑝0

(
1

2

)𝑆

𝑝0

(
1

2

)𝑆−1
+ (1 − 𝑝0)

≥
1 − 𝑐

1 + 𝑐
.

This completes the proof. ■

Thus, 𝑝0 must be sufficiently small, and the condition is easier to satisfy the smaller 𝑐 is (the potential gains to passing) and 
the larger is 𝑆 (the horizon). If this condition holds, there exists some strategic player 1 that takes at stage 2𝑆 − 1. The proof also 
provides an insight for how the cutoffs can be computed. Specifically, the 𝐾∗

2𝑆−1
cutoff is computed as:

𝐾∗
2𝑆−1

= argmin
𝑘

⎧⎪⎨⎪⎩

𝑝0

(
1

2

)𝑆

𝑝0

(
1

2

)𝑆−1
+
∑𝑘−1

𝑙=1 𝑝𝑙

<
1 − 𝑐

1 + 𝑐

⎫⎪⎬⎪⎭
.

Cutoffs for earlier stages can be derived recursively as the following proposition establishes.
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Proposition 7. For every 1 ≤ 𝑗 ≤ 2𝑆 − 2,

𝐾∗
𝑗 <∞ ⟺

𝑝0

(
1

2

)⌊ 𝑗
2
⌋+1

+
∑𝐾∗

𝑗+1
−1

𝑙=1
𝑝𝑙

𝑝0

(
1

2

)⌊ 𝑗
2
⌋
+ (1 − 𝑝0)

<
1 − 𝑐

1 + 𝑐
. (3)

Proof. The logic of the proof is similar to Proposition 6. See Appendix B for details. ■

A simple economic interpretation of the conditions obtained in Proposition 6 and 7 is as follows. At any stage 𝑠, if the other 
player will take at the next stage, the net gain to taking at 𝑠 is [1 + (𝑠 −1)𝑐] − 𝑠𝑐 = 1 − 𝑐. On the other hand, if the other player passes 
at the next stage, the net gain to taking at stage 𝑠 + 2 is [1 + (𝑠 + 1)𝑐] − 𝑠𝑐 = 1 + 𝑐. Hence, the right-hand side is simply the ratio of 
payoffs to the current player depending on the opponent taking or passing at the next stage, assuming the current player will take in 
the subsequent stage. Thus, a player will take in the current stage if and only if the posterior probability the opponent will take in 
the next stage is less than this ratio.

The information contained in the history is that if the game proceeds to later stages, the opponent is less likely to be a level-0 player. If 
the game reaches stage 𝑗, the player would know the opponent has passed ⌊ 𝑗

2
⌋ times, which would occur with probability (conditional 

on the opponent being level-0) 1∕2⌊
𝑗
2
⌋ which rapidly approaches 0.

5.2. DCH for the centipede game in reduced normal form

In contrast, when the 2𝑆-move centipede game is played in reduced normal form, both players simultaneously choose the node 
at which they will stop the game or always pass. Therefore, 𝐴1 = 𝐴2 = {1, … , 𝑆 + 1} is the set of actions for each player. Action 
𝑠 ≤ 𝑆 represents a plan to pass at the first 𝑠 − 1 opportunities and take at the 𝑠-th opportunity. Strategy 𝑆 + 1 is the plan to always 
pass. Player 1 and 2’s strategies are denoted by 𝑎1 and 𝑎2, respectively. If 𝑎1 ≤ 𝑎2, then the payoffs are (1 + (2𝑎1 − 2)𝑐, (2𝑎1 − 2)𝑐); if 
𝑎1 > 𝑎2, then the payoffs are ((2𝑎2 − 1)𝑐, 1 + (2𝑎2 − 1)𝑐).

To characterize the DCH solution for the linear centipede game in reduced normal form, we let 𝑎𝑘
𝑖
denote level-𝑘 player 𝑖’s 

strategy. A level-0 player uniformly randomizes across all available strategies. With a minor abuse of notation, denote 𝑎0
𝑖
= 1

𝑆+1
for 

𝑖 ∈ {1, 2}. Lemma 2 establishes level-1 players’ behavior and the monotonicity, similarly to Lemma 1.

Lemma 2. In linear centipede games of reduced normal form, if 1
3
< 𝑐 < 1, then

1. 𝑎1
1
= 𝑆 + 1 and 𝑎1

2
= 𝑆 .

2. For every 𝑘 ≥ 2,
(i) 𝑎𝑘

1
≥min{𝑎𝑚

2
∶ 1 ≤𝑚 ≤ 𝑘 − 1};

(ii) 𝑎𝑘
2
≥min{𝑎𝑚

1
∶ 1 ≤𝑚 ≤ 𝑘 − 1} − 1.

3. 𝑎𝑘+1
𝑖

≤ 𝑎𝑘
𝑖
for all 𝑘 ≥ 1 and for all 𝑖 ∈ {1, 2}.

Proof. See Appendix B. ■

Lemma 2 has essentially the same three parts as Lemma 1, but stated in terms of the stopping point strategies rather than 
behavioral strategies. Therefore, as in the extensive form, optimal strategies are given by cutoffs, defined analogously to Definition 1.

Definition 2. For every stage 𝑠 where 1 ≤ 𝑗 ≤ 2𝑆 , define the cutoff 𝐾̃∗
𝑗
to be the lowest level of player that would take no later than 

this stage. In other words,

𝐾̃∗
𝑗 =

⎧⎪⎪⎨⎪⎪⎩

argmin𝑘

{
𝑎𝑘
1
≤

𝑗+1

2

}
, if 𝑗 is odd

argmin𝑘

{
𝑎𝑘
2
≤

𝑗

2

}
, if 𝑗 is even

∞, if ∄𝑘 s.t. 𝑎𝑘
1
≤

𝑗+1

2
or 𝑎𝑘

2
≤

𝑗

2
.

By Lemma 2, we know 𝑎1
2
= 𝑆 . Therefore, 𝐾̃∗

2𝑆
= 1. Proposition 8 and 9 are parallel to Proposition 6 and 7, providing necessary 

and sufficient conditions for the existence of some strategic players to take before a particular stage.

Proposition 8. 𝐾̃∗
2𝑆−1

<∞ ⟺ 𝑝0 <
𝑆+1

(𝑆+1)+
(
3𝑐−1
1−𝑐

) .

Proof. See Appendix B. ■
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Proposition 9. For every 1 ≤ 𝑗 ≤ 2𝑆 − 2,

𝐾̃∗
𝑗 <∞ ⟺ 𝑝0

(
𝑆

𝑆 + 1
−

2⌊ 𝑗
2
⌋𝑐

(𝑆 + 1)(1 + 𝑐)

)
+

𝐾̃∗
𝑗+1

−1∑
𝑘=1

𝑝𝑘 <
1 − 𝑐

1 + 𝑐
. (4)

Proof. The logic of the proof is similar to Proposition 8. See Appendix B for details. ■

Propositions 6 and 8 identify conditions on p such that there is some level 𝑘 > 0 of player 1 who would take at some stage when 
the centipede game is played in extensive form while every strategic level of player 1 would choose “always pass” when it is played 
in reduced normal form.

Corollary 1. If 𝑆+1

(𝑆+1)+
(
3𝑐−1
1−𝑐

) ≤ 𝑝0 <
2𝑆

2𝑆+
(
3𝑐−1
1−𝑐

) , then 𝐾∗
2𝑆−1

<∞ and 𝐾̃∗
2𝑆−1

=∞.

Proof. Since 2𝑆 > 𝑆 + 1 for all 𝑆 ≥ 2, this follows directly from Propositions 6 and 8. ■

An implication of Propositions 7 and 9 is that if 𝑝0 is small, then the difference in behavior under the two different representations 

of the game will also be small, since the left hand side of inequalities (3) and (4) both converge to 
∑𝐾̃∗

𝑗+1
−1

𝑘=1
𝑝𝑘. This result is intuitive. 

If there is no level-0 in the population, the difference in the behavior of level-0 will not trigger the chain reaction that affects higher-
level players’ behavior, as the behavior of level-1 players does not differ when the game is played in extensive form or reduced 
normal form.

However, regardless of how small 𝑝0 is (as long as it is positive), DCH predicts the extensive form and the reduced form represen-
tations lead to systematically different behavioral predictions. These differences lead to the main result of this section, Theorem 1, 
which establishes that players are more likely to take at every stage when the game is played in extensive form.

Theorem 1 (Strategy-reduction effect). For every stage 1 ≤ 𝑗 ≤ 2𝑆 ,

𝐾∗
𝑗 ≤ 𝐾̃∗

𝑗 .

Proof. See Appendix B. ■

This result provides a testable prediction that these centipede games will end earlier if played in the extensive form rather than 
in the reduced normal form. Moreover, this result is robust to the prior distributions of levels. Therefore, DCH predicts players will 
exhibit more sophisticated behavior in the extensive form since the information from the history is that the opponent is less likely to 
be a level-0 player.

5.3. Results for the Poisson-DCH model

In previous applications of the CH model, it has been useful to assume the distribution of levels is given by a Poisson distribution 
(Camerer et al., 2004). We obtain some additional results here for this one-parameter family of distributions that allow us to further 
pin down the differences between the centipede game when played in extensive form and when played in reduced normal form. The 
Poisson-DCH model assumes:

𝑝𝑘 ≡
𝑒−𝜆𝜆𝑘

𝑘!
, for all 𝑘 = 0,1,2, ...

where 𝜆 > 0 is the mean of the Poisson distribution.
Finally, we write the cutoffs as functions of 𝜆. In the extensive form, the cutoff function for stage 𝑗 is 𝐾∗

𝑗
(𝜆). In the reduced 

normal form, the cutoff function for stage 𝑗 is 𝐾̃∗
𝑗
(𝜆).

As previously discussed, due to the realization-nonequivalence of level-0 players in different representations, beliefs of level 𝑘 ≥ 2
about the opponent being level-0 shrink much faster when the game is played in extensive form compared to when it is played in 
reduced normal form. To quantify the effect, Proposition 10 demonstrates the difference between two representations at stage 2𝑆−1, 
where player 1 has the best information.

Proposition 10. As the prior distribution follows Poisson(𝜆), then

(i) 𝐾∗
2𝑆−1

(𝜆) <∞ ⟺ 𝜆 > 𝑙𝑛 
[
1 +

(
1

2

)𝑆 (
3𝑐−1

1−𝑐

)]
;

(ii) 𝐾̃∗
2𝑆−1

(𝜆) <∞ ⟺ 𝜆 > 𝑙𝑛 
[
1 +

(
1

𝑆+1

)(
3𝑐−1

1−𝑐

)]
.
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Fig. 6. (Left) The minimum value of 𝜆 needed to support taking at stage 2𝑆 − 1 when the centipede game is played in extensive form (solid) and when played in 
reduced normal form (dashed) for 𝑐 = 0.8, with 𝑆 on the horizontal axis and 𝜆 on the vertical axis. (Right) The CDFs of terminal nodes in four-node centipede games 
when the game is played in different representations predicted by DCH.

Proof. The result is obtained by substituting 𝑝0 = 𝑒−𝜆 in the formulas given by Propositions 6 and 8, and with some algebra. See 
Appendix B for details. ■

Proposition 10 provides a closed form solution for the minimum 𝜆 to support some level of player 1 to take at stage 2𝑆 − 1 in 
both the extensive form and the reduced normal form. The left panel of Fig. 6 plots the lowest 𝜆. From the figure, we can notice that 
at stage 2𝑆 − 1, the minimum value of 𝜆 to start unraveling is much smaller in the extensive form than in the reduced normal form. 
Moreover, the minimum 𝜆 converges to 0 much faster in the extensive form than in the reduced normal form as 𝑆 gets higher, which 
is derived from the belief updating of DCH.

On the other hand, in the right panel of Fig. 6, we focus on the four-move centipede game (𝑆 = 2) and plot the CDF of terminal 
nodes when the game is played in extensive form and reduced normal form predicted by DCH. First of all, we can observe the 
distribution of terminal nodes under the reduced normal form first order stochastically dominates the distribution under the extensive 
form. In fact, the FOSD relationship holds for any 𝑆, 𝑐, 𝜆. This leads to a second interpretation of Theorem 1—since the cutoffs when 
the game is played in extensive form are uniformly smaller than when played in reduced normal form, there are more levels of 
players that would take at every stage, thus generating the FOSD relationship.

When 𝜆 gets larger, the distribution of levels will shift to the right and players tend to be more sophisticated at the aggregate 
level. Proposition 11 shows that for sufficiently large 𝜆, highly sophisticated players would take at every stage in both the extensive 
form and reduced normal form of the centipede game.

Proposition 11. In both extensive form and reduced normal form linear centipede games, there exists sufficiently high 𝜆 such that unraveling 
occurs. That is, for each 𝑆 :

(i) ∃𝜆∗ <∞ such that 𝐾∗
1
(𝜆) <∞ for all 𝜆 > 𝜆∗;

(ii) ∃𝜆̃∗ <∞ such that 𝐾̃∗
1
(𝜆) <∞ for all 𝜆 > 𝜆̃∗.

Proof. See Appendix B. ■

This result shows that DCH predicts unraveling occurs if 𝜆 is sufficiently high, in both representations. However, it leaves open 
questions about how this unraveling differs between the two representations. To this end, Proposition 12 provides some insight on 
this issue, in particular that the reduced normal form requires strictly more “density shift” (higher 𝜆) in order to completely unravel 
for high-level players.

Proposition 12. For any 𝑗 where 1 ≤ 𝑗 ≤ 2𝑆 − 1, let 𝜆∗∗
2𝑆−𝑗

be the lowest 𝜆 such that 𝐾∗
2𝑆−𝑗

(𝜆) = 𝑗 + 1 for all 𝜆 > 𝜆∗∗
2𝑆−𝑗

, and let 𝜆̃∗∗
2𝑆−𝑗

be 

the lowest 𝜆 such that 𝐾̃∗
2𝑆−𝑗

(𝜆) = 𝑗 + 1 for all 𝜆 > 𝜆̃∗∗
2𝑆−𝑗

. Then 𝜆∗∗
2𝑆−𝑗

< 𝜆̃∗∗
2𝑆−𝑗

for all 1 ≤ 𝑗 ≤ 2𝑆 − 1.

Proof. See Appendix B. ■
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In other words, we can view the difference of density shifts between two representations (so that every level of players completely 
unravels) as a measure of the strategy-reduction effect. As shown in Proposition 12, we can always find a non-trivial set of 𝜆 such 
that players have already unraveled in the extensive form but not in the reduced normal form.

Finally, in the Poisson family, we can obtain an unambiguous comparative static result on the change of 𝜆. Proposition 13 shows 
that when 𝜆 increases, the cutoff level of each stage is weakly decreasing. That is, when the average sophistication of the players 
increases, play is closer to the fully rational model because strategic players believe the opponent is less likely to be level-0.

Proposition 13. For every 1 ≤ 𝑗 ≤ 2𝑆 , 𝐾∗
𝑗
(𝜆) and 𝐾̃∗

𝑗
(𝜆) are weakly decreasing in 𝜆 > 0.

Proof. See Appendix B. ■

5.4. Non-linear centipede games

The results of this section about the exact characterization of behavior in extensive form and reduced normal form centipede 
games only consider games with a linearly increasing pie. A natural robustness question is whether the qualitative findings apply 
more generally to other families of centipede games. The key assumption in our analysis is that the increment of pie is not too fast or 
too slow. If the increment is too fast (i.e., 𝑐 > 1), then it is optimal to pass everywhere. On the other hand, if the increment is too slow 
(i.e., 𝑐 < 1

3
), even the lowest level of players would take at the first stage. In all cases within this range, the DCH strategy-reduction 

effect occurs, resulting in earlier taking if the centipede game is played in extensive form. This would seem to be a general property 
of increasing-pie centipede games. That is, unless the pie sizes grow so fast that all positive levels of players will always pass, or so 
slowly that positive levels will always take, then the realization-nonequivalence of level-0 will lead to different behavior of higher-
level players when the game is played in different representations. Moreover, since beliefs of level 𝑘 ≥ 2 about the opponent being 
level-0 shrink much faster when the game is played in extensive form, DCH predicts that playing the game sequentially in extensive 
form will result in earlier taking compared to playing the game simultaneously in reduced normal form, under mild conditions.

For example, the analysis can be extended to the class of centipede games with an exponentially increasing pie, as studied in 
the McKelvey and Palfrey (1992) experiment. Similar to the previous analysis, two players alternate over a sequence of moves in an 
exponential centipede game with 2𝑆 nodes. At each node, if a player passes, both the large and small (positive) payoffs would be 
multiplied by 𝑐 > 1. In addition, the ratio between the large and the small payoff is equal to 𝜋 > 1 and does not change as the game 
progresses. Therefore, an exponential centipede game is parameterized by (𝑆, 𝜋, 𝑐): if the game is terminated by a player at stage 
𝑗 ≤ 2𝑆 , the payoffs are (𝑐𝑗−1𝜋, 𝑐𝑗−1) if 𝑗 is odd and (𝑐𝑗−1, 𝑐𝑗−1𝜋) if 𝑗 is even. If no one ever takes, then the payoffs will be (𝑐2𝑆𝜋, 𝑐2𝑆 ). 
In this class of centipede games, the multiplier 𝑐 governs the growth rate of pie, and the logic of the proofs of propositions for the 
linear games is similar for exponential games as long as:

−1 +
√
1 + 8𝜋2

2𝜋
< 𝑐 < 𝜋,

which rules out trivial cases, in the same way as the assumption of 1
3
< 𝑐 < 1 rules out trivial cases in linear centipede games.

All of the qualitative results for linearly increasing centipede games also hold for exponential centipede games, with the only 
difference being the analytical expression of the cutoffs. In particular, Theorem 1, the strategy-reduction effect, continues to hold.

6. Experimental evidence

Since DCH is a solution concept developed for games in extensive form, the solutions could appear dramatically different for dif-
ferent games that share the same reduced normal form. Specifically, DCH predicts that players would behave differently if centipede 
games of a certain class are implemented under the direct-response method (extensive form) and the strategy method (reduced 
normal form). To empirically test the strategy-reduction effect predicted by DCH, we revisit a recent experiment conducted by 
García-Pola et al. (2020a) which compared the behavior in four centipede games under the direct response method and the strategy 
method.

The game trees of the four centipede games (CG 1 to CG 4) studied in the experiment are plotted in Fig. 7. CG 1 is a centipede 
game with an exponentially-increasing pie while CG 2 is a centipede game with a constant-sum pie. By contrast, the change of the 
pie size in CG 3 and CG 4 is not monotonic and player 1’s payoff is always greater than player 2’s payoff. Among these four centipede 
games, DCH predicts that in CG 1, CG 2 and CG 4, the distribution of terminal nodes under the strategy method will first order 
stochastically dominate the distribution of terminal nodes under the direct response method. Yet, DCH predicts the FOSD relationship 
does not necessarily hold in CG 3.20

20 Since CG 1 is an exponential centipede game, as discussed in section 5.4, we can use the same argument as Theorem 1 to show the FOSD relationship. In the 
Online Appendix, we show that DCH also predicts the FOSD relationship in CG 2 and CG 4. We also prove that the FOSD relationship in CG 3 does not hold for 
all distributions of levels, unlike CG 1, CG 2 and CG 4, where DCH makes unambiguous predictions. In particular, the FOSD relationship is violated for empirically 
plausible prior distributions of levels, for example if levels are distributed Poisson with mean equal to 1.



Journal of Economic Theory 220 (2024) 105871

20

P.-H. Lin and T.R. Palfrey

Fig. 7. The game trees of CG 1 to CG 4 studied in García-Pola et al. (2020a).

DCH Prediction. In CG 1, CG 2 and CG 4, the distribution of terminal nodes under the strategy method will first order stochastically 
dominate the distribution of terminal nodes under the direct response method. However, the FOSD relationship can be violated in 
CG 3, depending on the prior distribution of levels.

This experiment consists of two treatments—the direct response method (the hot treatment) and the strategy method (the cold 
treatment)—with between-subject design. That is, each subject only participates in one of the two treatments. There are 151 subjects 
in the cold treatment, 76 in the role of first-mover and 75 in the role of second-mover. Each subject chose a stopping point for 16 
different centipede games (including the four games in the figure) without feedback between games, and was subsequently matched 
with a random player of the other role to determine payment. There were 352 subjects in the hot treatment, and each subject only 
played only one of the four centipede games in the figure.21

The two treatments share the following features. The subjects are given identical instructions in both treatments, except for the 
specific way subject decisions are elicited. In particular, the “frame” of the game is explained and presented on subject computer 
interfaces in game-tree form to reflect the timing of the centipede game in both treatments. In the cold (strategy-method) treatment, 
each subject was instructed to click on the first node at which they wanted to stop, if the game got that far. Thus, the task for a 
subject in the cold treatment was to choose one of four pure strategies of the reduced normal form of the game: take at the first 
opportunity (T); pass at the first opportunity and take at the second opportunity (PT); pass at the first two opportunities and take 
at the third opportunity (PPT); or never take (PPP). The instructions provide subjects with explanations of the decision screens, the 
matching protocols, the payment method, etc. Thus, there is no possibility of a “framing” effect as could happen, for example if the 
cold treatment were presented as a 4 × 4 matrix game.22

Fig. 8 plots the empirical CDFs of the terminal nodes under two different methods in all four games.23 In the hot treatment, since 
players are randomly paired at the beginning of the game, we plot the observed distribution of terminal nodes. On the other hand, in 
the cold (reduced normal form) treatment, players are not paired into groups before each game, and hence a distribution of terminal 
nodes is not directly observed. However, the empirical conditional take probabilities of each stage is directly observed, and from this 
one can easily compute the implied distribution of terminal nodes.24

Focusing on CG 1, CG 2 and CG 4, we can see that the distribution of terminal nodes under the strategy method indeed first order 
stochastically dominates the distribution under the direct response method although the strategy-reduction effect is weaker in CG 
4. The effect is only marginally significant for CG 4 using a one-tailed Mann-Whitney rank-sum test,25 and is insignificant using the 

21 In the hot treatment, there were 90 subjects (45 in each role) participating in each of CG 1, CG 2 and CG 4, while there were 82 subjects (41 in each role) 
participating in CG 3. Every subject in a session played 10 repetitions of the same game in the experiment, with feedback, using a matching protocol that was 
designed to minimize reputation effects. To avoid the analysis from being confounded with learning effects from repetition, our analysis only uses data from the first 
match of each game.
22 See García-Pola et al. (2020a) and García-Pola et al. (2020b) for copies of the instructions and exact details of the experimental procedures.
23 Table C.1 in Appendix C contains the values that are plotted in the figure.
24 For instance, the probability that the game ends at the first stage is equal to the fraction of subjects in the first-mover role who chose the “T” strategy. The 
probability that the game ends at the second stage is equal to one minus the fraction of subjects in the first-mover role who chose the “T” strategy times the fraction 
of subjects in the second-mover role who chose the “T” strategy. The probabilities that the game ends at later stages are computed in the similar way.
25 A one-tailed Mann-Whitney rank-sum test is performed because DCH makes a clear directional prediction between the two treatments.
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Fig. 8. The empirical CDF of CG 1 to CG 4 in García-Pola et al. (2020a) under the direct response method (solid) and the strategy method (dashed).

low-powered Kolmogorov-Smirnov test.26 In stark contrast, the opposite FOSD relationship is observed in CG 3—earlier taking in the 
cold treatment, and it is not significant (one-tailed Mann-Whitney rank-sum test 𝑝 = 0.762; Kolmogorov-Smirnov test 𝑝 = 0.940). This 
experimental evidence supports DCH at the aggregate level.

7. Discussion

In this section, we briefly discuss several additional features and potential applications of DCH. Section 7.1 illustrates how 
reputation effects can arise with DCH, and in fact are a built-in feature of the solution concept. This follows from the fact that 
strategic players are not myopic, but are forward looking and take into account how their current actions will affect other players’ 
beliefs and actions. Thus, in DCH higher-level players can mimic lower-level types in order to affect lower levels of other players’ 
beliefs and hence their future play. In Sections 7.2 and 7.3, we highlight some complications of the DCH belief system that arise 
in games of imperfect or incomplete information. Finally, Section 7.4 discusses general issues related to the equivalence or non-
equivalence of DCH when analyzed in the non-reduced normal form.

7.1. Reputation formation

In addition to the strategy-reduction effect, another interesting phenomenon that can arise in DCH is reputation building by higher-
level players. Since in DCH, players will update their beliefs about others’ levels as the history unfolds, it is possible for higher-level 

26 One-tailed Mann-Whitney rank test: CG 1 𝑝 = 0.001, CG 2 𝑝 = 0.003, CG 4 𝑝 = 0.084; Kolmogorov-Smirnov test: CG 1 𝑝 = 0.046, CG 2 𝑝 = 0.003, CG 4 𝑝 = 0.653. 
To compute the p-values, we follow the approach of García-Pola et al. (2020a) and generate 100,000 random sub-samples of subjects from the cold treatment to 
match the number of subjects in each role in each game in the corresponding hot treatment. Next, in each random sample, we randomly match subjects into pairs to 
obtain the distribution of terminal nodes. This process yields 100,000 simulated CDFs of the terminal nodes from the cold treatment. Then, we perform the KS test 
and one-tailed Mann-Whitney rank-sum test on each simulated CDF of the terminal nodes against the CDF from the hot treatment and report the median p-value. The 
KS p-values computed using this process are almost identical to the KS p-values reported by García-Pola et al. (2020a).
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𝑖

(3,10)

𝑂𝑢𝑡 𝐼𝑛

CS

(0,0)

𝐹

(4,4)

𝐶

Fig. 9. Game tree of period 𝑖 in the chain-store game. The first number of each pair is competitor 𝑖’s payoff and the second number is CS’s payoff.

players to mimic some lower-level players’ strategies in order to maintain the reputation of being some lower levels and benefit from 
this reputation.

It is worth noticing that the reputation concerns predicted by DCH do not only appear in games of incomplete information, but 
also in games of complete information. In other words, the reputation formation in DCH is driven by manipulating the beliefs about 
levels of sophistication rather than the beliefs about exogenous types. We illustrate this point with the “chain-store game” introduced 
by Selten (1978).

Illustrative example In this game, there are 𝑁 + 1 players: one chain-store (CS) and 𝑁 competitors, numbered 1, … , 𝑁 . In each 
period, one of the potential competitors decides whether to compete with CS or not (“In” or “Out”); in period 𝑖, it is competitor 𝑖’s 
turn to decide. If competitor 𝑖 chooses “In,” then CS decides either to fight (“F”) or cooperate (“C”). CS responds to competitor 𝑖
before competitor (𝑖 + 1)’s turn. Hence, in each period, there are three possible outcomes {𝑂𝑢𝑡, (𝐼𝑛,𝐹 ), (𝐼𝑛,𝐶)}. The stage game for 
each period 𝑖 is shown in Fig. 9. In addition, at every point of the game, all players know all actions taken previously, which makes 
this game an extensive game of perfect information. Finally, the payoff of CS in this game is the sum of its payoffs in 𝑁 periods.

There are multiple Nash equilibria where the outcome in any period is either Out or (In,C). Specifically, in any equilibrium where 
competitor 𝑖 chooses “Out,” CS’s strategy is to fight if the competitor chooses “In.” However, these equilibria are imperfect. The 
unique subgame perfect equilibrium is that all competitors will choose “In” and CS will always choose “C,” which fails to capture the 
reality that CS may choose “F” to deter entrance.

Unlike the Kreps and Wilson (1982) approach to rationalize deterrence by introducing payoff-relevant private types, DCH predicts 
that higher-level CS players might purposely choose to fight in early periods to make potential competitors think they are facing a 
level-0 CS. We demonstrate this by considering the following distribution of levels

(𝑝0, 𝑝1, 𝑝2, 𝑝3) = (0.10, 0.15, 0.60, 0.15).

Under this distribution, it suffices to characterize the DCH solution by analyzing level-1 to level-3 players’ behavior.
Level-1 players believe all other players are level-0 and best respond to this belief. Therefore, level-1 competitors will choose 

“Out” and a level-1 CS will choose “C.” Next, from a level-2 CS’s perspective, all competitors are either level-0 or level-1 and hence 
will choose “Out” with probability 0.80 in every period, regardless of the past choices by CS. Therefore, a level-2 CS can never benefit 
by choosing “F,” and will always choose “C.”

On the other hand, level-2 competitors will update their beliefs about CS’s level based on the history. If a level-2 competitor has 
observed that CS has cooperated for 𝑇 times and never fought, the belief about CS being level-0 is

𝜈 ≡
𝑝0

(
1

2

)𝑇

𝑝0

(
1

2

)𝑇
+ 𝑝1

=
2
(
1

2

)𝑇

2
(
1

2

)𝑇
+ 3

.

The expected payoff of choosing “In” is 2𝜈 + 4(1 − 𝜈), and therefore it is optimal for a level-2 competitor to choose “In” if and only 
if 2𝜈 + 4(1 − 𝜈) < 3 ⟺ 𝜈 <

1

2
. In this case, if CS has never fought, a level-2 competitor will always choose “In.” However, if CS has 

ever fought,27 all subsequent level-2 competitors will believe CS is level-0 and always choose “Out.” Besides, because a level-2 CS 
behaves the same as level-1, level-3 competitors will therefore behave the same as level-2—they will choose “In” if CS has never 
chosen “F” but choose “Out” if CS has ever chosen “F.”

Finally, in the early periods,28 if the relative proportion of level-2 players is sufficiently high, it can be profitable for a level-3 CS 
to purposely choose “F” to make all future level-2 competitors believe the chain store is level-0 and choose “Out” in later periods. 
Specifically, a level-3 CS would choose to fight if:

27 By Proposition 2, we know if CS has fought once, then a level-2 competitor will believe CS is level-0, regardless of how many times CS has chosen “C.”
28 In the last period, there is no reputation concern and therefore, a level-3 CS will choose “C” if he has a chance to move.
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7.2. Correlated beliefs in games of imperfect information

There is a wide range of applications of games in extensive form in economics and political science where players have private 
information, either due to privately known preferences and beliefs about other players, or from imperfect observability of the 
histories of play in the game. These applications would include many workhorse models, such as signaling, information transmission, 
information design, social learning, entry deterrence, reputation building, crisis bargaining, and so forth. Hence the natural next step 
is to investigate more deeply our approach to extensive games of imperfect information. In such environments, one complication is 
that players not only learn about the opponents’ levels of sophistication but also about more basic elements of the game structure, 
such as the opponents’ private information, payoff types, and prior moves.

One observation is that allowing for imperfect information in the DCH approach does not introduce any problems of off-path 
beliefs. The reason is that at every information set of the game, all levels of all players have posterior beliefs over the opponents’ 
levels that include a positive probability they are facing level-0 players. Hence, there is no issue of specifying off-path beliefs in an 
ad hoc fashion and therefore we avoid the complications of belief-based refinements.

𝐼3

1

𝑙 𝑟 ∶𝐿1

2

(3,4,2)

𝑙 𝑟 ∶𝐿1

2

𝑙

(2,5,3)

𝑟 ∶𝐿1

(1,6,5)

𝑙 ∶𝐿1

(4,3,3)

𝑟

(3,3,2)

𝑙 ∶𝐿1

(6,1,3)

𝑟

Fig. 10. Game Tree of Example in Section 7.2. Dashed lines are the paths selected by level-1 players.

In games of imperfect information, the DCH belief system is a level-dependent profile of posterior beliefs that assigns to every 
information set a joint distribution of other players’ levels and the histories in the information set. When information sets are not 
singleton, at some information set, the marginal beliefs about other players’ levels can be correlated across players. We illustrate this 
by using the following three-person game where each player moves once. The game tree is shown in Fig. 10. Player 1 chooses first 
whether to go left or right. After that, player 2 chooses to go left or right. If player 1 and 2 make the same decision, the game ends. 
Otherwise, player 3 makes the final decision. However, at that stage, player 3 only knows that one of the previous players chose 𝑙
and the other chose 𝑟, but does not know which one chose 𝑙.

Level-1 players believe all other players are level-0. As we compute the expected payoff of each action, level-1 player 1 will 
choose 𝑟 at the initial node. Level-1 player 2 will choose 𝑟 at subgame ℎ = 𝑙 and ℎ = 𝑟. At player 3’s information set, since level-1 
player 3 thinks both players are level-0, he would believe both histories are equally likely, and choose 𝑙.

Conditional on the game reaching player 3’s information set 𝐼3, level-2 player 3’s DCH belief 𝜈2
3
(𝜏−3, ℎ|𝐼3) is a joint distribution 

of the histories ℎ ∈ {𝑙𝑟, 𝑟𝑙} and the profile of levels of other players 𝜏−3 = (𝜏1, 𝜏2) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}. Let 
(
𝑝𝑘
)
𝑘∈ℕ0

be the 
true distribution of levels of all players, and level-2 player 3’s DCH belief can be summarized in Table 2.

Table 2
Level 2 player 3’s DCH belief at information set 𝐼3.

𝜈2
3
(𝜏−3, ℎ|𝐼3) (0,0) (0,1) (1,0) (1,1)

ℎ = 𝑙𝑟
0.25𝑝0

0.5𝑝0+𝑝1

0.5𝑝1
0.5𝑝0+𝑝1

0 0

ℎ = 𝑟𝑙
0.25𝑝0

0.5𝑝0+𝑝1
0

0.5𝑝1
0.5𝑝0+𝑝1

0



Journal of Economic Theory 220 (2024) 105871

24

P.-H. Lin and T.R. Palfrey

We can first observe that given level-0 and level-1 players’ strategies, at player 3’s information set, level-2 player 3 would think 
player 1 and player 2 cannot both be level-1 players; otherwise, the game will not reach this information set. In other words, level-2 
player 3’s marginal belief 𝜈2

3

(
𝜏−3 = (1,1)|𝐼3

)
= 0. Nonetheless, the marginal belief of each player is 𝜈2

3

(
𝜏1 = 1|𝐼3

)
= 𝜈2

3

(
𝜏2 = 1|𝐼3

)
=

0.5𝑝1
0.5𝑝0+𝑝1

, suggesting that the marginal beliefs about levels are correlated across players as

𝜈2
3

(
𝜏1 = 1|𝐼3

)
× 𝜈2

3

(
𝜏2 = 1|𝐼3

)
≠ 0 = 𝜈2

3

(
𝜏−3 = (1,1)|𝐼3

)
. □

Remark 4. The underlying reason why the DCH beliefs are correlated across players in this example is that player 3 is unable to 
distinguish the actions of player 1 and 2. Therefore, this game does not belong to the class of games with observable deviators (see 
Fudenberg and Levine, 1993 and Battigalli, 1996, 1997 for the definition). Battigalli (2023) shows that the DCH beliefs remain 
product measures in games with observable deviators.

7.3. DCH in multi-stage games with observed actions

In line with the observation of Battigalli (2023), Lin (2023) demonstrates that the DCH beliefs indeed conform to product 
measures across players in the framework of multi-stage games with observed actions, as introduced by Fudenberg and Tirole (1991). 
This framework captures situations where every player observes the actions of every other player—the only uncertainty is about 
other players’ payoff-relevant private information which is determined by an initial chance move.

In a multi-stage game with observed action, each player 𝑖 ∈ 𝑁 has a payoff-relevant type 𝜃𝑖 drawn from a finite type set Θ𝑖

according to the distribution 𝑖.
29 After the types are assigned, each player will learn about their own type but not others’ types. The 

game is played in periods 𝑡 = 1, … , 𝑇 . In each period, every players will simultaneously choose an action and the action profile will 
be revealed to all players at the end of the period. Therefore, in a multi-stage game with observed actions, each player 𝑖’s information 
sets can be specified as (𝜃𝑖, ℎ) where ℎ is a non-terminal public history.

30

For any 𝑘 ∈ ℕ and 𝑖 ∈𝑁 , level-𝑘 player 𝑖’s DCH belief at information set (𝜃𝑖, ℎ) is a joint distribution of other players’ types and 
levels, denoted as 𝜈𝑘

𝑖
(𝜏−𝑖, 𝜃−𝑖|𝜃𝑖, ℎ). Proposition 1 of Lin (2023) shows that 𝜈𝑘𝑖 (𝜏−𝑖, 𝜃−𝑖|𝜃𝑖, ℎ) is a product measure across players. That 

is,

𝜈𝑘𝑖 (𝜏−𝑖, 𝜃−𝑖|𝜃𝑖, ℎ) =
∏
𝑗≠𝑖

𝜈𝑘𝑖𝑗 (𝜏𝑗 , 𝜃𝑗 |𝜃𝑖, ℎ).

From the comparison between Example 7.2 and multi-stage games with observed actions, we can find that the observability of 
actions plays a crucial role in the independence property of the DCH beliefs.

7.4. (Non-)equivalence on the normal form

The analysis in Section 4.3 and Section 5 shows that the DCH solution is not reduced-normal-form invariant—the DCH solution 
can look dramatically different for two extensive games that share the same reduced normal form. To this end, one may naturally 
wonder whether DCH is normal-form invariant.31

The intuition behind such invariance, which is explained in more detail in Battigalli (2023), is as follows. First, observe that a 
level-0 player’s behavioral strategy (uniform randomization at every subgame) in extensive form and a level-0 player’s mixed strategy
(uniform randomization over all contingent strategies) in normal form are realization-equivalent.32 Second, either in extensive form 
or in normal form, all strategic players (with level 𝑘 ≥ 1) best respond to totally mixed strategies due to the ever-presence of level-0 
players. Since expected payoff maximization is dynamically consistent, the ex ante best response (the optimal contingent strategy 
in normal form) must be realization-equivalent to the sequential best response (the optimal behavioral strategy in extensive form). 
Hence, the DCH solution will be realization-equivalent between two extensive games that share the same normal form.

The equivalence of DCH solution in extensive form and non-reduced normal form relies heavily on two assumptions: (1) uniform 
randomization by level-0 players and (2) the dynamic consistency of best response.

In standard level-𝑘 and CH models, level-0 is assumed to uniformly randomize across all available actions,33 and this approach 
has carried over to most applications. The specification of uniform randomization by level-0 players has several advantages: it is 
well-defined (and applied equally and in the same way) for all games; it is nondegenerate, so all paths of play can be rationalized 
by all strategic players; and it is simple and parsimonious. Some non-uniform specifications of level-0 behavior have been tailored 
to specific games of interest in particular applications. For example, alternative approaches include modeling level-0 players as 
choosing (or avoiding) a salient action (e.g. Crawford and Iriberri 2007a), an instinctive action (e.g. Arad and Rubinstein 2012) or a 

29 Without loss of generality, we assume that 𝑖(𝜃𝑖) > 0 for all 𝜃𝑖 ∈Θ𝑖 and 𝑖 is independent of 𝑗 for any 𝑖, 𝑗 ∈𝑁 and 𝑖 ≠ 𝑗.
30 See Lin (2023) for a detailed description of the framework of multi-stage games with observed actions and the DCH solution for this framework.
31 We are grateful to Pierpaolo Battigali for observing the normal-form invariance of DCH. The formal analysis for games of perfect information can be found in 
Battigalli (2023).
32 Two (mixed or behavioral) strategies are realization-equivalent if for every collection of pure strategies of the other players the two strategies induce the same 
distribution of outcomes (see Osborne and Rubinstein (1994) chapter 11).
33 Uniform randomization is specifically assumed in the original formulation of CH in Camerer et al. (2004).
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minimum-payoff averse action (e.g. Chong et al. 2016) from the action set. Regardless of the specification of level-0 behavior, if level-0 
players behave differently in different games sharing the same reduced normal form, the DCH strategy-reduction effect would still 
occur.

A second approach that is often used relaxes the perfect best response assumption of strategic types. In this alternative approach, 
strategic levels of players are typically assumed to make better responses, whereby players choose actions at each information set 
stochastically (with full support), and the choice probabilities are increasing in the continuation values, usually specified by a 
quantal response function such as the logit choice rule (e.g. Camerer et al. (2016), Stahl and Wilson 1995). In this case, for any 
strategic level of player, the quantal response behavioral strategy in extensive form will generally not be realization-equivalent to the 
quantal response mixed strategy in non-reduced normal form. This relaxation of perfect best responses could be useful for estimating 
DCH in experimental data sets.34 It results in a smoother updating process, and implies full support of beliefs of about other players’ 
(lower) levels at every information set of the game.

8. Conclusions

We conclude by emphasizing the key motivation for this paper: to provide a theoretical framework that characterizes hierarchical 
reasoning in sequential games. As documented in the literature, standard solution concepts based on the mutual consistency of beliefs 
are not only mathematically fragile but also empirically implausible. To narrow the gap between theory and empirical patterns in 
sequential games, it is natural to extend the level-𝑘 approach to such games, as it has already demonstrated considerable success in 
narrowing the gap for games played simultaneously. However, the conundrum for directly applying the standard level-𝑘 approach is 
that players may observe actions that are incompatible with their beliefs, which leads to the widely known problem of specifying off-
path beliefs. The DCH solution avoids this issue with a simple structure that allows players with heterogeneous levels of sophistication 
to update their beliefs everywhere as history unfolds, using Bayes’ rule.

We characterize properties of the belief-updating process and explore how it can affect players’ strategic behavior. The key of our 
framework is that the history of play contains substantial information about other players’ levels of sophistication, and therefore as 
play unfolds, players learn about their opponents’ strategic sophistication and update their beliefs about the continuation play in the 
game accordingly. In this way our DCH solution departs from the standard level-𝑘 approach and generates new insights, including 
experimentally testable implications.

We obtain two main results that apply generally to all finite games in extensive form. Proposition 1 establishes that a player’s 
updating process is independent across the other players. That is, for every player and every non-terminal history, the joint distribu-
tion of the beliefs of the levels of the other players is the product of the personal posterior distribution of the levels of each of those 
other players. In games of imperfect information, the information sets are non-singleton and the beliefs could be correlated across 
the histories at some information set.

In addition, Proposition 2 establishes that the updating process filters out possible level types of opponents as the game proceeds, 
and it is irreversible. That is, over the course of play, it is possible that a player eliminates some levels of another player from the 
support of his beliefs, and as the game continues, these levels can never be added back to the support. Hence, in addition to updating 
posterior beliefs over the support of level types, the support also shrinks over time. However, the level-0 players always remain in 
the support of beliefs, and hence every player believes every future information set can be reached with positive probability.

The second half of the paper provides a rigorous analysis of a class of increasing-pie centipede games and generates testable 
predictions about how play depends on whether the game is played in its original extensive form or in its reduced normal form. 
One direct implication is the strategy-reduction effect given by Theorem 1. The theorem states that playing a centipede game 
in its extensive form representation, i.e., as a sequential move game, would lead to more taking than the reduced normal form 
representation, where the two players simultaneously announce the stage at which they will take.

This result provides a prediction that may be useful for experimental testing, since the claim is independent of the length of the 
centipede and the increment of the pie. Moreover, the statement is true for any prior belief about the strategic levels. García-Pola 
et al. (2020a) recently reported the results of an experiment that is ideally suited to test the strategy-reduction effect implied by 
DCH. That experiment explored whether there were differences in behavior in four different centipede games, depending on whether 
they were played sequentially or (simultaneously) in the reduced normal form. DCH predicts a strategy-reduction effect with earlier 
taking in the sequential treatment, in three of the four games, and this is exactly what they find, and the effect is statistically 
significant in two of the three games. DCH does not predict this strategy-reduction effect in the fourth game, which is also what their 
experiment finds. This provides empirical support for the strategy-reduction effect we identify, and suggests additional experimental 
studies would be valuable to establish robustness of these effects, and to see if the findings extend the linear centipede games that 
we focused on in Section 5.

Another direction worth pursuing would be to incorporate some salient features of alternative behavioral models of learning 
in extensive games into our approach. In the approach taken here, the learning process is “extreme” in the sense that players will 
completely rule out some levels from their beliefs whenever they observe incompatible actions. For example, players will believe 
the opponent is level-0 with certainty if a strictly dominated action is taken. Yet, it is possible that the player is strategic and the 
action is taken by mistake. In this sense, one could incorporate some elements of the extensive form QRE, where players choose 
actions at each information set stochastically, and the choice probabilities are increasing in the continuation values. In fact, this 

34 See Lin (2023) for an example of estimating DCH with quantal responses.
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approach has been used with some success in simultaneous move games (Crawford and Iriberri, 2007a). As shown in Proposition 2, 
in the current version of DCH, there is no way to expand the support of a player’s belief about the other players’ types. However, 
if players choose stochastically, then no level type is ever ruled out from the support, which smoothes out the updating process. 
Because players’ beliefs maintain full support on lower types throughout the game, a natural conjecture is that arbitrarily high-level 
players will approach backward induction when the error is sufficiently small.

As a final remark, while the main point of this paper is to develop a general theoretical foundation for applying CH to games 
in extensive form, the ultimate hope is that this framework can be usefully applied to gain insight into specific economic models. 
There are a number of possible such applications one might imagine, where some or all agents in the model have opportunities to 
learn about the strategic sophistication of the other agents in ways that could significantly affect their choices in the game. One such 
application is reputation building, which we briefly examined in section 7.1 and deserves more extensive study. As another possible 
application, Chamley and Gale (1994) analyze a dynamic investment game with social learning, where investments are valuable only 
if enough other agents are able to invest, and learning occurs as investment decisions are observed over time. The DCH solution, 
which combines learning and updating, but without common knowledge of rationality or fully rational expectations, might be a 
useful alternative approach to this problem. Models of sequential voting on agendas (McKelvey and Niemi, 1978 and Banks 1985), 
limit pricing and entry deterrence (Selten, 1978 and Milgrom and Roberts 1982), and dynamic public good provision (Marx and 
Matthews, 2000, Duffy et al., 2007, and Choi et al. 2008) are some additional areas of applied interest where the DCH approach 
could be useful.
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Appendix A. Proofs of results in Section 4

Let 𝜏𝑖 be player 𝑖’s level. Following previous notations, we use 𝜎𝑖(ℎ) to denote player 𝑖’s (pure) action at ℎ. In addition, 𝜇
𝑘
𝑖
(𝜏−𝑖)

is level-𝑘 player 𝑖’s prior belief about the opponent’s level, and 𝜈𝑘
𝑖
(𝜏−𝑖 ∣ ℎ) is level-𝑘 player 𝑖’s posterior belief about the opponent’s 

level at history ℎ. Finally, level-0 players would uniformly randomize at every node. The analysis of the examples is summarized in 
the following claims.

Example 4.2.1

Claim 1. In Example 4.2.1, each level of players’ strategies are:

1. for any 𝑘 ∈ℕ, 𝜎𝑘
1
(1𝑏) = 𝑟1𝑏, 𝜎

𝑘
1
(1𝑐) = 𝑙1𝑐 , 𝜎

𝑘
2
(2𝑏) = 𝑙2𝑏, and 𝜎

𝑘
2
(2𝑐) = 𝑟2𝑐 ;

2. 𝜎1
1
(1𝑎) = 𝑟1𝑎 and 𝜎

𝑘
1
(1𝑎) = 𝑙2𝑎 for 𝑘 ≥ 2; 𝜎1

2
(2𝑎) = 𝜎2

2
(2𝑎) = 𝑙2𝑎 and 𝜎

𝑘
2
(2𝑎) = 𝑟2𝑎 for 𝑘 ≥ 3.

Proof. The calculation consists of two parts. 1. First, all strategic levels of players would choose the action with a higher payoff at the 
last node. Hence, 𝜎𝑘

1
(1𝑏) = 𝑟1𝑏 and 𝜎

𝑘
2
(2𝑐) = 𝑟2𝑐 for all 𝑘 ≥ 1. Player 2 has a dominant action at history ℎ = 2𝑏, so 𝜎𝑘

2
(2𝑏) = 𝑙2𝑏 for all 

𝑘 ≥ 1. Notice that whenever a dominant action is not chosen, players would believe the opponent is level-0 with certainty. At history 
ℎ = 1𝑐, every level of player 1 thinks player 2 is level-0 and hence for all 𝑘 ≥ 1, 𝜎𝑘

1
(1𝑐) = 𝑙1𝑐 since the expected payoff is 13∕2 > 6. 2.

Level-1 players believe the other player would randomize at every node. On the one hand, 𝜎1
1
(1𝑎) = 𝑟1𝑎 and 𝜎

1
2
(2𝑎) = 𝑙2𝑎 so that they 

can maximize the expected payoff. On the other hand, level-2 players’ initial beliefs are 𝜇2
𝑖
(0) = 𝑒−1.5∕(𝑒−1.5 + 1.5𝑒−1.5) = 2∕5 and 

𝜇2
𝑖
(1) = 3∕5. Thus, 𝜎2

1
(1𝑎) = 𝑙1𝑎 since the expected payoff for 𝑙1𝑎 is 19∕5 > 29∕10. On the other hand, when history ℎ = 2𝑎 is realized, 

level-2 player 2 would believe the opponent is definitely level-0 and hence 𝜎2
2
(2𝑎) = 𝜎1

2
(2𝑎) = 𝑙2𝑎.

The behavior of higher-level players can be solved by induction. Level-3 players’ prior beliefs are 𝜇3
𝑖
(0) = 8∕29, 𝜇3

𝑖
(1) = 12∕29, 

and 𝜇3
𝑖
(2) = 9∕29. In this case, 𝜎3

1
(1𝑎) = 𝑙1𝑎 since the expected payoff for 𝑙1𝑎 is 112∕29 > 76∕29. In addition, when history ℎ = 2𝑎

is realized, level-3 player 2’s posterior belief becomes 𝜈3
2
(0 ∣ 2𝑎) = 0.5𝑒−1.5∕(0.5𝑒−1.5 + 1.125𝑒−1.5) = 4∕13 and 𝜈3

2
(2 ∣ 2𝑎) = 9∕13, and 

hence 𝜎3
2
(2𝑎) = 𝑟2𝑎 since 4 > 45∕13. Suppose for some 𝑘 > 3, 𝜎𝜅

1
(1𝑎) = 𝑙1𝑎 for all 2 ≤ 𝜅 ≤ 𝑘 and 𝜎𝜅

2
(2𝑎) = 𝑟2𝑎 for all 3 ≤ 𝜅 ≤ 𝑘. We want 

to show that 𝜎𝑘+1
1

(1𝑎) = 𝑙1𝑎 and 𝜎
𝑘+1
2

(2𝑎) = 𝑟2𝑎. Level-(k+1) players’ prior beliefs are 𝜇
𝑘+1
𝑖

(𝜅) = 𝑝𝜅∕(
∑𝑘

𝜅=0 𝑝𝜅 ) for 0 ≤ 𝜅 ≤ 𝑘. By the 
induction hypothesis, 𝜎𝑘+1

1
(1𝑎) = 𝑙1𝑎 if and only if
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7

2

(
𝑝0∑𝑘
𝜅=0 𝑝𝜅

)
+ 4

(
𝑝1 + 𝑝2∑𝑘
𝜅=0 𝑝𝜅

)
+ 3

(∑𝑘
𝜅=3 𝑝𝜅∑𝑘
𝜅=0 𝑝𝜅

)
>

17

4

(
𝑝0∑𝑘
𝜅=0 𝑝𝜅

)
+ 2

(
1 −

𝑝0∑𝑘
𝜅=0 𝑝𝜅

)
,

which is equivalent to (7∕4)𝑝0 − 𝑝1 − 𝑝2 <
∑𝑘

𝜅=0 𝑝𝜅 . This holds because (7∕4)𝑝0 − 𝑝1 − 𝑝2 = −(7∕8)𝑒−1.5 < 0. Finally, by the induction 
hypothesis, level-(k+1) player 2’s posterior belief at ℎ = 2𝑎 is 𝜈𝑘+1

2
(0 ∣ 2𝑎) = 0.5𝑝0∕(0.5𝑝0 +

∑𝑘
𝜅=2 𝑝𝜅 ) and 𝜈

𝑘+1
2

(𝑗 ∣ 2𝑎) = 𝑝𝑗∕(0.5𝑝0 +∑𝑘
𝜅=2 𝑝𝜅 ) where 2 ≤ 𝑗 ≤ 𝑘. Thus, 𝜎𝑘+1

2
(2𝑎) = 𝑟2𝑎 if and only if

9

2
𝜈𝑘+1
2

(0 ∣ 2𝑎) + 3
(
1 − 𝜈𝑘+1

2
(0 ∣ 2𝑎)

)
< 4 ⟺ 𝜈𝑘+1

2
(0 ∣ 2𝑎) <

2

3
.

Moreover, the induction hypothesis suggests that

𝜈𝑘+1
2

(0 ∣ 2𝑎) =

1

2
𝑝0

1

2
𝑝0 +

∑𝑘
𝜅=2 𝑝𝜅

<

1

2
𝑝0

1

2
𝑝0 +

∑𝑘−1
𝜅=2 𝑝𝜅

= 𝜈𝑘
2
(0 ∣ 2𝑎) <

2

3
,

implying the optimal choice for level-(k+1) player 2 is 𝑟2𝑎 . This completes the proof. ■

Example 4.2.3

Claim 2. Suppose 𝜏𝑖 ’s are independently drawn from 𝑝 =
(
𝑝𝑘
)∞
𝑘=0

, then in Example 4.2.3,

1. for any 𝑘 ∈ℕ, 𝜎𝑘
1
(1𝑎) = 𝑟1𝑎, 𝜎

𝑘
1
(1𝑏) = 𝑟1𝑏, 𝜎

𝑘
1
(1𝑐) = 𝑙1𝑐 , 𝜎

𝑘
2
(2𝑎) = 𝑙2𝑎, 𝜎

𝑘
2
(2𝑏) = 𝑙2𝑏, and 𝜎

𝑘
2
(2𝑐) = 𝑟2𝑐 ;

2. the ex ante probability of the subgame perfect equilibrium path being realized converges to 0 as 𝑝0 → 0+.

Proof. The calculation consists of two parts. 1. By the analysis of Example 4.2.1, we only need to check player 1’s action at the 
initial node and player 2’s action at history ℎ = 2𝑎. We can prove the statement by induction on 𝑘. For 𝑘 = 1, players would think 
the opponent is level-0. In this case, 𝜎1

1
(1𝑎) = 𝑟1𝑎 since the expected payoff is 17∕4 > 9∕4 and 𝜎1

2
(2𝑎) = 𝑙2𝑎 with the expected payoff 

being 9∕2 > 4. Suppose there is some 𝐾 such that 𝜎𝑘
1
(1𝑎) = 𝑟1𝑎 and 𝜎

𝑘
2
(2𝑎) = 𝑙2𝑎 for all 1 ≤ 𝑘 ≤𝐾 . For level-(K+1) player 1, the prior 

belief is 𝜇𝐾+1
1

(0) = 𝑝0∕(
∑𝐾

𝜅=0 𝑝𝜅 ) and 𝜎
𝐾+1
1

(1𝑎) = 𝑟1𝑎 if and only if

17

4
𝜇𝐾+1
1

(0) + 2
(
1 − 𝜇𝐾+1

1
(0)
)
>

9

4
𝜇𝐾+1
1

(0) +
3

2

(
1 − 𝜇𝐾+1

1
(0)
)
,

which holds as 𝜇𝐾+1
1

(0) > 0. On the other hand, by the induction hypothesis, player 2 would believe player 1 is level-0 with certainty 
when history ℎ = 2𝑎 is realized, so 𝜎𝐾+1

2
(2𝑎) = 𝜎1

2
(2𝑎) = 𝑙2𝑎. 2. Statement 1 implies the probability of the subgame perfect equilibrium 

path 𝑟2𝑎 being realized is

Pr(𝑟2𝑎) = Pr((1𝑎,2𝑎) ∣ 1𝑎) Pr(𝑟2𝑎 ∣ 2𝑎) =
[
𝜎0
1
(1𝑎,2𝑎)𝑝0

] [
𝜎0
2,2𝑎

(𝑟2𝑎)𝑝0

]
=

1

4
𝑝2
0
.

Therefore, we can find the limit of the probability is

lim
𝑝0→0+

Pr(𝑟2𝑎) = lim
𝑝0→0+

1

4
𝑝2
0
= 0.

This completes the proof. ■

Example 4.3

Claim 3. In Game Γ, each level of players’ strategies are:

1. for any 𝑘 ∈ℕ, 𝜎𝑘
1
(1𝑏) = 𝑟1𝑏, 𝜎

𝑘
1
(1𝑐) = 𝑙1𝑐 , 𝜎

𝑘
2
(2𝑏) = 𝑙2𝑏, and 𝜎

𝑘
2
(2𝑐) = 𝑟2𝑐 ;

2. 𝜎𝑘
1
(1𝑎) = 𝑙1𝑎 for all 𝑘 ≠ 2, and 𝜎2

1
(1𝑎) = 𝑟1𝑎; 𝜎

1
2
(2𝑎) = 𝑙2𝑎, and 𝜎

𝑘
2
(2𝑎) = 𝑟2𝑎 for all 𝑘 ≥ 2.

Proof. The proof consists of two parts. 1. The proof is the same as the proof of Claim 1. 2. First, level-1 players believe the other 
player randomizes everywhere, so 𝜎1

1
(1𝑎) = 𝑙1𝑎 and 𝜎

1
2
(2𝑎) = 𝑙2𝑎 in order to maximize their expected payoffs. Level-2 players’ prior 

beliefs are 𝜇2
𝑖
(0) = 2∕5 and 𝜇2

𝑖
(1) = 3∕5. Therefore, 𝜎2

1
(1𝑎) = 𝑟1𝑎 since the expected payoff is 29∕10 > 28∕10. Level-2 player 2’s 

posterior belief at history ℎ = 2𝑎 is 𝜈2
2
(0 ∣ 2𝑎) = 0.5𝑒−1.5∕(0.5𝑒−1.5 + 1.5𝑒−1.5) = 1∕4 and 𝜈2

2
(1 ∣ 2𝑎) = 3∕4. In this case, 𝜎2

2
(2𝑎) = 𝑟2𝑎

because 4 > 27∕8.
Finally, we can solve higher-level players’ behavior by induction. Level-3 players’ prior beliefs are 𝜇3

𝑖
(0) = 8∕29, 𝜇3

𝑖
(1) = 12∕29, 

and 𝜇3
𝑖
(2) = 9∕29, and hence 𝜎3

1
(1𝑎) = 𝑙1𝑎 since the expected payoff is 128∕29 > 76∕29. At history ℎ = 2𝑎, level-3 player 2’s posterior 

belief is the same as level-2, and so 𝜎3
2
(2𝑎) = 𝜎2

2
(2𝑎) = 𝑟2𝑎. Suppose there is some 𝐾 > 3 such that 𝜎𝑘

1
(1𝑎) = 𝑙1𝑎 for all 3 ≤ 𝑘 ≤𝐾 and 
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𝜎𝑘
2
(2𝑎) = 𝑟2𝑎 for all 2 ≤ 𝑘 ≤𝐾 . Level-(K+1) players’ prior beliefs are 𝜇𝐾+1

𝑖
(𝑗) = 𝑝𝑗∕ 

∑𝐾
𝑖=0 𝑝𝑖 for 0 ≤ 𝑗 ≤𝐾 . By the induction hypothesis, 

𝜎𝐾+1
1

(1𝑎) = 𝑙1𝑎 if and only if

19

4

(
𝑝0∑𝐾
𝑖=0 𝑝𝑖

)
+

3

2

(
𝑝1∑𝐾
𝑖=0 𝑝𝑖

)
+ 8

(∑𝐾
𝑖=2 𝑝𝑖∑𝐾
𝑖=0 𝑝𝑖

)
>

17

4

(
𝑝0∑𝐾
𝑖=0 𝑝𝑖

)
+ 2

(
1 −

𝑝0∑𝐾
𝑖=0 𝑝𝑖

)
,

which is equivalent to 5.5𝑝0 + 6.5𝑝1 < 6 
∑𝐾

𝑖=0 𝑝𝑖. This holds when the distribution of levels follows Poisson(1.5). On the other hand, 
by the induction hypothesis, level-(K+1) player 2’s posterior belief at history ℎ = 2𝑎 is 𝜈𝐾+1

2
(0 ∣ 2𝑎) = 0.5𝑝0∕(0.5𝑝0 + 𝑝1 +

∑𝐾
𝑖=3 𝑝𝑖)

and 𝜈𝐾+1
2

(𝑗 ∣ 2𝑎) = 𝑝𝑗∕(0.5𝑝0 + 𝑝1 +
∑𝐾

𝑖=3 𝑝𝑖) where 𝑗 ≠ 0 or 2, and hence 𝜎𝐾+1
2

(2𝑎) = 𝑟2𝑎 if and only if

9

2
𝜈𝐾+1
2

(0 ∣ 2𝑎) + 3
(
1 − 𝜈𝐾+1

2
(0 ∣ 2𝑎)

)
< 4 ⟺ 𝜈𝐾+1

2
(0 ∣ 2𝑎) <

2

3
.

Moreover, the induction hypothesis implies:

𝜈𝐾+1
2

(0 ∣ 2𝑎) =

1

2
𝑝0

1

2
𝑝0 + 𝑝1 +

∑𝐾
𝑖=3 𝑝𝑖

<

1

2
𝑝0

1

2
𝑝0 + 𝑝1 +

∑𝐾−1
𝑖=3 𝑝𝑖

= 𝜈𝐾
2
(0 ∣ 2𝑎) <

2

3
,

as desired. ■

Appendix B. Proofs of results in Section 5

B.1. Proof of Lemma 1

1. Since stage 2𝑆 is the last stage of the game, for any 𝑘 ≥ 1, player 2 would take at this stage if and only if

1 + (2𝑆 − 1)𝑐 > 2𝑆𝑐 ⟺ 1 > 𝑐,

which holds by assumption. Therefore, 𝜎𝑘
2,𝑆

= 1 for all 𝑘 ≥ 1. 2. Consider a level-1 type of player 1 and any of player 1’s decision 

nodes 𝑗 ∈ {1, ..., 𝑆}. The payoff from Take is 1 + (2𝑗 − 2)𝑐 and the expected payoff from Pass is greater than or equal to 1
2
(2𝑗 − 1)𝑐 +

1

2
(1 + (2𝑗)𝑐). Thus, 𝜎𝑘

1,𝑗
= 0 is strictly optimal if and only if:

1 + (2𝑗 − 2)𝑐 <
1

2
(2𝑗 − 1)𝑐 +

1

2
(1 + (2𝑗)𝑐)

⟺
1

3
< 𝑐.

Hence, 𝜎1
1
= (0, … , 0). A similar argument shows that 𝜎1

2
= (0, … , 0, 1). 3. The argument is similar to the proof of the first statement. 

Consider a level-𝑘 type of player 1 and any of player 1’s decision nodes 𝑗 ∈ {1, ..., 𝑆 −1}, and suppose 𝜎𝑚
2,𝑗

= 0 for every 1 ≤𝑚 ≤ 𝑘 −1. 

Then the payoff from Take is 1 + (2𝑗 − 2)𝑐 and the expected payoff from Pass is greater than or equal to 1
2
𝜈𝑘
2𝑗−1

(0)(2𝑗 − 1)𝑐 + (1 −
1

2
𝜈𝑘
2𝑗−1

(0))(1 + (2𝑗)𝑐), which in turn is greater than or equal to 1
2
(2𝑗 − 1)𝑐 + 1

2
(1 + (2𝑗)𝑐) because 𝜈𝑘

2𝑗−1
(0) ≤ 1. Thus 𝜎𝑘

1,𝑗
= 0 is strictly 

optimal if and only if:

1 + (2𝑗 − 2)𝑐 <
1

2
(2𝑗 − 1)𝑐 +

1

2
(1 + (2𝑗)𝑐)

⟺
1

3
< 𝑐.

Hence, 𝜎𝑘
1,𝑗

= 0. A similar argument shows that 𝜎𝑘
2,𝑗

= 0 if 𝜎𝑚
1,𝑗+1

= 0 for every 1 ≤𝑚 ≤ 𝑘 − 1. This completes the proof. ■

B.2. Proof of Proposition 4

1. The statement can be proved by induction. Consider stage 2𝑆 − 1. By Lemma 1, we know 𝐾∗
2𝑆

= 1 and 𝜎1
1,𝑆

= 0, suggesting 
𝐾∗

2𝑆−1
≥ 2 = 𝐾∗

2𝑆
+ 1. Now, fix any 2 ≤ 𝑚 ≤ 2𝑆 − 1 and suppose the statement holds for all stages 𝑚 ≤ 𝑗 ≤ 2𝑆 − 1. Without loss of 

generality, we consider an even 𝑚. We want to show that if 𝐾∗
𝑚 <∞, then 𝐾∗

𝑚−1
≥𝐾∗

𝑚 + 1. By construction, we know 𝜎𝑘
2, 𝑚

2

= 0 for all 

1 ≤ 𝑘 ≤𝐾∗
𝑚 − 1. Therefore, Lemma 1 implies 𝜎1, 𝑚

2
= 0 for all 1 ≤ 𝑘 ≤𝐾∗

𝑚, and 𝐾
∗
𝑚−1

≥𝐾∗
𝑚 + 1. 2. Consider any 𝑗 such that 𝐾∗

𝑗+1
=∞. 

Without loss of generality, we consider an odd 𝑗. Hence, 𝜎𝑘
2,

𝑗+1
2

= 0 for all 𝑘 ≥ 1 and we want to show 𝜎𝑘
1,

𝑗+1
2

= 0 for all 𝑘 ≥ 1 by 

induction. Lemma 1 implies 𝜎1
1,

𝑗+1
2

= 0. Suppose there is 𝐾 ≥ 2 such that 𝜎𝑘
1,

𝑗+1
2

= 0 for all 1 ≤ 𝑘 ≤𝐾 . Since 𝜎𝑘
2,

𝑗+1
2

= 0 for all 𝑘 ≥ 1, 

Lemma 1 implies 𝜎𝐾+1

1,
𝑗+1
2

= 0, as desired. ■
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B.3. Proof of Proposition 5

We prove this by induction. Consider stage 2𝑆 − 1. Level 𝐾∗
2𝑆−1

player 1 believes that only level-0 player 2 will pass at stage 2𝑆 , 
so:

1 + (2𝑆 − 2)𝑐 >

(
1 −

1

2
𝜈
𝐾∗
2𝑆−1

2𝑆−1
(0)

)
[(2𝑆 − 1)𝑐] +

1

2
𝜈
𝐾∗
2𝑆−1

2𝑆−1
(0)[1 + 2𝑆𝑐]

>
(
1 −

1

2
𝜈𝑘
2𝑆−1

(0)
)
[(2𝑆 − 1)𝑐] +

1

2
𝜈𝑘
2𝑆−1

(0)[1 + 2𝑆𝑐] for all 𝑘 > 𝐾∗
2𝑆−1

since 1
2
𝜈𝑘
2𝑆−1

(0) < 1

2
𝜈
𝐾∗
2𝑆−1

2𝑆−1
(0) and therefore 𝜎𝑘

1,𝑆
= 1 for all 𝑘 ≥𝐾∗

2𝑆−1
.

Next, suppose for any 𝑚 where 2 ≤ 𝑚 ≤ 2𝑆 − 1, the statement holds for all 𝑗 such that 𝑚 ≤ 𝑗 ≤ 2𝑆 − 1. Suppose 𝑚 is odd and 
𝐾∗
𝑚−1

<∞. (A similar argument applies if 𝑚 is even.) By construction, 𝜎𝑘
2, 𝑚−1

2

= 0 for all 1 ≤ 𝑘 ≤ 𝐾∗
𝑚−1

− 1. By Lemma 1, we have 

𝜎𝑘
1,𝑠

= 0 for all 1 ≤ 𝑠 ≤ 𝑚−1

2
and for all 1 ≤ 𝑘 ≤𝐾∗

𝑚−1
. Level 𝐾∗

𝑚−1
player 2’s belief at stage 𝑚 − 1 that the other player would pass at 

stage 𝑚 is

1

2
𝜈
𝐾∗
𝑚−1

𝑚−1
(0) +

𝐾∗
𝑚−1∑
𝜅=1

𝜈
𝐾∗
𝑚−1

𝑚−1
(𝜅) =

1

2

𝑝0

(
1

2

) 𝑚−1
2

𝑝0

(
1

2

) 𝑚−1
2

+
∑𝐾∗

𝑚−1
−1

𝜅=1
𝑝𝜅

+

∑𝐾∗
𝑚−1

𝜅=1
𝑝𝜅

𝑝0

(
1

2

) 𝑚−1
2

+
∑𝐾∗

𝑚−1
−1

𝜅=1
𝑝𝜅

=
𝑝0

(
1

2

) 𝑚+1
2

+
∑𝐾∗

𝑚−1

𝜅=1
𝑝𝜅

𝑝0

(
1

2

) 𝑚−1
2

+
∑𝐾∗

𝑚−1
−1

𝜅=1
𝑝𝜅

.

Since 𝜎
𝐾∗
𝑚−1

1,𝑠
= 0 for all 1 ≤ 𝑠 ≤ 𝑚−1

2
, then for any 𝑘 >𝐾∗

𝑚−1
, at stage 𝑚 −1 level-𝑘 player 2’s belief about the probability that the other 

player would pass at stage 𝑚 is

1

2
𝜈𝑘
𝑚−1

(0) +

𝐾∗
𝑚−1∑
𝜅=1

𝜈𝑘
𝑚−1

(𝜅) ≤
1

2
𝜈
𝐾∗
𝑚−1

+1

𝑚−1
(0) +

𝐾∗
𝑚−1∑
𝜅=1

𝜈
𝐾∗
𝑚−1

+1

𝑚−1
(𝜅)

=
1

2

𝑝0

(
1

2

) 𝑚−1
2

𝑝0

(
1

2

) 𝑚−1
2

+
∑𝐾∗

𝑚−1

𝜅=1
𝑝𝜅

+

∑𝐾∗
𝑚−1

𝜅=1
𝑝𝜅

𝑝0

(
1

2

) 𝑚−1
2

+
∑𝐾∗

𝑚−1

𝜅=1
𝑝𝜅

<
𝑝0

(
1

2

) 𝑚+1
2

+
∑𝐾∗

𝑚−1

𝜅=1
𝑝𝜅

𝑝0

(
1

2

) 𝑚−1
2

+
∑𝐾∗

𝑚−1
−1

𝜅=1
𝑝𝜅

,

since 
∑𝐾∗

𝑚−1

𝜅=1
𝑝𝜅 >

∑𝐾∗
𝑚−1

−1

𝜅=1
𝑝𝜅 . This implies that for any level 𝑘 >𝐾∗

𝑚−1
, higher level of player 2 at stage 𝑚 − 1 would think the other 

player is less likely to pass at stage 𝑚. Since it is already profitable for level 𝐾∗
𝑚−1

player 2 to take at stage 𝑚 − 1, we can conclude 
that 𝜎𝑘

2, 𝑚−1
2

= 1 for all 𝑘 ≥𝐾∗
𝑚−1

. ■

B.4. Proof of Proposition 7

Without loss of generality, we can consider an even 𝑗, so ⌊ 𝑗
2
⌋ = 𝑗

2
and it is player 2’s turn at stage 𝑗. Only if: Suppose 𝐾∗

𝑗
<∞. 

Then from Proposition 4, 𝐾∗
𝑗′
≥𝐾∗

𝑗
+1 for all 𝑗′ < 𝑗. Hence, the belief of level 𝐾∗

𝑗
of player 2 that player 1 is level-0 at stage 𝑗 equals 

to

𝜈
𝐾∗
𝑗

𝑗
(0) =

𝑝0

(
1

2

) 𝑗
2

𝑝0

(
1

2

) 𝑗
2
+
∑𝐾∗

𝑗
−1

𝜅=1
𝑝𝜅

>
𝑝0

(
1

2

)𝑆−1

𝑝0

(
1

2

)𝑆−1
+ (1 − 𝑝0)

.

Level 𝐾∗
𝑗
player 2’s belief at stage 𝑗 that the player 1 would pass at stage 𝑗 + 1 is

1

2
𝜈
𝐾∗
𝑗

𝑗
(0) +

𝐾∗
𝐽+1

−1∑
𝜅=1

𝜈
𝐾∗
𝑗

𝑗
(𝜅) =

1

2

𝑝0

(
1

2

) 𝑗
2

𝑝0

(
1

2

) 𝑗
2
+
∑𝐾∗

𝑗
−1

𝜅=1
𝑝𝜅

+

∑𝐾∗
𝑗+1

−1

𝜅=1
𝑝𝜅

𝑝0

(
1

2

) 𝑗
2
+
∑𝐾∗

𝑗
−1

𝜅=1
𝑝𝜅
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=
𝑝0

(
1

2

) 𝑗
2
+1

+
∑𝐾∗

𝑗+1
−1

𝜅=1
𝑝𝜅

𝑝0

(
1

2

) 𝑗
2
+
∑𝐾∗

𝑗
−1

𝜅=1
𝑝𝜅

where we know that 𝐾∗
𝑗+1

≤ 𝐾∗
𝑗
− 1 Since it is optimal for level 𝐾∗

𝑗
<∞ to take at 𝑗 this implies 

𝑝0

(
1
2

) 𝑗
2
+1

+
∑𝐾∗

𝑗+1
−1

𝜅=1
𝑝𝜅

𝑝0

(
1
2

) 𝑗
2 +
∑𝐾∗

𝑗
−1

𝜅=1
𝑝𝜅

<
1−𝑐

1+𝑐
and 

therefore

𝑝0

(
1

2

) 𝑗
2
+1

+
∑𝐾∗

𝑗+1
−1

𝜅=1
𝑝𝜅

𝑝0

(
1

2

) 𝑗
2
+ (1 − 𝑝0)

<
1 − 𝑐

1 + 𝑐
.

If: Suppose 𝐾∗
𝑗
=∞. Then from Proposition 4, 𝐾∗

𝑗′
=∞ for all 𝑗′ < 𝑗. That is, all levels of both players pass at every stage up to and 

including 𝑗. Hence the belief of level 𝑘 ≥ 1 of player 2 that player 1 is level-0 at stage 𝑗 equals to

𝜈𝑘𝑗 (0) =
𝑝0

(
1

2

) 𝑗
2

𝑝0

(
1

2

) 𝑗
2
+
∑𝑘−1

𝜅=1 𝑝𝜅

>
𝑝0

(
1

2

) 𝑗
2

𝑝0

(
1

2

) 𝑗
2
+ (1 − 𝑝0)

.

Since 𝐾∗
𝑗
= ∞ it is optimal to pass at 𝑗 for all levels 𝑘 ≥ 1 of player 2, which implies 

1
2
𝑝0

(
1
2

) 𝑗
2 +
∑𝐾∗

𝑗+1
−1

𝜅=1
𝑝𝜅

𝑝0

(
1
2

) 𝑗
2 +
∑𝑘−1
𝜅=1 𝑝𝜅

≥
1−𝑐

1+𝑐
, for all 𝑘, where 

possibly 𝐾∗
𝑗+1

=∞, so:

1

2
𝑝0

(
1

2

) 𝑗
2
+
∑𝐾∗

𝑗+1
−1

𝜅=1
𝑝𝜅

𝑝0

(
1

2

) 𝑗
2
+ (1 − 𝑝0)

≥
1 − 𝑐

1 + 𝑐
,

as desired. ■

B.5. Proof of Lemma 2

1. To prove the statement, we can discuss player 1 and 2 separately. Player 2:

(i) 𝑎1
2
= 𝑆 strictly dominates 𝑎1

2
= 𝑆 + 1: 𝔼 

[
𝑢2(𝑎

0
1
, 𝑆)

]
− 𝔼 

[
𝑢2(𝑎

0
1
, 𝑆 + 1)

]
= 1−𝑐

𝑆+1
> 0 since 𝑐 < 1.

(ii) 𝑎1
2
= 𝑗 + 1 strictly dominates 𝑎1

2
= 𝑗 for all 1 ≤ 𝑗 ≤ 𝑆 − 1: For 1 ≤ 𝑗 ≤ 𝑆 − 1, since 𝑐 > 1

3
,

𝔼
[
𝑢2(𝑎

0
1
, 𝑗 + 1)

]
− 𝔼

[
𝑢2(𝑎

0
1
, 𝑗)
]
=

1

𝑆 + 1
[−1 + (2𝑆 − 2𝑗 + 1)𝑐] ≥

1

𝑆 + 1
(−1 + 3𝑐) > 0.

Hence, we can obtain that 𝑎1
2
= 𝑆 . Player 1: By the same logic as (ii) above, 𝑎1

1
= 𝑗 + 1 strictly dominates 𝑎1

1
= 𝑗 for all 1 ≤ 𝑗 ≤ 𝑆 : 

For 1 ≤ 𝑗 ≤ 𝑆 , since 𝑐 > 1

3
,

𝔼
[
𝑢1(𝑗 + 1, 𝑎0

2
)
]
− 𝔼

[
𝑢1(𝑗, 𝑎

0
2
)
]
=

1

𝑆 + 1
[−1 + (2𝑆 − 2𝑗 + 3)𝑐] ≥

1

𝑆 + 1
(−1 + 3𝑐) > 0.

Hence, we can obtain that 𝑎1
1
= 𝑆 +1. 2. (i) Notice that for any 𝑎2, 𝑢1(𝑎1, 𝑎2) is maximized at 𝑎1 = 𝑎2. Fix level 𝑘 ≥ 2. If level-𝑘 player 

1 chooses 𝑠, then the expected payoff is:

𝑉 𝑘
1
(𝑠) ≡

𝑘−1∑
𝜅=0

𝑝̃𝑘𝜅𝔼
[
𝑢1(𝑠, 𝑎

𝜅
2
)
]

= 𝑝̃𝑘
0
𝔼
[
𝑢1(𝑠, 𝑎

0
2
)
]
+

𝑘−1∑
𝜅=1

𝑝̃𝑘𝜅𝑢1(𝑠, 𝑎
𝜅
2
).

Suppose min{𝑎𝑚
2
∶ 1 ≤ 𝑚 ≤ 𝑘 − 1} = 1, then (i) holds trivially. If min{𝑎𝑚

2
∶ 1 ≤ 𝑚 ≤ 𝑘 − 1} ≥ 2, then we can prove the statement by 

contradiction. Suppose 𝑎𝑘
1
<min{𝑎𝑚

2
∶ 1 ≤𝑚 ≤ 𝑘 − 1}, then
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𝑉 𝑘
1
(𝑎𝑘

1
) = 𝑝̃𝑘

0
𝔼
[
𝑢1(𝑎

𝑘
1
, 𝑎0

2
)
]

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

<𝔼
[
𝑢1(𝑎

𝑘
1
+1,𝑎0

2
)
]
+

𝑘−1∑
𝜅=1

𝑝̃𝑘𝜅 𝑢1(𝑎
𝑘
1
, 𝑎𝜅

2
)

⏟⏞⏞⏟⏞⏞⏟

≤𝑢1(𝑎
𝑘
1
+1,𝑎𝑙

2
)

< 𝑉 𝑘
1
(𝑎𝑘

1
+ 1).

𝔼 
[
𝑢1(𝑎

𝑘
1
, 𝑎0

2
)
]
< 𝔼 

[
𝑢1(𝑎

𝑘
1
+ 1, 𝑎0

2
)
]
follows from the first statement. Furthermore, 𝑎𝑘

1
< min{𝑎𝑚

2
∶ 1 ≤ 𝑚 ≤ 𝑘 − 1} implies 𝑢1(𝑎

𝑘
1
, 𝑎𝜅

2
) ≤

𝑢1(𝑎
𝑘
1
+ 1, 𝑎𝜅

2
) for all 1 ≤ 𝜅 ≤ 𝑘 − 1. Hence, 𝑎𝑘

1
<min{𝑎𝑚

2
∶ 1 ≤𝑚 ≤ 𝑘 − 1} is not optimal for level-𝑘 player 1, a contradiction.

(ii) The logic is similar for player 2. 3. We prove this statement by induction on 𝑘. First, it holds for 𝑘 = 1, by the first statement. 
Next, we suppose it holds for any 𝑘 where 1 ≤ 𝑘 ≤𝐾 − 1 and prove it holds for 𝑘 =𝐾 . For level 𝐾 + 1 player 1, the expected payoff 
for choosing 𝑠 is:

𝑉 𝐾+1
1

(𝑠) = 𝑝̃𝐾+1
0

𝔼
[
𝑢1(𝑠, 𝑎

0
2
)
]
+

𝐾∑
𝜅=1

𝑝̃𝐾+1
𝜅 𝑢1(𝑠, 𝑎

𝜅
2
)

=

(∑𝐾−1
𝜅=0 𝑝𝜅∑𝐾
𝜅=0 𝑝𝜅

)
𝑉 𝐾
1
(𝑠) + 𝑝̃𝐾+1

𝐾
𝑢1(𝑠, 𝑎

𝐾
2
).

Suppose, by way of contradiction, that 𝑎𝐾+1
1

> 𝑎𝐾
1
. Then 𝑉 𝐾

1
(𝑎𝐾+1

1
) < 𝑉 𝐾

1
(𝑎𝐾

1
). From the induction hypothesis, 𝑎𝐾

2
≤ 𝑎𝐾−1

2
, and 

from the second statement, 𝑎𝐾
1
≥ 𝑎𝐾−1

2
and hence 𝑎𝐾+1

1
> 𝑎𝐾

1
≥ 𝑎𝐾−1

2
≥ 𝑎𝐾

1
. This implies 𝑢1(𝑎

𝐾+1
1

, 𝑎𝐾
2
) ≤ 𝑢1(𝑎

𝐾
1
, 𝑎𝐾

2
), so 𝑉 𝐾+1

1
(𝑎𝐾+1

1
) <

𝑉 𝐾+1
1

(𝑎𝐾
1
), which contradicts that 𝑎𝐾+1

1
is the optimal strategy for level 𝐾 + 1 player 1. Hence 𝑎𝐾+1

1
≤ 𝑎𝐾

1
, so the result is proved for 

𝑖 = 1. A similar argument proves the result for 𝑖 = 2. ■

B.6. Proof of Proposition 8

With slight abuse of notation, denote a level-𝑘 player’s prior belief that the opponent is level-𝜅 by 𝜇𝑘𝜅 ≡
𝑝𝜅∑𝑘−1
𝑗=0 𝑝𝑗

, 𝜅 = 1, ..., 𝑘 − 1.

Only if: Suppose 𝑝0 ≥
𝑆+1

(𝑆+1)+
(
3𝑐−1
1−𝑐

) , then we want to show that 𝑎𝑘
1
= 𝑆 + 1 for all 𝑘 ≥ 1. We can prove this statement by induction 

on 𝑘. By Lemma 2, we know 𝑎1
1
= 𝑆 + 1. Now, suppose this statement holds for all 1 ≤ 𝑘 ≤𝐾 for some 𝐾 ∈ ℕ, then we want to show 

this holds for level 𝐾 + 1 player 1. First, by Lemma 2, we have 𝑎𝑘
2
= 𝑆 for all 1 ≤ 𝑘 ≤𝐾 . Level 𝐾 + 1 player 1 would choose 𝑆 if and 

only if

𝜇𝐾+1
0

[
1

𝑆 + 1

[
1 + 2𝑆𝑐 +

𝑆+1∑
𝑖=2

(2𝑖− 3)𝑐

]]
+
(
1 − 𝜇𝐾+1

0

)
(2𝑆 − 1)𝑐

< 𝜇𝐾+1
0

[
1

𝑆 + 1

[
2(1 + (2𝑆 − 2)𝑐) +

𝑆∑
𝑖=2

(2𝑖− 3)𝑐

]]
+
(
1 − 𝜇𝐾+1

0

)
(1 + (2𝑆 − 2)𝑐)

⟺ 𝜇𝐾+1
0

[
1

𝑆 + 1
(1 − 3𝑐)

]
+
(
1 − 𝜇𝐾+1

0

)
(1 − 𝑐) > 0

⟺ 𝜇𝐾+1
0

<
𝑆 + 1

(𝑆 + 1) +
(
3𝑐−1

1−𝑐

) .

However, we know 𝜇𝐾
0
> 𝑝0 and we have assumed 𝑝0 ≥

𝑆+1

(𝑆+1)+
(
−1+3𝑐
1−𝑐

) , so 𝜇𝐾+1
0

> 𝑝0 ≥
𝑆+1

(𝑆+1)+
(
3𝑐−1
1−𝑐

) , implying that 𝑎𝐾+1
1

= 𝑆 + 1.

If: Suppose 𝑝0 <
𝑆+1

(𝑆+1)+
(
3𝑐−1
1−𝑐

) , then there exists 𝑁∗ <∞ such that 𝜇𝑁
∗

0
<

𝑆+1

(𝑆+1)+
(
3𝑐−1
1−𝑐

) . Therefore, by a previous calculation we have 

that:

𝐾̃∗
2𝑆−1

= argmin
𝑁∗

⎧⎪⎨⎪⎩
𝜇𝑁

∗

0
<

𝑆 + 1

(𝑆 + 1) +
(
3𝑐−1

1−𝑐

)
⎫⎪⎬⎪⎭
<∞,

which is the lowest level of player 1 who would take at no later than stage 2𝑆 − 1. ■

B.7. Proof of Proposition 9

First, an immediate implication of Lemma 2 is that for all level 𝑘 ≥ 1, the optimal choice for level-(k+1) is either the same as 
level-𝑘 or to take at one stage earlier. Given this observation, the logic of the proof is similar to Proposition 7. Only if: For any 

1 ≤ 𝑗 ≤ 2𝑆 − 2, suppose 𝑝0

(
𝑆

𝑆+1
−

2⌊ 𝑗
2
⌋𝑐

(𝑆+1)(1+𝑐)

)
+
∑𝐾̃∗

𝑗+1
−1

𝜅=1
𝑝𝜅 ≥

1−𝑐

1+𝑐
, then we want to show 𝐾̃∗

𝑗
=∞. Without loss of generality, we 



Journal of Economic Theory 220 (2024) 105871

32

P.-H. Lin and T.R. Palfrey

consider an odd 𝑗. If 𝐾̃∗
𝑗+1

=∞, then the statement holds immediately. Otherwise, we can prove 𝑎𝑘
1
>

𝑗+1

2
for all 𝑘 ≥ 1 by induction. 

By construction, we know 𝑎𝑚
2
>

𝑗+1

2
for all 1 ≤ 𝑚 ≤ 𝐾̃∗

𝑗+1
− 1 and 𝑎𝑘

1
>

𝑗+1

2
for all 1 ≤ 𝑘 ≤ 𝐾̃∗

𝑗+1
by Lemma 2. Suppose there is some 

𝐾 ≥ 𝐾̃∗
𝑗+1

+ 1 such that 𝑎𝑘
1
>

𝑗+1

2
for all 1 ≤ 𝑘 ≤𝐾 . We want to show this holds for level 𝐾 + 1 player 1. Level 𝐾 + 1 player 1 would 

choose 𝑗+1
2

+ 1 if and only if

𝑝0

[
1

𝑆 + 1
(1 − (2𝑆 − 𝑗 + 2)𝑐)

]
+

⎛⎜⎜⎜⎝

𝐾̃∗
𝑗+1

−1∑
𝜅=1

𝑝𝜅

⎞⎟⎟⎟⎠
(−2𝑐) +

⎛⎜⎜⎜⎝

𝐾∑
𝜅=𝐾̃∗

𝑗+1

𝑝𝜅

⎞⎟⎟⎟⎠
(1 − 𝑐) ≤ 0.

Moreover, we can observe that this condition is implied by:

𝑝0

[
1

𝑆 + 1
(1 − (2𝑆 − 𝑗 + 2)𝑐)

]
+

⎛⎜⎜⎜⎝

𝐾̃∗
𝑗+1

−1∑
𝜅=1

𝑝𝜅

⎞⎟⎟⎟⎠
(−2𝑐) +

⎛⎜⎜⎜⎝
1 − 𝑝0 −

𝐾̃∗
𝑗+1

−1∑
𝜅=1

𝑝𝜅

⎞⎟⎟⎟⎠
(1 − 𝑐) ≤ 0

⟺ 𝑝0

[
𝑆

𝑆 + 1
−

(𝑗 − 1)𝑐

(𝑆 + 1)(1 + 𝑐)

]
+

𝐾̃∗
𝑗+1

−1∑
𝜅=1

𝑝𝜅 ≥
1 − 𝑐

1 + 𝑐
.

By our assumption, we can conclude that the optimal choice for level (K+1) player 1 is 𝑗+1
2

+ 1,35 which completes the only if part 
of the proof. If: For any 1 ≤ 𝑗 ≤ 2𝑆 − 2, suppose

𝑝0

(
𝑆

𝑆 + 1
−

2⌊ 𝑗
2
⌋𝑐

(𝑆 + 1)(1 + 𝑐)

)
+

𝐾̃∗
𝑗+1

−1∑
𝜅=1

𝑝𝜅 <
1 − 𝑐

1 + 𝑐
,

then there exists 𝑁∗ where 𝐾̃∗
𝑗+1

+ 1 ≤𝑁∗ <∞ such that

𝜇𝑁
∗

0

(
𝑆

𝑆 + 1
−

2⌊ 𝑗
2
⌋𝑐

(𝑆 + 1)(1 + 𝑐)

)
+

∑𝐾̃∗
𝑗+1

−1

𝜅=1
𝑝𝜅∑𝑁∗−1

𝜅=0 𝑝𝜅

<
1 − 𝑐

1 + 𝑐
.

Therefore, by previous calculation and the existence of such 𝑁∗ <∞, we can obtain that

𝐾̃∗
𝑗 = argmin

𝑁∗

⎧⎪⎨⎪⎩
𝜇𝑁

∗

0

(
𝑆

𝑆 + 1
−

2⌊ 𝑗
2
⌋𝑐

(𝑆 + 1)(1 + 𝑐)

)
+

∑𝐾̃∗
𝑗+1

−1

𝜅=1
𝑝𝜅∑𝑁∗−1

𝜅=0 𝑝𝜅

<
1 − 𝑐

1 + 𝑐

⎫⎪⎬⎪⎭
<∞,

which is the lowest level of player who would take at no later than stage 𝑗. ■

B.8. Proof of Theorem 1

Step 1: By Lemma 1 and Lemma 2, we can obtain that 1 =𝐾∗
2𝑆

≤ 𝐾̃∗
2𝑆

= 1, suggesting that the inequality holds at stage 2𝑆 . Step 2:
By Proposition 6 and 8, we know 𝐾∗

2𝑆−1
and 𝐾̃∗

2𝑆−1
are the lowest levels such that

𝑝0
∑𝐾∗

2𝑆−1
−1

𝜅=0
𝑝𝜅

<
2𝑆

2𝑆 +
(
−1+3𝑐

1−𝑐

) , and

𝑝0
∑𝐾̃∗

2𝑆−1
−1

𝜅=0
𝑝𝜅

<
𝑆 + 1

(𝑆 + 1) +
(
−1+3𝑐

1−𝑐

) , respectively.

We can observe that 𝑆+1

(𝑆+1)+
(
−1+3𝑐
1−𝑐

) <
2𝑆

2𝑆+
(
−1+3𝑐
1−𝑐

) , suggesting the inequality for the dynamic model is less stringent. Hence, we can 

obtain that 𝐾∗
2𝑆−1

≤ 𝐾̃∗
2𝑆−1

. Step 3:We can finish the proof by induction on the stages. At stage 2𝑆−2, as we rearrange the condition 
from Proposition 7, we can obtain 𝐾∗

2𝑆−2
is the lowest level such that

35 If 𝑗 is even, then by the same argument, we can obtain level (K+1) player 2 would choose 𝑗
2
+ 1 as

𝑝0

(
𝑆

𝑆 + 1
−

𝑗𝑐

(𝑆 + 1)(1 + 𝑐)

)
+

𝐾̃∗
𝑗+1

−1∑
𝑙=1

𝑝𝑙 ≥
1 − 𝑐

1 + 𝑐
.
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𝐾∗
2𝑆−2

−1∑
𝜅=1

𝑝𝜅 > 𝑝0

(
1

2

)𝑆 (−1 + 3𝑐

1 − 𝑐

)
+
⎛⎜⎜⎝

𝐾∗
2𝑆−1

−1∑
𝜅=1

𝑝𝜅

⎞⎟⎟⎠

(
1 + 𝑐

1 − 𝑐

)
. (B.1)

Similarly, as we rearrange the necessary and sufficient condition from Proposition 9, we can find that 𝐾̃∗
2𝑆−2

is the lowest level such 
that

𝐾̃∗
2𝑆−2

−1∑
𝜅=1

𝑝𝜅 > 𝑝0

(
1

𝑆 + 1

)(
−1 + 3𝑐

1 − 𝑐

)
+
⎛⎜⎜⎝

𝐾̃∗
2𝑆−1

−1∑
𝜅=1

𝑝𝜅

⎞⎟⎟⎠

(
1 + 𝑐

1 − 𝑐

)
. (B.2)

It suffices to prove 𝐾∗
2𝑆−2

≤ 𝐾̃∗
2𝑆−2

by showing the right-hand side of Condition (B.1) is smaller than the right-hand side of (B.2). This 

holds because 
(
1

2

)𝑆
<

1

𝑆+1
for all 𝑆 ≥ 2 and 𝐾∗

2𝑆−1
≤ 𝐾̃∗

2𝑆−1
as we have shown in step 2. Step 4: Consider any 𝑗 where 3 ≤ 𝑗 ≤ 2𝑆 −1

and suppose 𝐾∗
2𝑆−𝑖

≤ 𝐾̃∗
2𝑆−𝑖

for all 0 ≤ 𝑖 ≤ 𝑗 − 1. We want to show 𝐾∗
2𝑆−𝑗

≤ 𝐾̃∗
2𝑆−𝑗

. Without loss of generality, we consider an odd 𝑗. 
That is, player 1 owns stage 2𝑆 − 𝑗. By Proposition 7, we know 𝐾∗

2𝑆−𝑗
is the lowest level such that

𝐾∗
2𝑆−𝑗

−1∑
𝜅=1

𝑝𝜅 > 𝑝0

(
1

2

)𝑆− 𝑗+1
2

+1 (−1 + 3𝑐

1 − 𝑐

)
+
⎛⎜⎜⎝

𝐾∗
2𝑆−𝑗+1

−1∑
𝜅=1

𝑝𝜅

⎞⎟⎟⎠

(
1 + 𝑐

1 − 𝑐

)
. (B.3)

Similarly, as we rearrange the necessary and sufficient condition from Proposition 9, we can obtain that 𝐾̃∗
2𝑆−𝑗

is the lowest level 
such that

𝐾̃∗
2𝑆−𝑗

−1∑
𝜅=1

𝑝𝜅 > 𝑝0

(
1

𝑆 + 1

)[−1 + (𝑗 + 2)𝑐

1 − 𝑐

]
+

⎛⎜⎜⎜⎝

𝐾̃∗
2𝑆−𝑗+1

−1∑
𝜅=1

𝑝𝜅

⎞⎟⎟⎟⎠

(
1 + 𝑐

1 − 𝑐

)
. (B.4)

Similar to the previous step, we can finish the proof by showing the right-hand side of Condition (B.3) is smaller than the right-hand 
side of (B.4). The induction hypothesis implies the second term of (B.4) is larger than the second term of (B.3). Hence, the only thing 
left to show is

(
1

2

)𝑆− 𝑗+1
2

+1 (−1 + 3𝑐

1 − 𝑐

)
<
(

1

𝑆 + 1

)[−1 + (𝑗 + 2)𝑐

1 − 𝑐

]
.

Or equivalently,

(𝑆 + 1)(−1 + 3𝑐) < 2𝑆−
𝑗+1
2

+1(−1 + (𝑗 + 2)𝑐). (B.5)

Since 3 ≤ 𝑗 ≤ 2𝑆 − 1, there is nothing to show if 𝑆 <
𝑗+1

2
. When 𝑆 ≥

𝑗+1

2
, we know (B.5) would hold in the following three different 

cases.

– Case 1: If 𝑆 + 1 = 2𝑆−
𝑗+1
2

+1, then (B.5) becomes −1 + 3𝑐 < −1 + (𝑗 + 2)𝑐 ⟺ 𝑗 > 1.

– Case 2: If 𝑆 + 1 < 2𝑆−
𝑗+1
2

+1, then (B.5) is equivalent to

2𝑆−
𝑗+1
2

+1 − (𝑆 + 1) <

[
(𝑗 + 2)2𝑆−

𝑗+1
2

+1 − 3(𝑆 + 1)

]
𝑐 ⟺ 1 <

⎡⎢⎢⎢⎢⎢⎢⎣

3 +
(𝑗 − 1)2𝑆−

𝑗+1
2

+1

2𝑆−
𝑗+1
2

+1 − (𝑆 + 1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

>0 as 𝑗≥3

⎤⎥⎥⎥⎥⎥⎥⎦

𝑐,

which holds under our assumption 𝑐 > 1

3
.

– Case 3: If 𝑆 + 1 > 2𝑆−
𝑗+1
2

+1, then (B.5) can be rearranged as

(𝑆 + 1) − 2𝑆−
𝑗+1
2

+1 >

[
3(𝑆 + 1) − (𝑗 + 2)2𝑆−

𝑗+1
2

+1

]
𝑐 ⟺ 1 >

⎡⎢⎢⎢⎢⎣
3 −

𝑗 − 1(
𝑆+1

2
𝑆−

𝑗+1
2

+1

)
− 1

⎤⎥⎥⎥⎥⎦
𝑐.

The right-hand side of the inequality is negative since

3 −
𝑗 − 1(

𝑆+1

2
𝑆−

𝑗+1
2

+1

)
− 1

≤ 3 −
𝑗 − 1(

𝑗+1
2

+1

2

)
− 1

= −1.
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This completes the proof. ■

B.9. Proof of Proposition 10

By Proposition 6, we know

𝐾∗
2𝑆−1

<∞ ⟺ 𝑝0 <
2𝑆

2𝑆
(
−1+3𝑐

1−𝑐

) .

As the prior distribution follows Poisson(𝜆), the condition becomes

𝐾∗
2𝑆−1

(𝜆) <∞ ⟺ 𝑒−𝜆 <
2𝑆

2𝑆
(
−1+3𝑐

1−𝑐

)

⟺ 𝜆 > 𝑙𝑛

[
1 +

(
1

2

)𝑆 (−1 + 3𝑐

1 − 𝑐

)]
.

Similarly, by Proposition 8, we know

𝐾̃∗
2𝑆−1

<∞ ⟺ 𝑝0 <
𝑆 + 1

(𝑆 + 1)
(
−1+3𝑐

1−𝑐

) ,

which can be rearranged to the following expression when the prior distribution follows Poisson(𝜆):

𝐾̃∗
2𝑆−1

(𝜆) <∞ ⟺ 𝑒−𝜆 <
𝑆 + 1

(𝑆 + 1)
(
−1+3𝑐

1−𝑐

)

⟺ 𝜆 > 𝑙𝑛
[
1 +

(
1

𝑆 + 1

)(
−1 + 3𝑐

1 − 𝑐

)]
.

This completes the proof. ■

B.10. Proof of Proposition 11

Here we show the existence of 𝜆∗. The existence of 𝜆̃∗ can be proven by the same argument. Step 1: By Proposition 1, we know 
for all 𝜆 > 0, 𝐾∗

2𝑆
(𝜆) = 1. Step 2: By Proposition 10, we know

𝐾∗
2𝑆−1

(𝜆) <∞ ⟺ 𝜆 > 𝑙𝑛

[
1 +

(
1

2

)𝑆 (−1 + 3𝑐

1 − 𝑐

)]
≡ 𝜆∗

2𝑆−1
.

Since 𝜆∗
2𝑆−1

<∞, we know 𝐾∗
2𝑆−1

(𝜆) <∞ ⟺ 𝜆 > 𝜆∗
2𝑆−1

. Step 3: By Proposition 7, we know

𝐾∗
2𝑆−2

(𝜆) <∞ ⟺

𝑒−𝜆
(
1

2

)𝑆
+ 𝑒−𝜆

∑𝐾∗
2𝑆−1

(𝜆)−1

𝑙=1
𝜆𝑙

𝑙!

𝑒−𝜆
(
1

2

)𝑆−1
+ (1 − 𝑒−𝜆)

<
1 − 𝑐

1 + 𝑐

⟺ 1 − 𝑒−𝜆
[
1 +

(
1

2

)𝑆 (−1 + 3𝑐

1 − 𝑐

)]
− 𝑒−𝜆

𝐾∗
2𝑆−1

(𝜆)−1∑
𝜅=1

𝜆𝜅

𝜅!

(
1 + 𝑐

1 − 𝑐

)
> 0.

Notice that by step 2, we know there exists some 𝑀 <∞, such that for all 𝜆 > 𝜆∗
2𝑆−1

, 𝐾∗
2𝑆−1

(𝜆) <𝑀 . Moreover, by Proposition 4, 
we know 𝐾∗

2𝑆−1
(𝜆) ≥ 2. Hence,

0 = lim
𝜆→∞

𝜆

𝑒𝜆
≤ lim

𝜆→∞
𝑒−𝜆

𝐾∗
2𝑆−1

(𝜆)−1∑
𝜅=1

𝜆𝜅

𝜅!
≤ lim

𝜆→∞
𝑒−𝜆

𝑀−1∑
𝜅=1

𝜆𝜅

𝜅!
= 0.

Coupled with the fact that lim𝜆→∞ 𝑒−𝜆 = 0, we can conclude that there exists 𝜆∗
2𝑆−2

such that 𝜆∗
2𝑆−1

< 𝜆∗
2𝑆−2

<∞ and 𝐾∗
2𝑆−2

(𝜆) <
∞ ⟺ 𝜆 > 𝜆∗

2𝑆−2
. Step 4: Now we can prove this statement by induction on each stage. Consider any 𝑗 where 3 ≤ 𝑗 ≤ 2𝑆 − 1 and 

suppose there exists 𝜆∗
2𝑆−𝑗+1

<∞ such that 𝐾∗
2𝑆−𝑗+1

(𝜆) <∞ for all 𝜆 > 𝜆∗
2𝑆−𝑗+1

. By Proposition 7, we know

𝐾∗
2𝑆−𝑗

(𝜆) <∞ ⟺

𝑒−𝜆
(
1

2

)⌊ 2𝑆−𝑗
2
⌋+1

+ 𝑒−𝜆
∑𝐾∗

2𝑆−𝑗+1
(𝜆)−1

𝜅=1
𝜆𝜅

𝜅!

𝑒−𝜆
(
1

2

)⌊ 2𝑆−𝑗
2
⌋
+ (1 − 𝑒−𝜆)

<
1 − 𝑐

1 + 𝑐
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⟺ 1 − 𝑒−𝜆

[
1 +

(
1

2

)⌊ 2𝑆−𝑗
2
⌋+1 (−1 + 3𝑐

1 − 𝑐

)]
− 𝑒−𝜆

𝐾∗
2𝑆−𝑗+1

(𝜆)−1∑
𝜅=1

𝜆𝜅

𝜅!

(
1 + 𝑐

1 − 𝑐

)
> 0.

By the induction hypothesis, we know there exists some 𝐿 <∞ such that for all 𝜆 > 𝜆∗
2𝑆−𝑗+1

, 𝐾∗
2𝑆−𝑗+1

(𝜆) < 𝐿. Proposition 4 gives us 
𝐾∗

2𝑆−𝑗+1
(𝜆) ≥ 𝑗, and hence,

0 = lim
𝜆→∞

𝑒−𝜆

(
𝑗−1∑
𝜅=1

𝜆𝜅

𝜅!

)
≤ lim

𝜆→∞
𝑒−𝜆

𝐾∗
2𝑆−𝑗+1

(𝜆)−1∑
𝜅=1

𝜆𝜅

𝜅!
≤ lim

𝜆→∞
𝑒−𝜆

𝐿−1∑
𝜅=1

𝜆𝜅

𝜅!
= 0.

Combined with the fact lim𝜆→∞ 𝑒−𝜆 = 0, we have proved that there exists 𝜆∗
2𝑆−𝑗

such that 𝜆∗
2𝑆−𝑗+1

< 𝜆∗
2𝑆−𝑗

<∞ and 𝐾∗
2𝑆−𝑗

(𝜆) <
∞ ⟺ 𝜆 > 𝜆∗

2𝑆−𝑗
. Thus, 𝜆∗

1
is the desired 𝜆∗. ■

B.11. Proof of Proposition 12

The proofs of Propositions 6 through 9 provide a recipe to derive the necessary and sufficient conditions for complete unraveling 
at each stage. That is, when the prior distribution follows Poisson distribution, we can compute the minimum 𝜆 for both models such 
that the predictions coincide with the standard level-𝑘 model. In the dynamic model, we can obtain from Proposition 6 and 7 that 
for any stage 2𝑆 − 𝑗 where 1 ≤ 𝑗 ≤ 2𝑆 − 1,

𝐾∗
2𝑆−1

(𝜆) = 2 ⟺
𝑒−𝜆

𝑒−𝜆 + 𝜆𝑒−𝜆
<

2𝑆

2𝑆 +
(
−1+3𝑐

1−𝑐

) ⟺ 𝜆 >
(
1

2

)𝑆 (−1 + 3𝑐

1 − 𝑐

)
≡ 𝜆∗∗

2𝑆−1
, and

𝐾∗
2𝑆−𝑗

(𝜆) = 𝑗 + 1 ⟺

𝑗∑
𝜅=1

𝜆𝜅𝑒−𝜆

𝜅!
> 𝑒−𝜆

(
1

2

)𝑆−⌊ 𝑗+1
2
⌋+1 (−1 + 3𝑐

1 − 𝑐

)
+

(
𝑗−1∑
𝜅=1

𝜆𝜅𝑒−𝜆

𝜅!

)(
1 + 𝑐

1 − 𝑐

)

⟺
1

𝑗!
𝜆𝑗 −

(
2𝑐

1 − 𝑐

)(𝑗−1∑
𝜅=1

𝜆𝜅

𝜅!

)
>
(
1

2

)𝑆−⌊ 𝑗+1
2
⌋+1 (−1 + 3𝑐

1 − 𝑐

)
≡𝑀∗∗

2𝑆−𝑗
.

Similarly, we know from Proposition 8 and Proposition 9 that for any stage 2𝑆 − 𝑗 where 1 ≤ 𝑗 ≤ 2𝑆 − 1,

𝐾̃∗
2𝑆−1

(𝜆) = 2 ⟺
𝑒−𝜆

𝑒−𝜆 + 𝜆𝑒−𝜆
<

𝑆 + 1

(𝑆 + 1) +
(
−1+3𝑐

1−𝑐

) ⟺ 𝜆 >
−1 + 3𝑐

(𝑆 + 1)(1 − 𝑐)
≡ 𝜆̃∗∗

2𝑆−1
, and

𝐾̃∗
2𝑆−𝑗

(𝜆) = 𝑗 + 1 ⟺

𝑗∑
𝜅=1

𝜆𝜅𝑒−𝜆

𝜅!
> 𝑒−𝜆

⎛⎜⎜⎜⎝

−1 +
(
2⌊ 𝑗+1

2
⌋+ 1

)
𝑐

(𝑆 + 1)(1 − 𝑐)

⎞⎟⎟⎟⎠
+

(
𝑗−1∑
𝜅=1

𝜆𝜅𝑒−𝜆

𝜅!

)(
1 + 𝑐

1 − 𝑐

)

⟺
1

𝑗!
𝜆𝑗 −

(
2𝑐

1 − 𝑐

)(𝑗−1∑
𝜅=1

𝜆𝜅

𝜅!

)
>

⎛⎜⎜⎜⎝

−1 +
(
2⌊ 𝑗+1

2
⌋+ 1

)
𝑐

(𝑆 + 1)(1 − 𝑐)

⎞⎟⎟⎟⎠
≡ 𝑀̃∗∗

2𝑆−𝑗
.

First, we can find 𝜆∗∗
2𝑆−1

< 𝜆̃∗∗
2𝑆−1

since ( 1
2
)𝑆 <

1

𝑆+1
. Moreover, because the LHS of each inequality is a degree of 𝑗 polynomial of 

𝜆, it has only one positive root by Descartes’ rule of signs. Hence, it suffices to prove 𝑀∗∗
2𝑆−𝑗

< 𝑀̃∗∗
2𝑆−𝑗

, or equivalently, 
𝑀̃∗∗

2𝑆−𝑗

𝑀∗∗
2𝑆−𝑗

> 1, 

for all 2 ≤ 𝑗 ≤ 2𝑆 − 1. Due to the property of floor functions, we can focus on odd 𝑗 without loss of generality. Also, we can observe 
that this ratio is decreasing in 𝑗 since for any odd 𝑗 where 3 ≤ 𝑗 ≤ 2𝑆 − 3,

𝑀̃∗∗
2𝑆−(𝑗+2)

𝑀∗∗
2𝑆−(𝑗+2)

=

(
2𝑆−

𝑗+1
2

𝑆 + 1

)(
−1 + (𝑗 + 4)𝑐

−1 + 3𝑐

)

=
1

2

(
𝑀̃∗∗

2𝑆−𝑗

𝑀∗∗
2𝑆−𝑗

)
+

1

2

[(
2𝑆−

𝑗−1
2

𝑆 + 1

)(
2𝑐

−1 + 3𝑐

)]
<
𝑀̃∗∗

2𝑆−𝑗

𝑀∗∗
2𝑆−𝑗

⟺ 2𝑐 < −1 + (𝑗 + 2)𝑐 ⟺ 1 < 𝑗𝑐,

which holds because of the assumption 𝑐 > 1

3
. The monotonicity implies that the ratio is minimized when 𝑗 = 2𝑆 − 1, and we can 

obtain the conclusion by showing 
𝑀̃∗∗

1

𝑀∗∗
1

> 1:

𝑀̃∗∗
1

𝑀∗∗
1

=
(

2

𝑆 + 1

)(−1 + (2𝑆 + 1)𝑐

−1 + 3𝑐

)
> 1 ⟺ (𝑆 − 1)(1 + 𝑐) > 0,
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as desired. ■

B.12. Proof of Proposition 13

Here we only provide the proof for the case where the game is played in extensive form. A very similar argument can be applied 
to the case where the game is played in reduced normal form. First of all, by Proposition 1, we know 𝐾∗

2𝑆
(𝜆) = 1 for all 𝜆 > 0. 

Therefore, it is weakly decreasing in 𝜆.
To show the monotonicity of 𝐾∗

2𝑆−1
(𝜆), we need to introduce the function 𝐹𝑘(𝜆) ∶ ℝ++ → ℝ where 𝑘 ∈ ℕ and 𝐹𝑘(𝜆) =

∑𝑘
𝜅=1

𝜆𝜅

𝜅!
. 

Notice that 𝐹𝑘+1(𝜆) > 𝐹𝑘(𝜆) for all 𝜆 > 0, and 𝐹𝑘(𝜆) is strictly increasing since 𝐹
′
𝑘
(𝜆) =

∑𝑘−1
𝜅=0

𝜆𝜅

𝜅!
> 0 for all 𝜆 > 0. We prove the 

monotonicity toward contradiction. By Proposition 6, we know 𝐾∗
2𝑆−1

(𝜆) is the lowest level such that

𝐹𝐾∗
2𝑆−1

(𝜆)−1(𝜆) >
(
1

2

)𝑆 (−1 + 3𝑐

1 − 𝑐

)
.

If 𝐾∗
2𝑆−1

(𝜆) is not weakly decreasing in 𝜆, then there exists 𝜆′ > 𝜆 such that 𝐾∗
2𝑆−1

(𝜆′) > 𝐾∗
2𝑆−1

(𝜆). By the construction and the 
monotonicity of 𝐹𝑘(𝜆), we can find that

𝐹𝐾∗
2𝑆−1

(𝜆)−1(𝜆
′) > 𝐹𝐾∗

2𝑆−1
(𝜆)−1(𝜆) >

(
1

2

)𝑆 (−1 + 3𝑐

1 − 𝑐

)
.

Also, 𝐾∗
2𝑆−1

(𝜆′) is the lowest level such that

𝐹𝐾∗
2𝑆−1

(𝜆′)−1(𝜆
′) >

(
1

2

)𝑆 (−1 + 3𝑐

1 − 𝑐

)
,

implying that

𝐹𝐾∗
2𝑆−1

(𝜆)−1(𝜆
′) > 𝐹𝐾∗

2𝑆−1
(𝜆′)−1(𝜆

′) >
(
1

2

)𝑆 (−1 + 3𝑐

1 − 𝑐

)
.

This contradicts the assumption that 𝐾∗
2𝑆−1

(𝜆′) >𝐾∗
2𝑆−1

(𝜆). ■

Appendix C. Table for Fig. 8

Table C.1
The cumulative probabilities and the conditional take probabilities of each stage.

Game 1 2 3 4 5 6

CG 1 Direct Response
0.156
(0.156)

0.444
(0.342)

0.711
(0.480)

0.933
(0.769)

1.000
(1.000)

1.000
—

Strategy Method
0.040
(0.040)

0.219
(0.187)

0.486
(0.342)

0.655
(0.328)

0.878
(0.646)

0.991
(0.927)

CG 2 Direct Response
0.600
(0.600)

0.889
(0.722)

1.000
(1.000)

1.000
—

1.000
—

1.000
—

Strategy Method
0.224
(0.224)

0.721
(0.640)

0.934
(0.763)

0.983
(0.741)

0.994
(0.643)

1.000
(1.000)

CG 3 Direct Response
0.146
(0.146)

0.561
(0.486)

0.634
(0.167)

0.854
(0.600)

0.927
(0.500)

0.976
(0.667)

Strategy Method
0.158
(0.158)

0.641
(0.573)

0.731
(0.250)

0.882
(0.562)

0.929
(0.396)

0.995
(0.929)

CG 4 Direct Response
0.489
(0.489)

0.822
(0.652)

0.956
(0.750)

1.000
(1.000)

1.000
—

1.000
—

Strategy Method
0.395
(0.395)

0.677
(0.467)

0.895
(0.674)

0.953
(0.550)

0.978
(0.533)

1.000
(1.000)

Note: The conditional take probabilities are reported in parentheses.

Appendix D. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .jet .2024 .105871.
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