
Computer Methods in Applied Mechanics and Engineering 427 (2024) 117011

A
0
(

a

b

w
t
s

r
f
s
y

h
R

Contents lists available at ScienceDirect

Comput. Methods Appl. Mech. Engrg.

journal homepage: www.elsevier.com/locate/cma

Scalable computation of energy functions for nonlinear balanced
truncation
Boris Kramer a,∗, Serkan Gugercin b, Jeff Borggaard b, Linus Balicki b
Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, 92093-0411, CA, USA
Department of Mathematics, Virginia Tech, Blacksburg, 24061, VA, USA

A R T I C L E I N F O

Dataset link: https://github.com/jborggaard/N
Lbalancing

Keywords:
Reduced-order modeling
Balanced truncation
Nonlinear manifolds
Hamilton–Jacobi–Bellman equation
Nonlinear systems

A B S T R A C T

Nonlinear balanced truncation is a model order reduction technique that reduces the dimension
of nonlinear systems in a manner that accounts for either open- or closed-loop observability and
controllability aspects of the system. A computational challenges that has so far prevented its
deployment on large-scale systems is that the energy functions required for characterization of
controllability and observability are solutions of various high-dimensional Hamilton–Jacobi–
(Bellman) equations, which are computationally intractable in high dimensions. This work
proposes a unifying and scalable approach to this challenge by considering a Taylor-series-based
approximation to solve a class of parametrized Hamilton–Jacobi–Bellman equations that are at
the core of nonlinear balancing. The value of a formulation parameter provides either open-loop
balancing or a variety of closed-loop balancing options. To solve for the coefficients of Taylor-
series approximations to the energy functions, the presented method derives a linear tensor
system and heavily utilizes it to numerically solve structured linear systems with billions of
unknowns. The strength and scalability of the algorithm is demonstrated on two semi-discretized
partial differential equations, namely the Burgers and the Kuramoto–Sivashinsky equations.

1. Introduction

Simulation of large-scale nonlinear dynamical systems can be time-consuming and resource-intensive. It is a frequent bottleneck
hen these simulations are used for real-time, model-based control. Reduced-order models (ROMs) provide an attractive solution
o this problem by approximating dynamical systems (and their relevant system-theoretic properties) in a much lower dimensional
tate space; see, e.g., [1–6] for a general overview. These ROMs then allow for the design of low-dimensional controllers and filters.
Balanced truncation model reduction, pioneered by Moore [7] and Mullis and Roberts [8] for linear time-invariant (LTI) systems,

provides an elegant approach to model reduction for open-loop settings. The approach uses the controllability and observability
energies of a system to determine those states that have the most relative importance. If a state requires a large amount of input
energy to be reached and also has minimal effect on the output, then the reduced model would neglect that state without a
significant impact on the input–output behavior of the system. Extensions of this concept to closed-loop LTI systems led to the
LQG balancing [9,10] and ∞ balancing concepts [11]. Several variants for different formulations of the LTI system and different
educed-model outcomes exist, such as stochastic balancing [12,13], bounded real balancing [14], positive real balancing [12,15],
requency-weighted balancing [16]; see also the surveys [17,18]. The interest in balancing methods for LTI systems in the 1980s
timulated research in computational methods for solving large-scale Lyapunov or Riccati-type algebraic matrix equations that
ielded low-rank solvers [19,20] and doubling methods [21] that can solve these matrix equations for millions of states.

∗ Corresponding author.
E-mail address: bmkramer@ucsd.edu (B. Kramer).
vailable online 29 April 2024
045-7825/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

ttps://doi.org/10.1016/j.cma.2024.117011
eceived 28 December 2023; Received in revised form 18 April 2024; Accepted 19 April 2024

https://www.elsevier.com/locate/cma
https://www.elsevier.com/locate/cma
https://github.com/jborggaard/NLbalancing
https://github.com/jborggaard/NLbalancing
https://github.com/jborggaard/NLbalancing
https://github.com/jborggaard/NLbalancing
https://github.com/jborggaard/NLbalancing
https://github.com/jborggaard/NLbalancing
https://github.com/jborggaard/NLbalancing
https://github.com/jborggaard/NLbalancing
https://github.com/jborggaard/NLbalancing
https://github.com/jborggaard/NLbalancing
https://github.com/jborggaard/NLbalancing
https://github.com/jborggaard/NLbalancing
https://github.com/jborggaard/NLbalancing
https://github.com/jborggaard/NLbalancing
https://github.com/jborggaard/NLbalancing
https://github.com/jborggaard/NLbalancing
https://github.com/jborggaard/NLbalancing
https://github.com/jborggaard/NLbalancing
https://github.com/jborggaard/NLbalancing
https://github.com/jborggaard/NLbalancing
https://github.com/jborggaard/NLbalancing
https://github.com/jborggaard/NLbalancing
https://github.com/jborggaard/NLbalancing
https://github.com/jborggaard/NLbalancing
https://github.com/jborggaard/NLbalancing
https://github.com/jborggaard/NLbalancing
https://github.com/jborggaard/NLbalancing
https://github.com/jborggaard/NLbalancing
https://github.com/jborggaard/NLbalancing
https://github.com/jborggaard/NLbalancing
https://github.com/jborggaard/NLbalancing
https://github.com/jborggaard/NLbalancing
https://github.com/jborggaard/NLbalancing
https://github.com/jborggaard/NLbalancing
https://github.com/jborggaard/NLbalancing
https://github.com/jborggaard/NLbalancing
https://github.com/jborggaard/NLbalancing
https://github.com/jborggaard/NLbalancing
https://github.com/jborggaard/NLbalancing
https://github.com/jborggaard/NLbalancing
https://github.com/jborggaard/NLbalancing
mailto:bmkramer@ucsd.edu
https://doi.org/10.1016/j.cma.2024.117011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2024.117011&domain=pdf
https://doi.org/10.1016/j.cma.2024.117011
http://creativecommons.org/licenses/by/4.0/

Computer Methods in Applied Mechanics and Engineering 427 (2024) 117011B. Kramer et al.

a
s
t
H
l
n
i

a
i
c
n
o

c
g
t
c
a
b
s
f
i
a
T
s
P
r
a
n
c

p
o
e
a
e

i

e

For nonlinear large-scale systems, the theory of balanced truncation is largely developed, yet computationally scalable approaches
nd efficient ROM development remain open problems. The theoretical foundation for balanced truncation of nonlinear open-loop
ystems proposed by Scherpen [22] defines input and output energy functions and shows that they can be computed as solutions
o Hamilton–Jacobi (HJ) partial differential equations (PDEs). Theoretical extensions of [22] to the closed-loop setting, such as
amilton–Jacobi–Bellman (HJB) balancing [23] and ∞ balancing [24] have also been proposed for nonlinear systems. As in the
inear case, there are also structure-preserving balancing such as dissipativity-preserving [25] and positive-real balancing [26] for
onlinear systems. In all of these approaches though, the main challenge is the computational bottleneck of solving HJB PDEs, which
s intractable for systems of even modest order.
Fujimoto and Tsubakino [27] use Taylor series approximations of the controllability and observability energy functions, as well

s the singular value functions, to solve the HJ equations (an idea that goes back to [28,29]). Their subsequent balanced ROMs are
llustrated on a four-dimensional ordinary differential equation (ODE). Building on [27], the authors in [30] consider the special
lass of quadratic models and use Taylor series expansion to solve the HJB equations and balancing transformations. However,
o numerical examples are given. In these existing Taylor-series-based approaches for nonlinear balancing, an explicit structure to
btain the coefficients of the energy function and a corresponding scalable numerical algorithm are missing.
An alternative approach to solving the HJB equations is to use max-plus methods [31], which can provide significant

omputational savings, but require highly nontrivial customization to dynamical systems forms; those methods are hence less
eneralizable when compared to Taylor-series based methods. Instead of focusing on the energy functions, approximate balanced
runcation methods for nonlinear systems have been proposed that focus on algebraic Gramians, which is appealing from a
omputational perspective. For instance [32] derives such Gramians as the solution of Lyapunov-type equations, [33] proposed
lgebraic Gramians for bilinear systems, and [34] combined Carleman bilinearization with that balancing method to approximately
alance weakly nonlinear systems. A computationally efficient framework via truncated algebraic Gramians for quadratic-bilinear
ystems has been proposed in [35], which also applies to more general nonlinear systems via lifting, see [36]. Empirical Gramians
or nonlinear systems [37] can also be used, yet their computation requires as many simulations of the full system as there are
nputs and outputs: each simulation uses an impulse disturbance per input channel while setting the other inputs to zero. Newman
nd Krishnaprasad [38] show that the controllability energy function is related to the stationary density 𝑝∞ of a Markov process.
hey suggest to solve the corresponding Fokker–Planck equations for 𝑝∞ instead and further show that for a particular class of
ystems with Hamiltonian structure, this relationship is exact. However, this shifts the computational burden to solving the Fokker–
lanck equations. Hence, their test model is a two-dimensional ODE. A method for approximating the nonlinear balanced truncation
eduction map via reproducing kernel Hilbert spaces (a machine learning-based, data-driven technique) has been proposed in [39],
nd applied to two- and seven-dimensional ODE examples. As evident from the literature, scalable and computationally efficient
onlinear balanced truncation approaches based on the energy functions that work for both closed- and open-loop systems are
urrently lacking for medium- and large-scale systems.
There are three main contributions of this paper. First, we propose a unifying Taylor series-based solution to a class of

arametrized HJB equations that yield the open- and closed-loop nonlinear balancing energy functions. Depending on the value
f a parameter 𝛾, we either obtain open-loop (𝛾 = 1) or otherwise a family of closed-loop energy functions. Second, we derive the
xplicit tensor structure for the coefficients of the Taylor expansion. Our numerical methods subsequently exploit this structure to
llow scalability up to thousands of state variables. Third, we provide a scalability and solvability analysis, large-scale numerical
xperiments, and open-access software for all algorithms and examples in the NLbalancing repository [40].
Our computational solution to the parametrized HJB equations assumes a quadratic dynamical system. The motivation for this

s threefold: First, from a computational perspective, solving the ∞ equations (see Eq. (13) below) for a general nonlinear function
remains very challenging beyond even two degrees of freedom. No general approaches exist that would lend themselves to the
scalability required for model reduction. Second, many models in fluid mechanics are quadratic, such as the Navier–Stokes, Burgers,
Kuramoto–Sivashinsky, Fisher–KPP equations, and the shallow-water equations. These equations model nonlinear fluid flow, include
phenomena such as traveling waves and shocks, and serve as numerical test beds for more complex engineering models. Third,
focusing on quadratic drift is not very restrictive: many nonlinear dynamical systems can be transformed into quadratic nonlinearities
with additional bilinear terms via variable transformations and the introduction of auxiliary variables [41–49]. Explicit algorithms
to find such quadratizations can be found in [50–53].

This paper is organized as follows. Section 2 reviews energy functions for nonlinear systems, their associated HJB equations and
resulting controllers. Section 3 presents the proposed computational framework, including an analysis thereof, for efficiently solving
high-dimensional parametrized HJB equations. Section 4 presents numerical results for two semi-discretized PDEs: Burgers equation
and the Kuramoto–Sivashinsky equation. Section 5 offers conclusions and an outlook toward future work.

2. Energy functions for nonlinear balancing

Nonlinear balanced truncation proceeds in two stages: First, define an energy function (e.g., controllability and observability),
and compute those efficiently. Second, find a variable transformation that ‘‘diagonalizes’’ these energy functions. In the linear case,
these energy functions are quadratic, and diagonalization means that the linear transformation is chosen so that the observability
and controllability Gramians are diagonal. The nonlinear case is more involved, as both the energy functions and transformations
become nonlinear. Section 2.1 reviews background material on energy functions, the associated HJB equations, and the resulting
controllers. Section 2.2 defines the nonlinear observability and controllability energy functions for the open-loop setting. Section 2.3
defines nonlinear ∞-type energy functions for closed-loop systems. Special cases are provided in the appendix for the interested
reader. We also added Appendix A to review energy functions from the HJB-balancing framework and Appendix B which presents
2

xtensions of the LQG energy functions for nonlinear systems.

Computer Methods in Applied Mechanics and Engineering 427 (2024) 117011B. Kramer et al.

s

w
m

f

A

L

T
w
e

d

2

c

w
q
t

2.1. Energy functions, Hamilton–Jacobi-Bellman equations, and optimal controllers

The balanced truncation problem is tightly connected to the optimal control problem, which we illustrate in this background
ection. We consider the finite-dimensional nonlinear dynamical system

𝐱̇(𝑡) = 𝐟 (𝐱(𝑡)) + 𝐠(𝐱(𝑡))𝐮(𝑡), 𝐲(𝑡) = 𝐡(𝐱(𝑡)), (1)

here 𝑡 denotes time, 𝐱(𝑡) ∈ R𝑛 is the state, 𝐮(𝑡) ∈ R𝑚 is a time-dependent input vector, 𝐠 ∶ R𝑛 ↦ R𝑛×𝑚 encodes the actuation
echanism, 𝐲(𝑡) ∈ R𝑝 is the output vector measured by the function 𝐡 ∶ R𝑛 ↦ R𝑝, the nonlinear drift term is 𝐟 ∶ R𝑛 ↦ R𝑛, and 𝐱 = 𝟎

is an isolated equilibrium for 𝐮 = 𝟎. Consider the energy function

̂(𝐱0,𝐮) =
1
2 ∫

∞

0
𝑄(𝐱(𝑡)) + 𝑅(𝐮(𝑡))d𝑡, 𝐱(0) = 𝐱0, (2)

where the state and control penalty functions 𝑄(𝐱(𝑡)) and 𝑅(𝐱(𝑡)) are non-negative. The goal of a nonlinear feedback control is to
ind a control 𝐮∗ = 𝐮∗(𝐱) that minimizes the energy (or cost) in (2), i.e.,

𝐮∗ ∶= argmin
𝐮

̂(𝐱0,𝐮) ⇒ (𝐱0) ∶= ̂(𝐱0,𝐮∗). (3)

necessary (and in fact also sufficient [54]) condition is that the minimizer 𝐮∗ must satisfy the HJB equation

0 = min
𝐮

{

𝑄(𝐱) + 𝑅(𝐮) + 𝜕(𝐱)
𝜕𝐱

[

𝐟 (𝐱) + 𝐠(𝐱)𝐮
]

}

. (4)

With a few additional assumptions and a quadratic cost function, we can obtain a closed form feedback solution to the nonlinear
control problem (3).

Theorem 1 ([29]). Consider the nonlinear dynamical system (1) with the quadratic cost function

̂(𝐱0,𝐮) =
1
2 ∫

∞

0
𝐱(𝑡)⊤𝐐𝐱(𝑡) + 𝐮(𝑡)⊤𝐑𝐮(𝑡)d𝑡. (5)

et the following assumptions hold: (1) there exists a neighborhood 𝛺 ⊆ R𝑛 of the origin where 𝐟 ∈ 𝐶2(𝛺); 𝐟 (𝟎) = 𝟎; (2) the pair
(

𝜕𝐟
𝜕𝐱 (𝟎), 𝐠(𝟎)

)

is stabilizable; (3) the system (1) is stabilizable on 𝛺, so there exists a stabilizing controller such that the closed-loop system is asymptotically
stable on 𝛺. Then there exists a unique continuously differentiable minimizer for the optimal feedback control 𝐮∗(𝐱) that solves the HJB
equation (4), and this minimizer is given by

𝐮∗(𝐱) = −𝐑−1𝐠(𝐱)⊤ 𝜕⊤(𝐱)
𝜕𝐱

. (6)

Moreover, if 𝐟 (𝐱) is analytic, so are 𝐮∗(𝐱) and (𝐱).

Since the terms inside the integral of the energy function are quadratic in 𝐱∗ and 𝐮∗, it can be shown directly that this energy
function satisfies the Lyapunov conditions (i.e., (𝐱) > 0 and d

d𝑡 (𝐱) < 0 for all 𝐱 ∈ 𝛺∖𝟎). Specifically, under the assumptions of
heorem 1, the energy function (𝐱) in (3) is a Lyapunov function for the nonlinear control-affine system (1). In other words,
ith the controller 𝐮∗ from Theorem 1, the origin of the closed-loop system 𝐱̇(𝑡) = 𝐟 (𝐱(𝑡)) + 𝐠(𝐱(𝑡))𝐮∗(𝑡) is asymptotically stable, see,
.g., [54].
In sum, once the HJB equation is solved for the energy function, an optimal control can be found via (6). The next sections detail

ifferent approaches to devising an energy function via HJ(B) equations.

.2. Nonlinear observability and controllability energy functions

Similar to the linear case [7], for an asymptotically stable nonlinear system (1) controllability and observability energy functions
an be defined [22] as

𝑐(𝐱0) ∶= min
𝐮∈𝐿2(−∞,0]
𝐱(−∞)=𝟎
𝐱(0)=𝐱0

1
2 ∫

0

−∞
‖𝐮(𝑡)‖2d𝑡 (7)

𝑜(𝐱0) ∶=
1
2 ∫

∞

0
‖𝐲(𝑡)‖2d𝑡, (8)

here 𝑐(𝐱0) quantifies the minimum amount of energy required to steer the system from 𝐱(−∞) = 𝟎 to 𝐱(0) = 𝐱0, and 𝑜(𝐱0)
uantifies the output energy generated by the nonzero initial condition 𝐱0 and 𝐮(𝑡) ≡ 𝟎. The energy functions in (7)–(8) are solutions
o Hamilton–Jacobi equations:

0 =
𝜕𝑐 (𝐱)
𝜕𝐱

𝐟 (𝐱) + 1
2
𝜕𝑐 (𝐱)
𝜕𝐱

𝐠(𝐱)𝐠(𝐱)⊤
𝜕⊤𝑐 (𝐱)

𝜕𝐱
, (9)

0 =
𝜕𝑜(𝐱)
𝜕𝐱

𝐟 (𝐱) + 1
2
𝐡(𝐱)⊤𝐡(𝐱). (10)
3

Computer Methods in Applied Mechanics and Engineering 427 (2024) 117011B. Kramer et al.

l

s

R
f
c
r
s

w
1

e

T

Conditions for the energy functions to exist (i.e., to be finite) are that 𝐟 is asymptotically stable in a neighborhood of the origin, and
that −

(

𝐟 (𝐱) + 𝐠(𝐱)𝐠(𝐱)⊤ 𝜕⊤𝑐 (𝐱)
𝜕𝐱

)

is asymptotically stable in a neighborhood of the origin [22]. For asymptotically stable and minimal
inear dynamical systems, 𝐱̇ = 𝐀𝐱 + 𝐁𝐮, 𝐲 = 𝐂𝐱, the controllability and observability functions are quadratic in the state, i.e.,

𝑐 (𝐱0) =
1
2
𝐱⊤0 𝐏

−1𝐱0, 𝑜(𝐱0) =
1
2
𝐱⊤0 𝐐𝐱0, (11)

where 𝐏 and 𝐐 are the unique positive definite solutions to the Lyapunov equations

𝐀𝐏 + 𝐏𝐀⊤ + 𝐁𝐁⊤ = 𝟎, 𝐀⊤𝐐 +𝐐𝐀 + 𝐂⊤𝐂 = 𝟎, (12)

which can be derived from Eqs. (9)–(10). The following section focuses on the closed-loop setting, which can also address unstable
systems.

2.3. ∞ balancing for nonlinear systems

The development of a unifying ∞ control framework for nonlinear systems creates a direct need for ∞ balancing [24], which
we briefly review herein.

Definition 1 ([24, Def. 5.1]). For the nonlinear dynamical system in (1), the ∞ past energy in the state 𝐱0 is defined, for 0 < 𝛾,
𝛾 ≠ 1, as

−
𝛾 (𝐱0) ∶= min

𝐮∈𝐿2(−∞,0]
𝐱(−∞)=𝟎,
𝐱(0)=𝐱0

1
2

0

∫
−∞

(1 − 𝛾−2)‖𝐲(𝑡)‖2 + ‖𝐮(𝑡)‖2d𝑡. (13)

Furthermore, the ∞ future energy in the state 𝐱0 is defined as

+
𝛾 (𝐱0) ∶= max

𝐮∈𝐿2[0,∞)
𝐱(0)=𝐱0 ,
𝐱(∞)=𝟎

1
2

∞

∫
0

‖𝐲(𝑡)‖2 + ‖𝐮(𝑡)‖2

1 − 𝛾−2
d𝑡, and +

𝛾 (𝐱0) ∶= min
𝐮∈𝐿2[0,∞)
𝐱(0)=𝐱0 ,
𝐱(∞)=𝟎

1
2

∞

∫
0

‖𝐲(𝑡)‖2 + ‖𝐮(𝑡)‖2

1 − 𝛾−2
d𝑡 (14)

for 0 < 𝛾 < 1 (left equation) and for 𝛾 > 1 (right equation).

As we see next, these energy functions take a special and well-known form when defined for an LTI system, a result that goes
back to [11, Prop. 4.8].

Theorem 2 ([24, Thm. 3.4]). Let 𝛾0 denote the smallest 𝛾̃ such that a stabilizing controller exists for which the ∞ norm of the closed-loop
ystem is less than 𝛾̃. Let 𝛾 > 𝛾0 ≥ 0. For an LTI system, the energy functions are quadratic, −

𝛾 (𝐱) =
1
2𝐱

⊤𝐘−1
∞ 𝐱 and +

𝛾 (𝐱) =
1
2 𝐱

⊤𝐗∞𝐱, where
𝐘∞, 𝐗∞ are the stabilizing symmetric positive definite solutions to the ∞ AREs

𝐀𝐘∞ + 𝐘∞𝐀⊤ + 𝐁𝐁⊤ − (1 − 𝛾−2)𝐘∞𝐂⊤𝐂𝐘∞ = 𝟎, (15)

𝐀⊤𝐗∞ + 𝐗∞𝐀 + 𝐂⊤𝐂 − (1 − 𝛾−2)𝐗∞𝐁𝐁⊤𝐗∞ = 𝟎. (16)

emark 1. While the exact computation of 𝛾0 is an open problem, we highlight two strategies to find the constant 𝛾0. The
irst strategy, drawing from [24, Sec. 3], is to solve the two ∞ AREs while ensuring that 𝜆max(𝐗∞𝐘∞) < 𝛾2. This guarantees a
ontroller that solves the associated control problem. One continues to decrease 𝛾 and finds the limit 𝛾0. However, this can be
ather cumbersome. The second strategy is based on the fact that the constant 𝛾0 is the infimum of the ∞ norms of all closed-loop
ystem transfer functions (see [24, Sec.3] for further details). Then, one can use the upper and lower bound in [11, Rm 4.9]:

0 < 𝛾̂0 − 1 ≤ 𝛾0 ≤ 𝛾̂0 + 1, (17)

here the 𝛾̂0 =
√

1 + 𝜆max(𝐗∞𝐘∞) > 1 and 𝐗∞,𝐘∞ are the solutions to the standard control and filter ARE’s, i.e., (15) and (16) with
− 𝛾−2 = 1. We follow this strategy to lower-bound 𝛾0, and subsequently assume 𝛾 > 𝛾0 ≥ 𝛾̂0 − 1.

Having defined the energy functions, the next theorem shows that they can be computed, as before, via the solution of HJB
quations.

heorem 3 ([24, Thm 5.2]). Assume that the HJB equation

0 =
𝜕−

𝛾 (𝐱)
𝜕𝐱

𝐟 (𝐱) + 1
2

𝜕−
𝛾 (𝐱)
𝜕𝐱

𝐠(𝐱)𝐠(𝐱)⊤
𝜕⊤−

𝛾 (𝐱)
𝜕𝐱

− 1
2
(1 − 𝛾−2)𝐡(𝐱)⊤𝐡(𝐱) (18)

has a solution with −
𝛾 (𝟎) = 0 that also satisfies −

(

𝐟 (𝐱) + 𝐠(𝐱)𝐠(𝐱)⊤
𝜕⊤−𝛾 (𝐱)

𝜕𝐱

)

is asymptotically stable. Then this solution is the past energy
function −

𝛾 (𝐱) from (13). Furthermore, assume that the HJB equation

0 =
𝜕+

𝛾 (𝐱) 𝐟 (𝐱) − 1 (1 − 𝛾−2)
𝜕+

𝛾 (𝐱) 𝐠(𝐱)𝐠(𝐱)⊤
𝜕⊤+

𝛾 (𝐱) + 1𝐡(𝐱)⊤𝐡(𝐱) (19)
4

𝜕𝐱 2 𝜕𝐱 𝜕𝐱 2

Computer Methods in Applied Mechanics and Engineering 427 (2024) 117011B. Kramer et al.

T
n
c
t
I
a

d

3

p

T

s

q
𝐅
t
b
t

3

t

D

w

has a solution with +
𝛾 (𝟎) = 0 which satisfies that 𝐟 (𝐱) − (1 − 𝛾−2)𝐠(𝐱)𝐠(𝐱)⊤

𝜕⊤+𝛾 (𝐱)
𝜕𝐱 is asymptotically stable. Then this solution is the future

energy function +
𝛾 (𝐱) from (14).

Note, that for (1 − 𝛾−2) = −1, i.e., for 𝛾 =
√

1∕2, (18) and (19) are the same, and so are their solutions: −
𝛾= 1

√

2

(𝐱) = +
𝛾= 1

√

2

(𝐱).

We can also see this by dividing equation (13) with (1 − 𝛾−2) and reversing time. Moreover, under the assumption that the energy
functions exist and are smooth, it has been shown in [24, Thm 5.5. & 5.7.] that the open-loop nonlinear energy functions 𝑐 (𝐱) and
𝑜(𝐱) from (7)–(8) can be obtained in the limit 𝛾 → 1 of the ∞ energy functions −

𝛾 (𝐱) and +
𝛾 (𝐱), i.e.,

lim
𝛾→1

−
𝛾 (𝐱) = 𝑐 (𝐱), lim

𝛾→1
+
𝛾 (𝐱) = 𝑜(𝐱). (20)

he two limits in (20) can be intuited: First, lim𝛾→1 −
𝛾 (𝐱), 𝛾 → 1 implies that the term (1 − 𝛾−2) → 0, so the weighting of the output

orm ‖𝐲‖ vanishes in the integral (13), resulting in the open loop energy function 𝑐 (𝐱). Second, lim𝛾→1 +
𝛾 (𝐱) in (20), we need to

onsider the limit from above and below since there are different definitions for the energy functions, see (14). In lim𝛾→1− +
𝛾 (𝐱),

he factor 1∕(1 − 𝛾−2) is negative, so to maximize the integral in (14), we set ‖𝐮‖ = 0, yielding the open loop energy function 𝑜(𝐱).
n lim𝛾→1+ +

𝛾 (𝐱), the factor 1∕(1 − 𝛾−2) is positive, but this time we minimize the integral in (14), right equation, and again ‖𝐮‖ = 0
chieves that. Hence, the limit is also 𝑜(𝐱).
Since the HJB and standard balancing energy functions can be obtained as limits of the ∞ energy functions, we henceforth

erive the computational framework for the most general case of ∞ energy functions.

. Computing energy functions via polynomial approximations

To develop a computationally scalable approach to solving HJB equations for nonlinear balanced truncation, we focus on
olynomial nonlinear systems of the form

𝐱̇(𝑡) = 𝐀𝐱(𝑡) +
𝓁
∑

𝑘=2
𝐅𝑘𝐱 k (𝑡) + 𝐁𝐮(𝑡), (21)

𝐲(𝑡) = 𝐂𝐱(𝑡), (22)

where 𝐀 ∈ R𝑛×𝑛 is the linear system matrix, 𝐅𝑘 ∈ R𝑛×𝑛𝑘 represents matricized higher-order tensors, 𝐁 ∈ R𝑛×𝑚 is an input matrix, and
𝐂 ∈ R𝑝×𝑛 is a linear measurement matrix. For a compact notation, we define the 𝑘-term Kronecker product of 𝐱 as

𝐱 k ∶= 𝐱⊗⋯⊗ 𝐱
⏟⏞⏞⏞⏟⏞⏞⏞⏟

𝑘 times

∈ R𝑛𝑘 . (23)

For 𝐌 ∈ R𝑞×𝑛 define the k-way Lyapunov matrix or a special Kronecker sum [55] matrix as

𝑘(𝐌) ∶= 𝐌⊗⋯⊗ 𝐈𝑛
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝑘 times

+⋯ + 𝐈𝑛 ⊗⋯⊗𝐌
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝑘 times

∈ R𝑛𝑘−1𝑞×𝑛𝑘 . (24)

o simplify the ∞ gain parameter notation, we introduce

𝜂 ∶= 1 − 𝛾−2 (25)

o that we have
0 < 𝛾 < 1 ⇒ −∞ < 𝜂 < 0
1 ≤ 𝛾 < ∞ ⇒ 0 ≤ 𝜂 ≤ 1

. (26)

As we pointed out in the introduction, many complex systems have quadratic drift, therefore we focus our derivation on the
uadratic case, i.e., 𝓁 = 2 in (21). Since there is now only one term, 𝐅2 in (21), we drop the subscript 𝑘 and replace the notation
𝑘 with 𝐅 from here out. We also note that the assumptions of linear 𝐁 and 𝐂 and quadratic drift are merely used in this paper
o obtain a scalable computation of the energy functions. Once the energy functions are obtained, they can be used to obtain a
alancing transformation or a controller for general quadratic systems. The algorithms developed in this paper are implemented in
he NLbalancing repository [40].

.1. Polynomials in Kronecker product form

For convenience and to ensure a unique representation of the coefficients, we impose symmetry of our coefficients in all monomial
erms in the energy functions.

efinition 2 (Symmetric Coefficients). A monomial term with real coefficients 𝐰⊤
𝑑 𝐱

d has symmetric coefficients if it satisfies

𝐰⊤
𝑑
(

𝐚1 ⊗ 𝐚2 ⊗⋯⊗ 𝐚𝑑
)

= 𝐰⊤
𝑑

(

𝐚𝑖1 ⊗ 𝐚𝑖2 ⊗⋯⊗ 𝐚𝑖𝑑
)

,

here the indices {𝑖 }𝑑 are any permutation of 1,… , 𝑑.
5

𝑘 𝑘=1

Computer Methods in Applied Mechanics and Engineering 427 (2024) 117011B. Kramer et al.

f
r

w
t
b
p
l

T
s

This definition generalizes the definition of symmetry from matrices to tensors. For example, requiring 𝐰⊤
2 (𝐚 ⊗ 𝐛) = 𝐰⊤

2 (𝐛 ⊗ 𝐚)
or any 𝐚 and 𝐛 is equivalent to (𝐚⊤ ⊗ 𝐛⊤)𝐰2 = (𝐛⊤ ⊗ 𝐚⊤)𝐰2. Hence, using 𝐰2 = vec(𝐖2), we have 𝐛⊤𝐖2𝐚 = 𝐚⊤𝐖2𝐛. Since these are
eal scalars, this implies 𝐖2 = 𝐖⊤

2 .
We also remark that any polynomial can be uniquely written in Kronecker product form with symmetric coefficients. For example,

𝑐1𝑥
2
1 + 𝑐2𝑥1𝑥2 + 𝑐3𝑥

2
2 = [𝑥1 𝑥2]

[

𝑐1
1
2 𝑐2

1
2 𝑐2 𝑐3

]

[

𝑥1
𝑥2

]

=
[

𝑐1
1
2
𝑐2

1
2
𝑐2 𝑐3

]

(𝐱⊗ 𝐱).

The same set of quadratic terms would be realized with the coefficient matrices corresponding to either [𝑐1 𝑐2 0 𝑐3] or [𝑐1 0 𝑐2 𝑐3].
However, the requirement of symmetry leads to a unique representation. Note that all coefficient vectors which define the same
polynomial can be transformed into the unique symmetric representation by applying a symmetrization function [56]. Computing
the symmetrization consists of summing up the coefficients of each unique monomial term, dividing by the number of times it
appears, then redistributing the results. This is a generalization of the symmetrization of a matrix. For an implementation of this,
see the function kronMonomialSymmetrize.m in [57].

We will assume that each row of the coefficient matrix 𝐅 = 𝐅2 in (21) is symmetric as in Definition 2, and that the polynomial
representations of the energy functions and controls share this symmetric representation. Our algorithms are designed to ensure
symmetry in the computed coefficients.

3.2. Future energy function

The future energy function in (14) is a solution to Eq. (19). For quadratic dynamics, i.e., 𝓁 = 2 in (21), this equation becomes

0 =
𝜕+

𝛾 (𝐱)
𝜕𝐱

[𝐀𝐱 + 𝐅(𝐱⊗ 𝐱)] − 𝜂
2

𝜕+
𝛾 (𝐱)
𝜕𝐱

𝐁𝐁⊤
𝜕⊤+

𝛾 (𝐱)
𝜕𝐱

+ 1
2
(vec(𝐂⊤𝐂))⊤(𝐱⊗ 𝐱). (27)

We assume the future energy function is represented in the form (or is approximated as)

+
𝛾 (𝐱) ≈

1
2

(

𝐰⊤
2 𝐱

2 + 𝐰⊤
3 𝐱

3 +⋯ + 𝐰⊤
𝑑 𝐱

d
)

(28)

= 1
2
(

𝐰⊤
2 + 𝐰̃⊤

3 (𝐱) +⋯ + 𝐰̃⊤
𝑑 (𝐱)

)

𝐱 2 , (29)

for some integer 𝑑 ≥ 2, which denotes the polynomial degree, and 𝐰𝑘 ∈ R𝑛𝑘 . Eq. (28) has the interpretation of an energy function
with the constant coefficients 𝐰𝑖 and higher-order polynomials. On the other hand, we can think of (29) as a quadratic expansion
ith state-dependent coefficients. The latter representation is often used for Gramian-based model reduction that locally linearizes
he 𝐰̃𝑖(𝐱), see, e.g., [32–35], and the references therein. We note that polynomial energy function approximations have recently
een adapted to solve optimal control problems for moderately sized bilinear systems [58,59], quadratic drift systems [60,61], and
olynomial drift systems [54,62]. The next result shows how the coefficients {𝐰𝑖}𝑑𝑖=2 in (28) can be efficiently computed using tensor
inear algebra tools.

heorem 4. Let 𝛾 > 𝛾0 ≥ 0 hold as in Theorem 2 and 𝜂 = 1−𝛾−2 as defined in (25). Let the future energy function +
𝛾 (𝐱) for the quadratic

ystem (𝓁 = 2 and 𝐅2 = 𝐅) in (21) be expanded as in (28) with the coefficients 𝐰𝑖 for 𝑖 = 2, 3,… , 𝑑. Then, 𝐰2 = vec(𝐖2) where 𝐖2 is the
symmetric positive definite solution to the ∞ Riccati equation

𝟎 = 𝐀⊤𝐖2 +𝐖2𝐀 + 𝐂⊤𝐂 − 𝜂𝐖2𝐁𝐁⊤𝐖2. (30)

For 2 < 𝑘 ≤ 𝑑, let 𝐰̃𝑘 ∈ R𝑛𝑘 solve the linear system

𝑘((𝐀 − 𝜂𝐁𝐁⊤𝐖2)⊤)𝐰̃𝑘 = −𝑘−1(𝐅⊤)𝐰𝑘−1 +
𝜂
4

∑

𝑖,𝑗>2𝑖+𝑗=𝑘+2
𝑖𝑗 vec(𝐖⊤

𝑖 𝐁𝐁
⊤𝐖𝑗). (31)

Then, the coefficient vector 𝐰𝑘 = vec(𝐖𝑘) ∈ R𝑛𝑘 , for 2 < 𝑘 ≤ 𝑑, is obtained by the symmetrization of 𝐰̃𝑘.

Proof. We start by observing that the derivative of the polynomial expansion (28) with respect to 𝐱 is

𝜕+
𝛾 (𝐱)
𝜕𝐱

= 1
2
(

𝐰⊤
2 (𝐈⊗ 𝐱) + 𝐰⊤

2 (𝐱⊗ 𝐈) + 𝐰⊤
3 (𝐈⊗ 𝐱⊗ 𝐱) + 𝐰⊤

3 (𝐱⊗ 𝐈⊗ 𝐱) + 𝐰⊤
3 (𝐱⊗ 𝐱⊗ 𝐈)

+ 𝐰⊤
4 (𝐈⊗ 𝐱⊗ 𝐱⊗ 𝐱) + 𝐰⊤

4 (𝐱⊗ 𝐈⊗ 𝐱⊗ 𝐱) + 𝐰⊤
4 (𝐱⊗ 𝐱⊗ 𝐈⊗ 𝐱) + 𝐰⊤

4 (𝐱⊗ 𝐱⊗ 𝐱⊗ 𝐈) +⋯
)

. (32)

We insert the expansion (32) into the HJB Eq. (27) and subsequently multiply the resulting equation with a factor two. Collecting
degree two terms in the resulting equation shows that 𝐰2 solves

0 =𝐰⊤
2 (𝐀𝐱⊗ 𝐱) + 𝐰⊤

2 (𝐱⊗ 𝐀𝐱) + vec(𝐂⊤𝐂)⊤(𝐱⊗ 𝐱) − 𝜂
[1
2
(𝐰⊤

2 (𝐈⊗ 𝐱) + 𝐰⊤
2 (𝐱⊗ 𝐈))

]

𝐁𝐁⊤
[1
2
((𝐈⊗ 𝐱⊤)𝐰2 + (𝐱⊤ ⊗ 𝐈)𝐰2)

]

=
[

𝐰⊤(𝐀⊗ 𝐈) + 𝐰⊤(𝐈⊗ 𝐀) + vec(𝐂⊤𝐂)⊤
]

(𝐱⊗ 𝐱) − 𝜂
[1 (𝐰⊤(𝐈⊗ 𝐱) + 𝐰⊤(𝐱⊗ 𝐈))

]

𝐁𝐁⊤
[1 ((𝐈⊗ 𝐱⊤)𝐰 + (𝐱⊤ ⊗ 𝐈)𝐰)

]

.
(33)
6

2 2 2 2 2 2 2 2

Computer Methods in Applied Mechanics and Engineering 427 (2024) 117011B. Kramer et al.

[
w

w

T
𝐀

W

a
s

T

a

W

Recall that 𝐰2 = vec(𝐖2), so that (𝐈 ⊗ 𝐱⊤)𝐰2 = vec(𝐖⊤
2 𝐱) and (𝐱⊤ ⊗ 𝐈)𝐰2 = vec(𝐖2𝐱). We also have that,1 𝐰⊤

2 [𝐀 ⊗ 𝐈] =
[𝐀⊤ ⊗ 𝐈]vec(𝐖2)]⊤ = vec(𝐖2𝐀)⊤ and likewise 𝐰⊤

2 [𝐈 ⊗ 𝐀] = [(𝐈 ⊗ 𝐀⊤)vec(𝐖2)]⊤ = vec(𝐀⊤𝐖2)⊤. Moreover, for a given matrix 𝐌
e have 𝐲⊤𝐌𝐱 = vec(𝐌⊤)⊤(𝐱⊗ 𝐲) so that we can simplify (33) to

0 = vec
(

𝐀⊤𝐖2 +𝐖2𝐀 + 𝐂⊤𝐂
)⊤ (𝐱⊗ 𝐱) − 𝜂vec(

[1
2
(𝐖2 +𝐖⊤

2)
]

𝐁𝐁⊤
[1
2
(𝐖2 +𝐖⊤

2)
]

)⊤(𝐱⊗ 𝐱), (34)

hich can be written compactly in the matrix form as a Riccati equation:

𝟎 = 𝐀⊤𝐖2 +𝐖2𝐀 + 𝐂⊤𝐂 − 𝜂
[1
2
(𝐖2 +𝐖⊤

2)
]

𝐁𝐁⊤
[1
2
(𝐖2 +𝐖⊤

2)
]

. (35)

he solution to this Riccati equation is symmetric, 𝐖2 = 𝐖⊤
2 since the last two terms on the right-hand side are symmetric, namely

⊤𝐖2 +𝐖2𝐀 = 𝐖⊤
2𝐀 + 𝐀⊤𝐖⊤

2 . Therefore,

𝟎 = 𝐀⊤𝐖2 +𝐖2𝐀 + 𝐂⊤𝐂 − 𝜂𝐖2𝐁𝐁⊤𝐖2, (36)

which is the common ∞ Riccati equation from (16). Since we assumed that 𝛾 > 𝛾0, (36) is uniquely solvable for a positive definite
𝐖2, following Theorem 2. Having computed 𝐰2, we proceed as before, i.e., insert (32) into (27) and multiply the resulting equation
with a factor two. Now, we collect degree three terms to obtain

0 = 𝐰⊤
2 (𝐅(𝐱⊗ 𝐱)⊗ 𝐱) + 𝐰⊤

2 (𝐱⊗ 𝐅(𝐱⊗ 𝐱)) + 𝐰⊤
3 [(𝐀𝐱⊗ 𝐱⊗ 𝐱) + (𝐱⊗ 𝐀𝐱⊗ 𝐱) + (𝐱⊗ 𝐱⊗ 𝐀𝐱)]

−
𝜂
4
[

𝐰⊤
2 (𝐈⊗ 𝐱) + 𝐰⊤

2 (𝐱⊗ 𝐈)
]

𝐁𝐁⊤ [

𝐰⊤
3 ((𝐈⊗ 𝐱⊗ 𝐱) + (𝐱⊗ 𝐈⊗ 𝐱) + (𝐱⊗ 𝐱⊗ 𝐈))

]⊤

−
𝜂
4
[

𝐰⊤
3 ((𝐈⊗ 𝐱⊗ 𝐱) + (𝐱⊗ 𝐈⊗ 𝐱) + (𝐱⊗ 𝐱⊗ 𝐈))

]

𝐁𝐁⊤ [

(𝐈⊗ 𝐱⊤)𝐰2 + (𝐱⊤ ⊗ 𝐈)𝐰2
]

=
[

𝐰⊤
22(𝐅)

]

𝐱 3 +
[

𝐰⊤
33(𝐀)

]

𝐱 3 −
𝜂
2
[

𝐰⊤
2 (𝐈⊗ 𝐱) + 𝐰⊤

2 (𝐱⊗ 𝐈)
]

𝐁𝐁⊤ [

𝐰⊤
3 (𝐈⊗ 𝐱⊗ 𝐱) + 𝐰⊤

3 (𝐱⊗ 𝐈⊗ 𝐱) + 𝐰⊤
3 (𝐱⊗ 𝐱⊗ 𝐈)

]⊤ . (37)

Next, we seek to compute the unique vector 𝐰3 which satisfies (37) as well as the symmetry condition established in Definition 2.
e achieve this goal by first computing a vector 𝐰̃3 ∈ R𝑛3 , which satisfies

0 =
[

𝐰⊤
22(𝐅)

]

𝐱 3 +
[

𝐰̃⊤
33(𝐀)

]

𝐱 3 −
𝜂
2
[

𝐰⊤
2 (𝐈⊗ 𝐱) + 𝐰⊤

2 (𝐱⊗ 𝐈)
]

𝐁𝐁⊤ [

𝐰̃⊤
3 (𝐈⊗ 𝐱⊗ 𝐱) + 𝐰̃⊤

3 (𝐱⊗ 𝐈⊗ 𝐱) + 𝐰̃⊤
3 (𝐱⊗ 𝐱⊗ 𝐈)

]⊤ (38)

nd is non-symmetric in general. Then 𝐰3 is obtained by symmetrizing 𝐰̃3. First, we simplify (38) by using the fact that 𝐖2 is a
ymmetric matrix and write

[

𝐰⊤
2 (𝐈⊗ 𝐱) + 𝐰⊤

2 (𝐱⊗ 𝐈)
]

= 𝐱⊤(𝐖2 +𝐖⊤
2) = 2𝐱⊤𝐖2. (39)

o rewrite the last line of (38) we introduce perfect shuffle matrices 𝐒𝑛,𝑛2 ,𝐒𝑛2 ,𝑛 ∈ R𝑛3×𝑛3 along the lines of [63], which satisfy

(𝐱⊗ 𝐱⊗ 𝐈) = 𝐒𝑛,𝑛2 (𝐱⊗ 𝐈⊗ 𝐱) = 𝐒𝑛2 ,𝑛(𝐈⊗ 𝐱⊗ 𝐱),

s well as 𝐒⊤
𝑛,𝑛2

= 𝐒𝑛2 ,𝑛. The above equation allows us to write

𝐰̃⊤
3 (𝐈⊗ 𝐱⊗ 𝐱) + 𝐰̃⊤

3 (𝐱⊗ 𝐈⊗ 𝐱) + 𝐰̃⊤
3 (𝐱⊗ 𝐱⊗ 𝐈) = 𝐰̃⊤

3
[

(𝐈 + 𝐒𝑛,𝑛2 + 𝐒𝑛2 ,𝑛)(𝐱⊗ 𝐱⊗ 𝐈)
]

. (40)

e introduce

𝐖3 = unvec
[

(𝐈 + 𝐒𝑛2 ,𝑛 + 𝐒𝑛,𝑛2)𝐰̃3
]

∈ R𝑛×𝑛2 ,

which yields
[

(𝐈⊗ 𝐱⊤ ⊗ 𝐱⊤) + (𝐱⊤ ⊗ 𝐈⊗ 𝐱⊤) + (𝐱⊤ ⊗ 𝐱⊤ ⊗ 𝐈)
]

𝐰̃3 =
[

(𝐱⊤ ⊗ 𝐱⊤ ⊗ 𝐈)(𝐈 + 𝐒𝑛2 ,𝑛 + 𝐒𝑛,𝑛2)
]

𝐰̃3 = 𝐖3(𝐱⊗ 𝐱). (41)

The last term can be simplified by again resorting to the identity 𝐲⊤𝐌𝐱 = vec(𝐌⊤)⊤(𝐱⊗𝐲). Taken together, Eq. (38) has the form

[

𝐰⊤
22(𝐅)

]

𝐱 3 +
[

𝐰̃⊤
33(𝐀)

]

𝐱 3 − 𝜂vec
(

𝐖⊤
3 𝐁𝐁

⊤𝐖2

)⊤
𝐱 3 = 𝟎. (42)

Expanding the last term once more results in

vec
(

𝐖⊤
3 𝐁𝐁

⊤𝐖2

)⊤
𝐱 3 = 𝐰̃⊤

3 (𝐈 + 𝐒𝑛,𝑛2 + 𝐒𝑛2 ,𝑛)(𝐱⊗ 𝐱⊗ 𝐁𝐁⊤𝐖2𝐱) = 𝐰̃⊤
33(𝐁𝐁⊤𝐖2)𝐱 3 ,

using the arguments similar to (40). We can now solve (42) for 𝐰̃3 via

3((𝐀 − 𝜂𝐁𝐁⊤𝐖2)⊤)𝐰̃3 = −2(𝐅⊤)𝐰2 (43)

and obtain 𝐰3 by symmetrizing 𝐰̃3. We repeat this procedure by collecting the degree four terms to obtain

0 = 𝐰⊤
3 (𝐅(𝐱⊗ 𝐱)⊗ 𝐱⊗ 𝐱) + 𝐰⊤

3 (𝐱⊗ 𝐅(𝐱⊗ 𝐱)⊗ 𝐱) + 𝐰⊤
3 (𝐱⊗ 𝐱⊗ 𝐅(𝐱⊗ 𝐱))

1 Kronecker-vec relationship: For two matrices 𝐀,𝐁, we have (𝐁⊤ ⊗ 𝐀)vec(𝐗) = vec(𝐀𝐗𝐁).
7

Computer Methods in Applied Mechanics and Engineering 427 (2024) 117011B. Kramer et al.

w

W

a

3

b

w

T
(
e

F

T

F
e

+ 𝐰⊤
4 (𝐀𝐱⊗ 𝐱⊗ 𝐱⊗ 𝐱) + 𝐰⊤

4 (𝐱⊗ 𝐀𝐱⊗ 𝐱⊗ 𝐱) + 𝐰⊤
4 (𝐱⊗ 𝐱⊗ 𝐀𝐱⊗ 𝐱) + 𝐰⊤

4 (𝐱⊗ 𝐱⊗ 𝐱⊗ 𝐀𝐱)

− 𝜂
(1
4
𝐰⊤
3 [𝐈⊗ 𝐱⊗ 𝐱 + 𝐱⊗ 𝐈⊗ 𝐱 + 𝐱⊗ 𝐱⊗ 𝐈]𝐁𝐁⊤[𝐈⊗ 𝐱⊤ ⊗ 𝐱⊤ + 𝐱⊤ ⊗ 𝐈⊗ 𝐱⊤ + 𝐱⊤ ⊗ 𝐱⊤ ⊗ 𝐈]𝐰3

)

− 2𝜂
(1
4
𝐰⊤
4 [𝐈⊗ 𝐱⊗ 𝐱⊗ 𝐱 + 𝐱⊗ 𝐈⊗ 𝐱⊗ 𝐱 + 𝐱⊗ 𝐱⊗ 𝐈⊗ 𝐱 + 𝐱⊗ 𝐱⊗ 𝐱⊗ 𝐈]𝐁𝐁⊤((𝐈⊗ 𝐱⊤ + 𝐱⊤ ⊗ 𝐈)𝐰2)

)

= [𝐰⊤
33(𝐅) + 𝐰̃⊤

44(𝐀)]𝐱 4 −
9𝜂
4

(

(𝐱⊤ ⊗ 𝐱⊤)𝐖⊤
3 𝐁𝐁

⊤𝐖3(𝐱⊗ 𝐱)
)

− 𝜂
(

(𝐱 3)⊤𝐖⊤
4 𝐁𝐁

⊤𝐖2𝐱
)

, (44)

here the last equality follows from the fact that 𝐰3 is symmetric as well as the definition

𝐖4 = unvec
[

(𝐈 + 𝐒𝑛3 ,𝑛 + 𝐒𝑛2 ,𝑛2 + 𝐒𝑛,𝑛3)𝐰̃4
]

∈ R𝑛×𝑛3 .

e now use 𝐱⊤𝐌𝐱 = vec(𝐌⊤)⊤(𝐱⊗ 𝐱) again, transpose the linear system (44) and equate the coefficients to obtain

𝟎 = 3(𝐅⊤)𝐰3 + 4(𝐀⊤)𝐰̃4 −
9𝜂
4
vec(𝐖⊤

3 𝐁𝐁
⊤𝐖3) − 𝜂vec(𝐖⊤

2 𝐁𝐁
⊤𝐖4). (45)

Then using

vec(𝐖⊤
4 𝐁𝐁

⊤𝐖2)⊤𝐱 4 = 𝐰̃⊤
4 (𝐈 + 𝐒𝑛3 ,𝑛 + 𝐒𝑛2 ,𝑛2 + 𝐒𝑛,𝑛3)(𝐈𝑛3 ⊗ 𝐁𝐁⊤𝐖2)𝐱 4 = 𝐰̃⊤

44(𝐁𝐁⊤𝐖2)𝐱 4 ,

we have the explicit computation of the degree four terms as a solution to the linear system

4((𝐀 − 𝜂𝐁𝐁⊤𝐖2)⊤)𝐰̃4 = −3(𝐅⊤)𝐰3 +
9𝜂
4
vec(𝐖⊤

3 𝐁𝐁
⊤𝐖3). (46)

One can proceed similarly and use induction to show that for 2 < 𝑘 ≤ 𝑑, the coefficient 𝐰̃𝑘 can be computed by solving the linear
system

𝑘((𝐀 − 𝜂𝐁𝐁⊤𝐖2)⊤)𝐰̃𝑘 = −𝑘−1(𝐅⊤)𝐰𝑘−1 +
𝜂
4

∑

𝑖,𝑗>2
𝑖+𝑗=𝑘+2

𝑖𝑗 vec(𝐖⊤
𝑖 𝐁𝐁

⊤𝐖𝑗), (47)

nd 𝐰𝑘 results from symmetrizing 𝐰̃𝑘. □

.3. Past energy function

Recall that the past energy function −
𝛾 (𝐱) from (13) is a solution to Eq. (18). For quadratic dynamics, i.e., 𝓁 = 2 in (21), Eq. (18)

ecomes

0 =
𝜕−

𝛾 (𝐱)
𝜕𝐱

[𝐀𝐱 + 𝐅(𝐱⊗ 𝐱)] + 1
2

𝜕−
𝛾 (𝐱)
𝜕𝐱

𝐁𝐁⊤
𝜕⊤−

𝛾 (𝐱)
𝜕𝐱

−
𝜂
2
(vec(𝐂⊤𝐂))⊤(𝐱⊗ 𝐱). (48)

We follow a similar procedure as in the previous section to compute a polynomial approximation to the energy function as

−
𝛾 (𝐱) ≈

1
2

(

𝐯⊤2 𝐱
2 + 𝐯⊤3 𝐱

3 +⋯ 𝐯⊤𝑑 𝐱
d
)

. (49)

here 𝐯𝑘 ∈ R𝑛𝑘 . The next theorem illustrates how the coefficients {𝐯𝑖}𝑑𝑖=2 in (49) are computed.

heorem 5. Let 𝛾 > 𝛾0 ≥ 0. Let the past energy function −
𝛾 (𝐱) for the quadratic system (𝓁 = 2 and 𝐅2 = 𝐅) in (21) be expanded as in

49) with the coefficients 𝐯𝑖 for 𝑖 = 2, 3,… , 𝑑. Then, 𝐯2 = vec(𝐕2) where 𝐕2 is the symmetric positive definite solution to the ∞ Riccati
quation

𝟎 = 𝐀⊤𝐕2 + 𝐕2𝐀 − 𝜂𝐂⊤𝐂 + 𝐕2𝐁𝐁⊤𝐕2. (50)

or 2 < 𝑘 ≤ 𝑑, let 𝐯𝑘 ∈ R𝑛𝑘 solve the linear system

𝑘((𝐀 + 𝐁𝐁⊤𝐕2)⊤)𝐯𝑘 = −𝑘−1(𝐅⊤)𝐯𝑘−1 −
1
4

∑

𝑖,𝑗>2
𝑖+𝑗=𝑘+2

𝑖𝑗 vec(𝐕⊤
𝑖 𝐁𝐁

⊤𝐕𝑗). (51)

hen, the coefficient vector 𝐯𝑘 = vec(𝐕𝑘) ∈ R𝑛𝑘 , for 2 < 𝑘 ≤ 𝑑, is obtained by the symmetrization of 𝐯𝑘.

Proof. The proof follows analogously to that of Theorem 4. Therefore, for brevity, we only give a sketch of the proof in this case.
We start by taking the derivative of the expansion (49):

𝜕−
𝛾 (𝐱)
𝜕𝐱

=1
2
(

𝐯⊤2 (𝐈⊗ 𝐱) + 𝐯⊤2 (𝐱⊗ 𝐈) + 𝐯⊤3 (𝐈⊗ 𝐱⊗ 𝐱) + 𝐯⊤3 (𝐱⊗ 𝐈⊗ 𝐱) + 𝐯⊤3 (𝐱⊗ 𝐱⊗ 𝐈)

+𝐯⊤4 (𝐈⊗ 𝐱⊗ 𝐱⊗ 𝐱) + 𝐯⊤4 (𝐱⊗ 𝐈⊗ 𝐱⊗ 𝐱) + 𝐯⊤4 (𝐱⊗ 𝐱⊗ 𝐈⊗ 𝐱) + 𝐯⊤4 (𝐱⊗ 𝐱⊗ 𝐱⊗ 𝐈) +⋯
)

. (52)

ollowing the same steps in the proof of Theorem 4, we insert (52) into (48) and match the quadratic terms to obtain the Riccati
quation

⊤ ⊤ ⊤
8

𝟎 = 𝐀 𝐕2 + 𝐕2𝐀 − 𝜂𝐂 𝐂 + 𝐕2𝐁𝐁 𝐕2. (53)

Computer Methods in Applied Mechanics and Engineering 427 (2024) 117011B. Kramer et al.

q

f
o

R

f

T


P
𝛬

w
𝐌
i
i

W

a
i

This last equation does not have the form of the standard ∞ Riccati equation (15). Recall the linear case in Theorem 2 where the
past energy function is −

𝛾 (𝐱) =
1
2 𝐱

⊤𝐘−1
∞ 𝐱. Based on the way we define the polynomial coefficients 𝐯𝑖, and hence the matrix 𝐕2, the

uadratic part of the energy function becomes −
𝛾 (𝐱) =

1
2𝐱

⊤𝐕2𝐱. Therefore, the matrix 𝐕2 that we compute is related to 𝐘∞ in (15)
via the relation

𝐘∞ = 𝐕−1
2 .

We now post- and premultiply (50) by 𝐕−1
2 to obtain

𝟎 = 𝐕−1
2 𝐀⊤ + 𝐀𝐕−1

2 − 𝜂𝐕−1
2 𝐂⊤𝐂𝐕−1

2 + 𝐁𝐁⊤, (54)

which is consistent with the usual form of the ∞ Riccati equation in (15). Following Theorem 2, for 𝛾 > 𝛾0 we conclude that
𝐘∞ = 𝐕−1

2 is the stabilizing symmetric positive definite solution to (54) and therefore 𝐕2 is a symmetric positive definite solution
to (50), which proves the result for 𝐯2. We continue by matching the cubic terms

3(𝐀⊤ + 𝐕2𝐁𝐁⊤)𝐯3 = −2(𝐅⊤)𝐯2, (55)

and obtain 𝐯3 by symmetrizing 𝐯3. Likewise the quartic terms yield

4(𝐀⊤ + 𝐕2𝐁𝐁⊤)𝐯4 = −3(𝐅⊤)𝐯3 −
9
4
vec(𝐕⊤

3 𝐁𝐁
⊤𝐕3).

Then, an induction argument leads to Eq. (51) for 𝐯𝑘 for 2 < 𝑘 ≤ 𝑑, completing the proof. □

We note that the 𝜂 terms only enter in the 𝐕2 computation, but do not explicitly enter into the formula for the higher-degree 𝐯𝑘
or 2 < 𝑘 ≤ 𝑑. This is to be expected since (48) has the 𝜂 term in front of a quadratic polynomial, which enters only the computation
f 𝐕2.

emark 2. The theory of nonlinear energy functions and their balancing is formulated locally around the origin, see Section 2. Our
assumptions produce positive definite solutions to the algebraic Riccati equations, so the polynomial approximations we compute are
guaranteed to be positive in a neighborhood of the origin, and may become negative outside that region. When using the polynomial
energy functions for balancing and control, one should therefore restrict the region to where the energy function approximations
are both positive and well approximated.

3.4. Solvability of the linear systems

A natural question that arises from Theorems 4 and 5 is when the linear systems of Eqs. (31) and (51) have a unique solution. The
ollowing theorem shows that the conditions in the nonlinear setting we consider here are in line with those of linear ∞-balancing.

heorem 6. Let 𝛾 > 𝛾0 ≥ 0 hold as in Theorem 2 and 𝜂 = 1 − 𝛾−2 as defined in (25). Then, for any 𝑘 = 1,… , 𝑑 the matrices
𝑘((𝐀 − 𝜂𝐁𝐁⊤𝐖2)⊤) and 𝑘((𝐀 + 𝐁𝐁⊤𝐕2)⊤) are invertible, thus Eqs. (31) and (51) have unique solutions.

roof. In this proof we resort to a result from [64] that states that for any matrix 𝐌 ∈ R𝑛×𝑛 the spectrum of 𝑘(𝐌), denoted by
(

𝑘(𝐌)
)

, is given by all possible sums of 𝑘 eigenvalues of 𝐌, i.e.,

𝛬
(

𝑘(𝐌)
)

=

{

∑

𝑖∈𝑘

𝜆𝑖 ∶ 𝜆𝑖 ∈ 𝛬(𝐌)

}

,

here 𝑘 denotes the set of all possible selection of 𝑘-indices from the set {1, 2,… , 𝑛}. To prove the first statement we set
= (𝐀 − 𝜂𝐁𝐁⊤𝐖2)⊤, where 𝐖2 is the unique stabilizing solution of (16). This means that all eigenvalues of 𝐌 are contained

n the open left-half plane. Therefore, all eigenvalues of 𝑘(𝐌) are contained in the open left-half plane as well, thus 𝑘(𝐌) is
nvertible and the 𝐰̃𝑘 can be uniquely determined. For the second statement we first rearrange (15) as

𝐀⊤ + 𝐕2𝐁𝐁⊤ = −𝐕2𝐀𝐕−1
2 + 𝜂𝐂⊤𝐂𝐕−1

2 .

e can thus write

𝑘((𝐀 + 𝐁𝐁⊤𝐕2)⊤) = 𝑘(−𝐕2𝐀𝐕−1
2 + 𝜂𝐂⊤𝐂𝐕−1

2) = −
[

𝐕2
] k 𝑘(𝐀 − 𝜂𝐕−1

2 𝐂⊤𝐂)
[

𝐕−1
2
] k .

Considering that 𝐕−1
2 is the unique stabilizing positive definite solution to (15), this shows that all eigenvalues of 𝑘(𝐀− 𝜂𝐕−1

2 𝐂⊤𝐂)
re contained in the open left-half plane as well as that

[

𝐕−1
2
] k is invertible. This shows that 𝑘((𝐀 + 𝐁𝐁⊤𝐕2)⊤) is the product of
9

nvertible matrices, which concludes the proof. □

Computer Methods in Applied Mechanics and Engineering 427 (2024) 117011B. Kramer et al.

s

e
e
t

T
B
o
b
a
w
m
t
o
c

W
d

3.5. Complete algorithm

In Algorithm 1, we provide a complete algorithm for the tensor-based computation of the energy functions assuming a quadratic
ystem (𝓁 = 2 and 𝐅2 = 𝐅) in (21) and constant input and measurement matrices, summarizing our results from Theorems 4 and 5.

Algorithm 1 Computing HJB energy function approximations: −
𝛾 (𝐱) in (28) and +

𝛾 (𝐱) in (49).

Input: System matrices 𝐀,𝐅,𝐁,𝐂; polynomial degree 𝑑; constant 𝛾 > 𝛾0 > 0, 𝛾 ≠ 1.
Output: Coefficients {𝐯𝑖}𝑑𝑖=2 of the past energy and {𝐰𝑖}𝑑𝑖=2 of the future energy functions.
1: Set 𝜂 = (1 − 𝛾−2).
2: Solve the ∞ Riccati equations

𝟎 = 𝐀⊤𝐕2 + 𝐕2𝐀 − 𝜂𝐂⊤𝐂 + 𝐕2𝐁𝐁⊤𝐕2,

𝟎 = 𝐀⊤𝐖2 +𝐖2𝐀 + 𝐂⊤𝐂 − 𝜂𝐖2𝐁𝐁⊤𝐖2

and set 𝐯2 = vec(𝐕2) and 𝐰2 = vec(𝐖2).
3: for 𝑘 = 3, 4,… , 𝑑 do Solve the systems for 𝐯𝑘 and 𝐰̃𝑘:

𝑘((𝐀 + 𝐁𝐁⊤𝐕2)⊤)𝐯𝑘 = −𝑘−1(𝐅⊤)𝐯𝑘−1 −
1
4

∑

𝑖,𝑗>2
𝑖+𝑗=𝑘+2

𝑖𝑗 vec(𝐕⊤
𝑖 𝐁𝐁

⊤𝐕𝑗)

and

𝑘((𝐀 − 𝜂𝐁𝐁⊤𝐖2)⊤)𝐰̃𝑘 = −𝑘−1(𝐅⊤)𝐰𝑘−1 +
𝜂
4

∑

𝑖,𝑗>2
𝑖+𝑗=𝑘+2

𝑖𝑗 vec(𝐖⊤
𝑖 𝐁𝐁

⊤𝐖𝑗)

Symmetrize 𝐰̃𝑘 and 𝐯𝑘 to obtain 𝐰𝑘 and 𝐯𝑘.
4: end for

3.6. Linear solver and implementation details

While the earlier sections distilled a structured linear tensor system for the coefficients of the Taylor-series expansion of the
nergy functions (see (31) and (51)), the main computational bottleneck lies in solving these structured systems as they grow
xponentially in 𝑘 and polynomially in 𝑛. We next propose an efficient implementation that heavily leverages the structure of the
ensor systems. We present the details for (51). The same ideas apply to (31) as well.
First, to form the right-hand side of (51), we develop a function that efficiently computes products of the form 𝑘−1(𝐅⊤)𝐯𝑘−1.

his is the product of an 𝑛𝑘 × 𝑛𝑘−1 matrix with a vector and a naïve approach would require 𝑂(𝑛2𝑘−1) operations using a level-2
LAS operation. However, we exploit the structure of 𝑘 in (24), which is the sum of Kronecker products of matrices, where only
ne term in each sum is not the identity matrix. Thus, using the Kronecker-vec relationship, each term in the sum can be computed
y appropriately reshaping 𝐯𝑘−1 into an 𝑛𝑘−2 × 𝑛 matrix, performing multiplication by 𝐅 on the right, reshaping the result, and
ccumulating the sum. This involves (k-1) instances of a (𝑛𝑘−2 × 𝑛) by (𝑛 × 𝑛2) matrix multiplication, which can be performed
ith level-3 BLAS in 𝑂(𝑘𝑛𝑘+1) operations. For the summation terms on the right-hand side, we can take advantage of the repeated
ultiplications of 𝐕⊤

𝑖 𝐁 and 𝐖⊤
𝑖 𝐁, but the cost is dominated by multiplying these stored components together. The cost of forming

he summation terms is 𝑂(𝑘𝑚𝑛𝑘). In this way, all terms on the right-hand side can be computed efficiently using level-3 BLAS
perations with a cost 𝑂(𝑘𝑛𝑘+1)+𝑂(𝑘𝑚𝑛𝑘). Using efficient implementations such as fast matrix multiplication in the BLAS, the actual
omputational time surpasses these estimates as we see in Section 4.3.
Second, we need to solve linear systems of the form

𝑘((𝐀 + 𝐁𝐁⊤𝐕2)⊤)𝐯𝑘 = 𝐛. (56)

e leverage the 𝑘-way Bartels–Stewart algorithm [62]. By first performing a Schur factorization of (𝐀 + 𝐁𝐁⊤𝐕2)⊤ = 𝐔𝐓𝐔∗ and
efining a matrix 𝐔 k = 𝐔⊗ 𝐔⊗⋯⊗ 𝐔 ∈ R𝑛𝑘×𝑛𝑘 , we convert the linear system (56) to

[𝐔 k]∗𝑘((𝐀 + 𝐁𝐁⊤𝐕2)⊤)[𝐔 k]𝐯̂𝑘 = 𝐛̂,

where 𝐯̂𝑘 = [𝐔 k]∗𝐯̃𝑘 and 𝐛̂ = [𝐔 k]∗𝐛. The multiplications used to compute 𝐯̂𝑘 and 𝐛̂ are performed using a recursive algorithm that
exploits the Kronecker-vec relationship and also uses level-3 BLAS operations. The resulting upper triangular linear system is

𝑘(𝐓)𝐯̂𝑘 = 𝐛̂, (57)

which can be solved by a backsubstitution procedure requiring 𝑛𝑘−1 dense upper triangular system solutions of size 𝑛. Then, we
compute the solution 𝐯𝑘 = 𝐔 k 𝐯̂𝑘. The overall computational complexity of solving (56) in the 𝑘th step of Algorithm 3.5 is thus
𝑂(𝑛𝑘+1) using the classical 𝑂(𝑛2) complexity argument for backsubstitution in dense systems. Taken together, the computational
complexity of solving the linear systems (31) and (51) for the degree 𝑘 terms is 𝑂(𝑘𝑚𝑛𝑘) + 𝑂(𝑘𝑛𝑘+1) or 𝑂(𝑛𝑘+1) if 𝑛 > 𝑘𝑚.

The calculation of coefficients {𝐯𝑘} and {𝐰𝑘} are performed using the functions approxPastEnergy.m and approxFu-
10

tureEnergy.m in the NLbalancing repository [40]. We remark that linear systems with similar structure to (56) have a long

Computer Methods in Applied Mechanics and Engineering 427 (2024) 117011B. Kramer et al.

c

4

t

b
a
s
(

4

W

W

history in linear systems theory as Lyapunov equations can be written in tensor form, cf. [65]. Furthermore, equations of the form
𝑘(𝐒)𝐯 = 𝐛 arise from discretization of stationary PDEs with separable coefficients [66], as well as when considering polynomial
ontrol laws for bilinear [67] and polynomial systems [61,62].

. Numerical examples

This section illustrates the analysis and computational framework on four numerical examples. We start with two small models
o illustrate the theory. First we consider a one-dimensional problem in Section 4.1 where we can analytically compute the energy
functions. Then, we present a two-dimensional example in Section 4.2 which we solve numerically, where the energy functions can
e visualized to build intuition for the higher-dimensional cases. The next two examples test the effectiveness and scalability of the
lgorithms to compute the energy functions. These examples are generated from finite element discretizations of PDEs, so we can
cale up the state dimension for the numerical study. Two PDEs are chosen for their quadratic nonlinearities: the Burgers equation
Section 4.3) and the Kuramoto–Sivashinsky equation (Section 4.4).

.1. Illustrative scalar ODE example (n = 1)

Consider the 1d quadratic system from [35]:

𝑥̇(𝑡) = 𝑎𝑥(𝑡) + n𝑥(𝑡)2 + 𝑏𝑢(𝑡), 𝑦(𝑡) = 𝑐𝑥(𝑡). (58)

ith 𝜂 =
(

1 − 𝛾−2
)

the HJB equation (18) for the future energy function is the ODE

0 =
d+

𝛾 (𝑥)

d𝑥 [𝑎𝑥 + n𝑥2] − 1
2
𝑏2𝜂

(

d+
𝛾 (𝑥)

d𝑥

)2

+ 1
2
𝑐2𝑥2. (59)

Let 𝑝(𝑥) =
d+𝛾 (𝑥)
d𝑥 , then we have a quadratic polynomial in 𝑝(𝑥) as

0 = −1
2
𝑏2𝜂𝑝(𝑥)2 + [𝑎𝑥 + n𝑥2]𝑝(𝑥) + 1

2
𝑐2𝑥2, (60)

for which we obtain the two solutions

𝑝(𝑥)1∕2 =
𝑎𝑥 + n𝑥2 ±

√

(𝑎𝑥 + n𝑥2)2 + 𝜂𝑏2𝑐2𝑥2

𝜂𝑏2
. (61)

We integrate this solution with respect to 𝑥 (with condition +
𝛾 (0) = 0) to obtain

+
𝛾 (𝑥) =

1
𝑏2𝜂

⎛

⎜

⎜

⎜

⎝

∓
𝑎𝑏2𝑐2𝜂

√

𝑥2((𝑎 + n𝑥)2 + 𝑏2𝑐2𝜂) log
(

√

(𝑎 + n𝑥)2 + 𝑏2𝑐2𝜂 + 𝑎 + n𝑥
)

2n2𝑥
√

(𝑎 + n𝑥)2 + 𝑏2𝑐2𝜂

±

√

𝑥2((𝑎 + n𝑥)2 + 𝑏2𝑐2𝜂)
(

(𝑎+n𝑥)2
3n − 𝑎(𝑎+n𝑥)

2n + 𝑏2𝑐2𝜂
3n

)

n𝑥
+ 𝑎𝑥2

2
+ n𝑥3

3

⎞

⎟

⎟

⎟

⎠

. (62)

Eq. (19) for the past energy function becomes

0 =
d−

𝛾 (𝑥)

d𝑥 [𝑎𝑥 + n𝑥2] + 1
2
𝑏2

(

d−
𝛾 (𝑥)

d𝑥

)2

− 1
2
𝜂𝑐2𝑥2 = 1

2
𝑏2𝑞(𝑥)2 + [𝑎𝑥 + n𝑥2]𝑞(𝑥) − 1

2
𝜂𝑐2𝑥2. (63)

Let 𝑞(𝑥) =
d−𝛾
d𝑥 (𝑥) which we can solve similarly to get

𝑞(𝑥)1∕2 =
−(𝑎𝑥 + n𝑥2) ±

√

(𝑎𝑥 + n𝑥2)2 + 𝜂𝑏2𝑐2𝑥2

𝑏2
.

e integrate this solution in 𝑥 to obtain the past energy function and obtain

−
𝛾 (𝑥) = −𝜂+

𝛾 (𝑥).

We observe that the energy functions are highly nonlinear in 𝑥. For 𝑎 = −2, n = 1, 𝑏 = 2, 𝑐 = 2, Fig. 1 shows +
𝛾 (𝑥) and −

𝛾 (𝑥)
for −6 ≤ 𝑥 ≤ 6 and 𝜂 = 0.5 (𝛾 =

√

2). We then apply Algorithm 3.5 with 𝑑 = 2, 4, 6, 8 and compute the corresponding polynomial
approximations to +

𝛾 (𝑥) and −
𝛾 (𝑥). Near the origin, all of the approximations accurately approximate the true energy functions.

However, the quadratic approximation (degree 𝑑 = 2) is relatively far from the analytic solution for |𝑥| > 2 compared to higher
degree approximations. Note that degree 𝑑 = 2 approximations would be found by either ignoring the quadratic term in (58),
which is common for linearization approaches, or other approaches that define localized algebraic Gramians. However, over this
spatial region, a modest degree 𝑑 = 8 approximation is very accurate. Going to higher degree approximations extends balanced
truncation to a wider region around the origin. However, all of these approximations are local and energy function approximations
11

Computer Methods in Applied Mechanics and Engineering 427 (2024) 117011B. Kramer et al.
Fig. 1. Energy functions +
𝛾 (𝑥) (left) and −

𝛾 (𝑥) (right) computed for Section 4.1. The analytic solutions are compared to polynomial approximations of varying
degree and illustrate that higher-degree approximations are needed to accurately capture the trends in the energy functions.

Fig. 2. Energy functions +
𝛾 (𝐱) (top) and −

𝛾 (𝐱) (bottom) computed for Section 4.2.

by polynomials might even become negative away from the origin. For example – while not shown on the figure – the fourth and
eighth degree polynomial approximations for −

𝛾 become negative around 𝑥 ≈ 8.5 and 𝑥 ≈ 6.8, respectively. This is still in line with
the theory of nonlinear balanced truncation, which is always formulated as local balancing, see [22–24]. In sum, one should test
the quality of the energy function approximation before using them for balancing, and one may use their positivity as an indicator
of the spatial domain where the model can be locally balanced.

4.2. Illustrative ODE system example (n = 2)

We modify the 2d example from [68, Sec IV.C] to

𝐱̇ = 𝐀𝐱 + 𝐅(𝐱⊗ 𝐱) + 𝐁𝑢, 𝑦 = 𝐂𝐱 (64)

where

𝐀𝐱 =
[

−𝑥1 + 𝑥2
−𝑥2

]

, 𝐅(𝐱⊗ 𝐱) =
[

−𝑥22
0

]

, 𝐁 =
[

1 1
]⊤ , 𝐂 =

[

1 1
]

. (65)

Fig. 2 shows the future and past energy function for 𝜂 = 0.1 (𝛾 ≈ 1.054) over −1 ≤ 𝑥1, 𝑥2 ≤ 1 computed using a degree six
approximation in Algorithm 1. We see that the energy function again shows nonquadratic behavior. For instance, for +

𝛾 , consider
the diagonal line from (𝑥1, 𝑥2) = (−1,−1) to (1, 1) and note that the contour plots show a larger gradient at the bottom left than at
the top right of the figure. This is similar to the asymmetry in Fig. 1. The same observation (but on the diagonal from (−1, 1) to
(1,−1)) can be made for −. A quadratic approximation to the energy function would not be able to match that behavior.
12

𝛾

Computer Methods in Applied Mechanics and Engineering 427 (2024) 117011B. Kramer et al.

R
f
b
S

Table 1
Polynomial approximations of +

𝛾 = 𝑐 for 𝜂 = 0
compared to the analytic solution.
𝑑 +

𝑑 (𝐳0)

2 7.81250000e−03
3 9.98263889e−03
4 1.01453993e−02

analytic 1.01453993e−02

As a verification example, we repeat this experiment for 𝜂 = 0 and choose the initial condition 𝑥0 = [0.25,−0.25]. When 𝜂 = 0, the
future energy function becomes the observability energy function 𝑐 from (8), which we can calculate analytically by solving first
for 𝑥2(𝑡), then using this to calculate 𝑥1(𝑡). Integrating 𝑦2(𝑡) = (𝑥1(𝑡) + 𝑥2(𝑡))2 from 0 to ∞ gives us the exact solution for the forward
energy function for this special case. The results in Table 1 verify the quality of the polynomial approximations and emphasize the
fact that the energy functions are not quadratic (and are exactly quartic for 𝜂 = 0). Due to sparsity in 𝐅, the coefficients computed
using Algorithm 3.5 terminate at the degree 4 term, which is consistent with the analytical solution.

emark 3. The previous two illustrative examples highlight two important aspects. First, quadratic approximations to the energy
unction (as done, e.g., in the algebraic Gramian framework [32–35] and in the LTI case), do not match the nonlinear, asymmetric
ehavior of the shown energy functions well, except very locally. Thus, there is a need for higher-degree polynomial approximations.
econd, despite the energy functions being highly nonlinear, polynomial approximations capture their behavior well, c.f. Fig. 1. We
conclude that polynomial approximations of degree higher than two provide more accurate approximations to the energy functions
(qualitatively and quantitatively) over a larger neighborhood of the origin.

4.3. Burgers equation

This test problem has a long history in the study of control for distributed parameter systems, e.g. [69], including the development
of effective computational methods, e.g. [70]. Consider

𝑧𝑡(𝑥, 𝑡) = 𝜖𝑧𝑥𝑥(𝑥, 𝑡) −
1
2
(

𝑧2(𝑥, 𝑡)
)

𝑥 +
𝑚
∑

𝑗=1
𝑏𝑚𝑗 (𝑥)𝑢𝑗 (𝑡),

𝑦𝑖(𝑡) = ∫𝜒[(𝑖−1)∕𝑝,𝑖∕𝑝]
𝑧(𝑥, 𝑡)d𝑥, 𝑖 = 1,… , 𝑝, (66)

with initial condition 𝑧(⋅, 0) = 𝑧0(⋅) ∈ 𝐻1
0 (0, 1) and the control input defined using the characteristic function 𝜒 as 𝑏𝑚𝑗 (𝑥) =

𝜒[(𝑗−1)∕𝑚,𝑗∕𝑚](𝑥). The outputs are spatial averages of the solution over equally-spaced subdomains. We discretize the state equation
with 𝑛 + 1 linear finite elements leading to 𝑛 states, set 𝑚 = 4 and 𝑝 = 4, and chose 𝜖 = 0.001 to make the nonlinearity significant.
We test the value of the energy functions at

𝑧0(𝑥) =
{

0.004 sin(2𝜋𝑥)2 𝑥 ∈ (0, 0.5)
0 otherwise .

The discretized system has the form

𝐄̃𝐳̇ = 𝐀̃𝐳 + 𝐍̃2 (𝐳⊗ 𝐳) + 𝐁̃𝐮, 𝐲 = 𝐂̃𝐳, (67)

where 𝐳(𝑡) are coefficients of the finite element approximation to 𝑧(𝑥, 𝑡) and 𝐳0 are finite element coefficients from a best
approximation to 𝑧0. To place this in the form (21)–(22) with 𝓁 = 2, we introduce the change of variables 𝐱 = 𝐒𝐳 where 𝐒 = 𝐄̃1∕2 (a
matrix square root of the finite element mass matrix). Then defining 𝐀 = 𝐒−1𝐀̃𝐒−1, 𝐁 = 𝐒−1𝐁̃, 𝐂 = 𝐂̃𝐒−1, 𝐍̃2 = 𝐍2(𝐒−1 ⊗ 𝐒−1) leads
to a system in the required form.

In Table 2, we compute cubic approximations to the future energy function for increasing discretization sizes of the Burgers
equation using the value 𝜂 = 0.9. The table illustrates the efficiency of the our algorithm for increasing problem sizes. Computations
were performed on a 2019 Mac Pro desktop with 2.7 GHz 24-core Intel Xeon W processors. While our flop-count analysis in
Section 3.6 predicts computational cost with growth of 𝑂(𝑛4) (since 𝑑 = 3), the table indicates a CPU time scaling of approximately
𝑂(𝑛2.84). Repeating this for quartic approximations (Table 3), we find growth of 𝑂(𝑛3.57). This suggests that CPU time scales more
like 𝑂(𝑛𝑑) for our problem sizes. Notably, our proposed framework allows us to compute a high-resolution approximation of the
cubic term in the energy function for a state-space dimension of 𝑛 = 1024 using 64 GB of RAM. The cubic coefficient is defined
through the solution of linear system of size 109. By exploiting the Kronecker structure of the linear system and using the efficient
BLAS-3 level implementation outlined in Section 3.6, we can perform this calculation just over 2 h (7930 s) of CPU time.

For 𝑛 = 8, Table 4 shows the energy functions −
𝑑 (𝐳0) and +

𝑑 (𝐳0) as the polynomial degree 𝑑 increases. The past energy function
− +
13

𝑑 (𝐳0) converges more slowly in this specific example, while the future energy function 𝑑 (𝐳0) converges quickly with 𝑑.

Computer Methods in Applied Mechanics and Engineering 427 (2024) 117011B. Kramer et al.

s

Table 2
Degree 3 future energy function approximation (𝑑 = 3) for the discretized Burgers
equation.
𝑛 𝑛3 CPU sec +

3 (𝐳0)

8 5.1200e+02 2.96e−02 1.144557e−06
16 4.0960e+03 1.08e−02 1.116244e−06
32 3.2768e+04 5.96e−02 1.093503e−06
64 2.6214e+05 4.40e−01 1.099870e−06
128 2.0972e+06 4.29e+00 1.097715e−06
256 1.6777e+07 5.48e+01 1.095300e−06
512 1.3422e+08 6.63e+02 1.096322e−06
1024 1.0737e+09 7.93e+03 1.096093e−06

Table 3
Degree 4 future energy function approximation (𝑑 = 4) for the discretized Burgers
equation.
𝑛 𝑛4 CPU sec +

4 (𝐳0)

8 4.0960e+03 4.49e−02 1.144783e−06
16 6.5536e+04 1.38e−01 1.116636e−06
32 1.0486e+06 1.77e+00 1.093928e−06
64 1.6777e+07 3.28e+01 1.100306e−06
128 2.6844e+08 6.86e+02 1.098153e−06

Table 4
Energy function approximations with increasing degree for the
discretized Burgers equation (𝑛 = 8).
𝑑 −

𝑑 (𝐳0) +
𝑑 (𝐳0)

2 3.161325e−05 1.146135e−06
3 2.731740e−05 1.144557e−06
4 2.370917e−05 1.144783e−06
5 2.593642e−05 1.144792e−06
6 2.662942e−05 1.144791e−06
7 2.519892e−05 1.144791e−06
8 2.538956e−05 1.144791e−06

4.4. Kuramoto–Sivashinsky equation

We consider the system described by the Kuramoto–Sivashinsky equation for 𝑥 ∈ (0, 1) and 𝑡 > 0,

𝑧𝑡(𝑥, 𝑡) = −𝜖𝑧𝑥𝑥(𝑥, 𝑡) − 𝜖2𝑧𝑥𝑥𝑥𝑥(𝑥, 𝑡) − 𝜖(𝑧(𝑥, 𝑡)2)𝑥 +
𝑚
∑

𝑗=1
𝑏𝑚𝑗 (𝑥)𝑢𝑗 (𝑡) (68)

subject to periodic boundary conditions 𝑧(0, 𝑡) = 𝑧(1, 𝑡) and 𝑧𝑥(0, 𝑡) = 𝑧𝑥(1, 𝑡). We use the same control input functions 𝑏𝑚𝑗 as in
Section 4.3 as well as the integral observation operator in (66). This version of the equations can be found in [71,72]. Here we
discretize the control problem using Hermite cubic finite elements to account for the fourth derivative term. The same change of
variables as described in the previous example brings this problem to the standard form ((21)–(22)). We use an initial condition
of 𝑧(𝑥, 0) = 𝑧0(𝑥) =

0.1
√

𝜖
sin(4𝜋𝑥) and the parameter 𝜖 = 1∕13.02912, which is known to exhibit heteroclinic cycles in the open-loop

ystem. Repeating the experiments for the Burgers equation, with 𝑚 = 5 and 𝑝 = 2, and here choosing 𝜂 = 0.1, we find a similar
convergence for the future energy function approximation in Table 5. Likewise, with 𝑛 = 16, we have the convergence of the past
and future energy functions with increasing polynomial degree seen in Table 6. The energy function approximations converge at a

Table 5
Future energy function approximation (𝑑 = 3) for the discretized
Kuramoto–Sivashinsky equation.
𝑛 𝑛3 CPU sec +

3 (𝐳0)

16 4.0960e+03 1.20e−02 4.369195e+00
32 3.2768e+04 8.44e−02 5.099752e+00
64 2.6214e+05 5.54e−01 4.793412e+00
128 2.0972e+06 9.14e+00 4.732940e+00
256 1.6777e+07 1.37e+02 4.811878e+00
512 1.3422e+08 1.70e+03 4.827930e+00
1024 1.0737e+09 2.04e+04 4.807904e+00
14

Computer Methods in Applied Mechanics and Engineering 427 (2024) 117011B. Kramer et al.

t

5

e
a
e
c
a
t
m
t
o
s

Table 6
Approximating energy functions with increasing degree with 𝑛 = 16 for the
discretized Kuramoto–Sivashinsky equation.
𝑑 −

𝑑 (𝐳0) (CPU sec) +
𝑑 (𝐳0) (CPU sec)

2 5.2913043e+00 (2.71e−03) 4.3690773e+00 (6.81e−03)
3 4.1573639e+00 (1.47e−02) 4.3691951e+00 (9.88e−03)
4 4.2904579e+00 (2.22e−01) 4.3469410e+00 (1.37e−01)
5 4.2814109e+00 (4.00e+00) 4.3467633e+00 (2.40e+00)
6 4.2830236e+00 (7.46e+01) 4.3467610e+00 (4.39e+01)

point near the origin in both number of states 𝑛 and polynomial degree 𝑑. We also observe a growth in CPU time that outperforms
he predicted flop-count in Section 3.6.

. Conclusions and future directions

We proposed a unifying and scalable approach to computing a family of ∞ energy functions. We employed Taylor series
xpansion for solving a class of parametrized HJB equations, which are at the core of nonlinear balanced truncation. The proposed
pproach was made feasible through deriving a linear tensor structure for the coefficients of the Taylor series, and by heavily
xploiting that structure in the resulting linear systems with billions of unknowns. Our last numerical example considered a
lassical control problem for semi-discretized PDEs in moderate to large dimensions where we computed high-fidelity polynomial
pproximations to the ∞ energy functions. This computational framework will pave the way to perform nonlinear balanced
runcation using the true energy functions (without quadratic approximation and/or without algebraic Gramians) for systems with
oderately large dimensions. In future work, we plan to investigate further the convergence of the polynomial approximations to
he energy functions and extend the results to control-affine systems with polynomial input, output and drift terms. A further benefit
f this approach is that the energy functions in the ∞ and HJB balancing methods automatically produce controllers for nonlinear
ystems, see Section 2. In [54,61,62,67] it is shown that polynomial control laws have better performance than linear quadratic
regulators.

CRediT authorship contribution statement

Boris Kramer: Writing – review & editing, Writing – original draft, Validation, Resources, Project administration, Methodology,
Investigation, Funding acquisition, Formal analysis, Conceptualization. Serkan Gugercin: Writing – review & editing, Writing –
original draft, Validation, Supervision, Resources, Project administration, Methodology, Investigation, Funding acquisition, Formal
analysis, Conceptualization. Jeff Borggaard:Writing – review & editing, Writing – original draft, Validation, Software, Methodology,
Investigation, Funding acquisition, Formal analysis, Data curation, Conceptualization. Linus Balicki: Writing – review & editing,
Software, Methodology.

Declaration of competing interest

Boris Kramer reports a relationship with ASML Holding US that includes: consulting or advisory. The other authors declare that
they have no known competing financial interests or personal relationships that could have appeared to influence the work reported
in this paper.

Data availability

The code and data for the numerical examples is available at https://github.com/jborggaard/NLbalancing.

Acknowledgments

We thank Nick Corbin for valuable comments on the several drafts of this manuscript. This work was supported in part by the
National Science Foundation (NSF), United States under Grant No. CMMI-2130727 and is based upon work supported by the NSF,
United States under Grant No. DMS-1929284 while the first three authors were in residence at the Institute for Computational
and Experimental Research in Mathematics in Providence, RI, during the Spring 2020 Semester Program ‘‘Model and dimension
reduction in uncertain and dynamic systems’’ and Spring 2020 Reunion Event.
15

https://github.com/jborggaard/NLbalancing

Computer Methods in Applied Mechanics and Engineering 427 (2024) 117011B. Kramer et al.

h
b
f
a

w
s

w

Appendix A. HJB balancing energy functions

The Hamilton–Jacobi–Bellman (HJB) balancing approach developed in [23] applies to unstable nonlinear systems as well, and
ence defines energy functions that include both the control and observation penalties simultaneously. For linear systems, HJB-
alancing and LQG-balancing [9,10] are identical concepts. For nonlinear systems they lead to different definitions. This section
ocuses on HJB balancing, which defines the past energy function (−(𝐱0)) and future energy function (+(𝐱0)) for a nonlinear system
s

−(𝐱0) ∶= min
𝐮∈𝐿2(−∞,0]
𝐱(−∞)=𝟎
𝐱(0)=𝐱0

1
2 ∫

0

−∞
‖𝐲(𝑡)‖2 + ‖𝐮(𝑡)‖2d𝑡, (69)

+(𝐱0) ∶= min
𝐮∈𝐿2[0,∞)
𝐱(0)=𝐱0
𝐱(∞)=𝟎

1
2 ∫

∞

0
‖𝐲(𝑡)‖2 + ‖𝐮(𝑡)‖2d𝑡. (70)

As shown in [23, Thm. 15], the past energy function −(𝐱0) is a solution to the Hamilton–Jacobi–Bellman equation

0 =
𝜕−(𝐱)
𝜕𝐱

𝐟 (𝐱) + 1
2
𝜕−(𝐱)
𝜕𝐱

𝐠(𝐱)𝐠(𝐱)⊤ 𝜕⊤−(𝐱)
𝜕𝐱

− 1
2
𝐡(𝐱)⊤𝐡(𝐱), (71)

and the future energy function +(𝐱0) is a solution to the Hamilton–Jacobi–Bellman equation

0 =
𝜕+(𝐱)
𝜕𝐱

𝐟 (𝐱) − 1
2
𝜕+(𝐱)
𝜕𝐱

𝐠(𝐱)𝐠(𝐱)⊤ 𝜕⊤+(𝐱)
𝜕𝐱

+ 1
2
𝐡(𝐱)⊤𝐡(𝐱). (72)

Appendix B. LQG balancing energy functions

While HJB balancing and LQG balancing are identical for linear systems, their extensions to nonlinear systems are different.
The authors in [23] consider an extension of the LQG balancing problem to nonlinear systems, noting that ‘‘the formulation of LQG
balancing for linear systems cannot easily be extended to nonlinear systems. The usual stochastic formulation of the LQG problem seems not
to be the right formulation for nonlinear systems. However, there exists a deterministic formulation of the LQG problem, which is equivalent
to the stochastic formulation, and which has been extended to nonlinear systems; see [73,74]’’. The deterministic nonlinear extension of
LQG balancing poses the optimization

min
𝐮

𝑤0(𝐱0) +
1
2 ∫

𝑡𝑓

0
‖𝐮(𝑡)‖2 + ‖𝜼(𝑡)‖2 d𝑡

s.t. 𝐱̇(𝑡) = 𝐟 (𝐱(𝑡)) + 𝐠(𝐱)𝐮(𝑡)
𝐲(𝑡) = 𝐡(𝐱(𝑡)) + 𝜼(𝑡),

(73)

here 𝜼 is an additive noise, 𝑡𝑓 is a final time, and 𝑤0(𝐱0) is a real-valued function representing the initial cost, with 𝑤0(𝟎) = 0,
ee [74]. Following [23, Sec. 5.1], let 𝑤(𝑡, 𝐱) be a solution to the Mortensen equation

0 =
𝜕𝑤(𝑡, 𝐱)

𝜕𝑡
+ 𝐡(𝐱)𝐲(𝑡) + 𝜕𝑤(𝑡, 𝐱)

𝜕𝐱
𝐟 (𝐱) + 1

2
𝜕𝑤(𝑡, 𝐱)

𝜕𝐱
𝐠(𝐱)𝐠(𝐱)⊤ 𝜕⊤𝑤(𝑡, 𝐱)

𝜕𝐱
− 1

2
𝐡(𝐱)⊤𝐡(𝐱), (74)

ith initial condition 𝑤(0, 𝐱) = 𝑤0(𝐱). Also let 𝑣(𝐱) be the smooth positive solution to the HJB equation

0 =
𝜕𝑣(𝐱)
𝜕𝐱

𝐟 (𝐱) − 1
2
𝜕𝑣(𝐱)
𝜕𝐱

𝐠(𝐱)𝐠(𝐱)⊤ 𝜕𝑣(𝐱)⊤
𝜕𝐱

+ 1
2
𝐡(𝐱)⊤𝐡(𝐱), (75)

with 𝑣(𝟎) = 0. Then the dynamics of the deterministic estimate 𝐱̂ of the state 𝐱 are given by

̇̂𝐱 = 𝐟 (𝐱̂) + 𝐠(𝐱̂)𝐮 +
(

𝜕2𝑤
𝜕𝐱2

(𝑡, 𝐱̂)
)−1

(𝜕𝐡
𝜕𝐱

(𝐱̂)
)⊤

(𝐲(𝑡) − 𝐡(𝐱̂)), (76)

and a control can be obtained via

𝐮(𝐱) = −𝐠(𝐱̂)⊤ 𝜕⊤𝑣
𝜕𝐱

(𝐱̂). (77)

The energy functions 𝑤(𝑡, 𝐱) and 𝑣(𝐱) are essential in obtaining the control and filter for the system, yet the time-dependence of
𝑤(𝑡, 𝐱) causes difficulties. The HJB past energy function (71) can be viewed as a steady state version of (74). Moreover, in the case
of an LTI system, the control 𝐮(𝑡) and observer 𝐱̂(𝑡) are the usual LQG solutions (see [11, Prop. 3.4]), as 𝜕2𝑤

𝜕𝐱2 (𝑡, 𝐱̂) ≡ 𝐐 is the solution
of the filter algebraic Riccati equation (ARE) and 𝜕𝑣

𝜕𝐱
⊤
(𝑡, 𝐱̂) ≡ 𝐏𝐱, where 𝐏 is the solution of the control ARE.

References

[1] A.C. Antoulas, C. Beattie, S. Gugercin, Interpolatory Methods for Model Reduction, in: Computational Science and Engineering, vol. 21, SIAM, Philadelphia,
2020.

[2] A.C. Antoulas, Approximation of Large-Scale Dynamical Systems, in: Advances in Design and Control, Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2005.
16

http://refhub.elsevier.com/S0045-7825(24)00267-6/sb1
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb1
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb1
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb2
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb2
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb2

Computer Methods in Applied Mechanics and Engineering 427 (2024) 117011B. Kramer et al.
[3] P. Benner, A. Cohen, M. Ohlberger, K. Willcox (Eds.), Model Reduction and Approximation: Theory and Algorithms, in: Computational Science &
Engineering, SIAM Publications, Philadelphia, PA, 2017, http://dx.doi.org/10.1137/1.9781611974829.

[4] K. Zhou, J. Doyle, K. Glover, Robust and Optimal Control, Prentice Hall, Upper Saddle River, NJ, 1996.
[5] W.H. Schilders, H.A. van der Vorst, J. Rommes (Eds.), Model Order Reduction: Theory, Research Aspects and Applications, Springer, Berlin, 2008.
[6] P. Benner, S. Gugercin, K. Willcox, A survey of projection-based model reduction methods for parametric dynamical systems, SIAM Rev. 57 (4) (2015)

483–531.
[7] B. Moore, Principal component analysis in linear systems: Controllability, observability, and model reduction, IEEE Trans. Automat. Control 26 (1) (1981)

17–32.
[8] C. Mullis, R. Roberts, Synthesis of minimum roundoff noise fixed point digital filters, IEEE Trans. Circuits Syst. 23 (9) (1976) 551–562.
[9] E.I. Verriest, Suboptimal LQG-design via balanced realizations, in: Proc. 20th IEEE Conference on Decision and Control, IEEE, 1981, pp. 686–687.
[10] E. Jonckheere, L. Silverman, A new set of invariants for linear systems–Application to reduced order compensator design, IEEE Trans. Automat. Control

28 (10) (1983) 953–964.
[11] D. Mustafa, K. Glover, Controller reduction by H∞-balanced truncation, IEEE Trans. Automat. Control 36 (6) (1991) 668–682.
[12] U. Desai, D. Pal, A transformation approach to stochastic model reduction, IEEE Trans. Automat. Control 29 (12) (1984) 1097–1100.
[13] M. Green, Balanced stochastic realizations, Linear Algebra Appl. 98 (1988) 211–247.
[14] P.C. Opdenacker, E.A. Jonckheere, A contraction mapping preserving balanced reduction scheme and its infinity norm error bounds, IEEE Trans. Circuits

Syst. 35 (2) (1988) 184–189.
[15] R. Ober, Balanced parametrization of classes of linear systems, SIAM J. Control Optim. 29 (6) (1991) 1251–1287.
[16] D.F. Enns, Model reduction with balanced realizations: An error bound and a frequency weighted generalization, in: Proc. 23rd IEEE Conference on

Decision and Control, IEEE, 1984, pp. 127–132.
[17] S. Gugercin, A.C. Antoulas, A survey of model reduction by balanced truncation and some new results, Internat. J. Control 77 (8) (2004) 748–766.
[18] P. Benner, T. Breiten, Model order reduction based on system balancing, in: P. Benner, A. Cohen, M. Ohlberger, K. Willcox (Eds.), Model Reduction and

Approximation: Theory and Algorithms, SIAM, 2017, pp. 261–295.
[19] P. Benner, J. Saak, Numerical solution of large and sparse continuous time algebraic matrix Riccati and Lyapunov equations: a state of the art survey,

GAMM-Mitt. 36 (1) (2013) 32–52.
[20] V. Simoncini, Computational methods for linear matrix equations, SIAM Rev. 58 (3) (2016) 377–441.
[21] T. Li, E.K.-w. Chu, W.-W. Lin, P.C.-Y. Weng, Solving large-scale continuous-time algebraic Riccati equations by doubling, J. Comput. Appl. Math. 237 (1)

(2013) 373–383.
[22] J.M. Scherpen, Balancing for nonlinear systems, Systems Control Lett. 21 (2) (1993) 143–153.
[23] J.M.A. Scherpen, A.J. van der Schaft, Normalized coprime factorizations and balancing for unstable nonlinear systems, Internat. J. Control 60 (6) (1994)

1193–1222.
[24] J.M. Scherpen, ∞ balancing for nonlinear systems, Internat. J. Robust Nonlinear Control 6 (7) (1996) 645–668.
[25] T.C. Ionescu, K. Fujimoto, J.M. Scherpen, Dissipativity preserving balancing for nonlinear systems—A Hankel operator approach, Systems Control Lett. 59

(3–4) (2010) 180–194.
[26] T.C. Ionescu, K. Fujimoto, J.M. Scherpen, Positive and bounded real balancing for nonlinear systems-a controllability and observability function approach,

in: Proceedings of the 48h IEEE Conference on Decision and Control (CDC) Held Jointly with 2009 28th Chinese Control Conference, IEEE, 2009, pp.
4310–4315.

[27] K. Fujimoto, D. Tsubakino, Computation of nonlinear balanced realization and model reduction based on Taylor series expansion, Systems Control Lett.
57 (4) (2008) 283–289.

[28] E.G. Al’brekht, On the optimal stabilization of nonlinear systems, J. Appl. Math. Mech. 25 (5) (1961) 1254–1266, http://dx.doi.org/10.1016/0021-
8928(61)90005-3.

[29] D.L. Lukes, Optimal regulation of nonlinear dynamical systems, SIAM J. Control 7 (1) (1969) 75–100.
[30] S. Sahyoun, J. Dong, S.M. Djouadi, Reduced order modeling for fluid flows based on nonlinear balanced truncation, in: Proc. 2013 American Control

Conference, IEEE, 2013, pp. 1284–1289.
[31] W.M. McEneaney, A curse-of-dimensionality-free numerical method for solution of certain HJB PDEs, SIAM J. Control Optim. 46 (4) (2007) 1239–1276.
[32] W.S. Gray, E.I. Verriest, Algebraically defined gramians for nonlinear systems, in: Proc. 45th IEEE Conference on Decision and Control, IEEE, 2006, pp.

3730–3735.
[33] S.A. Al-Baiyat, M. Bettayeb, U.M. Al-Saggaf, New model reduction scheme for bilinear systems, Internat. J. Systems Sci. 25 (10) (1994) 1631–1642.
[34] M. Condon, R. Ivanov, Nonlinear systems–algebraic gramians and model reduction, COMPEL - Int. J. Comput. Math. Electr. Electron. Eng. 24 (1) (2005)

202–219.
[35] P. Benner, P. Goyal, Balanced truncation model order reduction for quadratic-bilinear control systems, 2017, arXiv:1705.00160.
[36] B. Kramer, K. Willcox, Balanced truncation model reduction for lifted nonlinear systems, in: C. Beattie, P. Benner, M. Embree, S. Gugercin, S. Lefteriu

(Eds.), Realization and Model Reduction of Dynamical Systems: A Festschrift in Honor of the 70th Birthday of Thanos Antoulas, Springer International
Publishing, Cham, 2022, pp. 157–174, http://dx.doi.org/10.1007/978-3-030-95157-3_9.

[37] S. Lall, J.E. Marsden, S. Glavaski, A subspace approach to balanced truncation for model reduction of nonlinear control systems, Internat. J. Robust
Nonlinear Control: IFAC-Affil. J. 12 (6) (2002) 519–535.

[38] A.J. Newman, P.S. Krishnaprasad, Computing Balanced Realizations for Nonlinear Systems, Tech. Rep., Center for Dynamics and Control of Smart Structures,
2000.

[39] J. Bouvrie, B. Hamzi, Kernel methods for the approximation of nonlinear systems, SIAM J. Control Optim. 55 (4) (2017) 2460–2492.
[40] NLbalancing Repository, github.com/jborggaard/NLbalancing.
[41] G.P. McCormick, Computability of global solutions to factorable nonconvex programs: Part I–Convex underestimating problems, Math. Program. 10 (1)

(1976) 147–175.
[42] E.H. Kerner, Universal formats for nonlinear ordinary differential systems, J. Math. Phys. 22 (7) (1981) 1366–1371.
[43] M.A. Savageau, E.O. Voit, Recasting nonlinear differential equations as S-systems: a canonical nonlinear form, Math. Biosci. 87 (1) (1987) 83–115.
[44] C. Gu, QLMOR: A projection-based nonlinear model order reduction approach using quadratic-linear representation of nonlinear systems, IEEE Trans.

Comput.-Aided Des. Integr. Circuits Syst. 30 (9) (2011) 1307–1320.
[45] P. Benner, T. Breiten, Two-sided projection methods for nonlinear model order reduction, SIAM J. Sci. Comput. 37 (2) (2015) B239–B260.
[46] B. Kramer, K. Willcox, Nonlinear model order reduction via lifting transformations and proper orthogonal decomposition, AIAA J. 57 (6) (2019) 2297–2307,

http://dx.doi.org/10.2514/1.J057791.
[47] R. Swischuk, B. Kramer, C. Huang, K. Willcox, Learning physics-based reduced-order models for a single-injector combustion process, AIAA J. 58:6 (2020)

2658–2672.
[48] L. Guillot, B. Cochelin, C. Vergez, A taylor series-based continuation method for solutions of dynamical systems, Nonlinear Dynam. 98 (4) (2019) 2827–2845.
[49] E. Qian, B. Kramer, B. Peherstorfer, K. Willcox, Lift & learn: Physics-informed machine learning for large-scale nonlinear dynamical systems, Physica D

406 (2020) 132401, http://dx.doi.org/10.1016/j.physd.2020.132401.
17

http://dx.doi.org/10.1137/1.9781611974829
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb4
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb5
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb6
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb6
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb6
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb7
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb7
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb7
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb8
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb9
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb10
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb10
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb10
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb11
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb12
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb13
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb14
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb14
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb14
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb15
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb16
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb16
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb16
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb17
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb18
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb18
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb18
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb19
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb19
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb19
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb20
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb21
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb21
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb21
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb22
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb23
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb23
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb23
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb24
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb25
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb25
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb25
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb26
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb26
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb26
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb26
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb26
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb27
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb27
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb27
http://dx.doi.org/10.1016/0021-8928(61)90005-3
http://dx.doi.org/10.1016/0021-8928(61)90005-3
http://dx.doi.org/10.1016/0021-8928(61)90005-3
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb29
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb30
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb30
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb30
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb31
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb32
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb32
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb32
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb33
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb34
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb34
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb34
http://arxiv.org/abs/1705.00160
http://dx.doi.org/10.1007/978-3-030-95157-3_9
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb37
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb37
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb37
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb38
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb38
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb38
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb39
http://github.com/jborggaard/NLbalancing
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb41
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb41
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb41
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb42
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb43
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb44
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb44
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb44
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb45
http://dx.doi.org/10.2514/1.J057791
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb47
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb47
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb47
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb48
http://dx.doi.org/10.1016/j.physd.2020.132401

Computer Methods in Applied Mechanics and Engineering 427 (2024) 117011B. Kramer et al.
[50] M. Hemery, F. Fages, S. Soliman, Compiling elementary mathematical functions into finite chemical reaction networks via a polynomialization algorithm
for ODEs, in: E. Cinquemani, L. Paulevé (Eds.), Computational Methods in Systems Biology, Springer International Publishing, Cham, 2021, pp. 74–90.

[51] M. Hemery, F. Fages, S. Soliman, On the complexity of quadratization for polynomial differential equations, in: A. Abate, T. Petrov, V. Wolf (Eds.),
Computational Methods in Systems Biology, Springer International Publishing, Cham, 2020, pp. 120–140.

[52] A. Bychkov, G. Pogudin, Optimal monomial quadratization for ODE systems, in: P. Flocchini, L. Moura (Eds.), Combinatorial Algorithms, Springer
International Publishing, Cham, 2021, pp. 122–136.

[53] A. Bychkov, O. Issan, G. Pogudin, B. Kramer, Exact and optimal quadratization of nonlinear finite-dimensional non-autonomous dynamical systems, SIAM
J. Appl. Dyn. Syst. 23 (1) (2024) 982–1016, http://dx.doi.org/10.1137/23M1561129.

[54] H. Almubarak, N. Sadegh, D.G. Taylor, Infinite horizon nonlinear quadratic cost regulator, in: 2019 American Control Conference, ACC, IEEE, 2019, pp.
5570–5575.

[55] M. Benzi, V. Simoncini, Approximation of functions of large matrices with Kronecker structure, Numer. Math. 135 (1) (2017) 1–26.
[56] P. Comon, G. Golub, L.-H. Lim, B. Mourrain, Symmetric tensors and symmetric tensor rank, SIAM J. Matrix Anal. Appl. 30 (3) (2008) 1254–1279,

http://dx.doi.org/10.1137/060661569.
[57] Kronecker Tools Repository, github.com/jborggaard/KroneckerTools.
[58] T. Breiten, K. Kunisch, L. Pfeiffer, Numerical study of polynomial feedback laws for a bilinear control problem, Math. Control Relat. Fields 8 (3&4) (2018)

557–582.
[59] T. Breiten, K. Kunisch, L. Pfeiffer, Taylor expansions of the value function associated with a bilinear optimal control problem, in: Annales de l’Institut

Henri Poincaré C, Analyse Non Linéaire, Vol. 36, No. 5, Elsevier, 2019, pp. 1361–1399.
[60] T. Breiten, K. Kunisch, L. Pfeiffer, Feedback stabilization of the two-dimensional Navier–Stokes equations by value function approximation, Appl. Math.

Optim. 80 (2019) 599–641.
[61] J. Borggaard, L. Zietsman, The quadratic-quadratic regulator problem: Approximating feedback controls for quadratic-in-state nonlinear systems, in: 2020

American Control Conference, ACC, IEEE, 2020, pp. 818–823.
[62] J. Borggaard, L. Zietsman, On approximating polynomial-quadratic regulator problems, IFAC PaersOnLine 54 (9) (2021) 329–334.
[63] C.F. Loan, The ubiquitous kronecker product, J. Comput. Appl. Math. 123 (1) (2000) 85–100, http://dx.doi.org/10.1016/S0377-0427(00)00393-9,

Numerical Analysis 2000. Vol. III: Linear Algebra.
[64] R.A. Horn, R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1994.
[65] J. Brewer, Kronecker products and matrix calculus in system theory, IEEE Trans. Circuits Syst. CAS-25 (9) (1978).
[66] M. Chen, D. Kressner, Recursive blocked algorithms for linear systems with Kronecker product structure, Numer. Algorithms 15 (9) (2019) 820,

http://dx.doi.org/10.1007/s11075-019-00797-5.
[67] T. Breiten, K. Kunisch, L. Pfeiffer, Numerical study of polynomial feedback laws for a bilinear control problem, Math. Control Relat. Fields 8 (3&4) (2018)

557.
[68] Y. Kawano, J.M. Scherpen, Model reduction by differential balancing based on nonlinear Hankel operators, IEEE Trans. Automat. Control 62 (7) (2016)

3293–3308.
[69] L. Thevenet, J.-M. Buchot, J.-P. Raymond, Nonlinear feedback stabilization of a two-dimensional Burgers equation, ESAIM Control Optim. Calc. Var. 16

(4) (2009) 929–955.
[70] J.A. Burns, S. Kang, A Control Problem for Burgers Equation with Bounded Input/Output, Tech. Rep., ICASE, 1990.
[71] H. Dankowicz, P.J. Holmes, G. Berkooz, J. Elezgaray, Local models of spatio-temporally complex fields, Phys. D 90 (4) (1996) 387–407, http:

//dx.doi.org/10.1016/0167-2789(95)00245-6.
[72] P. Holmes, J.L. Lumley, G. Berkooz, Turbulence, Coherent Structures, Dynamical Systems and Symmetry, in: Cambridge Monographs on Mechanics,

Cambridge University Press, 1996.
[73] R. Mortensen, Maximum-likelihood recursive nonlinear filtering, J. Optim. Theory Appl. 2 (6) (1968) 386–394.
[74] O.B. Hijab, Minimum Energy Estimation (Ph.D. thesis), University of California, Berkeley, 1979.
18

http://refhub.elsevier.com/S0045-7825(24)00267-6/sb50
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb50
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb50
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb51
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb51
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb51
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb52
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb52
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb52
http://dx.doi.org/10.1137/23M1561129
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb54
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb54
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb54
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb55
http://dx.doi.org/10.1137/060661569
http://github.com/jborggaard/KroneckerTools
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb58
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb58
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb58
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb59
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb59
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb59
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb60
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb60
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb60
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb61
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb61
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb61
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb62
http://dx.doi.org/10.1016/S0377-0427(00)00393-9
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb64
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb65
http://dx.doi.org/10.1007/s11075-019-00797-5
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb67
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb67
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb67
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb68
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb68
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb68
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb69
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb69
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb69
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb70
http://dx.doi.org/10.1016/0167-2789(95)00245-6
http://dx.doi.org/10.1016/0167-2789(95)00245-6
http://dx.doi.org/10.1016/0167-2789(95)00245-6
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb72
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb72
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb72
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb73
http://refhub.elsevier.com/S0045-7825(24)00267-6/sb74

	Scalable computation of energy functions for nonlinear balanced truncation
	Introduction
	Energy functions for nonlinear balancing
	Energy functions, Hamilton–Jacobi-Bellman equations, and optimal controllers
	Nonlinear observability and controllability energy functions
	H∞ balancing for nonlinear systems

	Computing energy functions via polynomial approximations
	Polynomials in Kronecker product form
	Future energy function
	Past energy function
	Solvability of the Linear Systems
	Complete algorithm
	Linear Solver and Implementation Details

	Numerical Examples
	Illustrative scalar ODE example (n = 1)
	Illustrative ODE system example (n = 2)
	Burgers equation
	Kuramoto–Sivashinsky equation

	Conclusions and future directions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. HJB balancing energy functions
	Appendix B. LQG balancing energy functions
	References

